JP3737928B2 - Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment - Google Patents
Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment Download PDFInfo
- Publication number
- JP3737928B2 JP3737928B2 JP2000124449A JP2000124449A JP3737928B2 JP 3737928 B2 JP3737928 B2 JP 3737928B2 JP 2000124449 A JP2000124449 A JP 2000124449A JP 2000124449 A JP2000124449 A JP 2000124449A JP 3737928 B2 JP3737928 B2 JP 3737928B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal oxide
- rotary hearth
- filter cloth
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Filtration Of Liquid (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、回転炉床式還元炉を用いて、酸化金属を還元する方法、および、金属の精錬業および加工業において発生する金属酸化物を含むダストおよびスラジを還元処理する方法及び装置に関するものである。
【0002】
【従来の技術】
還元鉄や合金鉄を製造するプロセスとしては各種のものがあるが、この内で、生産性の高いプロセスとして、回転炉床式還元炉があり、金属の還元が実施されている。回転炉床式還元炉は、固定した耐火物の天井および側壁の下で、中央部を欠いた円盤状の耐火物の炉床がレールの上を一定速度で回転する型式の焼成炉(以下、回転炉と称す)を主体とするプロセスであり、酸化金属の還元に用いられる。一般的に、円盤状炉床の直径は10メートルから50メートルかつ、幅は2メートルから6メートルである。
【0003】
原料の酸化金属を含む粉体は、炭素系の還元剤と混合された後、原料ペレットにされて、回転床炉に供給される。原料ペレットはこの炉床上に敷きつめられており、原料ペレットが炉床上に相対的に静置されていることから、原料ペレットが炉内で崩壊しづらいといった利点があり、耐火物上に粉化した原料が付着する問題が無く、また、塊の製品歩留が高いと言った長所がある。また、生産性が高く、安価な石炭系の還元剤や粉原料を使用できる、と言った理由から、近年、実施される例が増加している。
【0004】
さらに、回転炉床法は、高炉、転炉、電気炉から発生する製鉄ダストや圧延工程でのシックナースラジの還元と不純物除去の処理にも有効であり、ダスト処理プロセスとしても使用され、資源リサイクルに有効なプロセスである。
【0005】
回転炉床法の操業の概略は以下の通りである。まず、原料である鉱石やダスト、スラジの金属酸化物にこの酸化物の還元に必要な量の炭素系還元剤を混合した後、パンペレタイザー等の造粒機にて、平均水分が約10%となるように、水をかけながら、数mmから十数mmのペレットを製造する。原料の鉱石や還元剤の粒径が大きい場合は、ボールミル等の粉砕機で粉砕した後に、混練して、造粒する。
【0006】
当該ペレットは回転炉の炉床上に層状に供給され、急速に加熱され、5〜20分間、1100〜1300℃の高温で焼成される。この際に、ペレットに混合されている還元剤により酸化金属が還元され、金属が生成する。金属化率は還元される金属により異なるが、鉄、ニッケル、マンガンでは、95%以上、還元しづらいクロムでも50%以上となる。また、製鉄業から発生するダストを処理する場合は、還元反応に伴い、亜鉛、鉛、アルカリ金属、塩素、等の不純物が揮発除去されることから、ダストを高炉や電気炉にリサイクルすることが容易となる。
【0007】
このように、回転炉床を用いる金属の還元方法および製鉄ダストの還元処理方法においては、原料と還元剤を混合して、斜めになった回転する円盤状のディスク上にて、当該混合物を転動させることによって製造するペレットにすることが原料成形の条件である。ここで、原料の事前処理として、原料の酸化金属の粉体と還元剤の混合物を造粒性の良い状態にすることが重要であり、原料の水分調整と事前粉砕や混練等の手段が行われている。
【0008】
【発明が解決しようとする課題】
前述のように、従来法を用いた回転炉床法での酸化金属の還元方法は、生産性や製造費用の面で優れており、経済的に金属を製造する方法である。しかし、従来技術では、原料と還元剤を混合して、これをペレットにすることが重要であった。そのために、造粒性能の高い原料を選択するか、高価な粉砕機を設置して、原料を粉砕することにより造粒性を向上させることが必要であり、このための費用がかかる問題があった。
安価な原料である湿式選鉱後の微粉の鉱石や、利用しづらい副生成物である高炉や転炉のシックナーダスト、熱間圧延工程でのスケールピットの沈殿スラジや酸洗工程での中和槽の沈殿スラジ等を使用することは、回転炉床法による還元炉の操業を経済的に行なうための有効な方法である。しかし、これらの原料は、原料の含有水分が多すぎて造粒しづらい問題があった。特に、粒径が3〜25ミクロン程度の微粉が含水した状態では、汚泥状となりやすく、これを原料として還元することには大きな問題があった。これを一般的な脱水機である真空脱水機やフィルタープレスなどで脱水した後でも、水分が25%〜40%までにしかならない。一方、ペレットの製造の際は、原料の含有水分は、8〜13質量%が適当であり、上記の脱水した原料は水分が多すぎて、そのままでは造粒できなかった。
【0009】
この問題の解決のためには、これらの湿式法で集めた原料を脱水した後に熱風等の熱源で完全に乾燥する方法がある。しかし、乾燥過程でこれらの粉原料が凝集してしまい、そのままでは造粒することはできないため、これを粉砕して、再度、微粒の状態にした後に、コークス粉などとともに加水して、造粒した後に、回転炉床で還元されていた。
【0010】
その結果、これらの湿式法で集めた原料を上記の方法で利用する場合は、熱源を用いて乾燥した後に、造粒のために再度水分を加えられるため、造粒後の水分蒸発に、再度、熱源が必要であり、エネルギー効率の面で経済的な金属の還元方法ではなかった。
【0011】
特に、製鉄業等の金属の精錬業や加工業で発生するダストやスラジを湿式集塵機または沈殿槽から集めた場合には、これらの発生物は最大80%の水分を含有しており、これらの発生物を回転炉床法で還元処理しようとする場合には、上記の乾燥工程と乾燥後の粉砕処理の問題が大きく、コストの増加が顕著であった。
【0012】
これらの問題を解決するために、例えば、特開平11−12619号公報に示されるように、原料を造粒せずに回転炉床式還元炉で使用する方法として、原料を圧縮成形器でタイル状にして、これを回転炉床式還元炉で使用する方法が発明されている。しかし、この方法でも、やはり、水分を大量に含有した状態の原料を使用することには問題があった。つまり、特開平11−12624号公報記載の方法においても、タイル状にした原料の水分を6〜18%に調整する必要があるが、しかし、25ミクロン以下の微粉がスラリー状態である場合は、通常の脱水機での脱水のみでは、水分20〜40質量%の範囲にしか低減できなかった。つまり、この操業を実施するためには、やはり、事前の脱水処理に加え、乾燥処理が必要であり、このための複雑な水分制御が必要な問題があった。
【0013】
さらに、タイル状の原料は、ハンドリングが難しく、通常のベルトコンベア等の手段による搬送では、搬送中の乗り継ぎ等の際に、タイルが粉々になる搬送上の問題が生ずる。つまり、含水率が6〜18%のタイル状の原料は0. 5mから1m程度の落下で、ほとんどのものが損傷する。その結果、このタイル状の原料装入のためには、特開平11−12621号公報に示されるような、タイル状の原料を炉内に静置するための複雑な装入装置が必要で、この装入設備の設置の設備費用が高い等の問題も生じていた。また、このような複雑な装入装置を1000℃以上の高温部の近くに設置することにより、装入装置の機器が熱変形を受けたり、高温下での腐食を受けたりといった整備上の問題が大きいものであった。
【0014】
また、湿状態の原料を利用する方法として、この原料粉体を穴型付きのロール式圧縮成形によって、ブリケットにする方法も有効な手段である。しかし、ブリケットを用いる方法では、粒径が比較的粗い、平均粒径が100ミクロン程度の粉体の場合は、水分が比較的高くとも大きな問題がないものの、25ミクロン以下の細かい粉体を使用する際には、ブリケットが爆裂しやすい問題があった。これは、ブリケット法で、成形体の強度を確保するには、成形での粉体の締まり具合を比較的に良くしないといけないが、微粉の成形体では、締まりが良過ぎて、気孔率が低くなり、ブリケット内部の水蒸気は移動しづらくなり、その結果、水分が12%以下程度でなければ、水分の蒸発に伴う内部圧力の上昇が大きいことが原因で、回転炉床式の還元炉内で爆裂する問題があった。その結果、ブリケットの場合でも、他の方法に比べれば良いものの、やはり脱水のみでは回転炉床式の還元炉に使用できないため、乾燥工程が必要となり、やはり、工程が複雑となる問題があった。
【0015】
このように、従来技術では、水分の多い粉体原料を乾燥することなく回転床炉にて焼成還元する方法を採用すると、高温の炉内で当該成形体が爆裂してしまい、実際には操業ができていなかった。つまり、成形体が粉化して、排ガス中へのダストロスが大幅に増加する問題や塊製品歩留が極端に悪化する問題等が生じていた。
【0016】
以上のように、いずれの従来法でも、25ミクロン以下の細かい粉体が水分を含んだ状態のものを原料として、回転床炉で焼成還元することには、いずれも経済的な問題があり、これら問題を解決する新しい技術が求められていた。
【0017】
【課題を解決するための手段】
本発明は、以下の(1)から(9)の通りである。
(1)水分を含む状態の平均粒径が25ミクロン以下の酸化金属を含む粉体と炭素を含む粉体の混合物を、循環移動するエンドレスのループ状の濾布上に注ぎ、当該濾布の上下に設置した一対以上のロールにて圧搾して脱水した後に、穴型から押し出す型式の成形機にて円柱状の成形体を形成し、当該成形体を焼成還元することを特徴とする回転炉床式還元炉の操業方法、
(2)水分を含む状態の酸化金属を含む粉体と炭素を含む粉体の混合物を循環移動するエンドレスのループ状の濾布上に注いだ後、当該濾布の上下に設置した一対以上のロールにて圧搾する前に、当該濾布の下方に真空吸引することを特徴とする(1)記載の回転
炉床式還元炉の操業方法、
(3)脱水後の酸化金属を含む粉体と炭素を含む粉体の混合物の含有水分が、当該粉体の質量の16〜27%の範囲であることを特徴とする(1)記載の回転炉床式還元炉の操業方法、
(4)粉体充填率が0. 4〜0. 63の範囲である酸化金属を含む粉体と炭素を含む粉体の混合物を圧縮成形して製造した円柱状の成形体を焼成還元することを特徴とする(3)記載の回転炉床式還元炉の操業方法、
(5)回転炉床式還元炉での酸化金属を含む粉体と炭素を含む粉体の混合物の成形体を供給する部分の雰囲気温度が下式で示される爆裂最低温度(TL)以下であることを特徴とする(3)記載の回転炉床式還元炉の操業方法、
TL = −24W+1690
ただし、TL:爆裂最低温度(℃)、W:成形体の含有水分(%)
(6)酸化金属を含む粉体として、金属の精錬また加工の工程で発生するダストおよび/またはスラジを用いることを特徴とする(1)記載の回転炉床式還元炉の操業方法、
(7)循環移動するエンドレスのループ状の濾布の上方にスラリーの注ぎ口を有し、当該注ぎ口から濾布移動方向の下手の当該濾布の上下に設置した一対以上のロールにて圧搾することを特徴とする脱水装置、穴型から粉体を押し出すことを特徴とする成形機、および、回転炉床式の還元炉を前記の順に設置して、搬送手段にて直列に連結してなることを特徴とする酸化金属の還元設備、
(8)脱水装置として、循環移動するエンドレスのループ状の濾布の上方にスラリーの注ぎ口の部位と、当該濾布の上下に設置した一対以上のロールにて圧搾する部位との間に、当該濾布下方に真空吸引装置を設置してなる脱水機を用いることを特徴とする(7)記載の酸化金属の還元設備、
(9)穴型から粉体を押し出す成形機として、樽状の胴部と当該樽状の胴部の内部にスクリュー式の押し込み装置を有し、かつ、当該樽状の胴部のスクリュー式の押し込み装置の押し出し方向の盤に複数の穴を有する成形機を用いることを特徴とする(7)記載の酸化金属の還元設備。
【0018】
【発明の実施の形態】
本発明は、平均粒径が25ミクロン以下の微粒子であり、かつ、水分を多く含む酸化金属の粉体と炭素を含む粉体を原料とする回転炉床式還元炉の操業方法を以下の方法で行うものである。本発明に基づく、回転炉床法による金属酸化物の還元プロセスの全体を図1に示す。
【0019】
水分を多く含み、スラリー状態となっている原料粉体を混合槽1で、撹拌装置2を用いて、撹拌混合する。この原料粉体は、酸化金属を含む粉体と炭素を含む粉体の混合物である。酸化金属を含む粉体は、微粉の鉄鋼石である鉄鉱石の湿式選鉱の沈殿物、粉状態のマンガン鉱石やクロム鉱石などの平均粒径が25ミクロン以下のものである。また、鉱石以外に、電気炉ダスト、高炉二次ガス灰、転炉OGダスト、鉄製品の酸洗時に発生する中和スラジ、鉄鋼の熱間圧延のミルスケール等の金属精錬や金属加工の工程からの粉状態の発生物も使用可能である。また、この原料粉には、還元剤として、炭素を主体とする粉体、例えば、オイルコークス、粉コークス、チャー、粉石炭、その他の固体炭素を含む粉体(以下、炭素粉と称す。)を混合する。
【0020】
スラリー状態となっている原料粉体をスラリーポンプ3にて、脱水装置4に送り、含有水分が粉体質量の16〜27%の範囲になるように脱水する。平均粒径が25ミクロン以下の微粉からなるスラリーの脱水の場合は、脱水物の水分を16〜27質量%とするには、下記の脱水機を使用する。
【0021】
本発明の脱水装置4は、循環移動するエンドレスのループ状の濾布上に原料スラリーを注ぎ、当該濾布の上下に設置した一対以上のロールにて圧搾して脱水するものであり、図2に記載される型式のものである。(以降、「双ロール式圧搾脱水機」と称す。)これは、スラリーを受ける循環移動する濾布14、および、当該濾布を挟み込む圧搾ロール16を有する脱水機である。この脱水機では、エンドレスの帯状に組み込まれている濾布14上に、スラリー供給管13からスラリー15を流し、このフィルターを圧搾ロール16で挟み込み、脱水する。スラリーの水分が多い場合や粉体の平均粒径が小さい場合は、圧搾双ロール16の手前で、濾布の下方の真空吸引装置18を用いて、スラリー中の水分を予備的に脱水すると効果的に脱水ができる。当該脱水機にて脱水された粉体混合物の脱水物17は、水分が16〜27質量%であり、また、厚みが0. 5〜2mm程度、かつ、長さが5〜10mm程度のフレーク状の集合体となる。
【0022】
脱水されて水分が16〜27質量%の範囲となったフレーク状の粉体混合物をスラジ搬送コンベア5にて、成形機6に送り、ここで成形を行う。成形機の機種としては、図3に示すスクリューの押し込み装置を有する穴型に含水状態の粉体を押し込む型式の成形機(以降、スクリュー押し込み式成形機と称す)である。原料の水分を含んだ粉体は、含水粉体供給口19から樽状の胴部20に供給され、押し込みスクリュー21にて、エンドプレート23の通過穴24から押し出され、直径が10〜30mm、かつ、長さが20〜50mmの円柱状の成形体25となる。
【0023】
ここで、本発明での回転炉床式の還元炉で用いる成形体に要求される性能としては、1000℃程度の高温雰囲気に直接投入された場合の水蒸気爆裂を起こさないことと、搬送時の落下強度が高いことの2点が最も重要な項目である。
【0024】
従来法で一般的に用いられる成形方法であるパン型のペレット製造法では、粉体を回転する傾斜部で転動することにより、表面に新しい粉体層を作らせて、成形体を成長させる方法である。この方法で製造したペレットは、粉体充填率が0. 65〜0. 8と高く、かなり緻密な成形体であり、落下強度が高い。しかし、緻密であるが故に、高温の還元炉内で、成形体内部の水分が蒸発する際に内部圧力が高くなり、水蒸気起因の爆裂が発生しやすい。回転炉床法では、このような緻密な成形体は、900℃以上の高温の炉内で爆裂が起きやすいことから、ペレットを使用する場合は、事前にペレットを乾燥する手段が用いられている。
【0025】
本発明者らは、爆裂条件についての研究を繰り返し、含水状態の成形体を直接に高温の炉内に供給した場合に、成形体が爆裂を起こさないためには、成形体の粉体充填率を低くすることが重要であることを解明した。つまり、高温の炉内で、成形体内部の水分が急速に蒸発する場合に、成形体内部の圧力が高まることを防止するには、粉体粒子間に空隙が多いことが重要である。なお、粉体充填率とは、成形体内部の粉体が占める真の容積を成形体の容積で割ったもので、1−気孔率でも定義できる。
【0026】
図4に、スクリュー押し込み式成形機で製造した成形体の直径が15mmの円柱状のものを1050℃の雰囲気中に投入した際の爆裂を起こさない最高の水分含有率(爆裂限界水分)に与える粉体充填率の影響を示した。粉体充填率が低下すると爆裂限界水分が低下しており、粉体充填率が0. 62までは、27質量%の水分までは爆裂も部分的な粉化も起きなかった。つまり、成形体の爆裂防止の観点からは、粉体充填率は0. 62以下が望ましいことを解明した。
【0027】
次に本発明者らは、双ロール式圧搾式脱水機とスクリュー押し込み式成形機の組み合わせで製造した成形体が爆裂しづらいことの理由も解明した。双ロール式圧搾式脱水機で脱水した粉体混合物は、前述したように、フレーク状となり、これをスクリュー押し込み式成形機で成形すると、フレークの構造が成形体にも残り、成形体の内部に1〜2mm程度の間隔で、粉体充填率の高い部分と低い部分が交互に縞状になって現れることを顕微鏡観察で確認した。つまり、この成形体は構造的にかなりルーズな部分と密な部分が交互になっており、構造強度を確保しながら、内部から水蒸気が逃げやすい構造となっている。特に、縞状の特徴から半径方向への水蒸気の抜けが良い構造であった。このような縞状の構造を有することから、成形体の粉体充填率が0. 4〜0. 6程度でも、十分に落下強度が確保できることを解明した。
【0028】
このように、平均粒径が25ミクロン以下の粉体を双ロール式圧搾式脱水機とスクリュー押し込み式成形機の組み合わせで、製造した成形体は、他の方式、例えば、ブリケット成形法、と比較しても、より高含水率でも爆裂を生じない良好な成型方法であることが判明した。なお、ブリケット成形法による成形体でも、12%程度の水分まで、成形体が還元炉内で爆裂を生じない良好なものであるが、特に平均粒径の小さい粉体の成形と爆裂防止には、双ロール式圧搾式脱水機とスクリュー押し込み式成形機の組み合わせで製造した成形体は、いっそう適正なものであることを見出した。
【0029】
また、一般的に、スクリュー押し込み式成形機は成形体の通過穴24の摩耗が大きいものであることが問題点であった。しかし、本発明で用いる平均粒径が25ミクロン以下の粉体の場合は、比較的水分が高く、また、粉体充填率が低い状態で、穴から押し出されるため、押し出しの抵抗が小さく、また、微粉の粉体の場合は、滑りもよいことから、通過穴24の摩耗は小さく押さえられることも解明した。
【0030】
前述したように、成形体の性状としては落下強度が強いことも重要である。成形体は、成形機から回転炉床まで搬送される過程で、コンベアの乗り継ぎと炉内への投入で、0. 5〜2m程度の落下距離を数回落下する。したがって、落下強度(形状が破壊されるまでの合計の落下距離で表示)の強い成形体が求められ、回転炉床式還元炉では、3〜5m以上の値が求められている。しかし、一般的には、粉体充填密度が低い成形体は落下強度が低いため、前述の爆裂を起こさない条件と矛盾する。そこで、本発明者らは、粉体充填密度が低い成形体の落下強度を高める研究を行った結果、水分がある比率以上あれば、落下時に成形体が衝撃を受けても変形するだけで、破壊されないことを解明した。
【0031】
更に、本発明者らは水分の落下強度に対する影響を研究したことろ、水分が16質量%以上であれば、粉体充填率が0. 4〜0. 62の成形体でも、落下強度が4. 5m以上あることを解明した。ただし、粉体充填率が0. 40以下の場合は、水分含有率に関わらず、粉化が激しく、落下強度が2〜4m程度と低かった。したがって、落下強度の確保の観点から、水分は16質量%以上で、粉体充填率は0. 4以上であることが望ましい。
【0032】
以上の方法により成形された成形体は、湿状態のまま、成形体搬送コンベア7を経由して、成形体の供給装置である、首振りコンベア8を用いて、回転炉床式還元炉9に供給される。
【0033】
回転炉床式還元炉9では、含水状態の成形体が、所定の温度以下の雰囲気温度である部分に供給されることも爆裂防止の条件である。つまり、雰囲気温度が高すぎると、成形体の温度上昇率が高くなり、内部の水蒸気圧力が高くなり、適正な条件で製造した成形体でも爆裂を起こすことがある。爆裂を起こさない最低の雰囲気温度(爆裂最低温度)は成形体の水分で異なり、低水分のものほど、爆裂最低温度が高いことを解明した。
【0034】
本発明者らが、成形体水分と爆裂を起こさない最低雰囲気温度(爆裂最低温度)の関係を調査した結果を図4に示す。成形体の水分が増加すると爆裂最低温度が、低くなることを見出し、図4の関係から、下式に示される爆裂最低温度(TL)以下であれば、成形体の爆裂を防止できることを解明した。
【0035】
TL = −24W+1690
ただし、TL:爆裂最低温度(℃) W:成形体の含有水分(%)である。
【0036】
回転炉床式還元炉9では、炉内で成形体が1200〜1300℃程度の温度で焼成され、成形体内部の炭素分により、酸化金属が還元される。本発明の原料混合方法は、水を多く含む状態で撹拌混合されているため、成形体の酸化金属と炭素が均一に混合されており、効率よく反応する効果もある。
【0037】
還元された成形体は、回転炉床式還元炉9から排出されて、常温まで冷却される。ただし、電気炉等で使用する場合には、900℃程度の高温のまま溶解工程に供給することもある。回転炉床式還元炉7からの燃焼排ガスはガス冷却装置10と集塵機11を経由して、煙突12から大気に放散される。
【0038】
本発明を金属の精錬もしくは加工で発生するスラジやダストの処理に活用することは、特に、有効な方法である。例えば、製鉄所の高炉のガス灰は湿式のベンチュリースクラバーで集塵して、シックナーでスラリーなっている。また、圧延の酸洗での廃酸を中和した中和スラジもある。これらの粉体の粒径は3〜25ミクロン程度のものが多く、本発明による還元処理にとって最適な原料である。
【0039】
このようなダストやスラジは、従来から、脱水機にかけて処理しているが、再利用することが難しく、費用もかかるものである。本発明の設備において、これらのダストやスラジをシックナーから混合槽1に直接受ければ、中間処理が少なく、簡単な方法で還元処理することができる。したがって、金属の精錬また加工の工程で発生するダストやスラジを用いることは、本発明にとって最も望ましい方法の一つである。
【0040】
また、還元設備としては、図1に示され、以下に説明する構成となる。原料の準備工程として、酸化金属を含む粉体と炭素を含む粉体の混合物からなるスラリーを受け、脱水する双ロール式圧搾脱水機4を第一工程として設置して、また、第二工程として、スクリュー押し込み式成形機6を設置して、この間をベルトコンベアやパイプコンベアで連結して脱水後の粉体を搬送する。次に、スクリュー押し込み式成形機6で製造された円筒型の成形体をベルトコンベア等で搬送して、例えば、首振りコンベア8のような、供給装置を経由して、回転炉床式還元炉9へ供給する。本発明での成形体の落下強度は、4. 5m程度以上であることから、搬送中の成形体の落下粉化を防止するためには、スクリュー押し出し式成形機6から回転炉床式還元炉9までの合計の落下距離を4. 5m以下とすることが望ましい設備条件である。
【0041】
【実施例】
本発明に基づく操業を行った実施例を表1に示す。使用した設備は、図1に示される構成のものであり、還元能力は含水状態の成形体質量の基準で毎時10トンのものである。
【0042】
原料は、表1に示すとおり、微粉の粉鉱石であるペレットフィードと0.5mmアンダーのコークス粉の混合物と、一貫製鉄所での高炉二次ガス灰、熱間圧延スケールピットの沈殿スラジ、転炉OGダスト、および、0. 5mmアンダーのコークス粉の混合物の2種類を用いた。
【0043】
操業条件としては、表1に示すとおりであるが、脱水後で成形前の原料水分は粉体質量の18と23%であった。粉体充填率は、表1に示すとおり、本発明の範囲内であった。また、成形体のサイズは、直径が20mmで長さが30mmである。成形体の投入部の炉内温度は、1050℃、還元部の炉内温度は1260℃であり、また、還元時間は12〜15分であった。
【0044】
実施例1の操業では、金属化率は97%と高く、また、落下による粉化と爆裂がほとんどなかったことから、塊製品歩留も94%と高かった。実施例2の操業は、酸化鉄粉体の還元とともに脱亜鉛と脱アルカリも狙った操業である。この操業では、金属化率は91%で、脱亜鉛率は95%、脱アルカリ率は99%と不純物は有効に除去できていた。この実施例でも落下による粉化と爆裂がほとんどなかったことから、塊製品歩留も96%と高かった。
【0045】
【表1】
【0046】
本発明による還元操業と、図5に示される比較例の設備を使用した従来法の還元操業との経済性を比較すると、本発明での操業では、原料の前処理が混合工程、脱水工程、および、成形工程しかないため、原料前処理の費用は、比較例に比べて、30%程度で済んでいる。また、プロセス全体での費用でも、比較例に比べて約15%の削減ができた。また、本発明による設備は、比較例のものと比べて、約20%程建設費用が安くすんだ。
【0047】
以上のように、湿状態の粉体を使用する本発明を用いた操業では、原料成形体の爆裂などの操業上の問題もなく、安価な建設費用で、エネルギー消費量をはじめとする操業費用も安価である。その結果、回転炉床式還元炉での鉱石、および、酸化金属含有のダストやスラジの粉体の還元を経済的に実施できた。
【0048】
なお、操業方法の比較例として、図5に示した従来法による操業の設備を説明すると、従来法の設備での操業では、脱水機26の後に、スラジ乾燥機28で含水分を5〜10質量%の範囲に乾燥する。また、その後、粉体に散水装置29で加水しながら、パン式造粒機30にてペレットを製造する。さらに、このペレットはペレット乾燥装置32に送られて、ここでペレットの含水分を2%程度以下まで乾燥する。その後に、回転炉床式還元炉9にて、乾燥ペレットを焼成還元する。このように、本発明による方法に比べると、従来法による操業は多工程にわたり、複雑であり、エネルギーロスも大きい方法である。
【0049】
【発明の効果】
本発明によれば、還元用回転炉床法において、経済的に、湿状態の粉体原料を用いて、酸化金属の還元を行い、金属の製造することができる。また、金属製造業から発生する酸化金属を含むダストとスラジの処理を経済的に実施することには有効な手段である。特に、水分を大量に含有するダストとスラジを処理するために、本発明による操業は有効な手段である。
【図面の簡単な説明】
【図1】本発明に基づく、水分を含む粉体原料を還元する回転炉床式還元炉の設備構成の一例を示す図である。
【図2】エンドレスの帯状の濾布の上にスラリーを落とし、圧搾双ロールにて、圧搾する形式の脱水装置を示す図である。
【図3】粉体を成形するスクリュー式の押し出し成形機の一例を示す図である。
【図4】成形体の含有水分と爆裂最低温度の関係を示す図である。
【図5】従来法に基づく、回転炉床式還元炉設備構成の一例を示す図である。
【符号の説明】
1 混合槽
2 撹拌装置
3 スラリーポンプ
4 双ロール式圧搾脱水機
5 スラジ搬送コンベア
6 スクリュー押し出し式成形機
7 成形体搬送コンベア
8 首振りコンベア
9 回転炉床式還元炉
10 ガス冷却装置
11 集塵機
12 煙突
13 スラリー供給管
14 濾布
15 スラリー
16 圧搾ロール
17 脱水物
18 真空吸引装置
19 含水粉体供給口
20 胴部
21 スクリュー軸
22 押し込みスクリュー
23 エンドプレート
24 通過穴
25 成形体
26 脱水機
27 スラジコンベア
28 スラジ乾燥機
29 散水装置
30 パン式造粒機
31 ペレット搬送コンベア
32 ペレット乾燥機
33 乾燥ペレット搬送コンベア[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing metal oxide using a rotary hearth type reduction furnace, and a method and apparatus for reducing dust and sludge containing metal oxides generated in metal refining and processing industries. It is.
[0002]
[Prior art]
There are various processes for producing reduced iron and alloyed iron. Among these processes, there is a rotary hearth type reducing furnace as a highly productive process, and metal reduction is performed. A rotary hearth type reduction furnace is a type of firing furnace (hereinafter referred to as a refractory type furnace) in which a hearth of a disk-like refractory lacking a central part rotates on a rail at a constant speed under a fixed refractory ceiling and side walls. This process is mainly called a rotary furnace, and is used to reduce metal oxides. In general, the diameter of the disk-shaped hearth is 10 to 50 meters and the width is 2 to 6 meters.
[0003]
The powder containing the metal oxide of the raw material is mixed with a carbon-based reducing agent, and then made into raw material pellets and supplied to the rotary bed furnace. The raw material pellets are laid on this hearth, and since the raw material pellets are relatively stationary on the hearth, there is an advantage that the raw material pellets are difficult to disintegrate in the furnace, and pulverized on the refractory. There is no problem that the raw material adheres, and there is an advantage that the product yield of the lump is high. In addition, in recent years, the number of implementations has been increasing for the reason that high-productivity and inexpensive coal-based reducing agents and powder raw materials can be used.
[0004]
In addition, the rotary hearth method is effective in reducing iron impurities generated in blast furnaces, converters, and electric furnaces, and reducing thickener sludge and removing impurities in the rolling process. It is an effective process for recycling.
[0005]
The outline of the operation of the rotary hearth method is as follows. First, after mixing the raw material ore, dust, and sludge metal oxide with an amount of carbon-based reducing agent necessary for the reduction of this oxide, the average moisture is about 10% in a granulator such as a pan pelletizer. Then, pellets of several mm to several tens of mm are manufactured with water. When the raw material ore and the reducing agent have a large particle size, they are pulverized by a pulverizer such as a ball mill and then kneaded and granulated.
[0006]
The pellets are fed in layers on the hearth of a rotary furnace, heated rapidly and fired at a high temperature of 1100-1300 ° C. for 5-20 minutes. At this time, the metal oxide is reduced by the reducing agent mixed in the pellets to generate metal. Although the metallization rate varies depending on the metal to be reduced, it is 95% or more for iron, nickel, and manganese, and 50% or more for chromium that is difficult to reduce. In addition, when processing dust generated from the iron and steel industry, impurities such as zinc, lead, alkali metals, and chlorine are volatilized and removed along with the reduction reaction, so it is possible to recycle the dust into a blast furnace or electric furnace. It becomes easy.
[0007]
As described above, in the metal reduction method and the iron dust reduction method using the rotary hearth, the raw material and the reducing agent are mixed, and the mixture is rotated on a rotating disc-shaped disk that is inclined. It is a raw material molding condition to make pellets manufactured by moving them. Here, as a pretreatment of the raw material, it is important to make the mixture of the raw material metal oxide powder and the reducing agent in a state of good granulation, and means such as moisture adjustment of the raw material and pre-grinding and kneading are performed. It has been broken.
[0008]
[Problems to be solved by the invention]
As described above, the metal oxide reduction method in the rotary hearth method using the conventional method is excellent in terms of productivity and manufacturing cost, and is an economical method for producing metal. However, in the prior art, it was important to mix the raw material and the reducing agent into pellets. Therefore, it is necessary to select a raw material with high granulation performance or install an expensive pulverizer and pulverize the raw material to improve the granulation property. It was.
Fine ore after wet beneficiation, which is an inexpensive raw material, thickener dust from blast furnaces and converters that are difficult to use, neutralization tanks in scale pit precipitation sludge in hot rolling processes and pickling processes It is an effective method to economically operate the reduction furnace by the rotary hearth method. However, these raw materials have a problem that it is difficult to granulate because the raw material contains too much moisture. In particular, when a fine powder having a particle size of about 3 to 25 microns is contained in water, it tends to be sludge, and there has been a big problem in reducing this as a raw material. Even after this is dehydrated with a general dehydrator such as a vacuum dehydrator or a filter press, the water content is only 25% to 40%. On the other hand, in the production of pellets, 8 to 13% by mass is appropriate for the moisture content of the raw material, and the dehydrated raw material has too much moisture, and cannot be granulated as it is.
[0009]
In order to solve this problem, there is a method in which the raw materials collected by these wet methods are dehydrated and then completely dried by a heat source such as hot air. However, since these powder raw materials aggregate in the drying process and cannot be granulated as they are, they are pulverized and made into fine particles again, and then watered together with coke powder to granulate After being reduced in the rotary hearth.
[0010]
As a result, when the raw materials collected by these wet methods are used in the above method, after drying using a heat source, moisture can be added again for granulation. In addition, a heat source is required, and this is not an economical metal reduction method in terms of energy efficiency.
[0011]
In particular, when dust and sludge generated in the metal refining and processing industries such as steel industry are collected from wet dust collectors or settling tanks, these products contain up to 80% moisture. When reducing the generated product by the rotary hearth method, the problems of the drying step and the pulverization after drying are large, and the increase in cost is remarkable.
[0012]
In order to solve these problems, for example, as disclosed in Japanese Patent Application Laid-Open No. 11-12619, as a method of using a raw material in a rotary hearth type reduction furnace without granulating, the raw material is tiled with a compression molding machine. And a method of using the same in a rotary hearth reducing furnace has been invented. However, this method still has a problem in using the raw material containing a large amount of moisture. That is, even in the method described in JP-A-11-12624, it is necessary to adjust the water content of the tiled raw material to 6 to 18%. However, when fine powder of 25 microns or less is in a slurry state, Only by dehydration with a normal dehydrator, the water content could be reduced to a range of 20 to 40% by mass. In other words, in order to carry out this operation, in addition to the prior dehydration process, a drying process is necessary, and there has been a problem that complicated moisture control is required.
[0013]
Further, the tile-shaped raw material is difficult to handle, and in the case of conveyance by means such as a normal belt conveyor, there arises a problem in conveyance in which tiles are shattered at the time of transfer during conveyance. That is, most of the tile-shaped raw materials having a moisture content of 6 to 18% are damaged when dropped from about 0.5 m to 1 m. As a result, for the charging of the tile-shaped raw material, a complicated charging device for leaving the tile-shaped raw material in the furnace as shown in JP-A-11-12621 is required. There have also been problems such as high equipment costs for installing the charging equipment. In addition, by installing such a complicated charging device near a high temperature part of 1000 ° C. or more, maintenance problems such that the charging device is subjected to thermal deformation or corrosion at high temperatures. Was a big one.
[0014]
In addition, as a method of using a raw material in a wet state, a method of briquetting this raw material powder by roll compression molding with a hole mold is also an effective means. However, in the method using briquettes, if the particle size is relatively coarse and the average particle size is about 100 microns, a fine powder of 25 microns or less is used although there is no major problem even if the moisture is relatively high. When doing so, there was a problem that briquette was easy to explode. In order to ensure the strength of the compact by the briquette method, the compaction of the powder in the molding must be relatively good, but the compact of the fine powder is too tight and the porosity is low. As a result, the water vapor inside the briquette becomes difficult to move. As a result, if the water content is not about 12% or less, the internal pressure rises due to the evaporation of the water. There was a problem of explosion. As a result, even in the case of briquette, although it may be compared with other methods, it cannot be used for a rotary hearth type reduction furnace by dehydration alone, so a drying process is necessary, and there is a problem that the process becomes complicated. .
[0015]
As described above, in the prior art, if a method of firing and reducing powder material with a high moisture content in a rotary bed furnace without drying is used, the molded body explodes in a high-temperature furnace, and in actual operation, Was not done. In other words, the molded body was pulverized, resulting in a problem that the dust loss into the exhaust gas was greatly increased and a mass product yield was extremely deteriorated.
[0016]
As described above, in any of the conventional methods, there is an economical problem in calcining and reducing in a rotary bed furnace using a fine powder of 25 microns or less containing moisture as a raw material, New technology to solve these problems has been demanded.
[0017]
[Means for Solving the Problems]
The present invention is as described in (1) to (9) below.
(1) A mixture of powder containing metal oxide and carbon containing metal oxide having an average particle diameter of 25 microns or less in a water-containing state is poured onto an endless loop filter cloth that circulates, and the filter cloth A rotary furnace characterized in that after pressing and dehydrating with a pair of upper and lower rolls installed at the top and bottom, a cylindrical shaped body is formed by a molding machine of a type extruded from a hole mold, and the formed body is fired and reduced. Operation method of floor type reduction furnace,
(2) After pouring a mixture of powder containing metal oxide in a state of containing moisture and powder containing carbon onto an endless loop-shaped filter cloth that circulates, a pair of two or more installed above and below the filter cloth The rotation according to (1), wherein vacuuming is performed below the filter cloth before pressing with a roll.
Operation method of hearth reduction furnace,
(3) The rotation according to (1), wherein the moisture content of the mixture of the powder containing metal oxide after dehydration and the powder containing carbon is in the range of 16 to 27% of the mass of the powder. Operation method of hearth reduction furnace,
(4) Firing and reducing a cylindrical molded body produced by compression molding a mixture of powder containing metal oxide and powder containing carbon whose powder filling ratio is in the range of 0.4 to 0.63. (3) The operation method of the rotary hearth type reducing furnace according to (3),
(5) The atmosphere temperature of the portion for supplying the mixture of the powder containing metal oxide and the powder containing carbon in the rotary hearth reducing furnace is equal to or lower than the minimum explosion temperature (TL) shown by the following formula (3) The operation method of the rotary hearth type reducing furnace according to (3),
TL = -24W + 1690
However, TL: minimum explosion temperature (° C.), W: moisture content of molded body (%)
(6) The method for operating a rotary hearth type reducing furnace according to (1), wherein dust and / or sludge generated in a metal refining or processing step is used as the powder containing metal oxide,
(7) A slurry spout is provided above the endless loop-shaped filter cloth that circulates and is compressed by a pair of rolls installed above and below the filter cloth in the lower direction of the filter cloth movement from the spout. A dehydrating apparatus characterized by the above, a molding machine characterized by extruding powder from a hole mold, and a rotary hearth type reducing furnace are installed in the order described above, and connected in series by a conveying means. A metal oxide reduction facility, characterized in that
(8) As a dehydrator, between the part of the slurry spout above the endless loop-shaped filter cloth that circulates and the part to be squeezed with a pair of rolls installed above and below the filter cloth, The metal oxide reduction facility according to (7), wherein a dehydrator having a vacuum suction device installed below the filter cloth is used,
(9) As a molding machine for extruding powder from a hole mold, a barrel-shaped body and a screw-type pushing device inside the barrel-shaped body, and a screw-type of the barrel-shaped body The metal oxide reduction equipment according to (7), wherein a molding machine having a plurality of holes is used in a board in an extrusion direction of the pushing device.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method for operating a rotary hearth type reduction furnace using fine particles having an average particle size of 25 microns or less and a metal oxide powder containing a large amount of water and a powder containing carbon as raw materials. Is what you do. An overall reduction process of metal oxide by the rotary hearth method based on the present invention is shown in FIG.
[0019]
The raw material powder containing a lot of moisture and in a slurry state is stirred and mixed in the
[0020]
The raw material powder in a slurry state is sent to the dehydrating device 4 by the
[0021]
The dehydrating apparatus 4 of the present invention is one in which raw material slurry is poured onto an endless loop-shaped filter cloth that circulates and is squeezed and dehydrated by a pair of rolls installed above and below the filter cloth. Of the type described in 1. (Hereinafter referred to as “twin roll type press dehydrator”.) This is a dehydrator having a
[0022]
The flaky powder mixture that has been dehydrated and has a moisture content in the range of 16 to 27% by mass is sent to the molding machine 6 by the sludge conveyer 5 and molded there. As a model of the molding machine, there is a type of molding machine (hereinafter referred to as a screw-in type molding machine) that pushes the powder in a water-containing state into a hole mold having a screw-in pressing device shown in FIG. The raw material-containing powder is supplied from the hydrated
[0023]
Here, the performance required for the compact used in the rotary hearth type reduction furnace in the present invention is that it does not cause a steam explosion when directly put into a high temperature atmosphere of about 1000 ° C. Two points of high drop strength are the most important items.
[0024]
In the bread-type pellet manufacturing method, which is a molding method generally used in the conventional method, a compact is grown on a surface by rolling a powder at a rotating inclined portion to grow a compact. Is the method. The pellets produced by this method have a powder filling rate as high as 0.665 to 0.8, a fairly dense compact, and a high drop strength. However, since it is dense, the internal pressure increases when the water inside the molded body evaporates in a high-temperature reducing furnace, and explosion due to water vapor tends to occur. In the rotary hearth method, such a dense formed body is likely to explode in a furnace having a high temperature of 900 ° C. or higher. Therefore, when pellets are used, means for drying the pellets in advance is used. .
[0025]
The inventors of the present invention have repeatedly conducted research on explosion conditions, and in order to prevent the molded body from exploding when the water-containing molded body is directly supplied into a high-temperature furnace, the powder filling rate of the molded body It was clarified that it is important to lower the value. That is, it is important that there are many voids between the powder particles in order to prevent the pressure inside the compact from increasing when moisture inside the compact rapidly evaporates in a high-temperature furnace. The powder filling rate is obtained by dividing the true volume occupied by the powder inside the compact by the volume of the compact, and can also be defined by 1-porosity.
[0026]
FIG. 4 gives the maximum moisture content (explosion limit moisture) that does not cause explosion when a cylindrical product with a diameter of 15 mm manufactured by a screw-in type molding machine is put in an atmosphere of 1050 ° C. The effect of powder filling rate was shown. When the powder filling rate decreased, the explosion limit moisture decreased, and until the powder filling rate reached 0.62, neither explosion nor partial pulverization occurred until the water content was 27% by mass. In other words, it was clarified that the powder filling rate is preferably 0.62 or less from the viewpoint of preventing explosion of the compact.
[0027]
Next, the present inventors also elucidated the reason why a molded body produced by a combination of a twin roll type compression dehydrator and a screw-in type molding machine is difficult to explode. As described above, the powder mixture dehydrated by the twin-roll type squeezing dehydrator becomes flakes, and when this is molded by a screw-in type molding machine, the structure of the flakes remains in the molded body and remains in the molded body. It was confirmed by microscopic observation that a portion having a high powder filling rate and a portion having a low powder filling rate appeared alternately in a stripe pattern at intervals of about 1 to 2 mm. That is, the molded body has structurally quite loose portions and dense portions alternately, and has a structure in which water vapor easily escapes from the inside while ensuring structural strength. In particular, the structure has good water vapor escape in the radial direction from the striped feature. Since it has such a striped structure, it has been clarified that the drop strength can be sufficiently secured even when the powder filling rate of the compact is about 0.4 to 0.6.
[0028]
In this way, a powder having an average particle size of 25 microns or less is manufactured by combining a twin-roll squeezing type dehydrator and a screw-in type molding machine, and the produced compact is compared with other methods such as a briquette molding method. Even so, it has been found that this is a good molding method that does not cause explosion even at a higher water content. It should be noted that the molded body by the briquette molding method is good in that the molded body does not explode in the reducing furnace up to about 12% of moisture, but especially for molding of powder having a small average particle size and explosion prevention. The present inventors have found that a molded body produced by a combination of a twin roll type compression dehydrator and a screw-in type molding machine is more appropriate.
[0029]
In general, the screw-in type molding machine has a problem that the wear of the
[0030]
As described above, it is also important that the strength of the molded body is high in drop strength. In the process of being conveyed from the molding machine to the rotary hearth, the compact is dropped several times at a drop distance of about 0.5 to 2 m by connecting the conveyor and putting it into the furnace. Therefore, a molded body having a high drop strength (indicated by the total drop distance until the shape is destroyed) is required, and a value of 3 to 5 m or more is required in a rotary hearth type reduction furnace. However, in general, a molded product having a low powder packing density has a low drop strength, which contradicts the above-described conditions that do not cause explosion. Therefore, as a result of conducting research to increase the drop strength of a molded product having a low powder packing density, the present inventors only have to deform even if the molded product receives an impact at the time of dropping if the moisture is above a certain ratio. Clarified that it will not be destroyed.
[0031]
Furthermore, the present inventors have studied the influence of moisture on the drop strength. If the moisture content is 16% by mass or more, the drop strength is 4 even in a molded product having a powder filling ratio of 0.4 to 0.62. Elucidated that there is more than 5m. However, when the powder filling rate was 0.40 or less, pulverization was intense and the drop strength was as low as about 2 to 4 m regardless of the moisture content. Therefore, from the viewpoint of securing the drop strength, it is desirable that the water content is 16% by mass or more and the powder filling rate is 0.4 or more.
[0032]
The molded body molded by the above method is kept in a wet state via a molded body transporting conveyor 7 and is fed to a rotary hearth
[0033]
In the rotary hearth
[0034]
FIG. 4 shows the result of investigation by the inventors of the relationship between the molded body moisture and the minimum ambient temperature (explosion minimum temperature) at which explosion does not occur. It has been found that the minimum explosion temperature decreases as the moisture content of the molded body decreases. From the relationship shown in FIG. 4, it has been clarified that the explosion of the molded body can be prevented if it is below the minimum explosion temperature (TL) shown in the following equation. .
[0035]
TL = -24W + 1690
However, TL: explosion minimum temperature (° C.) W: moisture content (%) of the compact.
[0036]
In the rotary hearth
[0037]
The reduced molded body is discharged from the rotary hearth
[0038]
Utilizing the present invention for the treatment of sludge and dust generated during metal refining or processing is a particularly effective method. For example, the gas ash of a steel blast furnace is collected by a wet venturi scrubber and is slurried by a thickener. There is also a neutralized sludge obtained by neutralizing waste acid in rolling pickling. Many of these powders have a particle size of about 3 to 25 microns, and are optimum raw materials for the reduction treatment according to the present invention.
[0039]
Such dust and sludge are conventionally processed in a dehydrator, but are difficult to reuse and costly. In the facility of the present invention, if these dusts and sludge are directly received from the thickener to the
[0040]
Moreover, as reduction equipment, it becomes a structure which is shown by FIG. 1 and demonstrated below. As a raw material preparation step, a twin roll press dehydrator 4 for receiving and dewatering a slurry composed of a mixture of a powder containing metal oxide and a powder containing carbon is installed as a first step, and as a second step. Then, a screw-in type molding machine 6 is installed, and the space between them is connected by a belt conveyor or a pipe conveyor to convey the dehydrated powder. Next, the cylindrical molded body manufactured by the screw-in type molding machine 6 is conveyed by a belt conveyor or the like, and is supplied to a rotary hearth type reduction furnace via a supply device such as a swinging
[0041]
【Example】
Table 1 shows examples in which operations based on the present invention were performed. The equipment used has the structure shown in FIG. 1, and the reduction capacity is 10 tons per hour on the basis of the weight of the compact in the water-containing state.
[0042]
As shown in Table 1, the raw materials are a mixture of pellet feed, which is fine powder ore, and coke powder of 0.5 mm under, blast furnace secondary gas ash at the integrated steelworks, precipitation sludge in the hot rolling scale pit, Two types of mixture were used: furnace OG dust and 0.5 mm under coke powder.
[0043]
The operating conditions are as shown in Table 1, but the raw material moisture after dehydration and before molding was 18 and 23% of the powder mass. As shown in Table 1, the powder filling rate was within the scope of the present invention. Further, the size of the molded body is 20 mm in diameter and 30 mm in length. The furnace temperature in the charging part of the compact was 1050 ° C., the furnace temperature in the reducing part was 1260 ° C., and the reduction time was 12 to 15 minutes.
[0044]
In the operation of Example 1, the metallization rate was as high as 97%, and since there was almost no powdering and explosion due to falling, the lump product yield was as high as 94%. The operation of Example 2 is an operation aimed at dezincification and dealkalization as well as reduction of the iron oxide powder. In this operation, the metallization rate was 91%, the dezincification rate was 95%, the dealkalization rate was 99%, and impurities could be removed effectively. Even in this example, there was almost no powdering and explosion due to dropping, so the mass product yield was as high as 96%.
[0045]
[Table 1]
[0046]
Comparing the economic efficiency of the reduction operation according to the present invention and the reduction operation of the conventional method using the equipment of the comparative example shown in FIG. 5, in the operation according to the present invention, the pretreatment of the raw material is a mixing step, a dehydration step, And since there is only a molding process, the cost of the raw material pretreatment is about 30% as compared with the comparative example. In addition, the cost of the entire process could be reduced by about 15% compared to the comparative example. In addition, the equipment according to the present invention is approximately 20% less expensive than the comparative example.
[0047]
As described above, in the operation using the present invention using the powder in the wet state, there is no operation problem such as the explosion of the raw material molded body, the operation cost including the energy consumption is low in construction cost. Is also cheap. As a result, it was possible to economically reduce the ore and metal oxide-containing dust and sludge powder in the rotary hearth type reduction furnace.
[0048]
As a comparative example of the operation method, the operation facility according to the conventional method illustrated in FIG. 5 will be described. Dry to the mass% range. Thereafter, pellets are produced by the
[0049]
【The invention's effect】
According to the present invention, metal can be produced by reducing metal oxide economically using a powder raw material in a wet state in the reduction rotary hearth method. Further, it is an effective means for economically treating dust and sludge containing metal oxide generated from the metal manufacturing industry. In particular, the operation according to the present invention is an effective means for treating dust and sludge containing a large amount of moisture.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of the equipment configuration of a rotary hearth type reducing furnace for reducing a powder raw material containing moisture based on the present invention.
FIG. 2 is a view showing a dehydrating apparatus of a type in which slurry is dropped on an endless belt-shaped filter cloth and squeezed by a squeezing twin roll.
FIG. 3 is a diagram showing an example of a screw-type extrusion molding machine that molds powder.
FIG. 4 is a diagram showing the relationship between the moisture content of a molded body and the minimum explosion temperature.
FIG. 5 is a diagram showing an example of a rotary hearth type reducing furnace equipment configuration based on a conventional method.
[Explanation of symbols]
1 Mixing tank
2 Stirrer
3 Slurry pump
4 Double roll type press dehydrator
5 Sludge conveyor
6 Screw extrusion molding machine
7 Molded product conveyor
8 Swing conveyor
9 Rotary hearth reduction furnace
10 Gas cooling device
11 Dust collector
12 Chimney
13 Slurry supply pipe
14 Filter cloth
15 Slurry
16 Squeeze roll
17 Dehydrated
18 Vacuum suction device
19 Water-containing powder supply port
20 Torso
21 Screw shaft
22 Push screw
23 End plate
24 passage hole
25 Molded body
26 Dehydrator
27 Sludge conveyor
28 Sludge dryer
29 Watering equipment
30 Bread granulator
31 Pellet conveyor
32 Pellet dryer
33 Dry Pellet Conveyor
Claims (9)
TL = −24W+1690
ただし、TL:爆裂最低温度(℃)、W:成形体の含有水分(%)である。In the rotary hearth type reduction furnace, the ambient temperature of the portion for supplying the mixture of the powder containing metal oxide and the powder containing carbon is equal to or lower than the minimum explosion temperature (TL) indicated by the following formula The operating method of the rotary hearth type reducing furnace according to claim 3.
TL = -24W + 1690
However, TL: explosion minimum temperature (° C.), W: moisture content (%) of the molded body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000124449A JP3737928B2 (en) | 2000-04-25 | 2000-04-25 | Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000124449A JP3737928B2 (en) | 2000-04-25 | 2000-04-25 | Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001303115A JP2001303115A (en) | 2001-10-31 |
JP3737928B2 true JP3737928B2 (en) | 2006-01-25 |
Family
ID=18634581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000124449A Expired - Fee Related JP3737928B2 (en) | 2000-04-25 | 2000-04-25 | Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3737928B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3635256B2 (en) * | 2001-09-14 | 2005-04-06 | 新日本製鐵株式会社 | Reduction method of iron oxide |
CA2423166C (en) | 2002-04-03 | 2008-11-25 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for making reduced iron |
WO2004024961A1 (en) | 2002-09-13 | 2004-03-25 | Nippon Steel Corporation | Method for reduction treatment of metal oxide or ironmaking waste, and method for concentration and/or recovery of zinc and/or lead |
JP4317579B2 (en) | 2007-09-05 | 2009-08-19 | 新日本製鐵株式会社 | Method for producing reduced iron molded body and method for producing pig iron |
JP4317580B2 (en) | 2007-09-14 | 2009-08-19 | 新日本製鐵株式会社 | Method for producing reduced iron pellets and method for producing pig iron |
JP5423645B2 (en) * | 2010-10-14 | 2014-02-19 | 新日鐵住金株式会社 | Method for producing reduced iron |
CN103114199B (en) * | 2013-03-12 | 2014-10-29 | 攀钢集团攀枝花钢钒有限公司 | Starting-up production method of sintering machine |
CN104792176B (en) * | 2015-04-07 | 2017-03-01 | 马钢(集团)控股有限公司 | The device and method that a kind of continuous pallettype sintering machine start produces |
CN114231689B (en) * | 2021-12-22 | 2023-06-23 | 济南鲁东耐火材料有限公司 | Pressing device, test device and test method for converter movable furnace bottom filling material |
-
2000
- 2000-04-25 JP JP2000124449A patent/JP3737928B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001303115A (en) | 2001-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7964014B2 (en) | Metal oxide-bearing green pellets for reducing furnace, method of production of same, method of reduction of same, and reduction facility | |
US8308844B2 (en) | Method of reduction treatment of metal oxides or steelmaking waste and method of concentrating and recovering zinc and/or lead | |
JP3635256B2 (en) | Reduction method of iron oxide | |
TW527423B (en) | Facilities for reducing metal oxide, method for operating the facilities and moldings as raw material to be charged to reduction furnace | |
JP3737928B2 (en) | Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment | |
JP3779873B2 (en) | Operation method of rotary hearth reduction furnace | |
CN202626235U (en) | Equipment for producing steel-making slag former by virtue of steel-making sludge | |
JP3579652B2 (en) | Metal oxide reduction equipment | |
CN219244300U (en) | Vertical cooling waste heat recovery production system for pellets | |
JP4264188B2 (en) | Method for reducing metal oxide | |
JP4105856B2 (en) | Reduced iron production method by rotary bed furnace | |
CN102719665A (en) | Process method and equipment for producing slag-forming agent for making steel by utilizing steel making sludge | |
RU2465352C2 (en) | Processing method of zinc-iron-containing dusts or slurries of metallurgical production | |
JP3631709B2 (en) | Method for reducing metal oxide | |
CN110564957A (en) | Treatment device and method for efficiently removing zinc from zinc-containing dedusting ash of iron and steel enterprises | |
KR100633871B1 (en) | Method for drying molding containing oxidized metal, method for reducing oxidized metal and rotary hearth type metal reduction furance | |
JP3820677B2 (en) | Method and apparatus for charging reduced iron production raw material | |
JPH0941047A (en) | Production of lumpy material formed by using iron-containing fine powder and apparatus therefor | |
CN115652081A (en) | Dry powder material granulation process of rotary hearth furnace for treating iron-containing zinc-containing metallurgical dust and sludge | |
JP2001032005A (en) | Operation of rotary furnace hearth method for reduction | |
CN117107054A (en) | Composite binder for agglomeration of zinc-containing solid wastes and agglomeration method of zinc-containing solid wastes | |
WO2004081240A1 (en) | Method for recycling converter dust to rotary hearth reducing furnace | |
CN114427026A (en) | Nickel-containing waste pretreatment equipment and nickel-containing waste pretreatment method | |
Das et al. | Agglomeration | |
JP2017088986A (en) | Method for producing carbon-containing molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051028 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3737928 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081104 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101104 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101104 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131104 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131104 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131104 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |