JP4264188B2 - Method for reducing metal oxide - Google Patents

Method for reducing metal oxide Download PDF

Info

Publication number
JP4264188B2
JP4264188B2 JP2000304836A JP2000304836A JP4264188B2 JP 4264188 B2 JP4264188 B2 JP 4264188B2 JP 2000304836 A JP2000304836 A JP 2000304836A JP 2000304836 A JP2000304836 A JP 2000304836A JP 4264188 B2 JP4264188 B2 JP 4264188B2
Authority
JP
Japan
Prior art keywords
raw material
hearth
zone
furnace
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000304836A
Other languages
Japanese (ja)
Other versions
JP2002105518A (en
Inventor
茂樹 高橋
安部  洋一
和範 永井
哲治 茨城
充 山本
伸幸 兼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000304836A priority Critical patent/JP4264188B2/en
Publication of JP2002105518A publication Critical patent/JP2002105518A/en
Application granted granted Critical
Publication of JP4264188B2 publication Critical patent/JP4264188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属の精錬業および加工業において発生する金属酸化物を含むダストおよびスラジを還元処理する回転炉床式の金属還元炉を用いた酸化金属の還元方法に関するものである。
【0002】
【従来の技術】
還元鉄や合金鉄を製造するプロセスとしては各種のものがあるが、この内で、生産性の高いプロセスとして、回転炉床法が実施されている。回転炉床法は、固定した耐火物の天井および側壁の下で、中央部を欠いた円盤状の耐火物の炉床がレールの上を一定速度で回転する型式の焼成炉(以下、回転炉と称す)を主体とするプロセスであり、酸化金属の還元に用いられる。回転炉の炉床直径は10〜50メートルかつ、幅は2〜6メートルを有するものである。
【0003】
原料の酸化金属を含む粉体は、炭素系の還元剤と混合された後、原料ペレットにされて、回転炉に供給される。原料ペレットはこの炉床上に敷きつめられており、原料ペレットが炉床上に静置されていることから、原料ペレットが炉内で崩壊しにくいといった利点があり、耐火物上に粉化した原料が付着する問題が無く、また、塊の製品歩留が高いと言った長所がある。また、生産性が高く、安価な石炭系の還元剤や粉原料を使用できると言った理由から、近年、実施される例が増加している。
【0004】
さらに、回転炉床法は、高炉、転炉、電気炉から発生する製鉄ダストや圧延工程でのシックナースラジの還元と不純物除去の処理にも有効であり、ダスト処理プロセスとしても使用され、資源リサイクルに有効なプロセスである。
【0005】
回転炉床法の操業の概略は以下の通りである。
【0006】
まず、原料である鉱石やダスト、スラジの金属酸化物に、この酸化物の還元に必要な量の炭素系還元剤をよく混合した後、パンペレタイザー等の造粒機にて、水分が約10%となるように、水をかけながら、数〜十数mmのペレットを製造する。原料の鉱石や還元剤の粒径が大きい場合は、ボールミル等の粉砕機で粉砕した後に、混練して、造粒する。
【0007】
このペレットを回転炉床上に供給して、層状に敷き込む。炉床上に敷込まれたペレットは急速に加熱され、5〜20分間、1300℃前後の高温で焼成される。この際に、ペレットに混合されている還元剤により酸化金属が還元され、金属が生成する。還元後の金属化率は還元される金属により異なるが、鉄、ニッケル、マンガンでは、95%以上、還元しにくいクロムでも50%以上となる。また、製鉄業から発生するダストを処理する場合は、還元反応に伴い、亜鉛、鉛、アルカリ金属、塩素、等の不純物が揮発除去されることから、高炉や電気炉にリサイクルすることが容易となる。
【0008】
このように、回転炉床を用いる金属の還元方法および製鉄ダストの還元処理方法においては、原料と還元剤をペレットにすることが必須の条件で、原料の事前処理として、原料の酸化金属の粉体と還元剤の混合物を造粒性の良い状態にすることが重要であり、原料の事前粉砕やボールミルでの混練等の種々の方法が行われている。
【0009】
【発明が解決しようとする課題】
前述のように、従来の回転炉床法による酸化金属の還元は、生産性や製造費用の面で優れており、経済的に金属を製造する方法である。しかし、原料と還元剤をペレットにすることが重要であり、造粒性能の高い原料を選択するか、高価な粉砕機を設置して、原料を粉砕することにより造粒性を向上させることが必要であり、このための費用が多くかかる問題があった。
【0010】
つまり、原料として鉄鉱石等の鉱石を使用する場合は、一般には、原料鉱石の粒径が大きいため、平均粒径が数十μm以下になるように粉砕した後、造粒して、ペレットを製造していた。その結果、粉砕工程の設備が高価であり、また、粉砕機の運転のための電力がかかることや粉砕機器の磨耗に伴う整備費用がかかるといった欠点があった。
【0011】
したがって、粉砕の費用を節約するために、微粉の原料を使用することがあるが、原料の選択性が厳しく、汎用的な方法ではなかった。そこで、湿式選鉱後の微粉鉱石を使用すること、または高炉や転炉のシックナーダスト、圧延工程でのスケールピットのスラジや酸洗工程での沈殿スラジ等を使用することが有効である。しかし、この場合でも、原料の含有水分が多すぎて造粒しづらいといった問題があった。すなわち、これらの原料は粒径が1〜数十μmの微粉であり、その結果、水分を含んだ状態では、これらは汚泥状となりやすく、また真空脱水機やフィルタープレスで脱水した後でも、水分が30〜50%あり、そのままでは水分が多すぎて、造粒できなかった。
【0012】
この問題の解決のためには、熱風等の熱源で粉原料を完全に乾燥した後に、造粒する方法がある。しかし、乾燥過程で粉原料が疑似凝集してしまい、そのままでは造粒することはできないため、これを粉砕して、再度、微粒の状態にした後に、他の原料とともに、加水して、造粒した後に、回転炉床で還元されていた。
【0013】
その結果、上記の方法で利用された場合でも、多量の熱源を用いて乾燥した後に、再度水分を加えられるため、造粒時の水分の蒸発に、熱源が必要であり、経済的な金属の還元方法ではなかった。
【0014】
特に、製鉄業等の金属の精錬業や加工業で発生するダストやスラジを湿式集塵機または沈殿槽から集めた場合には、これらの発生物は、最大90%と、多くの水分を含有しており、これらの発生物を回転炉床法で還元処理しようとする場合には、乾燥工程と乾燥後の粉砕処理の問題が顕著であった。
【0015】
これらの問題を解決するために、例えば、特開平11−12619号公報には、原料を造粒せずに回転炉床法で使用する方法として、原料を圧縮成型機でタイル状にして、これを回転炉床法で使用する発明が開示されている。しかし、この方法でも、やはり、水分を大量に含有した状態の原料を使用することには問題があった。
【0016】
つまり、特開平11−12624号公報に示されるように、原料の水分を6〜18%に調整する必要があり、このためには、事前の脱水処理に加え、乾燥処理が必要であり、このための複雑な水分制御が必要な問題があった。また、この原料装入のためには、特開平11−12621号公報に示されるような、複雑な装入装置が必要であり、この設備の整備費用が高い等の問題も生じていた。
【0017】
さらに、このような形状の水分を含む原料を高温の回転炉に直接装入した場合には、水分含有率が高いために、水分の蒸発に伴う爆裂現象が発生して、原料が粉化して、排気ガス中に失われて、製品歩留が極端に悪いといった問題が生じていた。通常、回転炉床法での炉内温度は、原料供給部の近傍が最も低く、1150〜1200℃である。気孔率が40〜55%の場合では、水分が15〜27%と多く、原料供給部の近傍が1200℃以上になっても爆裂現象は起きないものの、水蒸気の噴出による角部分や表面の剥離が生じる。したがって、1200〜1250℃程度の高温でも、還元操業は可能であるが、塊状の還元物の比率が少なく、粉の生成率が高くなるという問題があった。その結果、排ガス中に金属分がロスする比率が比較的高くなり、歩留の低下の問題が残った。
【0018】
本発明は、従来は実現できなかった、水分を含んだ粉状態の原料を回転炉床法で爆裂の発生なく高歩留で還元することが可能な回転炉床式の金属還元炉を用いた酸化金属の還元方法を安価に提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明は、(1)〜()の通りである。
【0020】
(1)原料供給部から炉床の回転方向に対して下流側の加熱帯までの間に、加熱帯との仕切り壁を設けた乾燥帯を有する回転炉床式の金属還元炉を用いて酸化金属を還元する方法であって、気孔率が25〜55%で、3〜27%の水分を含有している成形体を、前記乾燥帯にて60〜300秒間、300〜1150℃で乾燥することを特徴とする酸化金属の還元方法
【0021】
(2)原料排出部から原料供給部までの間の炉内天井の一部に水冷手段を有することを特徴とする前記(1)の酸化金属の還元方法
【0022】
(3)原料排出部から原料供給部までの間の炉床に水を吹き付ける機構を有することを特徴とする前記(1)又は(2)の酸化金属の還元方法
【0023】
(4)乾燥帯の乾燥用熱源がバーナー、間接加熱源、加熱・還元帯の排ガスの何れか又は2以上の組み合わせであることを特徴とする前記(1)〜(3)の何れかの酸化金属の還元方法
【0025】
【発明の実施の形態】
本発明に基づく、回転炉床式の還元炉と当該還元炉への金属酸化物原料の前処理設備を示した還元装置の全体の1例を図3に示す。これは、水分を含んだ粉状原料の混合ピット1、スラリー輸送ポンプ2、脱水装置3、成形機4、回転炉5および、付帯設備からなる。また、回転炉5の原料供給部周辺の円周に沿った垂直断面図を図1、および図2に示す。
【0026】
まず、混合ピット1に、水分を50質量%以上の比率で含んだ状態の酸化金属粉体と炭素を主体とした還元剤を粉状にした原料を混合しておく。酸化金属原料は、鉄鉱石粉、マンガン鉱石粉、クロム鉱石粉等の粉鉱石や金属製造業で発生する精錬炉のダストや圧延工程のスラジなどを用いる。特に、金属製造業で発生するスラジは、元来70%程度の水を含んでいることから、本方法に最も望ましい原料である。
【0027】
混合ピット1の中で原料の固液混合物を良く撹拌混合する。この固液混合物をスラリー輸送ポンプ2にて脱水装置3に輸送して、ここで含有水分を15〜27%まで脱水して、原料混合物の凝集体を形成する。固液混合物を循環移動する濾布の上に注ぎ、当該濾布の上下に設置した一対の圧搾ロールで絞る型式の脱水装置、フィルタープレス、遠心脱水機等を用いて脱水し、原料混合物の凝集体を得ることができる。
【0028】
当該粉体凝集体を成形機4に供給する。成形機4にて、水分を含んだまま成形体を形成する。成形体は、10〜20mm程度の大きさのものが望ましい。回転炉5で成形体が爆裂しにくいように、水蒸気が抜けやすい構造を設けることが望ましい。具体的には、気孔率を高くすれば、水蒸気の抜けが良くなり、爆裂しにくくなることから、図3に示す押し出し形式の成形機の場合には、気孔率を40〜55%とすることが望ましい。気孔率が40%より低いと、緻密な成形体である為、水蒸気が抜けにくくなり、気孔率が55%を超えると、焼成前の成形体の強度低下が発生し、成形体の炉内での崩壊による操業支障を来たすので、上記の範囲とすることが好ましい。
【0029】
また、成形機として双ロール式圧縮成形機を用いる場合には、気孔率を25〜40%とすることが好ましい。気孔率が25%より低いと緻密な成形体である為、水蒸気が抜けにくくなり、気孔率が40%を超えると焼成前の成形体の強度低下が発生し、成形体の炉内での崩壊による操業支障を来たすので、上記の範囲とする。また、成形体の水分が3%より少ないと、水蒸気の発生に伴う成形体の粉化は発生しにくいので、3%以上とし、押出し式の成形機を用いる場合、成形体としての形状を得るためには、水分は15%以下とすることが好ましい。
【0030】
図3の例で示した成形機4は、原料を保持するケーシング内に設置してあるスクリューを用いて、ケーシング末端のエンドプレートに設けた複数の穴型から水分を含む粉体を押し出す型式の成形機が最も望ましい。この成形機では、水分含有率=12〜27%と含水粉体を比較的粗く成形できるので、成形体の気孔率を40〜55%に制御することが可能になる。成形機4にて製造した成形体を回転炉5に供給する。供給装置としては、水分が多くとも詰まりの生じない型式の振動フィーダーやシャトルコンベア等を使用する。
【0031】
押し出し成形機による成形体は、水分を12〜27%含んでいるため、炉内で加熱される際に、成形体内部で水蒸気が発生する。この水蒸気の発生速度が速すぎると、気孔率の高い成形体においても、成形体の表面剥離や爆裂が起きることから、水蒸気の発生速度を低減することが重要な技術である。
【0032】
そこで、図1に示すように、加熱帯との仕切り壁16を設け、加熱〜還元による高温排ガスがこの区間に到達する前に排ガス出口15から排出され、天井14下部のこの区間への熱の供給を押さえ独立した乾燥帯を設ける。
【0033】
一般に加熱・還元帯から発生する高温の排ガスには、揮発した亜鉛、鉛、アルカリ金属、塩素、等の物質を含むため、炉内での再凝縮を防止するため乾燥帯排ガス出口17部で900〜1100℃を確保する必要がある。従って、乾燥帯排ガスと加熱・還元帯排ガスを混合して排気する場合、乾燥帯排ガス温度が低温時(300〜700℃)は、乾燥帯排ガス出口17部で排ガス出口温度900〜1100℃を確保するため、乾燥帯排ガス分は余分な昇熱が必要である。
【0034】
乾燥帯と加熱・還元帯を分割する仕切り壁16を設けることで、乾燥帯から発生する水分を多く含んだ排ガスは、乾燥帯排ガス出口17から、加熱・還元帯から発生する高温の排ガスは排ガス出口15から、各々を排気することができる。
【0035】
これにより、乾燥帯から発生する排ガス分の昇熱が不要となり、燃料原単位が向上すると共に、高温の排ガス系統に水分を多く含んだ排ガスが混合しないので、高温排ガス処理量が低減でき、排ガス処理設備費をより安価にすることができる。
【0036】
一方、乾燥帯の熱源は図2に示すように、間接加熱源、バーナーによる熱源あるいは、加熱・還元帯の排ガス熱源を利用することが可能であり、加えて前記加熱源の何れか2つの手段、例えば、間接加熱源と加熱・還元帯排ガス熱源を併用しても良い。
【0037】
間接加熱源は、蓄熱式ラジアントチューブ23が、バーナーではリジェネバーナー22が省エネルギーにおいて有効である。加熱・還元帯の排ガス熱源は、高温の排ガスダクト6中に熱交換機20を設け、送風機21からの空気を加熱した後、乾燥帯で使用する。
【0038】
なお、図1および図2において、炉床18は左から右方向に移動して、排出スクリュー11にて、還元された成形体を排出した後、原料供給口13から炉床18上に成形体が連続的に供給される。
【0039】
通常の操業条件では、加熱・還元帯で熱せられた炉床18の還元物を排出した後の炉床表面温度は1150〜1250℃であり、この温度に伴う炉床18からの熱放散が乾燥帯の熱源となっている。本発明者らが種々の実験を行った結果、粉生成率を低下させるためには、原料である成形体の供給時の炉床表面温度を900〜1050℃とすることが望ましいことを解明した。
【0040】
乾燥帯への熱流入を押さえる方法として、炉床18を冷却することも有効な方法である。つまり、炉床18を冷却することにより、炉床18からの伝熱を低下することができる。
【0041】
炉床18の冷却方法としては、排出スクリュー11と原料供給口13の間の天井を水冷金属パネル12で構成することにより、冷却する方法がある。この場合は、還元済み成形体の排出が終わって、裸状態の炉床18からの輻射熱を水冷金属パネル12で吸収することにより、炉床18の温度を低下させる。この方法では、水冷金属パネル12の表面温度は300℃程度となり、炉床表面温度を900〜1050℃に冷却するために、30〜50秒の冷却が必要である。また、原料供給口13よりも上流の部分で炉床18にスプレーノズル等から散水する方法も炉床冷却に有効である。
【0042】
乾燥帯での水分除去が終わった成形体は、炉床18とともに炉内を移動して、徐々に高温部に移り、成形体温度が1200℃を越えた時点で盛んに還元反応を起こし、成形体の酸化金属はほとんど金属となる。還元された成形体は、排出スクリュー11で炉床18から掻き出され、クーラー10で冷却されて、高炉や電気炉などの利用工程に輸送される。
【0043】
また、比較的緻密な成形体を製造して、これを還元する例を図4に示す。双ロール式圧縮成形機24、いわゆるブリケット成形機にて、水分を3から15%に調整した粉体を成形する例である。この成形体は、気孔率が25〜40%と比較的緻密なものである。また、回転式造粒機、いわゆるパンペレタイザーにより、成形体を製造する方法もある。ただし、この成形体は、気孔率が約25%とかなり緻密な成形体となる。水分を含んだ状態では、爆裂しやすいため、本発明の方法での還元操業には不向きであるが、水分が3〜15%程度であれば、本発明の方法での使用に耐えられる。
【0044】
気孔率が25〜40%と比較的緻密な成形体の場合は、成形体の乾燥を行う部分である乾燥帯の最高温度は1000℃以下に押さえる必要がある。この理由は、緻密で気孔率が低い成形体は、成形体の内部で水蒸気が抜ける際に、気孔の通気抵抗により、成形体の内部圧力が高くなり易く、爆裂や粉化を抑制するためには、低温で水分を蒸発させる必要があるためである。また、気孔率の高い成形体の場合と同様に、乾燥帯の炉内温度を300℃以上とすることが有利である。これは、ガス温度が低すぎて、乾燥帯の長さが極端に延長する欠点を解消するためである。つまり、気孔率が25〜40%と比較的緻密な成形体では、乾燥帯の温度を300〜1000℃とすることが望ましい。この時の乾燥帯の長さは、炉床18の通過時間に換算して、60〜180秒が望ましい。気孔率が40〜60%の成形体の場合に対して、より短い時間となっているが、これは含有水分が少なく乾燥が早く終わるためである。
【0045】
緻密な成形体を用いる場合でも、乾燥帯での水分除去が終了した後に、成形体は高温の炉内で還元され、排出スクリュー11で炉床18から掻き出され、クーラー10で冷却される。
【0046】
前記(5)の発明においては、気孔率が25〜55%で、3〜27%の水分を含有している前記成形体を炉床に供給し、乾燥帯の炉内温度を1150℃以下に低下させることにより、表面の剥離等を抑制して、成形体の粉生成率を低減することができる。双ロール式の圧縮成形機を用いて成形する場合、気孔率が25〜40%で、3〜15%の水分を含有している前記成形体を炉床に供給し、乾燥帯の炉内温度を1000℃以下に低下させることにより、また、押出し式の成形機等を用いて成形する場合には、気孔率が40〜55%で、12〜27%の水分を含有している前記成形体を炉床に供給し、乾燥帯の炉内温度を1150℃以下に低下させることにより、表面の剥離等を抑制して、成形体の粉生成率を低減することができる。押出し式の成形機を用いて成形する場合、当該スラッジの成形可能な水分条件は12〜27%であることより、水分の範囲は上記のとおりとする。
【0047】
また、成形体を炉床に供給後、加熱帯までの時間は60〜300秒とする。60秒より短いと充分な乾燥時間を確保できず、一方300秒より長いと生産性が低下するので、上記の範囲に限定する。
【0048】
乾燥帯の炉内温度を低下させることにより、表面の剥離等を抑制して、成形体の粉生成率を低減することができる。乾燥帯の炉内温度が成形体の粉化に与える影響を調査した結果を表1に示す。この実験では、押し出し式の成形機によって製造した平均粒径が8μmの酸化鉄と炭素の粉体の混合物を試料として用いた。成形体は、直径15mm、気孔率44%、水分19%のものである。粉の発生率は表1に示すように、1200℃では、25%あったものが、1000℃では、8.8%まで低下している。また、300℃では、粉生成率は、5.1%である。
【0049】
【表1】

Figure 0004264188
【0050】
乾燥帯の通過時間と温度は、成形体の気孔率と水分により異なるが、気孔率が25〜40%で、3〜15%の水分を含有している成形体の場合は、60〜180秒、300〜1000℃とし、気孔率が40〜55%で、12〜27%の水分を含有している成形体の場合は60〜210秒、300〜1150℃とする。炉内温度を低下させると乾燥帯の長さが長くなり、設備的には炉床面積が大きくなる問題もある。乾燥帯の炉内温度を300℃未満とすると、排ガスからの輻射伝熱が急速に低下して、乾燥帯の長さが極端に延長する。その結果、設備建設費用の面で不利であるとともに、炉内温度を低下させるための機構も複雑になることから、乾燥帯の炉内温度は300℃以上が有利である。また、乾燥帯の炉内温度が1200℃以上の場合では、表1に示されるように、急速に粉の比率が増加する。したがって、還元製品の歩留の観点から、気孔率が25〜40%で3〜15%の水分を含有している成形体の場合は乾燥帯の炉内温度を1000℃以下とすることが望ましい。
【0051】
気孔率が25〜40%で3〜15%の水分を含有している比較的緻密な成形体の場合は、成形体の乾燥を行う部分である乾燥帯の最高温度は、1000℃以下に押さえる必要がある。この理由は、緻密で気孔率が低い成形体は、成形体の内部で水蒸気が抜ける際に、気孔の通気抵抗により、成形体の内部圧力が高くなり易く、爆裂や粉化を抑制するためには、低温で水分を蒸発させる必要があるためである。また、気孔率の高い成形体の場合と同様に、乾燥帯の炉内温度を300℃以上とすることが有利である。これは、ガス温度が低すぎて、乾燥帯の長さが極端に延長する欠点を解消するためである。つまり、気孔率が25〜40%と比較的緻密な成形体では、乾燥帯の温度を300〜1000℃とすることが望ましい。この時の乾燥帯の長さは、炉床10の通過時間に換算して、60〜180秒が望ましい。
【0052】
【実施例】
図3に示される還元装置を使用して、製鉄業の各工程で発生した酸化鉄を多く含むスラジを原料に操業した結果を実施例として、表2に示す。また、比較例として、乾燥帯のない従来の回転炉を用いた例を表2に示す。使用した原料成形体は、平均粒径9μm、水分21%、気孔率44%の直径が15mmの円柱状をしたものであった。
【0053】
【表2】
Figure 0004264188
【0054】
実施例では、乾燥帯の温度が890〜1020℃に制御されており、この領域の長さは、炉床の通過時間換算で150秒であった。実施例で得られた還元物は、製品粉率が8.7%と少なく、また、ダストへの鉄分ロスも1.7%と低位であった。更に、金属化率は88%と還元も良好であった。
【0055】
一方、比較例では、原料供給部近傍の温度が1080〜1180℃であり、本発明の条件よりも高温であった。比較例で得られた還元物は、製品粉率が21.7%と多く、また、ダストへの鉄分ロスも3.7%と高位であった。更に、金属化率は69%と低かった。これは、粉化したものは比表面積が大きいため、炉内ガス中の炭酸ガスにより、再酸化反応を受けたためであった。
【0056】
【発明の効果】
本発明によれば、還元用回転炉床法において、水分を含有している粉体の成形体を用いて、経済的に酸化金属の還元を行うことができる。また、水分を大量に含有するダストとスラジの処理には有効である。
【図面の簡単な説明】
【図1】本発明の金属還元炉の原料供給部周辺の円周に沿った垂直断面の例を示す図である。
【図2】本発明の金属還元炉の原料供給部周辺の円周に沿った垂直断面の他の例を示す図である。
【図3】本発明の金属還元炉を含む還元装置の例を示す図である。
【図4】本発明の金属還元炉を含む還元装置の他の例を示す図である。
【符号の説明】
1 混合ピット
2 スラリー輸送ポンプ
3 脱水装置
4 成形機
5 回転炉
6 排ガスダクト
7 集塵機
8 排ガスファン
9 煙突
10 クーラー
11 排出スクリュー
12 水冷金属パネル
13 原料供給口
14 天井
15 排ガス出口
16 仕切り壁
17 乾燥帯排ガス出口
18 炉床
19 乾燥帯熱源取込み口
20 熱交換機
21 送風機
22 リジェネバーナー
23 蓄熱式ラジアントチューブ
24 双ロール式圧縮成形機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal oxide reduction method using a rotary hearth type metal reduction furnace that reduces metal dust and sludge generated in metal refining and processing industries.
[0002]
[Prior art]
There are various processes for producing reduced iron and alloyed iron. Among these, the rotary hearth method is implemented as a highly productive process. The rotary hearth method is a type of firing furnace (hereinafter referred to as a rotary furnace) in which a disk-shaped refractory hearth lacking the center rotates at a constant speed under a fixed refractory ceiling and side walls. This process is mainly used to reduce metal oxides. The rotary furnace has a hearth diameter of 10 to 50 meters and a width of 2 to 6 meters.
[0003]
The powder containing the metal oxide of the raw material is mixed with a carbon-based reducing agent, and then is made into raw material pellets and supplied to the rotary furnace. The raw material pellets are laid on this hearth, and since the raw material pellets are placed on the hearth, there is an advantage that the raw material pellets do not easily collapse in the furnace, and the pulverized raw material adheres to the refractory. It has the advantage that there is no problem to be done and the product yield of the lump is high. In addition, in recent years, the number of implementations has been increasing due to the reason that high-productivity and inexpensive coal-based reducing agents and powder raw materials can be used.
[0004]
In addition, the rotary hearth method is effective in reducing iron impurities generated in blast furnaces, converters, and electric furnaces, and reducing thickener sludge and removing impurities in the rolling process. It is an effective process for recycling.
[0005]
The outline of the operation of the rotary hearth method is as follows.
[0006]
First, after thoroughly mixing the raw material ore, dust, and sludge metal oxides with an amount of carbon-based reducing agent necessary for the reduction of the oxides, the water content is about 10 in a granulator such as a pan pelletizer. A pellet of several to several tens of millimeters is produced while applying water so as to be%. When the raw material ore and the reducing agent have a large particle size, they are pulverized by a pulverizer such as a ball mill and then kneaded and granulated.
[0007]
This pellet is supplied on a rotary hearth and laid in layers. The pellets laid on the hearth are rapidly heated and fired at a high temperature around 1300 ° C. for 5-20 minutes. At this time, the metal oxide is reduced by the reducing agent mixed in the pellets to generate metal. Although the metallization rate after reduction varies depending on the metal to be reduced, it is 95% or more for iron, nickel and manganese, and 50% or more for chromium which is difficult to reduce. In addition, when processing dust generated from the steel industry, impurities such as zinc, lead, alkali metals, and chlorine are volatilized and removed along with the reduction reaction, making it easy to recycle to blast furnaces and electric furnaces. Become.
[0008]
As described above, in the metal reduction method using the rotary hearth and the iron dust reduction method, it is essential that the raw material and the reducing agent be pelletized, and the raw material metal oxide powder is used as a raw material pretreatment. It is important to make the mixture of the body and the reducing agent in a state of good granulation, and various methods such as pre-grinding of raw materials and kneading with a ball mill are performed.
[0009]
[Problems to be solved by the invention]
As described above, the reduction of metal oxide by the conventional rotary hearth method is excellent in terms of productivity and manufacturing cost, and is an economical method for producing metal. However, it is important to make the raw material and reducing agent into pellets, and it is possible to improve the granulation property by selecting a raw material with high granulation performance or installing an expensive pulverizer and crushing the raw material. There is a problem that is necessary and expensive.
[0010]
That is, when using ores such as iron ore as a raw material, since the particle size of the raw material ore is generally large, it is pulverized so that the average particle size is several tens of μm or less, and then granulated to obtain pellets. It was manufactured. As a result, the pulverization process equipment is expensive, and there are disadvantages that power for operating the pulverizer is applied and maintenance costs are associated with wear of the pulverizer.
[0011]
Therefore, in order to save the cost of pulverization, a fine powder raw material may be used, but the selectivity of the raw material is strict and it is not a general-purpose method. Therefore, it is effective to use fine ore after wet beneficiation, or to use thickener dust in a blast furnace or converter, scale pit sludge in a rolling process, precipitation sludge in a pickling process, or the like. However, even in this case, there is a problem that it is difficult to granulate because the raw material contains too much moisture. That is, these raw materials are fine powders having a particle size of 1 to several tens of μm. As a result, when they contain moisture, they tend to be sludge, and even after being dehydrated with a vacuum dehydrator or a filter press, Was 30-50%, and as it was, there was too much moisture and granulation was impossible.
[0012]
In order to solve this problem, there is a method of granulating after the powder raw material is completely dried with a heat source such as hot air. However, since the powder raw material is agglomerated in the drying process and cannot be granulated as it is, after pulverizing it and making it into a fine particle state again, water is added together with other raw materials to granulate After being reduced in the rotary hearth.
[0013]
As a result, even when used in the above method, moisture can be added again after drying using a large amount of heat source, so a heat source is required for evaporation of moisture during granulation, and economical metal It was not a reduction method.
[0014]
In particular, when dust and sludge generated in the metal refining and processing industries such as the steel industry are collected from wet dust collectors or settling tanks, these products contain up to 90% of a large amount of moisture. However, when these generated products are to be reduced by the rotary hearth method, the problems of the drying step and the pulverization treatment after drying are significant.
[0015]
In order to solve these problems, for example, Japanese Patent Laid-Open No. 11-12619 discloses that a raw material is tiled with a compression molding machine as a method of using the rotary hearth method without granulating the raw material. Is disclosed in which is used in the rotary hearth method. However, this method still has a problem in using the raw material containing a large amount of moisture.
[0016]
That is, as shown in JP-A-11-12624, it is necessary to adjust the moisture content of the raw material to 6 to 18%. For this purpose, in addition to the preliminary dehydration process, a drying process is required. There was a problem that required complex moisture control. In addition, for this raw material charging, a complicated charging device as shown in Japanese Patent Laid-Open No. 11-12621 is required, and there are problems such as high maintenance costs for the equipment.
[0017]
Furthermore, when a raw material containing moisture in such a shape is directly charged into a high-temperature rotary furnace, the moisture content is high, and therefore, an explosion phenomenon occurs due to evaporation of moisture, and the raw material is pulverized. , Lost in the exhaust gas, resulting in extremely bad product yield. Usually, the furnace temperature in the rotary hearth method is 1150 to 1200 ° C., the lowest in the vicinity of the raw material supply unit. When the porosity is 40 to 55%, the moisture content is as high as 15 to 27%, and the explosion phenomenon does not occur even when the vicinity of the raw material supply unit reaches 1200 ° C. or higher. Occurs. Therefore, although the reduction operation is possible even at a high temperature of about 1200 to 1250 ° C., there is a problem that the ratio of the bulk reduction product is small and the powder generation rate is high. As a result, the ratio of metal loss in the exhaust gas is relatively high, and the problem of yield reduction remains.
[0018]
The present invention uses a rotary hearth-type metal reduction furnace capable of reducing a powdery raw material containing moisture, which could not be realized in the past, with a high yield without causing explosion by the rotary hearth method . An object is to provide a metal oxide reduction method at a low cost.
[0019]
[Means for Solving the Problems]
The present invention is as described in (1) to ( 4 ).
[0020]
Until the heating zone of the downstream side with respect to the rotation direction of the hearth (1) raw material supply unit, a rotary hearth-type metal reducing furnace that have a drying zone in which a partition wall of the heating zone A method of reducing metal oxide by using a molded body containing 25 to 55% porosity and 3 to 27% moisture in the dry zone for 60 to 300 seconds at 300 to 1150 ° C. A method for reducing a metal oxide, comprising drying with a metal .
[0021]
(2) The metal oxide reduction method according to (1), wherein a water cooling means is provided in a part of the ceiling in the furnace between the raw material discharge unit and the raw material supply unit.
[0022]
(3) The metal oxide reduction method according to (1) or (2) above, further comprising a mechanism for spraying water to the hearth between the raw material discharge unit and the raw material supply unit.
[0023]
(4) The oxidation according to any one of (1) to (3) above, wherein the drying heat source in the drying zone is any one of a burner, an indirect heating source, an exhaust gas in the heating / reduction zone, or a combination of two or more. Metal reduction method .
[0025]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 3 shows an example of the entire reduction apparatus showing a rotary hearth type reduction furnace and a pretreatment facility for a metal oxide raw material to the reduction furnace based on the present invention. This consists of a mixing pit 1 of powdery raw material containing moisture, a slurry transport pump 2, a dewatering device 3, a molding machine 4, a rotary furnace 5, and incidental equipment. Moreover, the vertical sectional view along the periphery of the raw material supply part periphery of the rotary furnace 5 is shown in FIG. 1 and FIG.
[0026]
First, in the mixing pit 1, a raw material powdered with a metal oxide powder containing water at a ratio of 50% by mass or more and a reducing agent mainly composed of carbon is mixed. As the metal oxide raw material, powder ore such as iron ore powder, manganese ore powder, and chromium ore powder, refining furnace dust generated in metal manufacturing industry, rolling process sludge, and the like are used. In particular, sludge generated in the metal manufacturing industry is the most desirable raw material for this method because it originally contains about 70% of water.
[0027]
In the mixing pit 1, the solid-liquid mixture of the raw materials is well stirred and mixed. This solid-liquid mixture is transported to the dehydrating device 3 by the slurry transport pump 2, where the water content is dehydrated to 15-27% to form aggregates of the raw material mixture. The solid-liquid mixture is poured onto a circulating filter cloth and dehydrated using a type of dehydrator, filter press, centrifugal dehydrator or the like that is squeezed with a pair of squeezing rolls installed above and below the filter cloth, to condense the raw material mixture. A collection can be obtained.
[0028]
The powder aggregate is supplied to the molding machine 4. In the molding machine 4, a molded body is formed while containing moisture. The molded body is preferably about 10 to 20 mm in size. It is desirable to provide a structure in which water vapor easily escapes so that the molded body is difficult to explode in the rotary furnace 5. Specifically, if the porosity is increased, the escape of water vapor is improved and explosion is difficult to occur. Therefore, in the case of the extrusion-type molding machine shown in FIG. 3, the porosity should be 40 to 55%. Is desirable. If the porosity is lower than 40%, it is a dense molded body, so that it is difficult for water vapor to escape, and if the porosity exceeds 55%, the strength of the molded body before firing is reduced, and in the furnace of the molded body Therefore, the above range is preferable.
[0029]
Moreover, when using a twin roll type compression molding machine as a molding machine, it is preferable that a porosity shall be 25 to 40%. If the porosity is lower than 25%, it is a dense molded body, so it is difficult for water vapor to escape, and if the porosity exceeds 40%, the strength of the molded body before firing is reduced, and the molded body collapses in the furnace. As the operation will be hindered by the above, the above range is applied. Further, when the moisture content of the molded body is less than 3%, powdering of the molded body due to the generation of water vapor hardly occurs. Therefore, the molded body is made 3% or more, and when an extrusion molding machine is used, a shape as a molded body is obtained. Therefore, it is preferable that the water content is 15% or less.
[0030]
The molding machine 4 shown in the example of FIG. 3 uses a screw installed in a casing that holds a raw material, and extrudes moisture-containing powder from a plurality of hole molds provided on an end plate at the end of the casing. A molding machine is most desirable. In this molding machine, the moisture content is 12 to 27%, and the water-containing powder can be molded relatively coarsely, so that the porosity of the molded body can be controlled to 40 to 55%. The molded body produced by the molding machine 4 is supplied to the rotary furnace 5. As the supply device, a vibration feeder, a shuttle conveyor, or the like of a type that does not cause clogging even when there is much moisture is used.
[0031]
Since the molded body by the extrusion molding machine contains 12 to 27% of moisture, water vapor is generated inside the molded body when heated in the furnace. If the water vapor generation rate is too high, even in a molded body having a high porosity, surface peeling or explosion of the molded body occurs. Therefore, it is an important technique to reduce the water vapor generation rate.
[0032]
Therefore, as shown in FIG. 1, a partition wall 16 with a heating zone is provided, and high-temperature exhaust gas from heating to reduction is discharged from the exhaust gas outlet 15 before reaching this section, and the heat to the section below the ceiling 14 is transferred. An independent drying zone is provided to suppress supply.
[0033]
In general, high-temperature exhaust gas generated from the heating / reduction zone contains volatilized substances such as zinc, lead, alkali metal, and chlorine, so that it is 900 at 17 parts of the dry zone exhaust gas outlet to prevent recondensation in the furnace. It is necessary to ensure ˜1100 ° C. Accordingly, when exhaust gas mixed with dry zone exhaust gas and heating / reduction zone exhaust gas is exhausted, when the dry zone exhaust gas temperature is low (300 to 700 ° C), the exhaust gas outlet temperature of 900 to 1100 ° C is secured at 17 parts of the dry zone exhaust gas outlet. Therefore, it is necessary to heat up the dry zone exhaust gas.
[0034]
By providing the partition wall 16 that divides the drying zone and the heating / reduction zone, the exhaust gas containing a large amount of moisture generated from the drying zone is discharged from the drying zone exhaust gas outlet 17 and the high-temperature exhaust gas generated from the heating / reduction zone is exhaust gas. Each can be evacuated from the outlet 15.
[0035]
This eliminates the need for heating of the exhaust gas generated from the dry zone, improves the fuel consumption rate, and does not mix the exhaust gas containing a large amount of moisture into the high-temperature exhaust gas system. Processing equipment costs can be further reduced.
[0036]
On the other hand, as shown in FIG. 2, the heat source in the drying zone can use an indirect heating source, a heat source by a burner, or an exhaust gas heat source in the heating / reduction zone, and in addition, any two means of the heating source. For example, an indirect heating source and a heating / reduction zone exhaust gas heat source may be used in combination.
[0037]
For the indirect heating source, the heat storage radiant tube 23 is effective for energy saving and the regenerative burner 22 is effective for energy saving. The exhaust gas heat source in the heating / reduction zone is used in the drying zone after the heat exchanger 20 is provided in the high temperature exhaust gas duct 6 and the air from the blower 21 is heated.
[0038]
1 and 2, the hearth 18 moves from the left to the right, and after the reduced compact is discharged by the discharge screw 11, the green compact is placed on the hearth 18 from the raw material supply port 13. Is supplied continuously.
[0039]
Under normal operating conditions, the hearth surface temperature after discharging the reduced product of the hearth 18 heated in the heating / reduction zone is 1150 to 1250 ° C., and the heat dissipation from the hearth 18 due to this temperature is dry. It is a heat source for the belt. As a result of various experiments conducted by the present inventors, it has been clarified that the hearth surface temperature at the time of supplying a molded body as a raw material is desirably 900 to 1050 ° C. in order to reduce the powder production rate. .
[0040]
Cooling the hearth 18 is also an effective method for suppressing heat inflow into the drying zone. That is, the heat transfer from the hearth 18 can be reduced by cooling the hearth 18.
[0041]
As a cooling method of the hearth 18, there is a method of cooling by configuring the ceiling between the discharge screw 11 and the raw material supply port 13 with the water-cooled metal panel 12. In this case, the discharge of the reduced compact is finished, and the temperature of the hearth 18 is lowered by absorbing the radiant heat from the bare hearth 18 with the water-cooled metal panel 12. In this method, the surface temperature of the water-cooled metal panel 12 is about 300 ° C., and cooling for 30 to 50 seconds is required to cool the hearth surface temperature to 900 to 1050 ° C. A method of spraying water from the spray nozzle or the like to the hearth 18 at a portion upstream from the raw material supply port 13 is also effective for cooling the hearth.
[0042]
After the moisture removal in the dry zone is finished, the molded body moves in the furnace together with the hearth 18 and gradually moves to a high temperature portion, and when the molded body temperature exceeds 1200 ° C., a reductive reaction is actively performed, and the molding is performed. Most of the body's metal oxide is metal. The reduced compact is scraped from the hearth 18 by the discharge screw 11, cooled by the cooler 10, and transported to a utilization process such as a blast furnace or an electric furnace.
[0043]
FIG. 4 shows an example in which a relatively dense molded body is manufactured and reduced. This is an example in which a powder having a water content adjusted to 3 to 15% is molded by a twin roll compression molding machine 24, a so-called briquette molding machine. This molded body has a porosity of 25 to 40% and is relatively dense. There is also a method for producing a molded body by a rotary granulator, a so-called pan pelletizer. However, this molded body is a fairly dense molded body with a porosity of about 25%. In a state containing moisture, it tends to explode and is not suitable for reduction operation in the method of the present invention. However, if the water content is about 3 to 15%, it can be used in the method of the present invention.
[0044]
In the case of a relatively dense molded body having a porosity of 25 to 40%, the maximum temperature of the drying zone, which is a portion where the molded body is dried, must be suppressed to 1000 ° C. or lower. The reason for this is that a compact molded article with a low porosity has a tendency to increase the internal pressure of the molded article due to the ventilation resistance of the pores when water vapor escapes inside the molded article, in order to suppress explosion and powdering. This is because it is necessary to evaporate water at a low temperature. Further, as in the case of a molded article having a high porosity, it is advantageous to set the furnace temperature in the drying zone to 300 ° C. or higher. This is to eliminate the disadvantage that the gas temperature is too low and the length of the drying zone is extremely extended. That is, it is desirable that the temperature of the drying zone is 300 to 1000 ° C. in a relatively dense molded body having a porosity of 25 to 40%. The length of the drying zone at this time is preferably 60 to 180 seconds in terms of the passage time of the hearth 18. Although the time is shorter than the case of a molded body having a porosity of 40 to 60%, this is because the content of water is small and drying is completed quickly.
[0045]
Even when a dense molded body is used, after the moisture removal in the dry zone is completed, the molded body is reduced in a high-temperature furnace, scraped from the hearth 18 by the discharge screw 11, and cooled by the cooler 10.
[0046]
In the invention of (5), the molded body having a porosity of 25 to 55% and containing 3 to 27% of water is supplied to the hearth, and the furnace temperature in the drying zone is set to 1150 ° C. or lower. By lowering the surface, peeling of the surface and the like can be suppressed, and the powder production rate of the molded body can be reduced. When molding using a twin-roll type compression molding machine, the molded body containing 25 to 40% porosity and 3 to 15% moisture is supplied to the hearth, and the furnace temperature in the drying zone In the case of molding by using an extrusion-type molding machine or the like, the molded body having a porosity of 40 to 55% and containing water of 12 to 27% Is supplied to the hearth, and the furnace temperature in the drying zone is lowered to 1150 ° C. or lower, so that surface peeling or the like can be suppressed and the powder production rate of the compact can be reduced. In the case of molding using an extrusion molding machine, the moisture condition in which the sludge can be molded is 12 to 27%, so the moisture range is as described above.
[0047]
Moreover, after supplying a molded object to a hearth, the time to a heating zone shall be 60 to 300 seconds. If it is shorter than 60 seconds, sufficient drying time cannot be secured, while if it is longer than 300 seconds, the productivity is lowered, so it is limited to the above range.
[0048]
By reducing the furnace temperature of the drying zone, surface peeling and the like can be suppressed, and the powder production rate of the compact can be reduced. Table 1 shows the results of investigating the influence of the in-furnace temperature of the drying zone on the powdering of the compact. In this experiment, a mixture of iron oxide and carbon powder having an average particle diameter of 8 μm produced by an extrusion molding machine was used as a sample. The molded body has a diameter of 15 mm, a porosity of 44%, and a moisture content of 19%. As shown in Table 1, the powder generation rate was 25% at 1200 ° C., but decreased to 8.8% at 1000 ° C. Moreover, at 300 degreeC, a powder production rate is 5.1%.
[0049]
[Table 1]
Figure 0004264188
[0050]
The passage time and temperature of the drying zone vary depending on the porosity and moisture of the molded body, but in the case of a molded body having a porosity of 25 to 40% and containing 3 to 15% moisture, 60 to 180 seconds. In the case of a molded body having a porosity of 40 to 55% and containing 12 to 27% of water, it is set to 60 to 210 seconds and 300 to 1150 ° C. When the temperature in the furnace is lowered, the length of the drying zone becomes long, and there is a problem that the area of the hearth becomes large in terms of equipment. When the furnace temperature in the drying zone is less than 300 ° C., the radiant heat transfer from the exhaust gas rapidly decreases, and the length of the drying zone is extremely extended. As a result, it is disadvantageous in terms of equipment construction costs, and the mechanism for lowering the furnace temperature is complicated, so the furnace temperature in the drying zone is advantageously 300 ° C. or higher. Moreover, when the furnace temperature of a dry zone is 1200 degreeC or more, as Table 1 shows, the ratio of a powder increases rapidly. Therefore, from the viewpoint of the yield of the reduced product, in the case of a molded body having a porosity of 25 to 40% and containing 3 to 15% of water, it is desirable that the furnace temperature in the drying zone is 1000 ° C. or less. .
[0051]
In the case of a relatively dense molded body having a porosity of 25 to 40% and containing 3 to 15% of water, the maximum temperature of the drying zone, which is a portion where the molded body is dried, is suppressed to 1000 ° C. or lower. There is a need. The reason for this is that a compact molded article with a low porosity has a tendency to increase the internal pressure of the molded article due to the ventilation resistance of the pores when water vapor escapes inside the molded article, in order to suppress explosion and powdering. This is because it is necessary to evaporate water at a low temperature. Further, as in the case of a molded article having a high porosity, it is advantageous to set the furnace temperature in the drying zone to 300 ° C. or higher. This is to eliminate the disadvantage that the gas temperature is too low and the length of the drying zone is extremely extended. That is, it is desirable that the temperature of the drying zone is 300 to 1000 ° C. in a relatively dense molded body having a porosity of 25 to 40%. The length of the drying zone at this time is preferably 60 to 180 seconds in terms of the passage time of the hearth 10.
[0052]
【Example】
Table 2 shows the results of operating sludge containing a large amount of iron oxide generated in each step of the steelmaking industry as raw materials using the reduction apparatus shown in FIG. As a comparative example, Table 2 shows an example using a conventional rotary furnace without a dry zone. The raw material compact used had a cylindrical shape with an average particle size of 9 μm, a moisture content of 21%, a porosity of 44% and a diameter of 15 mm.
[0053]
[Table 2]
Figure 0004264188
[0054]
In the examples, the temperature of the drying zone was controlled to 890 to 1020 ° C., and the length of this region was 150 seconds in terms of the passage time of the hearth. The reduced products obtained in the examples had a low product powder ratio of 8.7%, and the iron loss to dust was 1.7%. Furthermore, the metallization rate was 88% and the reduction was good.
[0055]
On the other hand, in the comparative example, the temperature in the vicinity of the raw material supply unit was 1080 to 1180 ° C., which was higher than the conditions of the present invention. The reduced product obtained in the comparative example had a product powder ratio as high as 21.7%, and the iron loss to dust was as high as 3.7%. Furthermore, the metallization rate was as low as 69%. This is because the powdered material has a large specific surface area, and therefore has undergone a reoxidation reaction by the carbon dioxide in the furnace gas.
[0056]
【The invention's effect】
According to the present invention, in the reduction rotary hearth method, metal oxide can be economically reduced using a powder compact containing moisture. It is also effective for treating dust and sludge containing a large amount of moisture.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a vertical cross section along a circumference around a raw material supply unit of a metal reduction furnace of the present invention.
FIG. 2 is a view showing another example of a vertical cross section along the circumference around the raw material supply section of the metal reduction furnace of the present invention.
FIG. 3 is a diagram showing an example of a reduction device including a metal reduction furnace of the present invention.
FIG. 4 is a view showing another example of a reduction apparatus including the metal reduction furnace of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mixing pit 2 Slurry transport pump 3 Dehydrator 4 Molding machine 5 Rotary furnace 6 Exhaust gas duct 7 Dust collector 8 Exhaust gas fan 9 Chimney 10 Cooler 11 Discharge screw 12 Water-cooled metal panel 13 Raw material supply port 14 Ceiling 15 Exhaust gas outlet 16 Partition wall 17 Drying zone Exhaust gas outlet 18 Hearth 19 Drying zone heat source inlet 20 Heat exchanger 21 Blower 22 Regenerative burner 23 Regenerative radiant tube 24 Twin roll compression molding machine

Claims (4)

原料供給部から炉床の回転方向に対して下流側の加熱帯までの間に、加熱帯との仕切り壁を設けた乾燥帯を有する回転炉床式の金属還元炉を用いて酸化金属を還元する方法であって、気孔率が25〜55%で、3〜27%の水分を含有している成形体を、前記乾燥帯にて60〜300秒間、300〜1150℃で乾燥することを特徴とする酸化金属の還元方法Between the material feed portion to the heating zone of the downstream side with respect to the rotational direction of the hearth, oxidized using rotary hearth-type metal reducing furnace that have a drying zone in which a partition wall of the heating zone A method of reducing a metal, wherein a molded body containing 25 to 55% porosity and 3 to 27% moisture is dried at 300 to 1150 ° C. for 60 to 300 seconds in the drying zone. A method for reducing a metal oxide . 原料排出部から原料供給部までの間の炉内天井の一部に水冷手段を有することを特徴とする請求項1記載の酸化金属の還元方法The method for reducing metal oxide according to claim 1, further comprising a water cooling means in a part of the ceiling in the furnace between the raw material discharge part and the raw material supply part. 原料排出部から原料供給部までの間の炉床に水を吹き付ける機構を有することを特徴とする請求項1又は2記載の酸化金属の還元方法The metal oxide reduction method according to claim 1 or 2, further comprising a mechanism for spraying water onto the hearth between the raw material discharge unit and the raw material supply unit. 乾燥帯の乾燥用熱源がバーナー、間接加熱源、加熱・還元帯の排ガスの何れか又は2以上の組み合わせであることを特徴とする請求項1〜3の何れか1項に記載の酸化金属の還元方法The heat source for drying in the drying zone is any one of a burner, an indirect heating source, an exhaust gas in the heating / reduction zone, or a combination of two or more, The metal oxide according to any one of claims 1 to 3 , Reduction method .
JP2000304836A 2000-10-04 2000-10-04 Method for reducing metal oxide Expired - Fee Related JP4264188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000304836A JP4264188B2 (en) 2000-10-04 2000-10-04 Method for reducing metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000304836A JP4264188B2 (en) 2000-10-04 2000-10-04 Method for reducing metal oxide

Publications (2)

Publication Number Publication Date
JP2002105518A JP2002105518A (en) 2002-04-10
JP4264188B2 true JP4264188B2 (en) 2009-05-13

Family

ID=18785811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000304836A Expired - Fee Related JP4264188B2 (en) 2000-10-04 2000-10-04 Method for reducing metal oxide

Country Status (1)

Country Link
JP (1) JP4264188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148624A (en) * 2016-08-01 2016-11-23 江苏省冶金设计院有限公司 The method and system of direct-reduction iron-bearing material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703112B1 (en) * 2002-09-13 2007-04-06 신닛뽄세이테쯔 카부시키카이샤 Method for reduction treatment of metal oxide or ironmaking waste, and method for concentration and/or recovery of zinc and/or lead
AU2003213329A1 (en) * 2003-03-12 2004-09-30 Nippon Steel Corporation Method for recycling converter dust to rotary hearth reducing furnace
JP5459655B2 (en) * 2008-07-18 2014-04-02 Jfeスチール株式会社 How to treat tailings
JP5530127B2 (en) * 2009-07-27 2014-06-25 株式会社神戸製鋼所 Rotary hearth furnace
CN106119457A (en) * 2016-08-01 2016-11-16 江苏省冶金设计院有限公司 The method and system of direct-reduction iron-bearing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148624A (en) * 2016-08-01 2016-11-23 江苏省冶金设计院有限公司 The method and system of direct-reduction iron-bearing material

Also Published As

Publication number Publication date
JP2002105518A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP3635256B2 (en) Reduction method of iron oxide
TW527423B (en) Facilities for reducing metal oxide, method for operating the facilities and moldings as raw material to be charged to reduction furnace
JP4264188B2 (en) Method for reducing metal oxide
JP3737928B2 (en) Operation method of rotary hearth type reduction furnace and metal oxide reduction equipment
JP2003089823A (en) Converter dust recycling method to rotary hearth type reducing furnace
JP2002206120A (en) Pellet for use in reducing furnace, its manufacturing method, and method for reducing oxidized metal
WO2004024961A1 (en) Method for reduction treatment of metal oxide or ironmaking waste, and method for concentration and/or recovery of zinc and/or lead
JP3631709B2 (en) Method for reducing metal oxide
JP3779873B2 (en) Operation method of rotary hearth reduction furnace
JP4105856B2 (en) Reduced iron production method by rotary bed furnace
JP3579652B2 (en) Metal oxide reduction equipment
TW522170B (en) A method for drying a molded material containing metal oxide and a method for reducing the metal oxide and a rotary hearth type metal reduction furnace
RU2465352C2 (en) Processing method of zinc-iron-containing dusts or slurries of metallurgical production
JPH10146525A (en) Method and apparatus for granulating and drying water-containing dust-sludge
JP4299548B2 (en) Method for reducing metal oxide and method for concentrating zinc and lead
WO2009078662A2 (en) Method for manufacturing binderless briquettes and apparatus for manufacturing the same
JP2003082418A (en) Method for recycling converter dust to rotary hearth type reducing furnace
JP2004315852A (en) Method for reducing metal oxide in rotary hearth type reduction furnace
CN219244300U (en) Vertical cooling waste heat recovery production system for pellets
JPH1192810A (en) Production of reduced iron at low cost from iron-making dust and the like
JP2002206119A (en) Method and equipment for reducing oxidized metal
JP2001032005A (en) Operation of rotary furnace hearth method for reduction
WO2004081240A1 (en) Method for recycling converter dust to rotary hearth reducing furnace
JP2002090071A (en) Method for supplying molding to baking reducing furnace and rotary hearth type reducing furnace
JPH09157766A (en) Treatment of zinc-containing dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4264188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees