JP7347462B2 - Method for producing molded products and method for producing molded coke - Google Patents
Method for producing molded products and method for producing molded coke Download PDFInfo
- Publication number
- JP7347462B2 JP7347462B2 JP2021039342A JP2021039342A JP7347462B2 JP 7347462 B2 JP7347462 B2 JP 7347462B2 JP 2021039342 A JP2021039342 A JP 2021039342A JP 2021039342 A JP2021039342 A JP 2021039342A JP 7347462 B2 JP7347462 B2 JP 7347462B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- molded
- raw material
- molding
- fusion rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Coke Industry (AREA)
Description
本発明は、主に成型コークスの原料となる、石炭を主体とする成型物を製造する成型物の製造方法および製造した成型物を乾留して成型コークスを製造する製造方法に関する。 The present invention relates to a method for manufacturing a molded product mainly consisting of coal, which is a raw material for molded coke, and a method for producing molded coke by carbonizing the manufactured molded product.
製鉄用のコークスは、石炭をコークス炉で1000℃以上の温度まで乾留(空気を遮断して蒸し焼きに)して製造され、主たる製銑装置である高炉で用いられる。高炉内に装入されたコークスには、製銑プロセスの主原料である鉄鉱石を還元する還元材、製銑反応に必要な熱を供給する熱源、固・液体と気体の向流型反応装置である高炉内の通気・通液を確保するためのスペーサーなどの役割を果たす。一般的に、高炉の省エネ・CO2排出量削減に効果的な低還元材比操業を達成するためには、使用するコークスの高強度化が必要と考えられている。 Coke for steelmaking is produced by carbonizing coal (by steaming it while blocking air) in a coke oven to a temperature of 1000°C or higher, and is used in a blast furnace, which is the main ironmaking equipment. The coke charged in the blast furnace contains a reducing agent that reduces iron ore, which is the main raw material for the ironmaking process, a heat source that supplies the heat necessary for the ironmaking reaction, and a countercurrent reaction device for solid/liquid and gas. It plays a role such as a spacer to ensure ventilation and liquid passage inside the blast furnace. Generally, in order to achieve low reducing agent ratio operation which is effective for energy saving and reduction of CO 2 emissions in blast furnaces, it is considered necessary to increase the strength of the coke used.
コークス製造プロセスで最も広く普及している室炉式コークス炉によるコークス製造プロセスにおいて、高強度コークスを製造するためには、粘結性に富む強粘結炭を多量に使用する必要がある。しかし、強粘結炭は希少で高価であるため、より安価な非微粘結炭などの劣質炭を使用しつつ高強度のコークスを製造することが強く求められている。 In a coke manufacturing process using a chamber-type coke oven, which is the most widely used coke manufacturing process, in order to manufacture high-strength coke, it is necessary to use a large amount of highly caking coal that has high caking properties. However, since strongly coking coal is rare and expensive, there is a strong demand for producing high-strength coke while using cheaper inferior quality coal such as non-slightly coking coal.
劣質炭を多量に使用しながら高強度のコークスを製造する有力なプロセスとして、従来成型コークス製造プロセスが研究開発されている。成型コークスは、主原料である石炭を種々のステップで調製後、機械的に圧密して成型し、高密度の成型物を作製し、該成型物を乾留して得られる乾留生成物である。成型コークスは、成型物の形状が維持されるように製造されるのが一般的である。 Conventional molded coke production processes are being researched and developed as an effective process for producing high-strength coke while using a large amount of inferior quality coal. Molded coke is a carbonization product obtained by preparing coal, the main raw material, in various steps, then mechanically compacting and molding it to create a high-density molded product, and carbonizing the molded product. Molded coke is generally manufactured so that the shape of the molded product is maintained.
これまでに成型コークスに係る数々のプロセスが検討されている。例えば、成型ステップについては、バインダーを石炭に添加して冷間で成型する冷間成型法、石炭を石炭が粘結性を示す400℃付近まで加熱し、石炭自身の粘結性によりバインダーレスで成型物を成型する熱間成型法がある。また、乾留ステップについては、室炉式コークス炉で乾留する方法の他に、移動床乾留炉や連続式の竪型のシャフト炉などによる乾留方法が提案されている。このうち、冷間成型で得た成型物を竪型のシャフト炉の上部から装入して乾留し、成型コークスをシャフト炉下部から連続的に排出して製造するプロセスは、日本鉄鋼連盟傘下の鉄鋼会社が共同で研究開発し、実用化目前の段階まで開発がなされている(通称、鉄鋼連盟式成形コークスプロセス)。この方法は、粘結性の乏しい劣質炭の使用量を増やすことが可能で、高生産性・高生産弾力性・低環境負荷などの特徴を持つため、有望である。 A number of processes related to molded coke have been studied so far. For example, regarding the molding step, there is a cold molding method in which a binder is added to coal and cold molding, and a binder-less method in which coal is heated to around 400°C, where coal has caking properties. There is a hot forming method for forming molded products. Regarding the carbonization step, in addition to the carbonization method using a chamber coke oven, carbonization methods using a moving bed carbonization furnace, a continuous vertical shaft furnace, etc. have been proposed. Among these, the process in which the molded product obtained by cold forming is charged from the upper part of a vertical shaft furnace and carbonized, and the molded coke is continuously discharged from the lower part of the shaft furnace, is produced by the Japan Iron and Steel Federation. This process has been jointly researched and developed by steel companies, and has been developed to the point where it is on the verge of practical application (commonly known as the Steel Federation-style forming coke process). This method is promising because it can increase the amount of inferior quality coal that has poor caking properties, and has characteristics such as high productivity, high production elasticity, and low environmental impact.
しかし、竪型のシャフト炉で成型コークスを製造する方式においては、乾留時に成型物同士が融着することを防止する必要がある。なぜなら、シャフト炉内で成型物同士が融着すると、巨大な塊が形成されて、塊が炉下部の排出口よりも大きい場合、塊を排出できず、操業不能に陥るためである。この事態を避けるために、乾留初期に急速昇温し、成型物表面にコークスの硬化層を形成して融着を防止する方法が報告されている。また、原料の性状としては、粘着性および膨張性といった粘結性が、成型物の融着性に影響することが報告されている。原料性状を制御する方法としては、無煙炭や半無煙炭などの粘結性の乏しい石炭を配合する方法(特許文献1)や、高灰分の石炭を使用する方法(特許文献2)、軟化溶融性の高い、融着し易い石炭(以下、易軟化性石炭)の配合比を制御する方法(特許文献3)などが提案されている。 However, in the method of producing molded coke in a vertical shaft furnace, it is necessary to prevent molded products from fusing together during carbonization. This is because when the molded products fuse together in the shaft furnace, a huge lump is formed, and if the lump is larger than the discharge port at the bottom of the furnace, the lump cannot be discharged and the operation becomes impossible. In order to avoid this situation, a method has been reported in which the temperature is rapidly increased in the early stage of carbonization to form a hardened layer of coke on the surface of the molded product to prevent fusion. Furthermore, it has been reported that the properties of raw materials, such as caking properties such as tackiness and expandability, affect the fusion properties of molded products. Methods for controlling raw material properties include a method of blending coal with poor caking such as anthracite or semi-anthracite (Patent Document 1), a method of using coal with high ash content (Patent Document 2), A method (Patent Document 3) of controlling the blending ratio of coal that is highly fused and easily fused (hereinafter referred to as easily softenable coal) has been proposed.
上記のように乾留時の成型物同士の融着を抑制するためには、乾留条件を変更する、あるいは原料石炭の配合構成を変更し、性状を制御する方法が有効である。しかし、従来技術には以下のような問題があった。 As mentioned above, in order to suppress the fusion of molded products during carbonization, it is effective to change the carbonization conditions or change the blending composition of raw coal to control the properties. However, the conventional technology has the following problems.
乾留条件を変更する方法は、操業の生産スケジュールや乾留熱量に影響を与えてしまうため、容易には実施できない。また、成型コークス用の原料石炭の粘結性を精緻に制御するのは困難を伴う。その理由の一つは、成型コークス用に主に使用される石炭は、粘結性の乏しい石炭であり、例えば燃料用の一般炭が該当するが、一般炭の粘結性は山元で厳格には品質管理されていないことである(なぜなら、燃料用としては特に重視すべき性状ではないため)。そのため、同一の石炭銘柄であっても、粘結性のロット差が大きく、想定以上に粘結性の高い石炭が入荷してしまった場合に、成型コークス工場の在庫で所有している石炭で、原料石炭の粘結性を調整しきれない事態が起こりうる。その対応として、原料石炭の粘結性を調整するための石炭を新たに調達すると、余分に時間がかかって操業スケジュールに支障を来すのみならず、追加のコスト増を招く。逆に、ロット変動に対応するために、原料石炭の粘結性の調整能力を高めるためには、複数種類の石炭を在庫として所有する必要があり、場所の確保や在庫管理の煩雑さが問題になる。また、もう一つの理由として、低い粘結性の評価は、そもそも精度が低いことがある。粘結性の評価試験は各種(例えば、JIS M 8801のるつぼ膨張性試験や流動性試験など)存在するが、低い粘結性の領域は検出感度が低い。そのため、精度よく原料石炭の性状を制御することは困難な場合がある。 Changing the carbonization conditions is not easy to implement because it affects the production schedule and the amount of heat of carbonization. Furthermore, it is difficult to precisely control the caking properties of raw coal for molded coke. One of the reasons for this is that the coal mainly used for molded coke has poor caking properties, such as steam coal for fuel, but the caking properties of steam coal are strictly controlled at the base of the mountain. is not subject to quality control (because its properties are not particularly important for fuel use). Therefore, even if the brand of coal is the same, there are large lot differences in caking properties, and if coal with higher caking properties arrives than expected, the molded coke plant may use the coal it has in its inventory. , a situation may occur in which the caking properties of raw coal cannot be fully adjusted. In response to this, procuring new coal to adjust the caking properties of raw material coal not only takes extra time and disrupts the operating schedule, but also causes additional costs. On the other hand, in order to increase the ability to adjust the caking properties of coking coal in order to respond to lot fluctuations, it is necessary to have multiple types of coal in stock, which poses problems such as securing space and the complexity of inventory management. become. Another reason is that evaluation of low caking properties has low accuracy to begin with. There are various evaluation tests for caking property (for example, JIS M 8801 crucible swelling test and fluidity test), but detection sensitivity is low in regions of low caking property. Therefore, it may be difficult to accurately control the properties of raw coal.
本発明の目的は、乾留条件、使用原料を限定せずに、比較的簡便かつ迅速に、乾留時の成型物同士の融着を抑制する技術としての成型物の製造方法を提案することにある。 An object of the present invention is to propose a method for producing molded products as a technique for suppressing fusion between molded products during carbonization, relatively simply and quickly, without limiting the carbonization conditions or the raw materials used. .
そこで、発明者らは、成型コークスの製造条件、特に成型物の製造条件と成型コークスの乾留時の融着率の関係について鋭意研究を重ねた。その結果、成型時の原料温度を高めると成型物の膨張が抑制されて、成型コークスの乾留時の融着率が減少することを見出した。この発見に基づいて、さらに検討を進めた結果、シャフト炉で融着が起こらないようにするための成型時の原料温度は、成型物の融着のしやすさによって異なることを確認した。これらの知見に基づき、本発明は完成に至った。 Therefore, the inventors conducted extensive research on the relationship between the manufacturing conditions of molded coke, particularly the manufacturing conditions of molded products, and the fusion rate during carbonization of molded coke. As a result, they found that increasing the raw material temperature during molding suppresses the expansion of the molded product and reduces the fusion rate during carbonization of molded coke. Based on this discovery, further studies were conducted and it was confirmed that the raw material temperature during molding to prevent fusion in a shaft furnace differs depending on the ease of fusion of the molded product. Based on these findings, the present invention has been completed.
即ち、本発明は、単一または複数の石炭を主体とする原料を調製するステップと、調製された原料を加熱するステップと、加熱された原料を成型するステップと、を含む成型物の製造方法であって、
下記<融着率(α)の定義>に基づく成型物の融着率(α)が30mass%以上である場合に、前記成型するステップにおいて、原料の温度(Tb)を75℃以上250℃以下にすることを特徴とする、成型物の製造方法:
<融着率(α)の定義>
原料を調製するステップの処理を行った原料を75℃未満の温度で成型した成型物を複数個隣接させた状態で、前記原料の再固化温度以上まで不活性ガスの雰囲気で加熱(乾留)して軟化融着を終了させた後、冷却して乾留生成物を作製し、その乾留生成物の全重量に対する、2個以上の成型物が連結した乾留生成物の重量割合の百分率を融着率(α)とする、である。
That is, the present invention provides a method for producing a molded article, which includes the steps of preparing a raw material mainly consisting of one or more coals, heating the prepared raw material, and molding the heated raw material. And,
When the fusion rate (α) of the molded product based on the following <Definition of fusion rate (α)> is 30 mass% or more, in the molding step, the temperature (Tb) of the raw material is set at 75°C or more and 250°C or less. A method for manufacturing a molded article, characterized by:
<Definition of fusion rate (α)>
The raw material processed in the raw material preparation step is molded at a temperature of less than 75°C, and a plurality of molded products are placed adjacent to each other and heated (carbonized) in an inert gas atmosphere to a temperature equal to or higher than the resolidification temperature of the raw material. After completing the softening and fusing, the product is cooled to produce a carbonized product, and the percentage of the weight of the carbonized product in which two or more molded products are connected to the total weight of the carbonized product is determined as the fusion rate. Let (α) be.
なお、前記のように構成される本発明に係る成型物の製造方法おいては、
(1)前記成型するステップの原料の温度(Tb(℃))を、前記融着率(α(mass%))に応じて、下記(1)式かつ(2)式を満たすように決定することを特徴とすること:
1.25×α+32.5≦Tb≦250・・・(1)
75≦Tb・・・(2)、
(2)前記<融着率(α)の定義>を以下のとおりとすること:
<融着率(α)の定義>
原料を調製するステップの処理を行った原料を70℃で成型した成型物を複数個隣接させた状態で、前記原料の再固化温度以上まで不活性ガスの雰囲気で加熱(乾留)して軟化融着を終了させた後、冷却して乾留生成物を作製し、その乾留生成物の全重量に対する、2個以上の成型物が連結した乾留生成物の重量割合の百分率を融着率(α)とする、
(3)上記成型物の製造方法に従って製造した成型物を乾留すること、
がより好ましい解決手段となるものと考えられる。
In addition, in the method for manufacturing a molded article according to the present invention configured as described above,
(1) The temperature (Tb (°C)) of the raw material in the molding step is determined according to the fusion rate (α (mass%)) so as to satisfy the following equations (1) and (2). Characterized by:
1.25×α+32.5≦Tb≦250...(1)
75≦Tb...(2),
(2) The above <definition of fusion rate (α)> shall be as follows:
<Definition of fusion rate (α)>
The raw material processed in the raw material preparation step is molded at 70°C, and a plurality of molded products are placed adjacent to each other and heated (carbonized) in an inert gas atmosphere to a temperature higher than the re-solidification temperature of the raw material to soften and melt. After finishing the deposition, the product is cooled to produce a carbonized product, and the percentage of the weight of the carbonized product in which two or more molded products are connected to the total weight of the carbonized product is calculated as the fusion rate (α). and
(3) carbonizing the molded product manufactured according to the method for manufacturing the molded product above;
is considered to be a more preferable solution.
本発明によれば、融着しやすい性状と判断された原料に対しては、成型するステップにおいて、原料の温度(Tb)を75℃以上250℃以下と成型時の温度を制御することで、乾留条件や使用原料の制約を受けずに、比較的簡便かつ迅速に乾留炉での成型物同士の融着を抑止できる。したがって、安定的な成型コークスの製造が可能となる。 According to the present invention, in the molding step, the temperature (Tb) of the raw material is controlled to be 75°C or more and 250°C or less for raw materials that are determined to have properties that are likely to be fused. It is possible to prevent molded products from adhering to each other in a carbonization furnace relatively easily and quickly without being subject to restrictions on carbonization conditions or raw materials used. Therefore, stable production of molded coke is possible.
本発明の成型物の製造方法では、通常、単一または複数の石炭を主体とする原料を調製するステップと、加熱するステップと、成型するステップ、を含む。本発明において、原料を調製するステップとは、単一または複数の石炭を主として用いて、成型物の製造に適した状態の原料を製造するステップのことを指す。例えば、複数の石炭を配合すること、石炭に添加物を加えること、石炭を含む成型物の原料の粒度や水分量を調整することなどが含まれる。この方法において、成型するステップで得られる成型物を乾留した際に融着が起こらないようにするための成型時の原料温度は、成型物の融着のしやすさによって異なることを確認し、この知見に基づき本発明は完成に至った。 The method for manufacturing a molded article of the present invention usually includes the steps of preparing a single or plural coal-based raw materials, heating the raw materials, and molding the raw materials. In the present invention, the step of preparing a raw material refers to a step of producing a raw material in a state suitable for manufacturing a molded article, mainly using a single coal or a plurality of coals. Examples include blending multiple coals, adding additives to coal, and adjusting the particle size and moisture content of raw materials for molded products containing coal. In this method, it was confirmed that the raw material temperature during molding to prevent fusion from occurring when the molded product obtained in the molding step is carbonized varies depending on the ease of fusion of the molded product, Based on this knowledge, the present invention has been completed.
まず、この知見の原理の確認をした予備実験の結果を示す。実験には、VM=31.2(%d.b.)、logMF=1.0、CSN=1.0の石炭Aを用いた。石炭Aを風乾後、0.1mm以下の粒子の含有率が100wt%になるように粉砕した。この粉砕試料2gをφ16mmのモールドに充填し、室温で100MPaの圧力で成型(冷間成型)ないしアルゴンガス雰囲気で200℃に昇温して同圧力で成型(熱間成型)し、冷間成型物および熱間成型物を得た。これら成型物を窒素ガス流通下の電気炉で900℃まで加熱した際の、成型物の初期高さに対する高さの収縮率を調査した。その結果を図1に示す。 First, we will show the results of a preliminary experiment that confirmed the principle of this finding. Coal A with VM=31.2 (%d.b.), logMF=1.0, and CSN=1.0 was used in the experiment. Coal A was air-dried and then pulverized so that the content of particles of 0.1 mm or less was 100 wt%. 2 g of this crushed sample was filled into a φ16 mm mold and molded at room temperature under a pressure of 100 MPa (cold molding) or heated to 200°C in an argon gas atmosphere and molded at the same pressure (hot molding). A product and a hot-molded product were obtained. When these molded products were heated to 900° C. in an electric furnace under nitrogen gas flow, the shrinkage rate of the height relative to the initial height of the molded products was investigated. The results are shown in Figure 1.
図1の結果から、冷間成型物は、石炭が軟化溶融性を示す400℃付近から膨張していることが分かる。一方で、熱間成型物は、乾留中に膨張を示さず、400℃以降は一様に収縮した。原料石炭の膨張性が高いほど成型物同士の乾留時の融着が起きやすいことから、熱間成型により、成型物の乾留時の融着が抑止されると予想された。熱間成型により膨張性が減少した理由は、熱間成型時に若干の石炭分子の構造変化が生じ、乾留時の熱分解反応に何らかの影響を与えたと推察される。なお、本発明の熱間成型の温度の上限は、高くとも250℃程度であって、石炭の粘結性を利用して石炭同士の結合を達成する従来の熱間成型の温度よりは明らかに低い。従来、250℃程度の温度では、石炭の熱分解反応は起こらず、性状の変化は限定的と考えられてきた。本発明の新規な部分は、この比較的温和な加熱温度域(75~250℃)においても、石炭の膨張性、ひいては成型物の融着性が変化することを見出した点である。 From the results shown in FIG. 1, it can be seen that the cold-formed product expands from around 400° C., where coal exhibits softening and melting properties. On the other hand, the hot molded product showed no expansion during carbonization and uniformly shrunk after 400°C. Since the higher the expansibility of raw coal, the more easily fusion occurs between molded products during carbonization, it was expected that hot forming would suppress the fusion of molded products during carbonization. The reason for the decrease in expandability due to hot forming is that a slight structural change in the coal molecules occurred during hot forming, which had some effect on the thermal decomposition reaction during carbonization. Note that the upper limit of the temperature for hot forming of the present invention is about 250°C at most, which is clearly lower than the temperature for conventional hot forming, which utilizes the caking properties of coal to achieve bonding between coals. low. Conventionally, it has been thought that thermal decomposition reactions of coal do not occur at temperatures of about 250° C., and changes in properties are limited. The novel part of the present invention is the discovery that even in this relatively mild heating temperature range (75 to 250°C), the expandability of coal and, by extension, the fusion properties of the molded product change.
次に、配合及び成型時の温度を変更して、融着率(α)の調査を行った(詳細は以下の実施例で示す)。ここで、融着率(α)とは、原料を調製するステップで処理した原料を75℃未満の温度で成型して成型物を製造し、その成型物を、複数個隣接させた状態で、原料の再固化温度以上まで不活性ガスの雰囲気で加熱(乾留)して軟化融着を終了させた後、冷却して乾留生成物を作製し、その乾留生成物の全重量に対する、2個以上の成型物が連結した乾留生成物の重量割合の百分率として求めることができる。また、ある成型温度での実験で求めた融着率から、別の温度で成型した場合の融着率を推定してもよい。この融着率(α)は、乾留した生成物の融着しやすさを示す値であって、融着率(α)が大きいほど、その成型物は融着しやすいと判断できる。なお、「成型物を、複数個隣接させた状態で、軟化溶融温度まで不活性ガスの雰囲気で加熱(乾留)して軟化融着を終了させる」好適例としては、成型物を、複数個隣接させた状態で、少なくとも600℃まで3~5℃/minの昇温速度で加熱することがある。少なくとも600℃まで3~5℃/minの昇温速度で加熱することで、成型物の軟化溶融は終了する。コークス製造用の原料として好適に用いられる粘結炭は加熱によって軟化溶融し、さらに加熱温度を上げていくと再び固化する。軟化溶融した石炭が再び固化する温度を再固化温度と呼び、再固化によって軟化溶融が終了する。すなわち、成型物を再固化温度以上にまで加熱することで、成型物同士が固着した融着物が生成する。 Next, the fusion rate (α) was investigated by changing the blending and molding temperatures (details are shown in the examples below). Here, the fusion rate (α) is obtained by molding the raw material processed in the step of preparing the raw material at a temperature of less than 75°C to produce a molded product, and when a plurality of molded products are placed adjacent to each other. After heating (carbonization) in an inert gas atmosphere to a temperature equal to or higher than the resolidification temperature of the raw material to complete the softening and fusion, the carbonization product is produced by cooling, and 2 or more pieces are added to the total weight of the carbonization product. It can be determined as a percentage of the weight of the carbonized product in which the molded products are connected. Furthermore, the fusion rate when molding is performed at a different temperature may be estimated from the fusion rate determined through an experiment at a certain molding temperature. The fusion rate (α) is a value indicating the ease with which the carbonized product is fused, and it can be determined that the larger the fusion rate (α) is, the easier the molded product is to be fused. In addition, as a preferable example of "heating (carbonization) in an inert gas atmosphere to the softening melting temperature with a plurality of molded products adjacent to each other to complete the softening and fusion bonding," In this state, it may be heated to at least 600°C at a rate of temperature increase of 3 to 5°C/min. By heating to at least 600° C. at a temperature increase rate of 3 to 5° C./min, softening and melting of the molded product is completed. Caking coal, which is suitably used as a raw material for producing coke, softens and melts when heated, and solidifies again when the heating temperature is further increased. The temperature at which the softened and melted coal solidifies again is called the resolidification temperature, and the softening and melting ends with resolidification. That is, by heating the molded products to a temperature equal to or higher than the resolidification temperature, a fused material in which the molded products are adhered to each other is generated.
この知見を整理し、定式化を行った。原料を75℃未満で成型した成型物の融着率(α(mass%))に応じて、融着率を30mass%未満にするための、成型時の原料の温度(Tb(℃))は下記(1)式かつ(2)式を満たすように決定することが好適範囲となることがわかった:
1.25×α+32.5≦Tb≦250・・・(1)、
75≦Tb・・・(2)。
This knowledge was organized and formulated. Depending on the fusion rate (α (mass%)) of the molded product obtained by molding the raw material at a temperature of less than 75°C, the temperature of the raw material during molding (Tb (°C)) in order to make the fusion rate less than 30 mass% is It has been found that the preferred range is to satisfy the following formulas (1) and (2):
1.25×α+32.5≦Tb≦250...(1),
75≦Tb...(2).
したがって、原料の75℃未満で成型した成型物の融着率(α)を調査し、その結果に応じて、成型ステップの際の原料温度を上記好適範囲に変更することが望ましい。なお、成型機での温度が250℃を超えると、引火性の揮発分のガス化に伴い、火災や爆発などの設備トラブルや災害が起こるリスクが高まる。そのため、成型時の温度は250℃以下とすることが望ましい。 Therefore, it is desirable to investigate the fusion rate (α) of a molded product molded at a temperature of less than 75° C. and, depending on the result, change the raw material temperature during the molding step to the above-mentioned preferred range. Note that if the temperature in the molding machine exceeds 250°C, the risk of equipment trouble or disasters such as fire or explosion increases due to the gasification of flammable volatile matter. Therefore, it is desirable that the temperature during molding be 250° C. or lower.
加熱された原料を成型するステップにおける成型時の温度制御については、成型装置の方式によって変わるが、圧縮プレス機のように直接加熱できる方式では、成型時に加熱し、原料温度を下限値以上とすることが望ましい。一方、ロール成型など、直接の加熱が困難な装置の場合は、成型ステップの前工程(配合工程など)で昇温しておくことでも効果がある。特に、成型ステップでは、加熱によるバインダーの軟化も成型物の品質に影響することから、ここで加熱温度を制御することが望ましい。ただし、この場合は、成型ステップまでの抜熱による原料温度の低下を考慮して、成型される際の原料の温度が75℃~250℃になるように加熱温度を決定する必要がある。なお、成型される際の原料の温度は、成型直後の成型物の温度を測定して確認することができる。融着率(α)を求める際の成型温度についても同様に、成型される際の原料の温度が75℃未満になるようにすればよい。なお、融着率を求める際の成型温度は、本発明の成型物の製造方法における成型ステップの温度よりも低いため、原料を加熱してから成型するまでの温度低下が少なく、成型前の原料温度を75℃未満とすれば、成型する際の温度は実質的に原料の温度と同じとなるので、成型前の原料温度(成型機に導入される原料の温度)を制御して成型を行ってもよい。 Temperature control during molding in the step of molding heated raw materials varies depending on the type of molding equipment, but in systems that can directly heat, such as compression presses, heat is applied during molding to bring the raw material temperature above the lower limit. This is desirable. On the other hand, in the case of equipment such as roll molding where direct heating is difficult, it is also effective to raise the temperature in a step prior to the molding step (such as a compounding step). Particularly in the molding step, since softening of the binder due to heating also affects the quality of the molded product, it is desirable to control the heating temperature here. However, in this case, it is necessary to determine the heating temperature so that the temperature of the raw material during molding is 75° C. to 250° C., taking into account the decrease in raw material temperature due to heat removal up to the molding step. Note that the temperature of the raw material during molding can be confirmed by measuring the temperature of the molded product immediately after molding. Similarly, regarding the molding temperature when determining the fusion rate (α), the temperature of the raw material during molding may be set to be less than 75°C. In addition, since the molding temperature when determining the fusion rate is lower than the temperature of the molding step in the method for manufacturing molded products of the present invention, there is little temperature drop from heating the raw material to molding, and the raw material before molding If the temperature is less than 75°C, the temperature during molding will be essentially the same as the temperature of the raw material, so molding is performed by controlling the temperature of the raw material before molding (the temperature of the raw material introduced into the molding machine). It's okay.
また、加熱および成型時の雰囲気としては、低酸素濃度が望ましい。酸素が存在する条件で石炭を加熱すると、いわゆる風化現象により、石炭の品質が劣化する場合がある。また、火災・爆発などのリスクを下げる観点からも低酸素濃度の雰囲気が望ましい。加熱時または成型時の雰囲気の酸素濃度としては18体積%以下が好ましいが、石炭の品質劣化が実用上軽微な場合や、火災・爆発のリスクに対する対策が十分になされていれば、空気中で加熱、成型を行ってもよい。酸素濃度を低下させるためには、窒素などの不活性ガスを添加した雰囲気にする方法、雰囲気の水蒸気分圧を上げて酸素濃度を低下させる方法などが採用できる。 Furthermore, a low oxygen concentration is desirable as an atmosphere during heating and molding. When coal is heated in the presence of oxygen, the quality of the coal may deteriorate due to a so-called weathering phenomenon. Additionally, an atmosphere with low oxygen concentration is desirable from the perspective of reducing the risk of fire, explosion, etc. The oxygen concentration in the atmosphere during heating or molding is preferably 18% by volume or less, but if the quality deterioration of the coal is practically negligible or if sufficient measures are taken to prevent the risk of fire or explosion, Heating and molding may also be performed. In order to reduce the oxygen concentration, methods such as creating an atmosphere in which an inert gas such as nitrogen is added, or increasing the partial pressure of water vapor in the atmosphere to lower the oxygen concentration can be adopted.
成型時の原料温度と乾留後の成型コークスの融着率の関係を調査するため、種々の易軟化性石炭(JIS M 8801のボタン指数CSNが2.0を超える石炭)の配合率を変更し、原料混錬時の温度を変えて成型した成型物を乾留した際の融着率の測定を実施した。成型物の成型方法および乾留方法は下記の手順とした。 In order to investigate the relationship between the raw material temperature during molding and the fusion rate of molded coke after carbonization, the blending ratio of various easily softenable coals (coal with a button index CSN of JIS M 8801 exceeding 2.0) was changed. The fusion rate was measured when molded products were carbonized by varying the temperature during kneading of raw materials. The molding method and carbonization method for the molded product were as follows.
まず、複数種の石炭銘柄よりなる配合炭に対し、バインダーを添加し混練および成型を実施した。配合炭の軟化溶融特性については、ギーセラー最高流動度の対数の荷重平均値(LogMF)が0.4~1.1の範囲とし、配合炭の灰分は10.0~10.5mass%の範囲とした。石炭の粒度は全量2mm以下とした。また、バインダーとして、軟ピッチおよびコールタールを原料前重量の8.0~10.0mass%添加した。混練機である高速攪拌ミキサーにて100℃~200℃で混練し、混練した原料をダブルロール型成型機にて成型物を製造した。ロールサイズは650mmφ×104mmとし、回転数2rpm、線圧は1~4t/cmで成型した。成型物のサイズは30mm×25mm×18mm(6cc)で形状は卵型である。 First, a binder was added to a coal blend made of multiple types of coal brands, and the mixture was kneaded and molded. Regarding the softening and melting properties of the blended coal, the logarithm weighted average value (LogMF) of the maximum Gieseler fluidity should be in the range of 0.4 to 1.1, and the ash content of the blended coal should be in the range of 10.0 to 10.5 mass%. did. The total particle size of the coal was 2 mm or less. Further, as a binder, soft pitch and coal tar were added in an amount of 8.0 to 10.0 mass% based on the weight of the raw material. The mixture was kneaded at 100° C. to 200° C. using a high-speed mixer, which is a kneading machine, and the kneaded raw materials were used to produce a molded product using a double roll molding machine. The roll size was 650 mmφ x 104 mm, and the molding was performed at a rotation speed of 2 rpm and a linear pressure of 1 to 4 t/cm. The size of the molded product is 30 mm x 25 mm x 18 mm (6 cc), and the shape is oval.
成型直後の成型物の温度を測定し、これを成型時温度とした。なお、成型時の温度は70℃~150℃程度であり、成型ロールに入る直前の原料の温度と一致していた。すなわち、この成型時の温度を成型する原料の温度(Tb)とすることができる。また、成型時の温度は、混練時の温度と高度な相関関係が認められた。すなわち、混練時の温度を調整することで、成型時の温度を調整することができる。成型物の乾留は以下のラボスケールの乾留手法(固定層)で行った。縦200mm、横60mm、高さ200mmの乾留缶に成型物を1.8kg充填し、電気炉を用いてプログラムヒーティングにより乾留した後、窒素雰囲気で冷却した。プログラムヒーティングは成型物層の中央部における成型物の間の空隙部の温度を室温から500℃まで15℃/分、500~750℃を3℃/分で昇温し、750℃以上の温度で143分保持する条件で行った。冷却後、容器内から成型コークスを取り出し、2個以上の成型コークスが融着したサンプルの重量比率を算出し、融着率と定義し、融着率と成型時の温度の関係を調査した。成型物層の中央部における成型物の間の空隙部の温度(または、成型物層の中央部付近の成型炭の内部温度)で、350~500℃の昇温速度で2~20℃/分、より望ましくは、2~15℃/分、最高温度700~1000℃であれば融着率はほぼ等しくなるので、そのような乾留条件における融着率で成型物の融着のしやすさが評価可能である。このうち、350~500℃の昇温速度が20℃/分を超えて速い場合、融着率は有意に増加するため、成型物の性状差による融着率の差が検出されにくくなる。したがって、昇温速度を上記好適範囲に設定することが望ましい。 The temperature of the molded product immediately after molding was measured, and this was taken as the temperature during molding. The temperature during molding was approximately 70°C to 150°C, which coincided with the temperature of the raw material immediately before entering the molding roll. That is, the temperature at the time of molding can be set as the temperature (Tb) of the raw material to be molded. Furthermore, a high degree of correlation was observed between the temperature during molding and the temperature during kneading. That is, by adjusting the temperature during kneading, the temperature during molding can be adjusted. Carbonization of the molded product was performed using the following laboratory scale carbonization method (fixed bed). A carbonization can measuring 200 mm in length, 60 mm in width, and 200 mm in height was filled with 1.8 kg of the molded product, carbonized by program heating using an electric furnace, and then cooled in a nitrogen atmosphere. Program heating increases the temperature of the gap between the molded products in the center of the molded product layer from room temperature to 500°C at a rate of 15°C/min, and from 500 to 750°C at a rate of 3°C/min until the temperature exceeds 750°C. The test was carried out under the conditions of holding for 143 minutes. After cooling, the molded coke was taken out from the container, and the weight ratio of the sample in which two or more pieces of molded coke were fused was calculated and defined as the fusion rate, and the relationship between the fusion rate and the temperature during molding was investigated. At the temperature of the void between the molded materials in the center of the molded material layer (or the internal temperature of the briquette coal near the center of the molded material layer), the heating rate is 2 to 20°C/min at 350 to 500°C. More desirably, the fusion rate will be approximately equal if the temperature is 2 to 15°C/min and the maximum temperature is 700 to 1000°C, so the fusion rate under such carbonization conditions will increase the ease of fusion of the molded product. It is possible to evaluate. Among these, when the temperature increase rate from 350 to 500° C. is faster than 20° C./min, the fusion rate increases significantly, making it difficult to detect the difference in the fusion rate due to the difference in the properties of the molded product. Therefore, it is desirable to set the temperature increase rate within the above-mentioned preferred range.
融着率と成型時の温度の関係を図2に示す。図2の結果から、易軟化性石炭配合率の増加に伴い、同一成型温度における融着率が増加することがわかった。また、成型時の温度の上昇に伴い融着率が減少するが、その傾きは配合によらず一定であることを確認した。つまり、易軟化性石炭の配合率の増加に伴い、融着率がある特定の値となる成型時の原料の温度が上昇することが分かった。 FIG. 2 shows the relationship between the fusion rate and the temperature during molding. From the results shown in FIG. 2, it was found that the fusion rate at the same molding temperature increased as the easily softened coal content increased. It was also confirmed that although the fusion rate decreased as the temperature during molding increased, the slope remained constant regardless of the formulation. In other words, it was found that as the blending ratio of easily softened coal increases, the temperature of the raw material during molding at which the fusion rate reaches a certain value increases.
シャフト炉を用いて石炭の成型物を乾留して成型コークスを得る場合、融着率がある値を超えると成型コークスの荷下がりが滞り、炉からの排出が困難となり炉の操業に支障をきたす確率が高まることが知られている。発明者は、融着率と操業トラブルの関係を調査し、融着率が30mass%以上になると順調な操業が困難になることを見出した。図2には、融着率が30mass%の線を操業上の上限の例として示した。通常、融着率がこの線未満の値であれば、大きな問題なく操業が可能である。ただし、炉の形式や操業条件によっては、順調な操業が困難になる融着率が30mass%にならない場合もある。その場合でも、75℃未満の温度で成型した場合の融着率が30mass%以上となる原料は融着しやすい原料であることは明らかであり、そのような原料については成型温度を75~250℃に高めることで、操業時の融着率は75℃未満の温度で成型した場合よりも下げることができる。すなわち、本発明では、所定の条件で得られた原料成型物の融着率αに基づいて融着しやすい原料を特定し、融着しやすい原料を用いる場合には、その成型温度を75~250℃に高めることで、乾留時の融着を抑制するという課題を解決する。この方法により、融着率が低下すればそれに応じて操業トラブルを減らすことができるという効果を奏することができる。操業時の融着率をどこまで低下させればよいかの目標値は、当業者が操業経験に基づいて適宜設定することが可能であり、融着率の目標値をあらかじめ定め、原料の融着しやすさに基づいて、成型温度を調整することは本発明の実施形態の一つである。 When obtaining molded coke by carbonizing coal molded products using a shaft furnace, if the fusion rate exceeds a certain value, the unloading of the molded coke will be delayed, making it difficult to discharge from the furnace, which will impede the operation of the furnace. It is known that the probability increases. The inventor investigated the relationship between the fusion rate and operational troubles and found that smooth operation becomes difficult when the fusion rate exceeds 30 mass%. In FIG. 2, a line with a fusion rate of 30 mass% is shown as an example of the operational upper limit. Normally, if the fusion rate is below this line, operation is possible without major problems. However, depending on the type of furnace and operating conditions, the fusion rate may not reach 30 mass%, which makes smooth operation difficult. Even in that case, it is clear that raw materials with a fusion rate of 30 mass% or more when molded at a temperature below 75°C are easily fused raw materials, and for such raw materials, the molding temperature should be set at 75 to 250°C. By raising the molding temperature to 75°C, the fusion rate during operation can be lowered than when molding is performed at a temperature below 75°C. That is, in the present invention, raw materials that are likely to be fused are identified based on the fusion rate α of the raw material molded product obtained under predetermined conditions, and when using raw materials that are easy to fused, the molding temperature is set to 75 to 75. By increasing the temperature to 250°C, the problem of suppressing fusion during carbonization is solved. This method has the effect that if the fusion rate decreases, operational troubles can be reduced accordingly. The target value of how much the fusion rate should be reduced during operation can be appropriately set by a person skilled in the art based on operational experience. Adjusting the molding temperature based on ease of molding is one embodiment of the present invention.
図2の条件において、成型時の温度を70℃よりもさらに低下させると、温度の低下とともに融着率は上昇する傾向を示す。本発明では、75℃未満の温度で成型した成型物について、融着率αを求め、融着率αが30mass%以上となる場合に、成型物の製造における成型するステップでの成型温度を75℃以上に高めて融着を抑制する。αを求める際の成型温度が低い場合には、αの値が大きくなるので、例えば75℃未満の温度で成型してαを求める場合は、75℃で成型した場合よりも原料の融着性を高く(融着しやすいと)評価することになる。そのため、αを求める際の成型温度が低い場合には、より広い範囲の原料に対して、成型するステップの温度を高めることになり、より確実に融着を抑止することができる。 Under the conditions shown in FIG. 2, when the temperature during molding is further lowered below 70° C., the fusion rate tends to increase as the temperature decreases. In the present invention, the fusion rate α is determined for a molded article molded at a temperature of less than 75°C, and when the fusion rate α is 30 mass% or more, the molding temperature in the molding step in the production of the molded article is set to 75°C. Increase the temperature to above ℃ to suppress fusion. If the molding temperature when determining α is low, the value of α will be large, so for example, when determining α by molding at a temperature below 75°C, the fusion of the raw material will be higher than when molding at 75°C. is evaluated highly (easily fused). Therefore, when the molding temperature when determining α is low, the temperature in the molding step is increased for a wider range of raw materials, and fusion can be more reliably suppressed.
しかし、より広い範囲の原料に対して、成型物の製造における成型するステップでの成型温度を高めて成型を行うことは、確実に融着を抑止できる反面、高温で成型する原料の量が増えることになり、エネルギー使用量の点では不利益も発生する。したがって、融着率を求めるための成型温度は、なるべく高く設定したほうが好ましい場合もある。この得失を考慮すると、融着率αを求める際の成型温度は65℃以上75℃未満に設定することが好ましく、さらに好ましくは70℃に設定することができる。この時、融着率αを求めるための操作において、70℃で成型を行うことは必ずしも必要ではなく、他の成型温度で成型を行った試験結果から70℃で成型した場合の融着率を推定してもよい。このような融着率の推定方法としては、複数の実験結果から内挿または外挿によって70℃で成型した場合の融着率を推定してもよいし、例えば図2に示したような相関から推定してもよい。このようにして、70℃で成型を行ったとした場合の融着率αを基準に、成型物の製造における成型するステップでの成型温度を定めることができる。 However, by molding a wider range of raw materials at a higher molding temperature during the molding step in the production of molded products, it is possible to reliably prevent fusion, but at the same time the amount of raw materials molded at high temperatures increases. Therefore, there will be a disadvantage in terms of energy usage. Therefore, it may be preferable to set the molding temperature for determining the fusion rate as high as possible. Considering these advantages and disadvantages, the molding temperature when determining the fusion rate α is preferably set at 65°C or higher and lower than 75°C, and more preferably at 70°C. At this time, in the operation to determine the fusion rate α, it is not necessarily necessary to perform molding at 70°C, but based on the test results of molding at other molding temperatures, the fusion rate when molded at 70°C can be calculated. It may be estimated. As a method for estimating such a fusion rate, the fusion rate when molded at 70°C may be estimated by interpolation or extrapolation from multiple experimental results, or, for example, by using the correlation shown in Figure 2. It can be estimated from In this way, the molding temperature in the molding step in manufacturing the molded article can be determined based on the fusion rate α when molding is performed at 70°C.
そこで、図2に示したそれぞれの原料についての原料温度と融着率の関係に基づいて、ある原料の成型温度70℃における融着率とその原料で融着率が30mass%となる成型時の原料の温度を求めた結果を図3に示す。ここで、成型温度70℃における融着率は、配合炭の融着のしやすさを表している。そして、図3の回帰線は70℃で成型した場合の融着率の原料を乾留した場合の融着率を30%以下にするための下限の温度を示している。従って、この回帰線よりも高い温度で成型を行えば、融着率を30%未満にできる。この結果より、乾留時に成型物同士の融着が問題にならないようにするためには、原料石炭の70℃の融着率に応じて、成型時の原料の温度を何度以上に上げれば融着を抑制できるかが分かる。この結果に基づいて、本発明の好適範囲が規定された。 Therefore, based on the relationship between raw material temperature and fusion rate for each raw material shown in Figure 2, we calculated the fusion rate at a molding temperature of 70°C for a certain raw material and the time when the raw material was molded to have a fusion rate of 30 mass%. Figure 3 shows the results of determining the temperature of the raw material. Here, the fusion rate at a molding temperature of 70°C represents the ease of fusion of the coal blend. The regression line in FIG. 3 indicates the lower limit temperature for reducing the fusion rate to 30% or less when the raw material having the fusion rate when molded at 70° C. is carbonized. Therefore, if molding is performed at a temperature higher than this regression line, the fusion rate can be reduced to less than 30%. From this result, in order to prevent the fusion of molded products from becoming a problem during carbonization, it is necessary to raise the temperature of the raw material during molding to a certain degree depending on the fusion rate of 70°C for raw coal. You can see if you can control the amount of wear. Based on this result, the preferred range of the present invention was defined.
本発明に係る成型物の製造方法は、成型コークスの原料となる成型物だけに限られず、加熱による成型物の融着が問題になる他の成型物にも応用が可能である。 The method for manufacturing a molded product according to the present invention is not limited to molded products that are raw materials for molded coke, but can also be applied to other molded products where fusion of molded products due to heating is a problem.
Claims (3)
下記<融着率(α)の定義>に基づく成型物の融着率(α)が30mass%以上である場合に、前記成型するステップにおいて、原料の温度(Tb(℃))を、前記融着率(α(mass%))に応じて、下記(1)式かつ(2)式を満たすように決定することを特徴とする、成型物の製造方法:
1.25×α+32.5≦Tb≦250・・・(1)
75≦Tb・・・(2)
<融着率(α)の定義>
原料を調製するステップの処理を行った原料を75℃未満の温度で成型した成型物を複数個隣接させた状態で、前記原料の再固化温度以上まで不活性ガスの雰囲気で加熱(乾留)して軟化融着を終了させた後、冷却して乾留生成物を作製し、その乾留生成物の全重量に対する、2個以上の成型物が連結した乾留生成物の重量割合の百分率を融着率(α)とする。 A method for producing a molded article, comprising the steps of preparing a raw material mainly consisting of one or more coals, heating the prepared raw material, and molding the heated raw material,
When the fusion rate (α) of the molded product based on the following <Definition of fusion rate (α)> is 30 mass% or more, in the molding step, the temperature of the raw material (Tb (°C)) is A method for manufacturing a molded article, characterized in that it is determined according to the adhesion rate (α (mass%)) so as to satisfy the following formulas (1) and (2):
1.25×α+32.5≦Tb≦250...(1)
75≦Tb...(2 )
<Definition of fusion rate (α)>
The raw material processed in the raw material preparation step is molded at a temperature of less than 75°C, and a plurality of molded products are placed adjacent to each other and heated (carbonized) in an inert gas atmosphere to a temperature equal to or higher than the resolidification temperature of the raw material. After completing the softening and fusing, the product is cooled to produce a carbonized product, and the percentage of the weight of the carbonized product in which two or more molded products are connected to the total weight of the carbonized product is determined as the fusion rate. Let it be (α).
<融着率(α)の定義>
原料を調製するステップの処理を行った原料を70℃で成型した成型物を複数個隣接させた状態で、前記原料の再固化温度以上まで不活性ガスの雰囲気で加熱(乾留)して軟化融着を終了させた後、冷却して乾留生成物を作製し、その乾留生成物の全重量に対する、2個以上の成型物が連結した乾留生成物の重量割合の百分率を融着率(α)とする。 The method for manufacturing a molded article according to claim 1 , wherein the <definition of fusion rate (α)> is as follows:
<Definition of fusion rate (α)>
The raw material processed in the raw material preparation step is molded at 70°C, and a plurality of molded products are placed adjacent to each other and heated (carbonized) in an inert gas atmosphere to a temperature higher than the re-solidification temperature of the raw material to soften and melt. After finishing the deposition, the product is cooled to produce a carbonized product, and the percentage of the weight of the carbonized product in which two or more molded products are connected to the total weight of the carbonized product is calculated as the fusion rate (α). shall be.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021039342A JP7347462B2 (en) | 2021-03-11 | 2021-03-11 | Method for producing molded products and method for producing molded coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021039342A JP7347462B2 (en) | 2021-03-11 | 2021-03-11 | Method for producing molded products and method for producing molded coke |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022139102A JP2022139102A (en) | 2022-09-26 |
JP7347462B2 true JP7347462B2 (en) | 2023-09-20 |
Family
ID=83399080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021039342A Active JP7347462B2 (en) | 2021-03-11 | 2021-03-11 | Method for producing molded products and method for producing molded coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7347462B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006121213B1 (en) | 2005-05-13 | 2007-02-01 | Nippon Steel Corp | Process for producing blast furnace coke |
JP2008056791A (en) | 2006-08-31 | 2008-03-13 | Jfe Steel Kk | Manufacturing method of molded product of raw material for ferrocoke and ferrocoke |
JP2015063581A (en) | 2013-09-24 | 2015-04-09 | 新日鉄住金エンジニアリング株式会社 | Production method of formed coal, formed coke, and production method of the coke |
JP2018070772A (en) | 2016-10-28 | 2018-05-10 | 株式会社神戸製鋼所 | Method for producing molded coke and apparatus for manufacturing molded coke |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0723474B2 (en) * | 1985-09-13 | 1995-03-15 | 住友金属工業株式会社 | Manufacturing method of forming charcoal for forming coke |
JPH07300589A (en) * | 1994-03-07 | 1995-11-14 | Nkk Corp | Continuous vertical coke oven and production of coke |
-
2021
- 2021-03-11 JP JP2021039342A patent/JP7347462B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006121213B1 (en) | 2005-05-13 | 2007-02-01 | Nippon Steel Corp | Process for producing blast furnace coke |
CN101115819A (en) | 2005-05-13 | 2008-01-30 | 新日本制铁株式会社 | Process for producing blast furnace coke |
JP2008056791A (en) | 2006-08-31 | 2008-03-13 | Jfe Steel Kk | Manufacturing method of molded product of raw material for ferrocoke and ferrocoke |
JP2015063581A (en) | 2013-09-24 | 2015-04-09 | 新日鉄住金エンジニアリング株式会社 | Production method of formed coal, formed coke, and production method of the coke |
JP2018070772A (en) | 2016-10-28 | 2018-05-10 | 株式会社神戸製鋼所 | Method for producing molded coke and apparatus for manufacturing molded coke |
Also Published As
Publication number | Publication date |
---|---|
JP2022139102A (en) | 2022-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4893136B2 (en) | Blast furnace operation method using woody biomass | |
US9845439B2 (en) | Method for blending coals for cokemaking and method for producing coke | |
TWI729473B (en) | Manufacturing method of sinter | |
KR20100077057A (en) | Method of producing ferro-coke | |
JPH0665579A (en) | Method for compounding raw material of coal briquet for producing metallurgical formed coke | |
JP2012017528A (en) | Method for operating blast furnace using woody biomass as raw material, and coke production method | |
JP7347462B2 (en) | Method for producing molded products and method for producing molded coke | |
JP5017969B2 (en) | Ferro-coke raw material molding and method for producing ferro-coke | |
JP5763308B2 (en) | Ferro-coke manufacturing method | |
JP5087868B2 (en) | Ferro-coke manufacturing method | |
JP5365043B2 (en) | Ferro-coke manufacturing method | |
JP4048756B2 (en) | Coke production method with uniform quality | |
JP2005053982A (en) | Method for producing ferrocoke for blast furnace | |
JP7493121B1 (en) | Coke manufacturing method | |
KR102325752B1 (en) | Method of preparing cockes | |
WO2024202185A1 (en) | Coke production method | |
JP5470855B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
CN104419792B (en) | Pulverized coal and powdery silica mixed briquetting and preparation and furnace protection method thereof | |
JP5386988B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP5386835B2 (en) | Ferro-coke manufacturing method | |
JP3279630B2 (en) | Coal carbonization method | |
JP2007119601A (en) | Method for producing ferrocoke | |
KR101538845B1 (en) | Method for prodution for part reduced iron with caronaceous material incorporated | |
KR101910405B1 (en) | Ferrocoke manufacturing method | |
JPH06322375A (en) | Production of formed coke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221028 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230706 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7347462 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |