JPH06316718A - Manufacture of reduced iron briquette - Google Patents
Manufacture of reduced iron briquetteInfo
- Publication number
- JPH06316718A JPH06316718A JP15739293A JP15739293A JPH06316718A JP H06316718 A JPH06316718 A JP H06316718A JP 15739293 A JP15739293 A JP 15739293A JP 15739293 A JP15739293 A JP 15739293A JP H06316718 A JPH06316718 A JP H06316718A
- Authority
- JP
- Japan
- Prior art keywords
- briquette
- reduced iron
- cooling
- water
- reduced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電気炉等の製鋼炉の溶
解原料に使用される還元鉄ブリケットに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduced iron briquette used as a raw material for melting a steelmaking furnace such as an electric furnace.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】図6
は、還元鉄ブリケットの製造設備の概念図であって、還
元鉄ブリケットは次の要領で一般に製造されている。す
なわち、還元炉1の上部よりペレット、塊鉱石などの原
料Gを装入し炉内で還元して還元鉄とし下部より排出す
る。還元炉1の下部より排出される還元鉄を、還元炉1
に連設するカリバーロールおよびブレーカを備えるブリ
ケットマシン設備2に供給し、カリバーロールにて所定
間隔で切断溝を有する板状に加圧成形し、これをブレー
カにて各個に切断し、高温(約 700℃程度)の還元鉄ブ
リケットB1に成形する。引き続き、この高温の還元鉄ブ
リケットB1をクエンチタンク3に投入しタンク3内の水
で急冷し、冷却された還元鉄ブリケットB2を搬出コンベ
ヤ4でタンク3外へ排出して製造される。Prior Art and Problems to be Solved by the Invention FIG.
FIG. 3 is a conceptual diagram of a reduced iron briquette manufacturing facility. The reduced iron briquette is generally manufactured in the following manner. That is, the raw material G such as pellets and lump ore is charged from the upper part of the reduction furnace 1 and reduced in the furnace to form reduced iron, which is discharged from the lower part. The reduced iron discharged from the lower part of the reduction furnace 1 is
It is supplied to a briquette machine facility 2 equipped with a caliber roll and a breaker that are continuously installed in the machine, pressure-molded into a plate shape having cutting grooves at predetermined intervals with a caliber roll, and this is cut into individual pieces with a breaker, and a high temperature (about Molded into reduced iron briquette B1 (about 700 ℃). Subsequently, this high-temperature reduced iron briquette B1 is put into the quench tank 3 and rapidly cooled with water in the tank 3, and the cooled reduced iron briquette B2 is discharged to the outside of the tank 3 by the carry-out conveyor 4.
【0003】一方、上述の如くして製造された還元鉄ブ
リケットB2は、製造後、隣接する製鋼工場に搬送され直
ちに製鋼炉で溶解する場合もあるが、主として原料、燃
料の安価な国で製造され鉄源を必要とする国へ輸出され
る。従って、製造後は輸出過程を含め貯蔵、輸送が数回
行われる。この貯蔵、輸送時に、強度が低いと割れを生
じ且つ粉を発生し目減りする。また、粉が発生すると粉
塵となり環境に悪影響を与えるばかりか、運搬車、船、
あるいはこれらへの搬出入設備等、さらにはそこで作業
する人に悪影響をもたらすなどの問題を有する。また、
割れた場合には割れた面の還元鉄自体の再酸化の問題が
あり、金属化率が低下し、品質の低下をきたす。また割
れ、粉化、金属化率低下に起因し、製鋼工場での溶解歩
留り低下、その他の操業上の問題をもたらす。On the other hand, the reduced iron briquette B2 produced as described above may be transported to an adjacent steelmaking plant after production and immediately melted in a steelmaking furnace, but it is produced mainly in a country where raw materials and fuel are inexpensive. And exported to countries that need iron sources. Therefore, after manufacturing, it is stored and transported several times including the export process. At the time of this storage and transportation, if the strength is low, cracking occurs and powder is generated, which reduces the amount. In addition, if dust is generated, it not only turns into dust and has a bad effect on the environment,
Alternatively, there is a problem that it has an adverse effect on equipment for carrying in and out of these, and also for people working there. Also,
When cracked, there is a problem of reoxidation of the reduced iron itself on the cracked surface, the metallization rate decreases, and the quality deteriorates. Further, due to cracking, pulverization, and reduction of metallization rate, melting yield in a steelmaking factory is reduced, and other operational problems are caused.
【0004】上記の問題を改善するために、従来より還
元鉄ブリケットの製造条件など種々の改善がなされては
いるものの、未だ十分とは言えず、割れや粉体の問題お
よびこれに伴う溶解歩留りの問題が、これらの現場から
寄せられ、その改善が期待されている。In order to improve the above problems, various improvements such as the production conditions of reduced iron briquette have been made in the past, but they are still not sufficient, and the problems of cracks and powders and the melting yield associated therewith are still unsatisfactory. Problems have been received from these sites and their improvement is expected.
【0005】本発明は、上記の事情に基づいてなされた
ものであって、その目的は、貯蔵、輸送に際して割れが
少なく、延いては粉の発生の少ない還元鉄ブリケットを
得るための還元鉄ブリケットの製造方法を提供すること
である。The present invention has been made based on the above circumstances, and an object thereof is a reduced iron briquette for obtaining a reduced iron briquette which is less likely to be cracked during storage and transportation, and which is less likely to generate powder. Is to provide a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係わる還元鉄ブリケットの製造方法の1つ
は、直接還元製鉄法により得られた還元鉄をブリケット
マシン設備によりブリケットに成形し、この高温状態の
還元鉄ブリケットを、スプレー水にて 150℃/分〜 250
℃/分の冷却速度で徐冷するものである。In order to achieve the above object, one of the methods for producing a reduced iron briquette according to the present invention is to form reduced iron obtained by a direct reduction iron making method into briquettes by a briquette machine facility. , This high temperature reduced iron briquette, spray water 150 ℃ / min ~ 250
It is gradually cooled at a cooling rate of ° C / min.
【0007】また1つは、直接還元製鉄法により得られ
た還元鉄をブリケットマシン設備によりブリケットに成
形し、この高温状態の還元鉄ブリケットを、 350℃〜 2
50℃までスプレー水にて 150℃/分〜 250℃/分の冷却
速度で徐冷した後、水にて急冷するものである。[0007] One is to form reduced iron obtained by the direct reduction iron making method into briquettes by means of a briquette machine facility, and the reduced iron briquettes in a high temperature state are heated at 350 ° C to 2 ° C.
It is gradually cooled to 50 ° C with spray water at a cooling rate of 150 ° C / min to 250 ° C / min, and then rapidly cooled with water.
【0008】また1つは、直接還元製鉄法により得られ
た還元鉄をブリケットマシン設備によりブリケットに成
形し、この高温状態の還元鉄ブリケットを、 350℃〜 2
50℃までガスにて 150℃/分〜 250℃/分の冷却速度で
徐冷した後、水にて急冷するものである。[0008] One is to form the reduced iron obtained by the direct reduction iron-making method into briquettes by a briquette machine facility, and the reduced iron briquettes in a high temperature state are heated at 350 ° C to 2 ° C.
Gas is gradually cooled to 150 ° C at a cooling rate of 150 ° C / min to 250 ° C / min, and then rapidly cooled with water.
【0009】また1つは、直接還元製鉄法により得られ
た還元鉄をブリケットマシン設備によりブリケットに成
形し、この高温状態の還元鉄ブリケットを、 620℃〜 5
50℃までを不活性ガスにて、引き続き 350℃〜 250℃ま
でをスプレー水にてそれぞれ150℃/分〜 250℃/分の
冷却速度で徐冷した後、水にて急冷するものである。One is to form the reduced iron obtained by the direct reduction iron-making method into briquettes by means of a briquette machine facility, and to make the reduced iron briquettes in a high temperature state at 620 ° C to 5 ° C.
An inert gas is used up to 50 ° C, and then 350 ° C to 250 ° C is gradually cooled with spray water at a cooling rate of 150 ° C / min to 250 ° C / min, respectively, and then rapidly cooled with water.
【0010】[0010]
【作用】以下、本発明の構成と作用をより詳細に説明す
る。本発明者等は、上述した従来の製造方法により得ら
れた還元鉄ブリケットが割れる原因について追究したと
ころ、高温の還元鉄ブリケットB1を水槽に投入して急冷
すると、内部に残留応力が残り、また内部に微細なクラ
ックが発生し、少しの衝撃でも壊れ易くなることを知見
した。一方、これを改善して徐冷すると、比較的割れ難
い還元鉄ブリケットが得られるが、徐冷時間が長く生産
性が問題になる他、大気中で大気温まで徐冷すると還元
鉄が再酸化され金属化率が低下すると言う問題がある。The structure and operation of the present invention will be described in more detail below. The present inventors have investigated the cause of cracking of the reduced iron briquette obtained by the conventional manufacturing method described above, when the high temperature reduced iron briquette B1 is put into a water tank and rapidly cooled, residual stress remains inside, and It has been found that minute cracks are generated inside and it becomes easy to break even with a small impact. On the other hand, if this is improved and gradually cooled, a reduced iron briquette that is relatively hard to crack can be obtained, but it takes a long time to cool and productivity becomes a problem, and when slowly cooled to atmospheric temperature in the atmosphere, the reduced iron reoxidizes. There is a problem that the metallization rate is lowered.
【0011】そこで、本発明では、高温状態の還元鉄ブ
リケットB1をスプレー水にて徐冷するか、あるいはスプ
レー水やガスにて徐冷した後水にて急冷することにした
もので、徐冷条件としては、ブリケットの表面温度で毎
分 150℃〜 250℃程度の降温速度が好ましく、これより
降温速度が早いと、得られた還元鉄ブリケットの性状が
水で急冷した場合とさほど変わらなくなり、割れ易く強
度の低いものとなる。また、遅いと大気中放冷と変わら
なくなり、還元鉄が再酸化され金属化率が低下すると共
に冷却に時間がかかり還元鉄ブリケットの生産性が問題
となる。Therefore, in the present invention, the reduced iron briquette B1 in a high temperature state is gradually cooled with spray water, or is gradually cooled with spray water or gas and then rapidly cooled with water. As the condition, a temperature lowering rate of about 150 ° C to 250 ° C per minute at the surface temperature of the briquette is preferable, and if the temperature lowering rate is faster than this, the properties of the obtained reduced iron briquette are not so different from those when quenched with water, It is easily cracked and has low strength. Further, if it is slow, it is no different from cooling in the air, the reduced iron is reoxidized and the metallization rate is lowered, and it takes a long time for cooling, and the productivity of reduced iron briquette becomes a problem.
【0012】また、スプレー水やガスで徐冷した後水で
急冷する場合には、徐冷を 350℃〜250℃まで行うのが
よく、徐冷を 350℃より高温で止めその後水で急冷する
と、水で急冷した場合とさほど変わらなくなり、一方徐
冷を 250℃より低温まで行うと、上記降温速度にもよる
が徐冷時間が長くかかり生産性が問題となる。この時、
ガスを大気で行うと還元鉄が再酸化され金属化率が低下
する。従って、ガスは不活性ガスを使用するのが好まし
いが、大気に不活性ガスを20%以上混合したものであっ
てもよい。[0012] When the water is rapidly cooled with spray water or gas and then rapidly cooled with water, it is preferable to carry out the slow cooling to 350 ° C to 250 ° C. If the slow cooling is stopped at a temperature higher than 350 ° C and then the water is rapidly cooled. However, it does not differ much from the case of rapid cooling with water. On the other hand, if the slow cooling is carried out to a temperature lower than 250 ° C, the slow cooling time will take longer, depending on the cooling rate, but the productivity will be a problem. At this time,
When the gas is used in the atmosphere, the reduced iron is reoxidized and the metallization rate is reduced. Therefore, it is preferable to use an inert gas as the gas, but an inert gas mixed with 20% or more of the atmosphere may be used.
【0013】また、不活性ガスで徐冷し次いでスプレー
水で徐冷した後水で急冷する場合には、ガス徐冷を 620
℃〜 550℃まで行い、引き続きスプレー水徐冷を 350℃
〜 250℃まで行うのがよく、最初の徐冷を不活性ガスで
行うと、その後スプレー水や水による冷却を行っても還
元鉄の再酸化が抑制できるとともに、その後のスプレー
水冷却と相まって比較的割れ難い強度の高い還元鉄ブリ
ケットが得られるが、上記の温度範囲を外れるとその効
果が低下する。また、スプレー水を使用するのは、ガス
だけよりも徐冷コントロールがし易いためである。In the case of gradually cooling with an inert gas, then with spray water and then with water, the gas is slowly cooled.
℃ ~ 550 ℃, then spray water gradual cooling to 350 ℃
It is better to perform up to ~ 250 ° C, and if the first slow cooling is performed with an inert gas, reoxidation of reduced iron can be suppressed even if cooling with spray water or water is performed later, and it is compared with subsequent spray water cooling. Although it is possible to obtain a reduced iron briquette having high strength that is hard to be cracked dynamically, if the temperature is out of the above range, the effect is reduced. Further, the reason why spray water is used is that it is easier to control slow cooling than gas alone.
【0014】[0014]
【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0015】(実施例1)図1は、本発明に係わる還元
鉄ブリケットの製造方法を適用した設備の概要図であ
る。還元炉1およびブリケットマシン設備2は、従来技
術と同構成のものであって、還元炉1は、炉内でペレッ
ト、塊鉱石などの原料Gを還元して還元鉄とし下部より
排出する。ブリケットマシン設備2は還元炉1に連設さ
れ、還元炉1の下部より排出された還元鉄を高温の還元
鉄ブリケットB1に成形する。(Embodiment 1) FIG. 1 is a schematic view of equipment to which the method for producing reduced iron briquette according to the present invention is applied. The reduction furnace 1 and the briquette machine facility 2 have the same configurations as those of the conventional technology, and the reduction furnace 1 reduces the raw material G such as pellets and lump ores in the furnace to reduce iron and discharge it from the lower part. The briquette machine facility 2 is connected to the reduction furnace 1 and forms the reduced iron discharged from the lower portion of the reduction furnace 1 into a high-temperature reduced iron briquette B1.
【0016】上記のようにして得られた成形直後の約 7
00℃の高温還元鉄ブリケットB1を、本実施例では、送気
設備5と排風設備6を備える環状クーラ7内の搬送設備
8上に投入し、この例では大気と不活性ガスの混合気体
により 300℃まで徐冷した。この徐冷の降温速度は1分
毎の測温では最初の1分が 160℃、次の1分が 170℃、
残り約20秒が80℃であった。その後、従来と同様にクエ
ンチタンク3に投入しタンク3内の水で急冷し、冷却さ
れた還元鉄ブリケットB3を搬出コンベヤ4でタンク3外
へ排出して製造した。Approximately 7 immediately after molding obtained as described above
In this embodiment, the high-temperature reduced iron briquette B1 of 00 ° C. is charged onto a transfer equipment 8 in an annular cooler 7 having an air supply equipment 5 and an exhaust air equipment 6, and in this example, a mixed gas of an atmosphere and an inert gas. Was gradually cooled to 300 ° C. The temperature decrease rate of this slow cooling is 160 ° C for the first minute and 170 ° C for the second minute when the temperature is measured every minute.
The remaining 20 seconds was 80 ° C. After that, as in the conventional case, it was put into the quench tank 3 and rapidly cooled with water in the tank 3, and the cooled reduced iron briquette B3 was discharged to the outside of the tank 3 by the carry-out conveyor 4 to manufacture.
【0017】上記により得られた還元鉄ブリケットB3
と、比較のため、大気徐冷を 200℃まで行いその後水急
冷して得た還元鉄ブリケットB4、および、従来の水急冷
のみによって得られた還元鉄ブリケットB2とを用いて強
度と金属化率を調査した。強度は落下強度試験により行
い、その方法は適当数のブリケットを鉄製の箱に収容し
10mの高さより 5回落下させ、その後図2に示す各篩サ
イズの篩いにかけ篩い下の粒度分析を行うことにより割
れ易さ、粉の発生し易さを評価するものである。Reduced iron briquette B3 obtained above
For comparison, the strength and metallization rate were measured using reduced iron briquette B4 obtained by atmospheric cooling to 200 ° C and then water quenching, and reduced iron briquette B2 obtained only by conventional water quenching. investigated. The strength is measured by a drop strength test, and the method is to store an appropriate number of briquettes in an iron box.
The easiness of cracking and the easiness of generation of powder are evaluated by dropping 5 times from a height of 10 m, and then applying a sieve of each sieve size shown in FIG. 2 and performing a particle size analysis under the sieve.
【0018】上記調査の結果、強度については図2に示
す通りであって、壊れずに残る38.1mm以上の塊が、従来
法による還元鉄ブリケットB2では高々60%であるのに対
し、本発明法による還元鉄ブリケットB3では88%程度ま
で上昇する。また比較法による還元鉄ブリケットB4では
図示省略するがほぼ本発明法による還元鉄ブリケットB3
と変わらないものであった。また、篩サイズ6.35mm以下
の粉の発生が、従来法による還元鉄ブリケットB2では 5
%であるのに対し、本発明法による還元鉄ブリケットB3
では 2%程度にまで減少する。一方、金属化率について
は、還元炉1から排出された還元鉄の金属化率に対し
て、本発明法による還元鉄ブリケットB3では 0.5%以下
の低下であるのに対し、従来法による還元鉄ブリケット
B2および比較法による還元鉄ブリケットB4では、共に
1.0%前後と低下が大きいものであった。これらのこと
より、本発明法による還元鉄ブリケットB3は、従来法に
よる還元鉄ブリケットB2より割れ難く、粉の発生も少な
く且つ金属化率がさほど低下しないことが分かる。As a result of the above investigation, the strength is as shown in FIG. 2, and the lumps of 38.1 mm or more which remain unbroken are at most 60% in the reduced iron briquette B2 by the conventional method, whereas the present invention Reduced iron briquette B3 by the method rises to about 88%. Although not shown in the drawing, the reduced iron briquette B4 produced by the comparative method is almost the same as the reduced iron briquette B3 produced by the method of the present invention.
It was the same as In addition, the generation of powder with a sieve size of 6.35 mm or less occurs in the reduced iron briquette B2 by the conventional method.
%, Whereas reduced iron briquette B3 according to the method of the present invention
Will decrease to about 2%. On the other hand, with respect to the metallization rate of the reduced iron discharged from the reduction furnace 1, the reduction rate of the reduced iron briquette B3 according to the method of the present invention is 0.5% or less, while the reduced metal according to the conventional method is reduced. Briquette
In B2 and the reduced iron briquette B4 by the comparison method, both
It was a large decrease of around 1.0%. From these, it can be seen that the reduced iron briquette B3 according to the method of the present invention is less likely to crack than the reduced iron briquette B2 according to the conventional method, generates less powder, and does not significantly lower the metallization rate.
【0019】(実施例2)図3は、本発明に係わる還元
鉄ブリケットの製造方法を適用した設備の概要図であ
る。還元炉1およびブリケットマシン設備2は、上記実
施例1および従来技術と同構成のものであって、これら
により上記実施例1と同要領で還元炉1の下部より排出
された還元鉄を高温の還元鉄ブリケットB1に成形する。(Embodiment 2) FIG. 3 is a schematic view of equipment to which the method for producing reduced iron briquette according to the present invention is applied. The reducing furnace 1 and the briquette machine facility 2 have the same configurations as those of the above-described first embodiment and the prior art. With these, the reduced iron discharged from the lower part of the reducing furnace 1 is heated to a high temperature in the same manner as in the above-mentioned first embodiment. Molded into reduced iron briquette B1.
【0020】上記のようにして得られた成形直後の約 7
00℃の高温還元鉄ブリケットB1を、本実施例では、ブリ
ケットマシン設備2に連設された不活性ガスの送気管9
を備える冷却シュート10内を落下させ、内部上方にスプ
レーノズル11を備えるスプレー冷却式コンベヤ12さらに
搬出コンベヤ13へと送り、この送る過程で、冷却シュー
ト10内では約30秒掛けて約 600℃まで徐冷し、またスプ
レー冷却式コンベヤ12内の前半部14では、スプレーノズ
ル11の気水量を制御して約 1.5分を掛けて 300℃まで徐
冷し、さらに後半部15ではスプレーノズル11への水量を
増やして急冷し冷却された還元鉄ブリケットB5を製造し
た。Approximately 7 immediately after molding obtained as described above
In this embodiment, the high-temperature reduced iron briquette B1 of 00 ° C. is connected to the briquette machine facility 2 by an inert gas supply pipe 9
In the cooling chute 10 and then sent to the spray cooling type conveyor 12 further equipped with the spray nozzle 11 above and further to the carry-out conveyor 13. In this sending process, in the cooling chute 10 it takes about 30 seconds to reach about 600 ° C. In the first half 14 of the spray cooling type conveyor 12, the amount of water vapor in the spray nozzle 11 is controlled to take about 1.5 minutes to gradually cool to 300 ° C. In the latter half 15, the spray nozzle 11 is cooled. Cooled reduced iron briquette B5 was produced by increasing the amount of water and quenching.
【0021】上記により得られた還元鉄ブリケットB5を
用いて上記実施例1と同様に強度と金属化率を調査し
た。その結果、強度については図2に併せて示す通りで
あって、殆ど上記実施例1における還元鉄ブリケットB3
のそれと同じであった。また、金属化率についても同様
で、還元炉1から排出された還元鉄の金属化率に対して
0.5%以下の低下であった。従って、本実施例において
も、本発明法による還元鉄ブリケットB5は、従来法によ
る還元鉄ブリケットB2より割れ難く、粉の発生が少なく
且つ金属化率がさほど低下しないことが分かる。Using the reduced iron briquette B5 obtained as described above, the strength and the metallization rate were investigated in the same manner as in Example 1. As a result, the strength is as shown in FIG. 2, and almost all of the reduced iron briquette B3 in Example 1 was used.
It was the same as that. The same applies to the metallization rate, which is the same as the metallization rate of the reduced iron discharged from the reduction furnace 1.
The decrease was 0.5% or less. Therefore, also in this example, it is understood that the reduced iron briquette B5 according to the method of the present invention is less prone to cracking than the reduced iron briquette B2 according to the conventional method, less powder is generated, and the metallization rate does not decrease so much.
【0022】(実施例3)図4は、本発明に係わる還元
鉄ブリケットの製造方法を適用した設備の概要図であ
る。還元炉1およびブリケットマシン設備2は、上記実
施例1および従来技術と同構成のものであって、これら
により上記実施例1と同要領で還元炉1の下部より排出
された還元鉄を高温の還元鉄ブリケットB1に成形する。(Embodiment 3) FIG. 4 is a schematic view of equipment to which the method for producing reduced iron briquette according to the present invention is applied. The reducing furnace 1 and the briquette machine facility 2 have the same configurations as those of the above-described first embodiment and the prior art. With these, the reduced iron discharged from the lower part of the reducing furnace 1 is heated to a high temperature in the same manner as in the above-mentioned first embodiment. Molded into reduced iron briquette B1.
【0023】上記のようにして得られた成形直後の約 7
00℃の高温還元鉄ブリケットB1を、本実施例では、ブリ
ケットマシン設備2に連設した内部上方にスプレーノズ
ル16を備えるスプレー冷却式コンベヤ17さらに搬出コン
ベヤ18へと送り、この送る過程のスプレー冷却式コンベ
ヤ17内では、スプレーノズル16の気水量を制御して約3
分を掛けて70℃まで徐冷し冷却された還元鉄ブリケット
B6を製造した。Approximately 7 immediately after molding obtained as described above
In this embodiment, the high-temperature reduced iron briquette B1 of 00 ° C. is sent to a spray cooling type conveyor 17 further equipped with a spray nozzle 16 above the inside of the briquette machine equipment 2 and further to an unloading conveyor 18 for spray cooling in this sending process. In the type conveyor 17, the amount of steam of the spray nozzle 16 is controlled to about 3
Reduced iron briquette that has been slowly cooled to 70 ° C over a period of time
B6 was manufactured.
【0024】上記により得られた還元鉄ブリケットB6を
用いて上記実施例1と同様に強度と金属化率を調査し
た。その結果、強度については図2に併せて示す通りで
あって、殆ど上記実施例1における還元鉄ブリケットB3
のそれと同じであった。また、金属化率についても同様
で、還元炉1から排出された還元鉄の金属化率に対して
0.5%以下の低下であった。従って、本実施例において
も、本発明法による還元鉄ブリケットB6は、従来法によ
る還元鉄ブリケットB2より割れ難く、粉の発生が少なく
且つ金属化率がさほど低下しないことが分かる。Using the reduced iron briquette B6 obtained as described above, the strength and the metallization rate were investigated in the same manner as in Example 1. As a result, the strength is as shown in FIG. 2, and almost all of the reduced iron briquette B3 in Example 1 was used.
It was the same as that. The same applies to the metallization rate, which is the same as the metallization rate of the reduced iron discharged from the reduction furnace 1.
The decrease was 0.5% or less. Therefore, also in the present example, it is understood that the reduced iron briquette B6 according to the method of the present invention is less likely to crack than the reduced iron briquette B2 according to the conventional method, generates less powder, and does not significantly lower the metallization rate.
【0025】(実施例4)図5は、本発明に係わる還元
鉄ブリケットの製造方法を適用した設備の概要図であ
る。還元炉1およびブリケットマシン設備2は、上記実
施例1および従来技術と同構成のものであって、これら
により上記実施例1と同要領で還元炉1の下部より排出
された還元鉄を高温の還元鉄ブリケットB1に成形する。(Embodiment 4) FIG. 5 is a schematic view of equipment to which the method for producing reduced iron briquette according to the present invention is applied. The reducing furnace 1 and the briquette machine facility 2 have the same configurations as those of the above-described first embodiment and the prior art. With these, the reduced iron discharged from the lower part of the reducing furnace 1 is heated to a high temperature in the same manner as in the above-mentioned first embodiment. Molded into reduced iron briquette B1.
【0026】上記のようにして得られた成形直後の約 7
00℃の高温還元鉄ブリケットB1を、本実施例では、ブリ
ケットマシン設備2に連設した内部上方にスプレーノズ
ル19を備えるスプレー冷却式コンベヤ20に投入し、スプ
レーノズル19の気水量を制御して約 1.5分掛けて 340℃
まで徐冷した。その後、従来と同様にクエンチタンク3
に投入しタンク3内の水で急冷し、冷却された還元鉄ブ
リケットB7を搬出コンベヤ4でタンク3外へ排出して製
造した。Approximately 7 immediately after molding obtained as described above
In this embodiment, the high-temperature reduced iron briquette B1 having a temperature of 00 ° C. is put into a spray cooling type conveyor 20 having a spray nozzle 19 above the inside of the briquette machine facility 2 and the steam amount of the spray nozzle 19 is controlled. Approx. 340 ° C over 1.5 minutes
Slowly cooled to. After that, as in the conventional method, the quench tank 3
It was put into a tank and rapidly cooled with water in the tank 3, and the cooled reduced iron briquette B7 was discharged to the outside of the tank 3 by the carry-out conveyor 4 to manufacture.
【0027】上記により得られた還元鉄ブリケットB7を
用いて上記実施例1と同様に強度と金属化率を調査し
た。その結果、強度については図2に併せて示す通りで
あって、殆ど上記実施例1における還元鉄ブリケットB3
のそれと同じであった。また、金属化率についても同様
で、還元炉1から排出された還元鉄の金属化率に対して
0.5%以下の低下であった。従って、本実施例において
も、本発明法による還元鉄ブリケットB7は、従来法によ
る還元鉄ブリケットB2より割れ難く、粉の発生が少なく
且つ金属化率がさほど低下しないことが分かる。また本
実施例は、上述した実施例1乃至3に比較して最も生産
性が良く、しかも設備的にも経済的な方法であった。Using the reduced iron briquette B7 obtained as described above, the strength and the metallization rate were investigated in the same manner as in Example 1. As a result, the strength is as shown in FIG. 2, and almost all of the reduced iron briquette B3 in Example 1 was used.
It was the same as that. The same applies to the metallization rate, which is the same as the metallization rate of the reduced iron discharged from the reduction furnace 1.
The decrease was 0.5% or less. Therefore, also in this example, it is understood that the reduced iron briquette B7 according to the method of the present invention is less liable to crack than the reduced iron briquette B2 according to the conventional method, less powder is generated, and the metallization rate is not significantly lowered. In addition, this embodiment has the highest productivity as compared with the above-described first to third embodiments, and is economical in terms of equipment.
【0028】[0028]
【発明の効果】以上説明したように、本発明に係わる還
元鉄ブリケットの製造方法によれば、貯蔵、輸送での割
れが少なく、割れ等に伴う粉の発生が少なく且つ金属化
率が良好な還元鉄ブリケットが得られ、これにより、還
元鉄ブリケットの貯蔵、輸送中の目減り、粉塵による運
搬車、船、あるいはこれらへの搬出入設備等、さらには
そこで作業する人へ与える悪影響などが改善される。ま
た、割れが少なくなることから、割れ面における還元鉄
自体の再酸化も少なくなり品質が安定する。As described above, according to the method for producing a reduced iron briquette according to the present invention, there are few cracks during storage and transportation, generation of powder due to cracks is small, and the metallization rate is good. Reduced iron briquettes can be obtained, which can reduce the reduction of reduced iron briquettes during storage, transportation, dust carriers, ships, and equipment for loading and unloading them, and the adverse effects on people working there. It Moreover, since the number of cracks is reduced, the reoxidation of the reduced iron itself at the cracked surface is also reduced, and the quality is stable.
【図1】本発明に係わる還元鉄ブリケットの製造方法を
適用した設備の概要図である。FIG. 1 is a schematic diagram of equipment to which a method for manufacturing a reduced iron briquette according to the present invention is applied.
【図2】本発明ブリケットと従来ブリケットとの落下強
度試験結果を比較して示すグラフ図である。FIG. 2 is a graph showing the results of a drop strength test of a briquette of the present invention and a conventional briquette in comparison.
【図3】本発明の還元鉄ブリケットの製造方法を適用し
た別実施例の設備の概要図である。FIG. 3 is a schematic view of equipment of another embodiment to which the method for producing a reduced iron briquette of the present invention is applied.
【図4】本発明の還元鉄ブリケットの製造方法を適用し
た別実施例の設備の概要図である。FIG. 4 is a schematic view of equipment of another embodiment to which the method for producing reduced iron briquette of the present invention is applied.
【図5】本発明の還元鉄ブリケットの製造方法を適用し
た別実施例の設備の概要図である。FIG. 5 is a schematic view of equipment of another embodiment to which the method for producing reduced iron briquette of the present invention is applied.
【図6】従来の還元鉄ブリケットの製造設備の概要図で
ある。FIG. 6 is a schematic diagram of a conventional reduced iron briquette manufacturing facility.
1:還元炉 2:ブリケットマ
シン設備 3:クエンチタンク 4:搬出コンベヤ 7:環状クーラ 8:搬送設備 9:送気管 10:冷却シュート 11,16,19:スプレーノズル 12,17,20:スプ
レー冷却式コンベヤ 13,18:搬出コンベヤ G:原料 B1:高温還元鉄ブリケット B2, B3, B5, B6,
B7:還元鉄ブリケット1: Reduction furnace 2: Briquette machine equipment 3: Quench titanium 4: Carry-out conveyor 7: Annular cooler 8: Transfer equipment 9: Air supply pipe 10: Cooling chute 11, 16, 19: Spray nozzle 12, 17, 20: Spray cooling type Conveyors 13 and 18: Carry-out conveyor G: Raw material B1: High-temperature reduced iron briquettes B2, B3, B5, B6,
B7: Reduced iron briquette
───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野 愿哲 ヴェネズエラ国,エスタド ボリヴァール 州,プエルト オルダズ市,ゾナ ポスタ ル8015,アパルタド497,オプコ社内 (72)発明者 津下 修 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsu Sugano Venezuela, Estado Bolivar State, Puerto Ordaz City, Zona Postal 8015, Apartado 497, Opco In-house (72) Inventor Tsushita Shu Chuo-ku, Kobe City 1-3-18 Wakihamacho Kobe Steel Works, Ltd. Kobe Head Office
Claims (4)
ブリケットマシン設備によりブリケットに成形し、この
高温状態の還元鉄ブリケットを、スプレー水にて 150℃
/分〜 250℃/分の冷却速度で徐冷することを特徴とす
る還元鉄ブリケットの製造方法。1. Reduced iron obtained by the direct reduction iron manufacturing method is molded into briquettes by a briquette machine facility, and the reduced iron briquettes in a high temperature state are sprayed with water at 150 ° C.
/ Min-250 ° C / min A method for producing a reduced iron briquette, characterized by slow cooling.
方法において、スプレー水による徐冷を 350℃〜 250℃
までとし、その後水にて急冷する還元鉄ブリケットの製
造方法。2. The method for producing a reduced iron briquette according to claim 1, wherein the gradual cooling with spray water is performed at 350 ° C. to 250 ° C.
A method for manufacturing reduced iron briquette, which is rapidly cooled with water.
ブリケットマシン設備によりブリケットに成形し、この
高温状態の還元鉄ブリケットを、 350℃〜 250℃までガ
スにて 150℃/分〜 250℃/分の冷却速度で徐冷した
後、水にて急冷することを特徴とする還元鉄ブリケット
の製造方法。3. Reduced iron obtained by the direct reduction iron manufacturing method is molded into briquettes by a briquette machine facility, and the reduced iron briquettes in a high temperature state are heated to 350 ° C. to 250 ° C. in gas at 150 ° C./min to 250 ° C. A method for producing a reduced iron briquette, which comprises gradually cooling at a cooling rate of 1 minute / minute and then rapidly cooling with water.
ブリケットマシン設備によりブリケットに成形し、この
高温状態の還元鉄ブリケットを、 620℃〜 550℃までを
不活性ガスにて、引き続き 350℃〜 250℃までをスプレ
ー水にてそれぞれ 150℃/分〜 250℃/分の冷却速度で
徐冷した後、水にて急冷することを特徴とする還元鉄ブ
リケットの製造方法。4. Reduced iron obtained by the direct reduction iron manufacturing method is molded into briquettes by a briquette machine facility, and the reduced iron briquettes in a high temperature state are heated at 620 ° C. to 550 ° C. with an inert gas, and subsequently at 350 ° C. A method for producing a reduced iron briquette, which comprises gradually cooling up to 250 ° C with spray water at a cooling rate of 150 ° C / min to 250 ° C / min and then rapidly cooling with water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15739293A JP3145834B2 (en) | 1993-03-08 | 1993-06-28 | Method for producing reduced iron briquettes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4673793 | 1993-03-08 | ||
JP5-46737 | 1993-03-08 | ||
JP15739293A JP3145834B2 (en) | 1993-03-08 | 1993-06-28 | Method for producing reduced iron briquettes |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06316718A true JPH06316718A (en) | 1994-11-15 |
JP3145834B2 JP3145834B2 (en) | 2001-03-12 |
Family
ID=26386852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15739293A Expired - Lifetime JP3145834B2 (en) | 1993-03-08 | 1993-06-28 | Method for producing reduced iron briquettes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3145834B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996023081A1 (en) * | 1995-01-23 | 1996-08-01 | Voest-Alpine Industrieanlagenbau Gmbh | Method and device for cooling hot briquetted spongy iron |
US6241803B1 (en) | 1999-01-20 | 2001-06-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for manufacturing reduced iron pellets |
WO2003027333A1 (en) * | 2001-09-19 | 2003-04-03 | Nippon Steel Corporation | Reduced iron mass cooling method and cooling device |
JP2003105450A (en) * | 2001-09-27 | 2003-04-09 | Nippon Steel Corp | Method and apparatus for cooling reduced-iron agglomerate |
JP2003106779A (en) * | 2001-09-27 | 2003-04-09 | Nippon Steel Corp | Cooling device and cooling method of reduced iron agglomerated product |
US6652620B2 (en) | 2001-07-10 | 2003-11-25 | Kobe Steel, Ltd. | Method for manufacturing reduced iron briquettes |
EP1411135A1 (en) * | 2001-07-24 | 2004-04-21 | Kabushiki Kaisha Kobe Seiko Sho | Method for accelerating separation of granular metallic iron from slag |
WO2006004350A1 (en) * | 2004-06-30 | 2006-01-12 | Posco | Apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and apparatus for manufacturing molten irons using the same |
WO2006006820A1 (en) * | 2004-07-12 | 2006-01-19 | Posco | Apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and apparatus for manufacturing molten irons using the same |
WO2006009371A1 (en) * | 2004-07-16 | 2006-01-26 | Posco | Apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and apparatus for manufacturing molten irons using the same. |
WO2009031537A1 (en) * | 2007-09-05 | 2009-03-12 | Nippon Steel Corporation | Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron |
JP2009518254A (en) * | 2005-12-07 | 2009-05-07 | シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ | Conveying system, composite system, and method of connecting metallurgical processes |
JP2010138464A (en) * | 2008-12-12 | 2010-06-24 | Nippon Steel Corp | Method for manufacturing reduced-iron using rotary hearth type reducing furnace and apparatus for cooling reduced-iron pellet |
WO2010131753A1 (en) * | 2009-05-15 | 2010-11-18 | 株式会社神戸製鋼所 | Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron |
JP2011184801A (en) * | 2011-05-27 | 2011-09-22 | Nippon Steel Engineering Co Ltd | Cooling device for reduced iron agglomerate |
JP2013528701A (en) * | 2010-04-16 | 2013-07-11 | ヴァーレ、ソシエダージ、アノニマ | Method for applying alcohol derivative on heat-treated pellets to inhibit particulate matter discharge and system for applying alcohol derivative on heat-treated pellets to inhibit particulate matter discharge |
-
1993
- 1993-06-28 JP JP15739293A patent/JP3145834B2/en not_active Expired - Lifetime
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048381A (en) * | 1995-01-23 | 2000-04-11 | Voest-Alpine Industrieanlagenbau Gmbh | Method and arrangement for cooling hot bulk material |
WO1996023081A1 (en) * | 1995-01-23 | 1996-08-01 | Voest-Alpine Industrieanlagenbau Gmbh | Method and device for cooling hot briquetted spongy iron |
US6241803B1 (en) | 1999-01-20 | 2001-06-05 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for manufacturing reduced iron pellets |
US6652620B2 (en) | 2001-07-10 | 2003-11-25 | Kobe Steel, Ltd. | Method for manufacturing reduced iron briquettes |
AU2002311297B2 (en) * | 2001-07-24 | 2008-07-10 | Kabushiki Kaisha Kobe Seiko Sho | Method for accelerating separation of granular metallic iron from slag |
EP1411135A1 (en) * | 2001-07-24 | 2004-04-21 | Kabushiki Kaisha Kobe Seiko Sho | Method for accelerating separation of granular metallic iron from slag |
EP1411135A4 (en) * | 2001-07-24 | 2007-08-22 | Kobe Steel Ltd | Method for accelerating separation of granular metallic iron from slag |
WO2003027333A1 (en) * | 2001-09-19 | 2003-04-03 | Nippon Steel Corporation | Reduced iron mass cooling method and cooling device |
CN100455677C (en) * | 2001-09-19 | 2009-01-28 | 新日本制铁株式会社 | Reduced iron mass cooling method and cooling device |
US7618476B2 (en) | 2001-09-19 | 2009-11-17 | Nippon Steel Corporation | Method and apparatus for cooling reduced-iron agglomerate |
JP2003105450A (en) * | 2001-09-27 | 2003-04-09 | Nippon Steel Corp | Method and apparatus for cooling reduced-iron agglomerate |
JP2003106779A (en) * | 2001-09-27 | 2003-04-09 | Nippon Steel Corp | Cooling device and cooling method of reduced iron agglomerated product |
WO2006004350A1 (en) * | 2004-06-30 | 2006-01-12 | Posco | Apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and apparatus for manufacturing molten irons using the same |
US7588717B2 (en) | 2004-07-12 | 2009-09-15 | Posco | Apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and apparatus for manufacturing molten irons using the same |
WO2006006820A1 (en) * | 2004-07-12 | 2006-01-19 | Posco | Apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and apparatus for manufacturing molten irons using the same |
WO2006009371A1 (en) * | 2004-07-16 | 2006-01-26 | Posco | Apparatus for manufacturing compacted irons of reduced materials comprising fine direct reduced irons and apparatus for manufacturing molten irons using the same. |
JP2009518254A (en) * | 2005-12-07 | 2009-05-07 | シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ | Conveying system, composite system, and method of connecting metallurgical processes |
WO2009031537A1 (en) * | 2007-09-05 | 2009-03-12 | Nippon Steel Corporation | Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron |
AU2008294980B2 (en) * | 2007-09-05 | 2011-03-17 | Nippon Steel Corporation | Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron |
US8092574B2 (en) | 2007-09-05 | 2012-01-10 | Nippon Steel Corporation | Method of producing reduced iron cast, and method of producing pig iron |
JP2010138464A (en) * | 2008-12-12 | 2010-06-24 | Nippon Steel Corp | Method for manufacturing reduced-iron using rotary hearth type reducing furnace and apparatus for cooling reduced-iron pellet |
WO2010131753A1 (en) * | 2009-05-15 | 2010-11-18 | 株式会社神戸製鋼所 | Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron |
CN102388153A (en) * | 2009-05-15 | 2012-03-21 | 株式会社神户制钢所 | Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron |
KR101302793B1 (en) * | 2009-05-15 | 2013-09-02 | 가부시키가이샤 고베 세이코쇼 | Method for manufacturing high-density reduced iron and device for manufacturing high-density reduced iron |
JP2013528701A (en) * | 2010-04-16 | 2013-07-11 | ヴァーレ、ソシエダージ、アノニマ | Method for applying alcohol derivative on heat-treated pellets to inhibit particulate matter discharge and system for applying alcohol derivative on heat-treated pellets to inhibit particulate matter discharge |
JP2011184801A (en) * | 2011-05-27 | 2011-09-22 | Nippon Steel Engineering Co Ltd | Cooling device for reduced iron agglomerate |
Also Published As
Publication number | Publication date |
---|---|
JP3145834B2 (en) | 2001-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06316718A (en) | Manufacture of reduced iron briquette | |
KR100331207B1 (en) | Method for manufacturing reduced iron pellets | |
CN106350714B (en) | A kind of 3C industries high-end anodic oxidation aluminium strip and its production method | |
US9382617B2 (en) | Rod-type polysilicon having improved breaking properties | |
CN103866319A (en) | Laser cladding method for preparing nickel-based heat-resisting and wear-resisting coating on surface of zirconium alloy | |
CN114351047B (en) | Iron-based alloy powder for plasma cladding, preparation method thereof and plasma cladding method | |
CN112501422A (en) | Surface treatment method for 304 series high-grade panel stainless steel raw material | |
JP2003027149A (en) | Method for manufacturing reduced-iron briquette | |
CN101086044A (en) | High-strength high elasticity Cu-Ti alloy and its preparing process | |
CN114182159A (en) | Preparation method of special high-wear-resistance steel strip NGNM01 for pipeline transportation | |
EA000266B1 (en) | Process for hot briqueting granular sponge iron | |
CN114381644B (en) | Vanadium-titanium-based hydrogen storage alloy powder and preparation method thereof | |
CN106591723A (en) | SA516Gr70 steel plate meeting high mold welding conditions and production method thereof | |
CN109014234A (en) | The preparation method of micro-size fraction iron powder | |
CZ296109B6 (en) | Process for producing angular, stainless shot-blasting abrasives based on an Fe-Cr-C alloy | |
CN112979288A (en) | Preparation method of sapphire grinding material | |
KR20160002089A (en) | Method of manufacturing iron powder | |
CN110468403A (en) | A kind of restorative procedure of reduction furnace bell jar inner surface defect | |
CN114850271B (en) | Method for removing surface oxide layer of plated hot-formed steel and hot forming method | |
CN113667845A (en) | New process for producing vanadium-nitrogen alloy by using ammonium metavanadate | |
JP4860852B2 (en) | Cooling method for reduced iron agglomerates. | |
CN102029197A (en) | Production process of diamond catalyst | |
CN101709367A (en) | Manufacturing method of environmentally-friendly mixed steel grit | |
JPS6023172B2 (en) | Direct heat treatment high tensile strength wire manufacturing method | |
JP7347462B2 (en) | Method for producing molded products and method for producing molded coke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080105 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090105 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100105 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110105 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130105 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130105 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |