WO2010131556A1 - 圧電アクチュエータ - Google Patents

圧電アクチュエータ Download PDF

Info

Publication number
WO2010131556A1
WO2010131556A1 PCT/JP2010/057090 JP2010057090W WO2010131556A1 WO 2010131556 A1 WO2010131556 A1 WO 2010131556A1 JP 2010057090 W JP2010057090 W JP 2010057090W WO 2010131556 A1 WO2010131556 A1 WO 2010131556A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric actuator
beams
pair
actuator according
central
Prior art date
Application number
PCT/JP2010/057090
Other languages
English (en)
French (fr)
Inventor
司 山田
正人 江原
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Publication of WO2010131556A1 publication Critical patent/WO2010131556A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0858Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by piezoelectric means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2044Cantilevers, i.e. having one fixed end having multiple segments mechanically connected in series, e.g. zig-zag type

Definitions

  • the present invention relates to a piezoelectric actuator, and more particularly, to a piezoelectric actuator that tilts and drives a driven object.
  • a mirror part that reflects incident light a pair of second piezoelectric actuators that drive the mirror part via a torsion bar, a movable frame that supports the second piezoelectric actuator, and a movable frame that is driven
  • An optical polarizer including a pair of piezoelectric actuators and a pedestal that supports the piezoelectric actuators is known (for example, see Patent Document 1).
  • the second piezoelectric actuator is disposed so as to face each other with the mirror portion and a pair of torsion bars extending outward from both ends of the mirror portion.
  • One end of the actuator is connected to a pair of torsion bars, and the other end is connected to and supported by the inside of the movable frame.
  • a pair of piezoelectric actuators are arranged to face each other with a mirror part and a movable frame in a different direction from a pair of torsion bars, one end of each piezoelectric actuator is connected to the outside of the movable frame, and the other end is supported by a pedestal It has the composition which is done.
  • the piezoelectric actuator includes a support body and a piezoelectric body formed on the support body, and includes a plurality of piezoelectric cantilevers that bend and deform by piezoelectric driving, and a drive voltage is applied to each piezoelectric body of the plurality of piezoelectric cantilevers.
  • a plurality of electrodes for application are provided independently, and the ends of the plurality of piezoelectric cantilevers are connected so as to accumulate each bending deformation, and each piezoelectric cantilever is independently bent and deformed by applying a driving voltage, and rotated. It is configured to be possible.
  • the second piezoelectric actuator also includes one piezoelectric cantilever that bends and deforms by piezoelectric driving, and is configured to be rotatable.
  • the mirror unit is driven around a first axis by a pair of second piezoelectric actuators, and is driven by a pair of piezoelectric actuators around a second axis that is different from around the first axis via a movable frame. It is the composition which becomes.
  • the piezoelectric actuator since the piezoelectric actuator is connected to the outside of the second piezoelectric actuator through a movable frame, the mirror around the second axis driven by the piezoelectric actuator.
  • the tilt sensitivity may be low.
  • the reflection angle of laser light is 20 deg.
  • the mirror tilt angle is 10 deg. It is.
  • the optical polarizer described in Patent Document 1 may not be able to meet the requirements for large screen and high speed drawing.
  • an object of the present invention is to provide a piezoelectric actuator that can realize a highly sensitive tilt drive with a small size and low power consumption.
  • a piezoelectric actuator extends in a first direction and is connected to a driving object to support the driving object from both sides in the first direction.
  • a center beam and a plurality of beams extending in parallel in a second direction orthogonal to the first direction are configured to include a zigzag beam group in which adjacent end portions are alternately connected at both ends.
  • each beam includes a piezoelectric element, and a pair of meandering beams capable of accumulating an inclination angle in the second direction by expansion and contraction of the piezoelectric element, the driving object, the central beam, and the meandering
  • a piezoelectric actuator having a fixed frame surrounding the mold beam, wherein the pair of meandering beams has one end connected to the fixed frame and the other end remote from the connection position with the fixed frame. Connected to the end of the driving object and the front Characterized in that it is arranged symmetrically so as to surround the center beam from both sides.
  • the piezoelectric actuator of the present invention it is possible to reduce the size of the piezoelectric actuator and improve the tilt sensitivity.
  • FIG. 1 is a diagram illustrating a cross-sectional structure of a piezoelectric actuator according to Example 1.
  • FIG. It is a figure for demonstrating the drive method of the beam structure using the piezoelectric actuator which concerns on Example 1.
  • FIG. It is a figure for demonstrating the drive method of the beam structure using the piezoelectric actuator which concerns on Example 1.
  • FIG. It is a figure for demonstrating the drive method of the beam structure using the piezoelectric actuator which concerns on Example 1.
  • FIG. It is a figure for demonstrating the drive method of the beam structure using the piezoelectric actuator which concerns on Example 1.
  • FIG. FIG. 3 is a diagram illustrating a driving state of the piezoelectric actuator according to the first embodiment.
  • 1 is a diagram illustrating a configuration of a surface of a piezoelectric actuator according to Example 1.
  • FIG. 3 is a diagram illustrating a configuration of a back surface of the piezoelectric actuator according to the first embodiment.
  • FIG. 3 is a plan view illustrating a configuration of a surface of the piezoelectric actuator according to the first embodiment.
  • FIG. 3 is a perspective view illustrating a state in which the driving object is tilted toward the front side in the piezoelectric actuator according to the first embodiment. It is a figure for demonstrating the inclination angle of the 1st direction which may arise in the piezoelectric actuator of the state of FIG. It is a figure which shows the structure of the piezoelectric actuator at the time of seeing from the direction of the arrow B shown to FIG. 6A.
  • FIG. 6 is a top view illustrating a configuration of a piezoelectric actuator according to a modification of Example 1.
  • FIG. It is a figure which shows the structure of the piezoelectric actuator of the modification of Example 1 at the time of seeing from the direction of the arrow B shown to FIG. 6A.
  • 6 is a perspective view illustrating a configuration of a back surface of a piezoelectric actuator according to Embodiment 2.
  • FIG. 6 is a top view illustrating a configuration of a surface of a piezoelectric actuator according to Example 2.
  • FIG. 6 is a diagram illustrating a driving state of a piezoelectric actuator according to a second embodiment.
  • FIG. 6 is a diagram illustrating a driving state of a piezoelectric actuator according to a second embodiment.
  • FIG. It is a perspective view at the time of driving only the outer beam group of the piezoelectric actuator of Example 2. It is a perspective view at the time of driving only the inner beam group of the piezoelectric actuator of Example 2. It is a figure which shows the mirror inclination angle sensitivity of the piezoelectric actuator of Example 2.
  • FIG. 6 is a top view illustrating a configuration of a surface of a piezoelectric actuator according to Example 2.
  • FIG. 6 is a diagram illustrating a driving state of a piezoelectric actuator according to a second embodiment.
  • FIG. 6 is a diagram illustrating a driving state of a piezoelectric actuator
  • FIG. 18A is a diagram showing unnecessary tilt angles in the outer beam group, inner beam group, and the entire meandering beam in the pattern of each arrangement configuration shown in FIGS. 17A to 17D. It is a figure which shows the structural example at the time of comprising the piezoelectric actuator which concerns on Example 2 for 2 axis drive. It is a figure which shows the structural example at the time of comprising the piezoelectric actuator which concerns on Example 2 for 2 axis drive.
  • the piezoelectric actuator according to the first embodiment includes a semiconductor wafer 10 and a piezoelectric element 20.
  • the semiconductor wafer 10 various semiconductor wafers 10 may be used.
  • an SIO (Silicon on Insulator) substrate may be used.
  • a semiconductor wafer 10 is shown.
  • SiO 2 12, Si active layer 13, and SiO 2 14 are laminated, and the Si active layer 14 is SiO 2 12, 14.
  • An SOI substrate sandwiched between two is shown.
  • the SiO 2 12 and 14 may have a thickness of about 0.5 ⁇ m, and the Si active layer 13 may have a thickness of about 30 ⁇ m. That is, in this case, the SiO 2 12, the Si active layer 14, and the SiO 2 14 are only 31 ⁇ m in total, and the thickness is 1/10 or less of the Si wafer 10.
  • the SiO 2 12, the Si active layer 14, and the SiO 2 14 constitute a beam structure 15 as a whole.
  • the total thickness of the semiconductor wafer 10 can be various thicknesses depending on the application, and may be, for example, about 300 to 500 ⁇ m.
  • the piezoelectric element 20 is a passive element using a piezoelectric effect that converts an applied voltage into force.
  • the piezoelectric element 20 may be mounted and provided on the surface of the beam structure 15 of the semiconductor wafer 10.
  • the piezoelectric element 20 includes a piezoelectric body 21, an upper electrode 22, and a lower electrode 23.
  • the piezoelectric body 21 expands and contracts to deform the beam structure 15.
  • Various piezoelectric bodies 21 may be applied to the piezoelectric element 20.
  • a PZT thin film lead zirconate titanate
  • the piezoelectric element 20 may be formed with a thickness of about 2 ⁇ m, for example.
  • Such processing may be performed by MEMS (Micro Electro Mechanical Systems) technology, and a fine piezoelectric actuator can be manufactured.
  • MEMS Micro Electro Mechanical Systems
  • FIGS. 2A to 2C are diagrams for explaining a driving method of the beam structure 15 according to the first embodiment.
  • FIG. 2A is a side view schematically showing a beam structure 15 made of silicon and a portion of the piezoelectric element 20. As shown in FIG. 2A, a piezoelectric element 20 is covered in a thin film on a beam structure 15 made of silicon.
  • FIG. 2B is a diagram showing a state in which the piezoelectric element 20 is contracted and deformed. As shown in FIG. 2B, when the piezoelectric element 20 contracts, the beam structure 15 has a shape that warps upward and convex downward.
  • FIG. 2C is a diagram illustrating a state in which the piezoelectric element 20 is expanded and deformed. As shown in FIG. 2C, when the piezoelectric element 20 extends, the beam structure 15 has a shape that warps upward and downward.
  • the piezoelectric element 20 warps upward or follows downward depending on the polarity or phase of the applied voltage.
  • the driving target is driven using the piezoelectric element 20 as a driving source by utilizing such a property of the piezoelectric element 20.
  • FIG. 3 is a diagram illustrating a driving state of the beam structure 15 by the piezoelectric actuator according to the first embodiment.
  • a plurality of beam structures 15 are arranged substantially in parallel, a pair of adjacent end portions are connected by a connecting portion 16, and a zigzag serpentine beam structure 15 is formed as a whole.
  • a thin film of the piezoelectric element 20 is formed on the linear portion of the beam structure 15.
  • the meandering beam structure 15 having such a configuration, when the polarity or phase of the voltage applied to the adjacent beam structures 15 is alternately changed, as shown in FIG. Deformation accumulates and produces a large tilt displacement as a whole.
  • the beam structure 15 is formed in a zigzag shape, and a voltage is applied so that the polarities of the beam structures 15 adjacent to the piezoelectric element 20 that is a driving source are reversed, thereby changing the angle of each beam structure 15. Accumulation can be performed every time, and a large tilt drive can be performed as a whole. In the piezoelectric actuator according to the present embodiment, tilt driving by accumulation of such angular displacement is used.
  • FIGS. 4A to 4C are diagrams illustrating an overall configuration of the piezoelectric actuator according to the first embodiment.
  • 4A is a perspective view illustrating the configuration of the front surface of the piezoelectric actuator according to the first embodiment
  • FIG. 4B is a perspective view illustrating the configuration of the back surface of the piezoelectric actuator according to the first embodiment.
  • the piezoelectric actuator according to the first embodiment has a configuration in which the driven object 30 is disposed at the center and the beam structure 15 and the piezoelectric element 20 are disposed on the surface side.
  • the thick part of the silicon substrate 11 forms a frame outside the piezoelectric actuator.
  • the piezoelectric element 20 is not provided on the back surface
  • the outer frame is a semiconductor including the thick region of the silicon substrate 11, and the wide central region includes the beam structure 15. It is formed in a thin area of the wafer 10.
  • the piezoelectric actuator according to Example 1 has a three-dimensional shape with a flat surface on the front surface and a step on the back surface.
  • FIG. 4C is a plan view of the surface of the piezoelectric actuator according to the first embodiment.
  • the piezoelectric actuator according to the present embodiment includes a driving object 30, a center beam 40, a meandering beam 50, connecting portions 60, 70, and 80, and a fixed frame 120.
  • the meandering beam 50 includes a plurality of beams 57 extending substantially in parallel.
  • the driving object 30 is an object for driving the piezoelectric actuator according to the present embodiment, and various driving objects 30 can be applied.
  • the piezoelectric actuator according to the present embodiment an example in which the driven object 30 is a mirror will be described.
  • a piezoelectric actuator having a mirror as a driving object 30 can be used for a micro projector, a micro scanner, or the like.
  • the driving object 30 includes a mirror 31 and a movable frame 32.
  • the mirror 31 is a drive target itself, and the mirror 31 is irradiated with laser light, and the mirror 31 scans the reflected light in the horizontal direction at a high speed and scans the entire screen in the vertical direction at a low speed. It is possible to scan.
  • the piezoelectric actuator according to this embodiment the low-speed scanning drive of the reflected light in the vertical direction is performed with low power consumption that is compact.
  • the movable frame 32 is a deformable support frame that supports the mirror 31.
  • the piezoelectric actuator according to the present embodiment can be driven by directly supporting the mirror 31, but in the example of FIGS. 4A to 4C, the mirror 31 is driven via the movable frame 32. . However, since the piezoelectric actuator according to the present embodiment tilts the driving object 30 including the movable frame 32, it may be considered as the driving object 30 without distinguishing the mirror 31 and the movable frame 32.
  • the support base for installing the movable frame 32 and the mirror 31 of the driven object 30 is made of SiO 2 12 and 14 on the surface of the semiconductor wafer 10 as in the beam structure 15. It may be composed of a thin portion where the sandwiched Si active layer 13 exists.
  • the central beam 40 is means for supporting the driving object 30 in pairs in the first direction from both sides, and is connected to the driving object 30.
  • the first direction is the horizontal direction (X direction) in FIG. 4C.
  • the pair of central beams 40 extend in a straight line in the first direction and are symmetrically arranged with respect to the drive target 30.
  • the central beam 40 may be constituted by a portion of the beam structure 15 in the thinned surface region of the semiconductor wafer 10 described in FIG. Thereby, the center beam 40 can have elasticity.
  • the central beam 40 plays a role of supporting the driving object 30 and transmitting the driving force of the tilting motion from the meandering beam 50 to the driving symmetry object 30. Since the driving force generated from the meandering beam 50 is a force that tilts the driving object 30 in the vertical direction (Y direction) in FIG. 4C, the central beam 30 applies the tilting power in the vertical direction to the driving object 30. And the drive object 30 is tilted.
  • the center beam 40 is connected to the meandering beam 50 by a connecting portion 60. Thereby, the tilting driving force in the vertical direction (second direction) generated by the meandering beam 50 can be transmitted to the driving object 30.
  • the connection portion 60 is also provided with a pair of a right connection portion 61 and a left connection portion 62 corresponding to the center beams 40 being provided in pairs.
  • the connecting portion 60 between the central beam 40 and the meandering beam 50 may be provided point-symmetrically in pairs on the outermost side of the central beam 40. With such an arrangement, the accumulation angle of the meandering beam 50 of the meandering beam 50 can be maximized within a limited space. Details of this point will be described later. Further, the central beam 40 may extend in the first direction up to the vicinity of the fixed frame 120, and approaches the fixed frame 12 to a position where there is only a smaller interval than the width of the beam 57 extending in the second direction. May extend.
  • the meandering beam 50 is a driving means for generating a tilting driving force that tilts the driving object 30 in the second direction (vertical direction in FIG. 4C).
  • the meandering beam 50 has a plurality of beams 57 extending in the second direction in parallel, and a pair of adjacent ends of each beam 57 are alternately connected by connecting portions 70 at both ends. As a whole, it has a zigzag shape.
  • the piezoelectric element 20 described with reference to FIG. 1 is mounted on the surface of the meandering beam 50, and each beam 57 includes a drive source.
  • the connecting portion 70 is not provided with the piezoelectric element 20, and the semiconductor wafer 10 having the beam structure 15 is exposed.
  • the piezoelectric element 20 that is the drive source of the meandering beam 50 is provided such that the voltage application polarities are opposite between the adjacent beams 57.
  • the meandering beam 50 as a whole can perform the driving operation capable of storing the tilt angle as described in FIGS. 2A to 2C and FIG.
  • the meandering beam 50 has a pair of beam groups 51 and 52 of a first beam group 51 and a second beam group 52.
  • the tilting power can be individually applied from the first beam group 51 and the second beam group 52 to the pair of central beams 40 provided on both sides of the drive target 30.
  • the first beam group 51 and the second beam group 52 have a symmetrical structure with respect to the center beam 40 and the driven object 30 in order to give the central beam 40 tilting power of the same size.
  • the beam 57 coupled to the coupling portion 61 between the central beam 40 and the first beam group 51 performs an upward driving operation, and the coupling portion between the central beam 40 and the second beam group 52.
  • the beam 57 connected to 62 performs a driving operation that warps downward, the center beam 40 tilts toward the front side, and the driving object 30 performs a tilting operation toward the front side.
  • the beam 57 connected to the connecting portion 61 between the central beam 40 and the first beam group 51 performs a downward driving operation and is connected to the connecting portion 62 between the central beam 40 and the second beam group 52.
  • the central beam 40 is tilted to the back side, and the drive target 30 is tilted to the back side.
  • the pair of beams 57 of the meandering beam 50 connected to the central beam 40 is operated in the opposite direction, the drive symmetry object 30 is tilted in a desired direction in the second direction. be able to.
  • connection part 80 is also provided with a connection part 81 corresponding to the first beam group 51 and a connection part 82 corresponding to the second beam group 52 in a pair.
  • the connecting portion 80 between the fixed frame 120 and the meandering beam 50 is provided such that the distance between the central beam 40 and the connecting portion 60 between the meandering beam 50 is increased. That is, the connecting portion 61 between the first beam group 51 and the central beam 40 is disposed at the right end of the first beam group 51, whereas the connecting portion 81 between the first beam group 51 and the fixed frame 120 is The first beam group 51 is disposed at the left end. Similarly, the connecting portion 62 between the second beam group 52 and the central beam 40 is disposed at the left end of the second beam group 52, whereas the connecting portion 82 between the second beam group 52 and the fixed frame 120. Is arranged at the right end of the second beam group 52.
  • connection point 60 between the meandering beam 50 and the central beam 40 so as to be away from the connection point 80 between the meandering beam 50 and the fixed frame 80, the fixed frame It is possible to increase the number of each beam 57 of the meandering beam 50 that can be disposed between 80 and the central beam 40, and to increase the space efficiency.
  • the expansion / contraction amount of the piezoelectric element 20 as a driving source is determined by the applied voltage, how much the plurality of beams 57 including the piezoelectric elements 20 are increased in order to drive the driving target 30 more greatly. It is important to arrange them longer or longer.
  • a pair of meandering types provided with tilt drive sources on both sides of the tilt direction (vertical direction) of the central beam 40 extending perpendicular to the tilt direction of the driven object 30. Space is saved by arranging the beams 50 and disposing the connecting portions 80 between the meandering beams 50 and the fixed frame 120 so as to be far from the connecting portions 60 between the meandering beams 50 and the central beam 40.
  • tilt drive with high tilt sensitivity can be realized.
  • the center beam 40 is made long and the center beam 40 extends to the vicinity of the fixed frame 120. It is preferable to have a configuration provided.
  • FIG. 5 is a perspective view showing a state in which the driving object 30 is tilted to the near side.
  • an inclination angle corresponding to the length and number of the beams 57 is generated.
  • the driven object 30 is tilted about the extending direction (first direction) of the central beam 40 as an axis.
  • a tilting operation is performed in which the first beam group 51 rises and the second beam group 52 descends, and the drive object 30 is tilted forward. As shown in FIG.
  • the inclination angle is accumulated as the number of the beams 57 is longer and the number of the beams 57 is larger.
  • the piezoelectric actuator according to the present embodiment arranged so as to cover the second beam group 52 has a small inclination and high tilt angle sensitivity.
  • FIGS. 6A and 6B are diagrams for explaining the tilt angle in the first direction that may occur in the piezoelectric actuator according to the first embodiment.
  • 6A is a top view of the piezoelectric actuator according to the first embodiment in the state of FIG. 5
  • FIG. 6B is a diagram illustrating the configuration of the piezoelectric actuator according to the first embodiment when viewed from the direction of arrow B in FIG. 6A. It is.
  • the first beam group 51 rises, the second beam group 52 descends, and the driving object 30 is in the extending direction of the central beam 40. It is in a state of tilting toward the near side in the second direction with the first direction as an axis. However, the tilt change is not expressed in FIG. 6A which is a top view.
  • FIG. 6B shows a state in which the piezoelectric actuator is viewed from the direction of arrow B shown in FIG. 6A, but not only tilting in the second direction with the original first direction as an axis but also the second direction. It shows that tilting occurs in the first direction about the axis. That is, in FIG. 6B, not only the front side is lowered and tilted, but also the right end is lowered and tilted, and the first direction different from the original purpose is also tilted. Such tilting is tilting that occurs in an unnecessary direction different from the original driving purpose.
  • the tilt angle caused by unnecessary tilt is referred to as an unnecessary tilt angle.
  • the piezoelectric actuator according to the first embodiment may be accompanied by such a slight unnecessary tilt angle.
  • a method for correcting such an unnecessary tilt angle will be described below.
  • FIG. 7A and 7B are diagrams illustrating the configuration of a piezoelectric actuator according to a modification of the first embodiment.
  • 7A is a top view of a piezoelectric actuator according to a modification of the first embodiment
  • FIG. 7B is a configuration of the piezoelectric actuator according to the modification of the first embodiment when viewed from the direction of the arrow B illustrated in FIG. 6A.
  • FIG. 7A is a top view of a piezoelectric actuator according to a modification of the first embodiment
  • FIG. 7B is a configuration of the piezoelectric actuator according to the modification of the first embodiment when viewed from the direction of the arrow B illustrated in FIG. 6A.
  • the piezoelectric actuator according to the modification of the first embodiment has an unnecessary inclination correction pattern 59 in which the piezoelectric element 20 of the beam 57 connected to the connecting portion 60 of the central beam 40 and the meandering beam 50 is extended. ing. Thereby, the non-resonant driving force by the piezoelectric element 20 is also applied to the end portion of the central beam 40, and the unnecessary tilt angle is canceled. That is, in FIG. 6B, an unnecessary tilt angle in which the right end descends and the left end rises has occurred.
  • the unnecessary tilt correction pattern 59 applies a driving force in the ascending direction to the right end of the central beam 40 and causes the left end in the descending direction. Since the driving force is applied, the unnecessary inclination shown in FIG. 6B can be corrected and the unnecessary inclination can be canceled.
  • FIG. 8 is a diagram illustrating an example in which the piezoelectric actuator according to the first embodiment is applied to a biaxially driven piezoelectric actuator.
  • the piezoelectric actuator according to the first embodiment can be easily applied to the biaxially driven piezoelectric actuator.
  • FIG. 8 shows an example in which a pair of piezoelectric elements 20 are mounted on a pair of central beams 40.
  • the driving object 30 can be driven at a high speed of 30 kHz, for example, even if the driving source is only a pair of piezoelectric elements 20 by resonance driving the central beam 40.
  • the piezoelectric actuator is applied to a micro projector and the driven object 30 is a mirror, the mirror is scanned at high speed by the center beam 40 by resonance driving in the horizontal direction, and non-moving in the vertical direction.
  • the meandering beam 50 By scanning at low speed with the meandering beam 50 by resonance driving, a small and highly efficient two-axis driving piezoelectric actuator can be realized.
  • a small and space-efficient piezoelectric actuator can be realized by one-axis driving or two-axis driving, and the generated unnecessary tilt angle is corrected as necessary.
  • highly accurate tilt drive can be performed.
  • FIGS. 9A to 9C are diagrams showing the overall configuration of the piezoelectric actuator according to the second embodiment of the present invention.
  • FIG. 9A is a perspective view of the front surface of the piezoelectric actuator according to the second embodiment
  • FIG. 9B is a perspective view of the back surface of the piezoelectric actuator according to the second embodiment.
  • the same referential mark is attached
  • the cross-sectional configuration and the driving principle using the piezoelectric element 20 described with reference to FIGS. 1 to 3 are also applied to the second embodiment.
  • the piezoelectric actuator according to the second embodiment is similar to the piezoelectric actuator according to the first embodiment in that the driving target 30 is provided in the center and the piezoelectric element 20 is spread around the driving target 30. It is.
  • the driving object 30 and the piezoelectric element 20 use the region of the beam structure 15 described in FIG. 1, and the outer fixing frame uses the thick region of the silicon substrate 11 described in FIG. 9A, the length of the center beam 40a is different from that of the piezoelectric actuator according to the first embodiment. Details of this point will be described later.
  • FIG. 9C is a top view illustrating the configuration of the surface of the piezoelectric actuator according to the second embodiment.
  • the piezoelectric actuator according to the second embodiment includes a driving object 30, a central beam 40a, a meandering beam 50a, connecting portions 60a, 70a, 80a, 90, 110, a horizontal beam 100, and a fixed frame 120.
  • the components of the piezoelectric actuator according to the second embodiment are different from the piezoelectric actuator according to the first embodiment in that connecting portions 90 and 110 and a cross beam 100 are added.
  • various driving objects 30 such as mirrors may be applied as in the first embodiment.
  • the mirror 31 is the driving object 30
  • the movable frame 32 may be provided, which is the same as in the first embodiment. The description is omitted.
  • the central beam 40a is a means for transmitting the driving force for tilting the driving target object 30 while supporting the driving target object 30 from both sides, and this point is the same as the central beam 40 according to the first embodiment. Since there is, explanation is omitted.
  • the central beam 40a according to the second embodiment is shorter than the central beam 40 according to the first embodiment, does not extend to the vicinity of the fixed frame 120, and is approximately 1/3 the length of the central beam 40 according to the first embodiment. This is different from the first embodiment.
  • Serpentine beam 50a includes a pair of first beam group 51a and second beam group 52a.
  • the first beam group 51a surrounds the driving object 30 from the right side and the upper side (back side)
  • the second beam group 52a surrounds the driving object 30 from the left side and the lower side (front side).
  • the first beam group 51 a includes an inner beam group 53 and an outer beam group 55
  • the second beam group 52 a includes an inner beam group 54 and an outer beam group 56.
  • the pair of meandering beams 50a surrounds the central beam 40a and the drive target 30 from both sides, but is similar to the meandering beam 50 of the first embodiment.
  • the first beam group 51a and the second beam group 52a are different from the meandering beam 50 of the first embodiment in that they include inner beam groups 53 and 54 and outer beam groups 55 and 56 having different shapes.
  • the inner beam groups 53 and 54 are formed by dividing a plurality of parallel beams 57a extending in the second direction (longitudinal direction) with a short length, which are arranged so as to be divided into the driven object 30 and the central beam 40a. Contains.
  • the outer beam groups 55 and 56 include a plurality of parallel beams 58 extending long without being divided in the second direction. Further, the inner beam group 53 and the outer beam group 55 of the first beam group 51a are connected by a connecting portion 91, and the outer beam group 55 and the fixed frame 120 are connected by a connecting portion 81a. Similarly, the inner beam group 54 and the outer beam group 56 of the second beam group 52a are connected by a connecting portion 92, and the outer beam group 56 and the fixed frame 120 are connected by a connecting portion 82a.
  • the connecting portions 91 and 92 are provided not at the ends of the beams 58 inside the outer beam groups 55 and 56 but at the intermediate points, and are connected to the ends of the beams 57a outside the inner beam groups 53 and 54. Yes.
  • the inner ends of the outer frame group 55 and the outer frame group 56 are connected to each other by a pair of transverse beams 100.
  • the pair of horizontal beams 100 each extend in parallel in the first direction, and the outer beam groups 55 and the outer beam ends of the outer beam group 56, the outer beam groups 55 and the outer beam group 56, the front side of the outer beam group 56.
  • the ends are connected to each other at the connecting part 110.
  • the center beam 40 according to the first embodiment extends to the vicinity of the fixed frame 120, the entire width of the meandering beam 50 can be increased.
  • the connecting portion 61 that is the output end of the first beam group 51 and the connecting portion 62 that is the output end of the second beam group 52 are connected via the central beam 40. Therefore, the central beam 40 acts to balance the outputs of the two, and the driving force generated by the first beam group 51 and the second beam group 52 is not utilized to the maximum extent. . That is, for example, when considering the case where the first beam group 51 is tilted upward and the second beam group 52 is tilted downward, the increase in the first beam group 51 is accumulated and the beam 57 is most likely to rise.
  • connection point 61 Is a connection point 61.
  • the descending of the second beam group 52 is accumulated, and the beam 57 descends most at the connection point 62 in nature.
  • the connecting point 61 and the connecting point 62 act so as to suppress mutual displacement, and the tilt displacement obtained by the original first beam group 51 and the second beam group can be obtained. It will be smaller than the tilt displacement obtained in. That is, the configurations of the center beam 40 and the meandering beam 50 according to the first embodiment are very excellent in terms of space saving, but leave room for improvement in terms of obtaining a larger tilt angle sensitivity.
  • the center beam 40a is made shorter than the center beam 40 according to the first embodiment, and is longer on both sides in the first direction of the center beam 40a.
  • An extending beam 58 is arranged to further improve the tilt sensitivity. That is, the central region where the central beam 40a and the driving target 30 are present is the same as the piezoelectric actuator according to the first embodiment, with the central beam 40a and the driving target 30 from both sides in the second direction (longitudinal direction).
  • the pair of inner beam groups 53 and 54 is configured to surround the pair.
  • the pair of outer beam groups 55 and 56 surround the central beam 40a and the driving target 30 from both sides in the first direction (lateral direction).
  • the lengths of the beams 58 of the outer beam groups 55 and 56 are not limited by the center beam 40a and the driven object 30, and therefore the lengths of the rectangular openings of the fixed frame 120 are used in the vertical direction.
  • the inner beam groups 53 and 54 are longer than the beam 57a and are twice as long.
  • the outer beam groups 55 and 56 are more inclined than the inner beam groups 53 and 54. Can be improved. That is, the outer beam groups 55 and 56 accumulate the inclination angle in each beam 58 from the connecting portions 81a and 82a connected to the fixed frame 120 toward the center where the driving target 30 exists. be able to.
  • the final output ends of the outer beam groups 55 and 56 are connection points 91 and 92 between the outer beam groups 55 and 56 and the inner beam groups 53 and 54, and are not particularly restricted from the central beam 40a. It has become.
  • the inner beam groups 53 and 54 receive the suppression from the center beam 40a as described above, and therefore the inclination sensitivity of the beam 57a per unit length is lower than that of the outer beam groups 55 and 56, but the center beam 40a.
  • the inner beam groups 53 and 54 can be spread on both sides in the vertical direction of the driving object 30, the tilt sensitivity generated by the outer beam groups 55 and 56 can be further increased. That is, in the piezoelectric actuator according to the second embodiment, the inclination sensitivity to the applied voltage is further improved by making the meandering beam 50a have a double structure of the inner beam groups 53 and 54 and the outer beam groups 55 and 56. Can do.
  • outer beam groups 55 and 56 can be further provided outside the inner beam groups 53 and 54.
  • FIG. 10A and FIG. 10B are diagrams illustrating a state in which the piezoelectric actuator according to the second embodiment is driven.
  • FIG. 10A is a perspective view illustrating a state in which the piezoelectric actuator according to the second embodiment is driven
  • FIG. 10B is a top view illustrating a state in which the piezoelectric actuator according to the second embodiment is driven.
  • FIG. 10A shows a state in which the outer beam groups 55 and 56 of the first beam group 51a and the second beam group 52a cooperate with the inner beam groups 53 and 54 and the drive target 30 is tilted to the front side.
  • the tilt displacement of the outer beam groups 55 and 56 is larger than the tilt displacement of the inner beam groups 53 and 54, and it is shown that the tilt angle sensitivity can be improved by providing the outer beam groups 55 and 56.
  • FIG. 10B shows a top view in the driving state of FIG. 10A.
  • the change in shape due to the tilt cannot be recognized, but in FIG. 10B, the degree of transition is shown by the difference in the pattern, and the boundary line of the pattern can be considered in the same way as the contour line of the map.
  • the contour line that is the boundary line of the pattern indicating the degree of displacement becomes more horizontal than the contour line shown in FIG. It is shown that there is little tilt drive.
  • FIG. 11 is a perspective view when only the outer beam groups 55 and 56 of the piezoelectric actuator according to the second embodiment are driven and the inner beam groups 53 and 54 are not driven.
  • the contour lines indicating the tilt are horizontal, and it is understood that there is almost no unnecessary tilt angle.
  • FIG. 12 is a perspective view when only the inner beam groups 53 and 54 of the piezoelectric actuator according to the second embodiment are driven and the outer beam groups 55 and 56 are not driven.
  • the contour lines indicating the inclination are biased and an unnecessary tilt angle is likely to be generated, but the tilt toward the front side is performed, and the inner beam group 53 , 54 also contributes to the tilting drive of the driven object 30.
  • FIG. 13 is a diagram showing the mirror tilt sensitivity at a unit voltage according to the driving state of the piezoelectric actuator according to the second embodiment shown in FIGS. 10A to 12.
  • FIG. 13 when all the beams 57a and 58 of the inner beam groups 53 and 54 and the outer beam groups 55 and 56 are driven as shown in FIG. 10A, an inclination sensitivity of 0.8 deg / V is obtained. .
  • a tilt sensitivity of 0.63 deg / V is obtained, and only the inner beam groups 53 and 54 as shown in FIG. 12 are driven. In this case, a tilt angle sensitivity of 0.17 deg / V was obtained.
  • the outer beam drive contributes more than three times to the tilt angle sensitivity than the inner beam drive, and the tilt beam sensitivity can be greatly improved by providing the outer beam groups 55 and 56.
  • the inner beam drive is smaller in size than the outer beam drive, it contributes to the improvement of the tilt angle sensitivity.
  • the inner beam groups 53 and 54 are provided. It is shown to be effective in improving
  • the piezoelectric actuator according to the present embodiment increases the tilt sensitivity by arranging the inner beam groups 53 and 54 not only on both sides of the driven object 30 in the tilt axis direction but also on both sides in the direction perpendicular to the tilt axis. Therefore, it can be said that the configuration can achieve high-efficiency tilt sensitivity in a space-saving manner.
  • a cross beam 100 is provided that connects both ends on the inner side in the first direction of the outer beam groups 55 and 56.
  • the cross beam 100 is effective in suppressing an unnecessary tilt angle during driving.
  • the outer end portions of the inner beam groups 53 and 54 are connected to the outer beam groups 55 and 56 in a movable state, not the fixed frame 120, unlike the piezoelectric actuator according to the first embodiment.
  • the points 91 and 92 are connected.
  • the inner beam groups 53 and 54 are connected not to the fixed frame 120 but to the movable outer beam groups 55 and 56, so that an unnecessary inclination angle is likely to occur. It is in.
  • both ends of the beams 58 inside the outer beam groups 55 and 56 in the movable state are connected so that the reference points of the inner beam groups 53 and 54 are close to the fixed state, and an unnecessary inclination angle is obtained. Can be reduced.
  • FIG. 14A and FIG. 14B are diagrams showing a piezoelectric actuator when the transverse beam 100 is not provided as a reference comparative example.
  • FIG. 14A is a top view illustrating the configuration of the piezoelectric actuator in a state where the cross beam 100 is removed from the piezoelectric actuator according to the second embodiment. Since the cross beam 100 is removed, one end of the outer beam groups 55 and 56 is connected to the fixed frame 120 and the connecting portions 81a and 82a, and the other end is connected only to the connecting portions 91 and 92 of the inner beam groups 53 and 54. It becomes a state.
  • FIG. 14B is a perspective view showing a case where a piezoelectric actuator without the cross beam 100 is driven. Comparing FIG. 14B with FIG. 10A, which is a perspective view at the time of driving the piezoelectric actuator according to the second embodiment having the cross beam 100, the deviation of the contour line indicating the inclination angle is increased, and the state where the unnecessary inclination angle is increased is shown. Yes.
  • FIG. 15 is a diagram showing the mirror tilt sensitivity and unnecessary tilt angle of the piezoelectric actuator according to the second embodiment having the cross beam 100 and the piezoelectric actuator of the comparative example not having the cross beam 100.
  • the mirror tilt sensitivity is 1.12 deg / V when the cross beam 100 is not provided, compared to 0.80 deg / V with the cross beam 100.
  • large mirror tilt sensitivity is 1.12 deg / V when the cross beam 100 is not provided, compared to 0.80 deg / V with the cross beam 100.
  • FIG. 16A and FIG. 16B are diagrams comparing the state of the piezoelectric actuator according to the second embodiment having the cross beam 100 and the piezoelectric actuator according to the comparative example not having the cross beam 100.
  • FIG. 16A is a side view of a piezoelectric actuator provided with the cross beam 100 according to the present embodiment
  • FIG. 16B is a side view of a piezoelectric actuator according to a comparative example that does not have the cross beam 100.
  • FIG. 16A shows the state of FIG. 10B, and no unnecessary tilt angle is generated.
  • FIG. 16B shows the state of FIG. 14B, and an unnecessary tilt angle in which the right end descends occurs.
  • FIGS. 17A to 17D are diagrams showing an arrangement relationship between the connecting portions 90 of the inner beam groups 53 and 54 and the outer beam groups 55 and 56, and the connecting portions 80a of the outer beam groups 55 and 56 and the fixed frame 120.
  • FIG. An unnecessary inclination angle can be reduced by appropriately setting one of the patterns of the arrangement configurations shown in FIGS. 17A to 17D. This will be described with reference to FIGS. 17A to 17D and FIG.
  • FIG. 17A is a diagram showing an arrangement configuration of connecting portions 81a, 82a, 91, and 92 of the model A piezoelectric actuator.
  • the connecting portion 91 between the inner beam group 53 and the outer beam group 55 and the connecting portion 81a between the outer beam group 55 and the fixed frame 120 are connected to the connecting portion 92 between the inner beam group 54 and the outer beam group 56 and the outer portion.
  • An arrangement in which the connecting portion 82a between the beam group 56 and the fixed frame 120 is in a point-symmetric relationship with respect to the central driving object 20, and all the connecting portions 81a, 91, 92, and 82a are on substantially the same diagonal line.
  • a piezoelectric actuator of the configuration is shown.
  • FIG. 17B is a diagram showing an arrangement configuration of the connecting portions 81a, 82a, 91, and 92 of the model B piezoelectric actuator.
  • the connecting portion 91 between the inner beam group 53 and the outer beam group 55 and the connecting portion 81a between the outer beam group 55 and the fixed frame 120 are connected to the connecting portion 92 between the inner beam group 54 and the outer beam group 56 and the outer portion.
  • a piezoelectric actuator having a configuration in which the connecting portion 81a and the connecting portion 82a are arranged on the back side in the second direction without being in a symmetrical relationship with the connecting portion 82a between the beam group 56 and the fixed frame 120.
  • FIG. 17C is a diagram illustrating an arrangement configuration of the connecting portions 81a, 82a, 91, and 92 of the model C piezoelectric actuator.
  • the connecting portion 91 between the inner beam group 53 and the outer beam group 55 and the connecting portion 81a between the outer beam group 55 and the fixed frame 120 are connected to the connecting portion 92 between the inner beam group 54 and the outer beam group 56 and the outer portion.
  • a piezoelectric actuator having a configuration in which the connecting portion 81a and the connecting portion 82a are arranged on the near side in the second direction without being in a symmetrical relationship with the connecting portion 82a between the beam group 56 and the fixed frame 120.
  • FIG. 17D is a diagram showing an arrangement configuration of connecting portions 81a, 82a, 91, and 92 of the piezoelectric actuator of model D.
  • the connecting portion 91 between the inner beam group 53 and the outer beam group 55 and the connecting portion 81a between the outer beam group 55 and the fixed frame 120 are connected to the connecting portion 92 between the inner beam group 54 and the outer beam group 56 and the outer portion.
  • a straight line connecting the connecting portions 81a and 82a and the connecting portions 91 and 92 with the connecting portion 82a between the beam group 56 and the fixed frame 120 and the driving object 20 at the center is connected with a tack.
  • An intersecting arrangement of piezoelectric actuators is shown.
  • FIG. 18 is a diagram showing unnecessary inclination angles in the outer beam groups 55 and 56, inner beam groups 53 and 54, and the meandering beam 50a as a whole in the patterns of the arrangement configurations shown in FIGS. 17A to 17D.
  • the signs of the positive and negative signs are reversed in the outer beam groups 55 and 56 and the inner beam groups 53 and 54 in the case of the model A in FIG. 17A. Only (indicated by arrow T in FIG. 18). That is, for all the models AD, the unnecessary inclination angle per 1 V of the inner beam groups 53 and 54 is a negative value of ⁇ 0.014 or ⁇ 0.013 deg / V. On the other hand, the unnecessary tilt angle per 1 V of the outer beam groups 55 and 56 is negative for the models B, C, and D, ⁇ 0.0002 or ⁇ 0.0072 deg / V, whereas only the model A has a negative value.
  • the unnecessary tilt angle per 1 V of the entire meandering beam 50 a is obtained by adding the unnecessary tilt angles per 1 V of the inner beam groups 53 and 54 and the outer beam groups 55 and 56.
  • the unnecessary inclination angles per 1 V of the inner beam groups 53 and 54 and the outer beam groups 55 and 56 are different signs and cancel each other (indicated by an arrow T in FIG. 18).
  • an unnecessary inclination angle is increased with the same sign.
  • the unnecessary tilt angle per 1 V of the entire meandering beam 50a is ⁇ 0.006 in the case of the model A, and is the minimum as ⁇ 0.014 or ⁇ 0.020 in the other models B to D.
  • the direction is larger. Accordingly, only the model A shown in FIG. 17A has a structure in which the unnecessary inclination angles of the outer beam groups 55 and 56 and the inner beam groups 53 and 54 cancel each other.
  • the mirror 18 deg. Similar results are shown for the items of the unnecessary tilt angle at the tilt angle and the deviation amount at the time of A3 drawing.
  • the unnecessary inclination and displacement of the outer beam groups 55 and 56 and the inner beam groups 53 and 54 are both negative values, and the absolute values of the unnecessary inclination and displacement of the entire meandering beam 50a are increased. ing.
  • the positive values of the unnecessary inclination and deviation of the outer beam groups 55 and 56 and the negative values of the unnecessary inclination and deviation of the inner beam groups 53 and 54 cancel each other. The absolute value of the unnecessary tilt angle and the amount of deviation (negative value) of the entire meandering beam 50a is reduced.
  • the inner beam groups 53 and 54 and the outer beam groups 55 are arranged so that the signs of unnecessary tilt angles (that is, the tilt directions) of the outer beam groups 55 and 56 and the inner beam groups 53 and 54 are reversed.
  • 56 and the connecting portions 81a, 82a between the outer beam groups 55, 56 and the fixed frame 120 are arranged to reduce the unnecessary inclination angle and displacement of the meandering beam 50a of the piezoelectric actuator. be able to.
  • the connecting portion 91 between the inner beam group 53 and the outer beam group 55 and the connecting portion 81a between the outer beam group 55 and the fixed frame 120 are connected to the inner beam group 54 and the outer beam.
  • the model B of FIG. 17B and the model C of FIG. 17C that are not arranged in a point-symmetrical relationship with the connecting portion 92 with the group 56 and the connecting portion 82a with the outer beam group 56 and the fixed frame 120 are the unnecessary tilt angles of FIG.
  • almost the same intermediate values are shown for all beams, outer beams, and inner beams of the three items of the deviation amount.
  • the connecting portion 91 between the inner beam group 53 and the outer beam group 55 and the connecting portion 81a between the outer beam group 55 and the fixed frame 120 are connected to the connecting portion 92 between the inner beam group 54 and the outer beam group 56, and the outer portion.
  • the model A in FIG. 17A and the model D in FIG. 17D arranged in a point-symmetrical relationship with respect to the connecting portion 82a between the beam group 56 and the fixed frame 120 and the center drive object 20 are three items of unnecessary tilt angle and deviation amount.
  • Model A shows the minimum value
  • model D shows the maximum value.
  • the difference in the values of the unnecessary inclination and displacement amount of the inner beam is small, and the difference in the items of the outer beam is large.
  • the connecting portion 91 between the inner beam group 53 and the outer beam group 55 and the connecting portion 81a between the outer beam group 55 and the fixed frame 120 are connected to the connecting portion 92 between the inner beam group 54 and the outer beam group 56, If the connecting portion 82a between the outer beam group 56 and the fixed frame 120 and the center drive object 20 are arranged in a point-symmetrical relationship, the outer beam groups 55 and 56 and the inner beam groups 53 and 54 are unnecessary. It can be seen that the tilt angle and the deviation amount cancel each other, and the unnecessary tilt angle and the deviation amount of the entire beam are minimized or maximized.
  • the connecting portion 90 and the outer beam groups 55 and 56 between the fixed frame 120 and the outer beam groups 55 and 56 constituting one meandering beam 50a The connecting portion 80a between the inner beam groups 53 and 54 and the outer beam groups 55 and 56 and the outer beam group 90 and the outer beam groups constituting the meandering beam 50a forming the other pair.
  • 55 and 56 and the inner beam groups 53 and 54 are arranged so as to be point-symmetric with respect to the drive target 30 and the outer beam groups 55 and 56 and the inner beam group in the entire pair of meandering beams 50a. What is necessary is just to set it as the arrangement
  • the arrangement configuration for canceling such an unnecessary inclination angle is such that a straight line connecting a pair of connecting portions 80a and a straight line connecting a pair of connecting portions 90, such as model D, are a task. It is not an arrangement that rides on diagonal lines in different directions that intersect with each other, but a straight line that connects a pair of connecting parts 80a of model A and a straight line that connects a pair of connecting parts 90 ride on diagonal lines in the same direction. .
  • the connecting portions 80a and 90 of the pair of meandering beams 50a are arranged so as to be point-symmetric with respect to the central driving target 30, and the outer beam groups 55 and 56 and the inner beam groups 53 and 54 are arranged.
  • FIGS. 18A and 18B when the voltages required for the models A to D at the tilt angle of the mirror 18 deg are compared, the models B and C are the lowest at 21.0 V, the model D is the lowest at 21.7 V, and the model A is 22 .5V is the highest value, and it can be seen that models B to D have lower power consumption and higher efficiency than model A.
  • the voltage difference is not as large as 1.5 or 0.8 V, and the piezoelectric actuator according to the present embodiment has a sufficiently improved tilt angle sensitivity.
  • the arrangement of the connecting portions 80a and 90 of the pair of meandering beams 50a cancels the unnecessary inclination angles of the outer beam groups 55 and 56 and the inner beam groups 53 and 54.
  • a highly accurate piezoelectric actuator with a small unnecessary tilt angle can be obtained.
  • an unnecessary inclination angle can be reduced synergistically.
  • FIG. 19A and FIG. 19B are diagrams illustrating a case where the piezoelectric actuator according to the second embodiment is configured as a biaxial driving piezoelectric actuator.
  • FIG. 19A is a perspective view illustrating the surface of the biaxial piezoelectric actuator according to the second embodiment
  • FIG. 19B is a perspective view illustrating the surface during driving of the biaxial piezoelectric actuator according to the second embodiment.
  • the biaxial piezoelectric actuator according to the present embodiment can drive the drive target 30 to tilt in the first direction with the second direction as an axis.
  • the drive symmetry object 30 is tilted at 30 kHz about the second direction by resonance driving using the central beam 40a, and the first perpendicular to the second direction is used using the meandering beam 50a.
  • tilt driving may be performed at 60 Hz by non-resonant driving.
  • FIG. 19B shows a state in which the driven object 30 is tilting about the second direction by resonance driving of the pair of central beams 40a. Specifically, a tilted state in which the right side of the drive target 30 is raised and the left side is lowered is shown. Since the tilting drive in the first direction about the second direction by the central beam 40a uses resonance driving, the driving object 30 can be tilted and driven at high speed.
  • the biaxial piezoelectric actuator according to the present embodiment is used in a micro projector or a micro scanner, the center beam 40a is driven to resonate and the reflected light of the laser beam is horizontally reflected by the mirror 31 of the driven object 30.
  • the mirror 31 can be driven in two axes by scanning at high speed and driving the meandering beam 50a non-resonantly to scan the reflected light in the vertical direction at low speed.
  • the piezoelectric actuator according to the second embodiment can be easily applied to an actuator for two-axis driving by using the central beam 40a that supports the driven object 30 as the second tilting drive source in the axial direction. can do.
  • the tilt sensitivity can be improved and the price can be reduced. That is, it is possible to obtain a piezoelectric actuator with high tilt sensitivity with respect to the applied voltage while structurally reducing the unnecessary tilt angle.
  • the inner beam groups 53 and 54 are provided for driving only the outer beam groups 55 and 56 in the same manner as in the prior art, thereby providing an inclination sensitivity of 27%. It became possible to improve.
  • the drive voltage can be lowered to about 78% of the conventional one. That is, since the power consumption is proportional to the square of the drive voltage, the power consumption can be suppressed to about 62% of the conventional one.
  • the size can be reduced. Since the element area is about 78%, the number of elements that can be used for an element from one semiconductor wafer 10 is increased, and a reduction in size and price can be realized.
  • the piezoelectric actuator according to the second embodiment can realize a highly space-efficient actuator.
  • the meandering beam 50a with the non-resonance driving piezoelectric element pattern and the center beam 40a with the resonance driving piezoelectric element pattern are arranged in the opening of the fixed frame 120. It is possible to achieve high space efficiency by arranging the floors without any gaps and without waste.
  • the piezoelectric actuator according to the second embodiment adopts the configuration in which the outer beam groups 55 and 56 are provided to increase the tilt sensitivity
  • the cross beam 100 is provided to suppress the unnecessary tilt angle.
  • the unnecessary tilt angles generated in the outer beam groups 55 and 56 and the inner beam groups 53 and 54 are arranged so as to cancel structurally, and the unnecessary tilt angle is suppressed while increasing the tilt sensitivity.
  • the piezoelectric actuator according to the present embodiment can be configured in a small size of 10 ⁇ 10 ⁇ 0.5 mm or less. Further, when the piezoelectric actuator according to the present embodiment is used as a projection mirror actuator, high-speed drawing can be performed on a large screen of A3 size with an XGA (1024 ⁇ 768 pixel resolution) at a distance of 50 cm. In this case, for example, one axis of non-resonant drive is 18 deg. The other axis of tilting and resonance drive is 24 deg. Can be tilted. A voltage of 0-25 V is applied to the piezoelectric element 20, and the mirror 31 is moved around the axis in the first direction on the non-resonant drive side by 0-18 deg. Can tilt. Thus, according to the piezoelectric actuator according to the present embodiment, a small and high-performance mirror actuator can be realized.
  • the unnecessary tilt angle is corrected using the mechanical configuration in both the first embodiment and the second embodiment.
  • correction processing may be performed in software at the time of calculation.
  • the correction of the unnecessary tilt angle may be performed entirely by software, or a part of the configuration described in the present embodiment may be adopted.
  • the piezoelectric actuator according to the present embodiment can be a highly sensitive and small piezoelectric actuator having high space efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 第1の方向に延在し、駆動対象物に連結されて前記駆動対象物を前記第1の方向の両側から支持する1対の中心梁と、前記第1の方向と直交する第2の方向に平行に延在する複数の梁の、隣接する端部同士が両端で交互に連結されたジグザグ状の梁群を含んで構成されるとともに、各梁が圧電素子を備え、前記圧電素子の伸縮変形により前記第2の方向の傾き角度の蓄積が可能な1対の蛇行型梁と、前記駆動対象物、前記中心梁及び前記蛇行型梁を取り囲む固定枠とを有する圧電アクチュエータであって、前記1対の蛇行型梁は、一端が前記固定枠に連結され、他端が前記固定枠との連結位置から遠い方の前記中心梁の端部に連結されるとともに、前記駆動対象物及び前記中心梁を両側から囲むように対称に配置される。

Description

圧電アクチュエータ
 本発明は、圧電アクチュエータに関し、特に、駆動対象物を傾動駆動する圧電アクチュエータに関する。
 従来から、入射された光を反射するミラー部と、ミラー部をトーションバーを介して駆動する1対の第2の圧電アクチュエータと、第2の圧電アクチュエータを支持する可動枠と、可動枠を駆動する1対の圧電アクチュエータと、この圧電アクチュエータを支持する台座とを備えた光偏光器が知られている(例えば、特許文献1参照)。
 特許文献1に記載の光偏光器において、第2の圧電アクチュエータは、ミラー部とミラー部の両端から外側に伸びた1対のトーションバーとを挟んで対向するように配置され、第2の圧電アクチュエータの一端は1対のトーションバーに連結され、他端は可動枠の内側に連結されて支持される。圧電アクチュエータは、1対のトーションバーと異なる方向にミラー部及び可動枠を挟んで対向するように1対配置され、各圧電アクチュエータの一端が可動枠の外側に連結され、他端は台座に支持される構成を有している。
 ここで、圧電アクチュエータは、支持体及び支持体上に形成された圧電体を有し、圧電駆動により屈曲変形を行う複数の圧電カンチレバーを含むと共に、複数の圧電カンチレバーの圧電体にそれぞれ駆動電圧を印加するための複数の電極を独立に備え、複数の圧電カンチレバーは各々の屈曲変形を累積するように端部が連結形成され、駆動電圧の印加により各圧電カンチレバーが独立に屈曲変形され、回動可能に構成されている。同様に、第2の圧電アクチュエータも、圧電駆動により屈曲変形を行う1つの圧電カンチレバーを含み、回動可能に構成されている。
 ミラー部は、1対の第2の圧電アクチュエータにより第1の軸周りで駆動されると共に、1対の圧電アクチュエータにより第1の軸周りと異なる第2の軸周りで可動枠を介して駆動される構成となっている。
特開2008-040240号公報
 しかしながら、上述の特許文献1に記載の構成では、第2の圧電アクチュエータの外側に、可動枠を介して圧電アクチュエータが連結されているため、圧電アクチュエータにより駆動される第2の軸周りでのミラー部の駆動は、傾角感度が低くなる場合がある。例えば、特許文献1に記載の特性曲線では、レーザ光の反射角は30Vの印加電圧で20deg.しか傾かず、ミラー傾角としては10deg.である。しかし、レーザ光を、例えば、50cmの距離でA3サイズの大画面にXGA(eXtended Graphic Array)を用いて高速描画するためには、印加電圧30V以下で36deg.の反射角を必要とし、ミラー傾角としては、18deg.を必要とする。よって、特許文献1に記載の光偏光器では、大画面・高速描画の要求を満たすことができない場合がある。
 また、特許文献1に記載の構成で、十分な傾角感度を得ようとすると、圧電アクチュエータに多数の圧電カンチレバーを備える必要があり、圧電アクチュエータが大型化するという課題がある。また、圧電カンチレバーを増加させることにより、消費電力が増加してしまうという課題がある。
 そこで、本発明は、上記の課題に鑑み、小型かつ低消費電力で、高感度の傾動駆動を実現できる圧電アクチュエータを提供することを目的とする。
 上記の課題を解決するため、本発明に係る圧電アクチュエータは、第1の方向に延在し、駆動対象物に連結されて前記駆動対象物を前記第1の方向の両側から支持する1対の中心梁と、前記第1の方向と直交する第2の方向に平行に延在する複数の梁の、隣接する端部同士が両端で交互に連結されたジグザグ状の梁群を含んで構成されるとともに、各梁が圧電素子を備え、前記圧電素子の伸縮変形により前記第2の方向の傾き角度の蓄積が可能な1対の蛇行型梁と、前記駆動対象物、前記中心梁及び前記蛇行型梁を取り囲む固定枠とを有する圧電アクチュエータであって、 前記1対の蛇行型梁は、一端が前記固定枠に連結され、他端が前記固定枠との連結位置から遠い方の前記中心梁の端部に連結されるとともに、前記駆動対象物及び前記中心梁を両側から囲むように対称に配置されることを特徴とする。
 本発明に係る圧電アクチュエータによれば、圧電アクチュエータの小型化を図ると共に、傾角感度を向上させることができる。
実施例1に係る圧電アクチュエータの断面構造を示す図である。 実施例1に係る圧電アクチュエータを用いた梁構造の駆動方法を説明するための図である。 実施例1に係る圧電アクチュエータを用いた梁構造の駆動方法を説明するための図である。 実施例1に係る圧電アクチュエータを用いた梁構造の駆動方法を説明するための図である。 実施例1に係る圧電アクチュエータの駆動状態を示す図である。 実施例1に係る圧電アクチュエータの表面の構成を示す図である。 実施例1に係る圧電アクチュエータの裏面の構成を示す図である。 実施例1に係る圧電アクチュエータの表面の構成を示す平面図である。 実施例1に係る圧電アクチュエータにおいて駆動対象物を手前側に傾動させた状態を示す斜視図である。 図5の状態の圧電アクチュエータに生じ得る第1の方向の傾角を説明するための図である。 図6Aに示した矢印Bの方向から見た場合の圧電アクチュエータの構成を示す図である。 実施例1の変形例の圧電アクチュエータの構成を示す上面図である。 図6Aに示した矢印Bの方向からみた場合の、実施例1の変形例の圧電アクチュエータの構成を示す図である。 実施例1に係る圧電アクチュエータを2軸駆動の圧電アクチュエータに適用した例を示す図である。 本発明の実施例2に係る圧電アクチュエータの表面の構成を示す斜視図である。 実施例2に係る圧電アクチュエータの裏面の構成を示す斜視図である。 実施例2に係る圧電アクチュエータの表面の構成を示す上面図である。 実施例2に係る圧電アクチュエータの駆動状態を示す図である。 実施例2に係る圧電アクチュエータの駆動状態を示す図である。 実施例2の圧電アクチュエータの外梁群のみを駆動させた場合の斜視図である。 実施例2の圧電アクチュエータの内梁群のみを駆動させた場合の斜視図である。 実施例2の圧電アクチュエータのミラー傾角感度を示す図である。 参考例としての横梁を設けない圧電アクチュエータの構成を示す上面図である。 横梁を設けない圧電アクチュエータの駆動を示す斜視図である。 実施例2に係る圧電アクチュエータと横梁を有しない圧電アクチュエータのミラー傾角感度と不要傾角を示す図である。 図10Bに示した矢印Aの方向からみた場合の、実施例2に係る圧電アクチュエータの構成を示す図である。 図14Bに示した矢印Bの方向からみた場合の、横梁を有しない圧電アクチュエータの構成を示す図である。 モデルAの圧電アクチュエータの配置構成を示す図である。 モデルBの圧電アクチュエータの配置構成を示す図である。 モデルCの圧電アクチュエータの配置構成を示す図である。 モデルDの圧電アクチュエータの配置構成を示す図である。 図17A-図17Dに示す各配置構成のパターンの外梁群と、内梁群と、蛇行型梁全体における不要傾角を示す図である。 実施例2に係る圧電アクチュエータを2軸駆動用として構成した場合の構成例を示す図である。 実施例2に係る圧電アクチュエータを2軸駆動用として構成した場合の構成例を示す図である。
 本発明を実施するための形態について、添付図面を参照しながら説明する。
 図1は、本発明の実施例1に係る圧電アクチュエータの断面構造を示す図である。図1において、実施例1に係る圧電アクチュエータは、半導体ウェハ10と、圧電素子20とを備える。半導体ウェハ10は、種々の半導体ウェハ10が用いられてよいが、例えば、SIO(Silicon on Insulator)基板が用いられてもよい。図1においては、半導体ウェハ10が示されているが、シリコン基板11の上に、SiO12と、Si活性層13と、SiO14が積層され、Si活性層14がSiO12、14で挟まれたSOI基板が示されている。図1において、例えば、半導体ウェハ10が全体として350μm程度の厚さであったときに、SiO12、14は0.5μm程度、Si活性層13は30μm程度の厚さであってもよい。つまり、この場合、SiO12、Si活性層14及びSiO14は、合計で31μmしかなく、Siウェハ10の1/10以下の厚さである。SiO12、Si活性層14及びSiO14は、全体で梁構造15を構成する。なお、半導体ウェハ10の全体の厚さは、用途に応じて種々の厚さとすることができ、例えば、300~500μm程度の厚さであってもよい。
 圧電素子20は、加えられた電圧を力に変換する圧電効果を利用した受動素子である。圧電素子20は、半導体ウェハ10の梁構造15の表面に装着されて設けられてよい。圧電素子20は、圧電体21と、上部電極22と、下部電極23とを備える。圧電素子20は、上部電極22及び下部電極23に電圧が印加されることにより、圧電体21が伸縮変形し、梁構造15を変形させる。圧電素子20は、種々の圧電体21を適用してよいが、例えば、PZT薄膜(チタン酸ジルコン酸鉛)が用いられてもよい。圧電素子20は、例えば、2μm程度の厚さで形成されてもよい。
 このような加工は、MEMS(Micro Electro Mechanical Systems)技術により加工が行われてよく、微細な圧電アクチュエータを作製することができる。
 図2A-図2Cは、実施例1に係る梁構造15の駆動方法について説明するための図である。図2Aは、シリコンから構成される梁構造15と圧電素子20の部分を模式的に示す側面図である。図2Aに示すように、シリコンから構成される梁構造15の上に、圧電素子20が薄膜状に被覆されている。
 図2Bは、圧電素子20が収縮変形した状態を示す図である。図2Bに示すように、圧電素子20が収縮すると、梁構造15は、下に凸の上方に反るような形状となる。
 図2Cは、圧電素子20が伸長変形した状態を示す図である。図2Cに示すように、圧電素子20が伸長すると、梁構造15は、上に凸の下方に反るような形状となる。
 図2Bと図2Cに示すように、圧電素子20は、印加する電圧の極性又は位相により、上に反ったり下に沿ったりする。本実施例に係る圧電アクチュエータでは、このような圧電素子20の性質を利用して、圧電素子20を駆動源として、駆動対象を駆動する。
 図3は、実施例1に係る圧電アクチュエータによる梁構造15の駆動状態を示す図である。図3において、複数の梁構造15が、略平行に配置され、隣接する端部同士の1対が連結部16により連結され、全体としてジグザグ状の蛇行型の梁構造15を有している。また、梁構造15の直線部分には、圧電素子20の薄膜が成膜されている。このような構成の蛇行型の梁構造15において、隣接する梁構造15に印加される電圧の極性又は位相が交互に変化するようにすると、図3に示すように、梁構造15の反りによる伸縮変形が蓄積してゆき、全体として、大きな傾きの変位を生み出す。このように、梁構造15をジグザグ状に形成し、駆動源である圧電素子20に隣接する梁構造15同士の極性が逆になるような電圧を印加することにより、角度変化を各梁構造15毎に蓄積し、全体として大きな傾動駆動を行うことができる。本実施例に係る圧電アクチュエータにおいては、このような角度変位の蓄積による傾動駆動を利用する。
 図4A-図4Cは、実施例1に係る圧電アクチュエータの全体構成を示す図である。図4Aは、実施例1に係る圧電アクチュエータの表面の構成を示す斜視図であり、図4Bは、実施例1に係る圧電アクチュエータの裏面の構成を示す斜視図である。
 図4Aに示すように、実施例1に係る圧電アクチュエータは、駆動対象物30が中心に配置され、表面側に梁構造15及び圧電素子20が配置された構成となっている。また、シリコン基板11の厚い部分は、圧電アクチュエータの外側の枠を形成する。
 図4Bに示すように、実施例1に係る圧電アクチュエータは、裏面には、圧電素子20は設けられず、外側の枠がシリコン基板11の厚い領域、中央の広い領域が梁構造15を含む半導体ウェハ10の薄い領域で形成される。このように、実施例1に係る圧電アクチュエータは、表面が平面状で、裏面に段差がある立体形状となる。
 図4Cは、実施例1に係る圧電アクチュエータの表面の平面図である。図4Cにおいて、本実施例に係る圧電アクチュエータは、駆動対象物30と、中心梁40と、蛇行型梁50と、連結部60、70、80と、固定枠120とを備える。蛇行型梁50は、略平行に延在する複数の梁57を含んでいる。
 駆動対象物30は、本実施例に係る圧電アクチュエータの駆動目的となる対象物であり、種々の駆動対象物30が適用され得る。本実施例に係る圧電アクチュエータにおいては、駆動対象物30が、ミラーである例を挙げて説明する。ミラーを駆動対象物30とする圧電アクチュエータは、マイクロプロジェクタやマイクロスキャナ等に利用することができる。
 駆動対象物30は、ミラー31と、可動枠32とを備える。ミラー31は、駆動対象そのものであり、ミラー31にレーザ光を照射し、ミラー31が反射光を水平方向に高速で走査させるとともに、鉛直方向に低速で走査することにより、画面全体を反射光で走査することが可能となる。本実施例に係る圧電アクチュエータにおいては、鉛直方向の反射光の低速走査の駆動を、コンパクトかる低消費電力で行う。可動枠32は、ミラー31を支持する変形可能な支持枠である。本実施例に係る圧電アクチュエータは、ミラー31を直接的に支持して駆動することも可能であるが、図4A-図4Cの例においては、可動枠32を介してミラー31を駆動している。しかしながら、本実施例に係る圧電アクチュエータが傾動させるのは、可動枠32も含めた駆動対象物30であるので、ミラー31と可動枠32を区別することなく、駆動対象物30と考えてよい。
 また、駆動対象物30の可動枠32及びミラー31を設置するための支持台は、図1において説明したように、梁構造15と同じように、半導体ウェハ10の表面のSiO12、14で挟まれたSi活性層13が存在する薄い部分で構成されてよい。
 中心梁40は、駆動対象物30を、第1の方向において両側から対をなして支持する手段であり、駆動対象物30に連結されている。第1の方向は、図4Cにおいては、横方向(X方向)となっている。また、1対の中心梁40は、第1の方向に一直線上に延在しており、駆動対象物30に対して、対称な配置となっている。また、中心梁40は、図1において説明した半導体ウェハ10の薄くなった表面領域の梁構造15の部分で構成されてよい。これにより、中心梁40は、弾性を有することができる。
 中心梁40は、駆動対象物30を支持するとともに、蛇行型梁50から駆動対称物30へ傾動運動の駆動力を伝達する役割を果たす。蛇行型梁50から生成される駆動力は、図4Cの縦方向(Y方向)に駆動対象物30を傾動させる力であるので、中心梁30は、縦方向への傾動力を駆動対象物30に伝達し、駆動対象物30を傾動させる。
 中心梁40は、蛇行型梁50と、連結部60により連結される。これにより、蛇行型梁50により生じる縦方向(第2の方向)への傾動駆動力を、駆動対象物30に伝達することができる。連結部60も、中心梁40が対をなして設けられるのに対応して、右側の連結部61と左側の連結部62とが対をなして設けられる。
 中心梁40と蛇行型梁50との連結部60は、中心梁40の最も外側に、対をなして、点対称に設けられてよい。このような配置構成により、蛇行型梁50の蛇行型梁50の蓄積角度を、限られたスペース内で最大限とすることができる。なお、この点の詳細については後述する。また、中心梁40は、固定枠120付近まで第1の方向に延在してよく、第2の方向に延在する梁57の幅よりも狭い間隔しか無い位置まで固定枠12に接近して延在してよい。
 蛇行型梁50は、駆動対象物30を第2の方向(図4Cにおいては縦方向)に傾動させる傾動駆動力を発生させる駆動手段である。蛇行型梁50は、平行に第2の方向に延在する複数の梁57を有し、各梁57の隣接する1対の端部同士が、両端部で交互に連結部70により連結されて、全体としてジグザグ状の形状を有する。蛇行型梁50の表面には、図1において説明した圧電素子20が装着されて設けられ、各梁57が駆動源を備えている。連結部70には、圧電素子20は設けられずに、梁構造15の半導体ウェハ10が露出している。
 蛇行型梁50の駆動源である圧電素子20は、隣接する梁57同士で、電圧印加極性が反対となるように設けられる。これにより、蛇行型梁50が、図2A-図2C及び図3において説明したような、傾き角度の蓄積が可能な駆動動作を、全体として行うことができる。
 蛇行型梁50は、第1梁群51と、第2梁群52の1対の梁群51、52を有する。これにより、駆動対象物30の両側に設けられた1対の中心梁40に対して、第1梁群51及び第2梁群52から各々個別に傾動力を付与することができる。また、第1梁群51と第2梁群52は、中心梁40に同じ大きさの傾動力を付与するために、中心梁40及び駆動対象物30に関して対称の構造を有する。かかる構成において、例えば、中心梁40と第1梁群51との連結部61に連結された梁57が、上方に反る駆動動作を行い、中心梁40と第2梁群52との連結部62に接続された梁57が、下方に反る駆動動作を行えば、中心梁40は手前側に傾動し、駆動対象物30は、手前側に傾動する動作を行う。同様に、中心梁40と第1梁群51との連結部61に連結された梁57が、下方に反る駆動動作を行い、中心梁40と第2梁群52との連結部62に接続された梁57が、上方に反る駆動動作を行えば、中心梁40は奥側に傾動し、駆動対象物30は、奥側に傾動する動作を行う。このように、中心梁40に連結された蛇行型梁50の1対の梁57に、逆方向に反る動作を行わせれば、駆動対称物30を第2の方向の所望の向きに傾動させることができる。
 蛇行型梁50の一端は、上述のように、中心梁40の連結部60に連結されるが、他端は、固定枠120に連結部80で連結される。連結部80も、第1梁群51に対応した連結部81と、第2梁群52に対応した連結部82とが、対をなして設けられる。
 固定枠120と蛇行型梁50との連結部80は、中心梁40と蛇行型梁50との連結部60との距離が遠くなるように設けられる。つまり、第1梁群51と中心梁40との連結部61は、第1梁群51の右端に配置されているのに対して、第1梁群51と固定枠120との連結部81は、第1梁群51の左端に配置されている。同様に、第2梁群52と中心梁40との連結部62は、第2梁群52の左端に配置されているのに対して、第2梁群52と固定枠120との連結部82は、第2梁群52の右端に配置されている。このように、蛇行型梁50と中心梁40との連結点60が、蛇行型梁50と固定枠80との連結点80と反対側の離れた位置になるように配置することにより、固定枠80と中心梁40との間に配置可能な蛇行梁50の各梁57の数を多くすることができ、スペース効率を高めることができる。つまり、駆動源である圧電素子20の伸縮量は、印加電圧により定まっているので、より大きく駆動対象物30を駆動させたい場合には、圧電素子20を備えた複数の梁57をどれだけ多く、又は長く配置するかが重要になる。この点、本実施例に係る圧電アクチュエータにおいては、駆動対象物30の傾動方向と直角に延在する中心梁40の傾動方向(縦方向)の両側に、傾動駆動源を備える1対の蛇行型梁50を配置し、各蛇行型梁50と固定枠120との連結部80が、各蛇行型梁50と中心梁40との連結部60と遠くなるように配置することにより、省スペースでありながら、傾角感度の高い傾動駆動を実現することができる。
 また、蛇行型梁50の梁57を限られたスペース内に多く配置する観点から、実施例1に係る圧電アクチュエータにおいては、中心梁40を長くとり、中心梁40が、固定枠120付近まで延在して設けられた構成とすることが好ましい。
 図5は、駆動対象物30を、手前側に傾動させた状態を示す斜視図である。第1梁群51及び第2梁群52の双方に、隣り合う梁57に極性又は位相の異なる電圧を印加することで、梁57の長さと本数に応じた傾角が発生している。そして、中心梁40とともに、駆動対象物30を、中心梁40の延在方向(第1の方向)を軸として傾動させている。図5においては、第1梁群51が上昇し、第2梁群52が下降する傾動動作を行い、駆動対象物30を手前側に傾動させている。図5に示すように、傾角は、梁57が長く、本数が多い程大きく蓄積されてゆくので、四角形の枠状の固定枠120の開口の中に、蛇行型梁50の第1梁群51及び第2梁群52を敷き詰めるように配置した本実施例に係る圧電アクチュエータは、省スペースで高い傾角感度を有する。
 図6Aと図6Bは、実施例1に係る圧電アクチュエータに生じ得る第1の方向の傾角を説明するための図である。図6Aは、図5の状態における実施例1に係る圧電アクチュエータの上面図であり、図6Bは、図6Aの矢印Bの方向から見た場合の実施例1に係る圧電アクチュエータの構成を示す図である。
 図6Aにおいて、圧電アクチュエータは、図5で説明したように、第1梁群51が上昇し、第2梁群52が下降して、駆動対象物30が、中心梁40の延在方向である第1の方向を軸として、第2の方向の手前側に傾動している状態である。しかし、上面図である図6Aにおいては、その傾動変化は表現されていない。
 図6Bは、図6Aに示した矢印Bの方向から圧電アクチュエータを視認した状態を示すが、本来の目的の第1の方向を軸とする第2の方向における傾動のみではなく、第2の方向を軸とする第1の方向における傾動が生じていることを示している。つまり、図6Bにおいて、手前側が下降して傾動しているだけでなく、右端が下降して傾動しており、本来の目的とは異なる第1の方向にも傾きを生じている。このような傾動は、本来の駆動目的とは異なる不要な方向に生じる傾動である。以下、不要な傾動により生じる傾角を不要傾角と呼ぶ。
 このように、実施例1に係る圧電アクチュエータにおいては、このような若干の不要傾角を伴う場合がある。そこで、このような不要傾角を補正する方法について、以下説明する。
 図7Aと図7Bは、実施例1の変形例に係る圧電アクチュエータの構成を示す図である。図7Aは、実施例1の変形例に係る圧電アクチュエータの上面図であり、図7Bは、図6Aに示した矢印Bの方向から見た場合の実施例1の変形例に係る圧電アクチュエータの構成を示す図である。
 図7Aにおいて、実施例1の変形例に係る圧電アクチュエータは、中央梁40と蛇行型梁50の連結部60に連結された梁57の圧電素子20を延長させた不要傾角補正パターン59を有している。これにより、中央梁40の端部にも圧電素子20による非共振駆動力が加わるようにし、不要傾角をキャンセルするようにしている。つまり、図6Bにおいて、右端が下降し、左端が上昇する不要傾角が生じていたが、不要傾角補正パターン59により、中央梁40の右端に上昇方向の駆動力が加えられ、左端に下降方向の駆動力が加えられるので、図6Bに示された不要傾角を補正し、不要傾角をキャンセルすることができる。
 なお、図6A及び図7Aには、1つの例しか挙げられていないが、印加電圧の極性又は位相を逆にすることにより、逆方向の傾動及び補正が可能となることは、言うまでもない。
 図8は、実施例1に係る圧電アクチュエータを、2軸駆動の圧電アクチュエータに適用した例を示す図である。今まで、蛇行型梁50による1軸駆動の非共振駆動による圧電アクチュエータの例について説明してきたが、実施例1に係る圧電アクチュエータは、2軸駆動の圧電アクチュエータに容易に適用することができる。
 図8において、1対の中心梁40に、1対の圧電素子20が装着されて設けられた例が示されている。この場合、中心梁40を共振駆動させることにより、駆動源が1対の圧電素子20のみであっても、例えば、30kHzといった高速で駆動対象物30を駆動することができる。これにより、例えば、圧電アクチュエータがマイクロプロジェクタに適用され、駆動対象物30がミラーである場合には、ミラーを水平方向には共振駆動により中心梁40で高速に走査させ、鉛直方向には、非共振駆動により蛇行型梁50で低速に走査させることにより、小型で高効率の2軸駆動の圧電アクチュエータを実現することができる。
 このように、実施例1に係る圧電アクチュエータによれば、小型でスペース効率の高い圧電アクチュエータを、1軸駆動又は2軸駆動で実現することができ、必要に応じて、発生する不要傾角を補正し、高精度の傾動駆動を行うことができる。
 図9A-図9Cは、本発明の実施例2に係る圧電アクチュエータの全体構成を示す図である。図9Aは、実施例2に係る圧電アクチュエータの表面の斜視図であり、図9Bは、実施例2に係る圧電アクチュエータの裏面の斜視図である。なお、実施例2に係る圧電アクチュエータにおいて、実施例1に係る圧電アクチュエータと同様の構成要素には、同一の参照符号を付し、その説明を省略又は簡略化するものとする。また、実施例1において、図1乃至図3を用いて説明した断面構成及び圧電素子20を用いた駆動原理は、実施例2にも同様に適用されるものとする。
 図9Aにおいて、実施例2に係る圧電アクチュエータは、中央に駆動対象物30を備え、その周囲に圧電素子20が敷き詰められた平面構成となっている点は、実施例1に係る圧電アクチュエータと同様である。駆動対象物30及び圧電素子20は、図1において説明した梁構造15の領域が用いられ、外側の固定枠には、図1において説明したシリコン基板11の厚い領域が用いられる。図9Aにおいて、中心梁40aの長さが短くなった点が、実施例1に係る圧電アクチュエータと異なっているが、この点の詳細については、後述する。
 図9Bにおいて、外側の固定枠のみが厚いシリコン基板11の部分であり、他の部分は、梁構造15と同様に薄く形成され、中央が凹状の段差のある形状となっている点は、実施例1に係る圧電アクチュエータと同様である。
 図9Cは、実施例2に係る圧電アクチュエータの表面の構成を示す上面図である。図9Cにおいて、実施例2に係る圧電アクチュエータは、駆動対象物30と、中心梁40aと、蛇行型梁50aと、連結部60a、70a、80a、90、110と、横梁100と、固定枠120とを備える。実施例2に係る圧電アクチュエータの構成要素としては、連結部90、110と、横梁100が追加された点が、実施例1に係る圧電アクチュエータと異なっている。
 駆動対象物30は、実施例1と同様に、ミラー等の種々の駆動対象物30が適用されてよい。実施例2においても、ミラー31を駆動対象物30とした例を挙げて説明し、可動枠32を備えてもよい点も、実施例1と同様であるので、同一の参照符号を付してその説明を省略する。
 中心梁40aは、駆動対象物30を両側から挟むように支持するとともに、駆動対象物30を傾動させる駆動力を伝達する手段であり、この点は、実施例1に係る中心梁40と同様であるので、その説明を省略する。実施例2における中心梁40aは、その長さが実施例1における中心梁40よりも短く、固定枠120付近まで延在せず、実施例1に係る中心梁40の略1/3程度の長さとなっている点が、実施例1とは異なっている。
 蛇行型梁50aは、1対の第1梁群51aと第2梁群52aとを含む。第1梁群51aは、駆動対象物30を右側と上側(奥側)から囲んでおり、第2梁群52aは、駆動対象物30を左側と下側(手前側)から囲んでいる。第1梁群51aは、内梁群53及び外梁群55を含み、第2梁群52aは、内梁群54及び外梁群56を含む。
 実施例2に係る圧電アクチュエータにおいて、1対の蛇行型梁50aが、中心梁40a及び駆動対象物30を両側から取り囲んでいる点は、実施例1の蛇行型梁50と同様であるが、第1梁群51a及び第2梁群52aが、形状の異なる内梁群53、54と、外梁群55、56を各々含んでいる点で、実施例1の蛇行型梁50と異なっている。内梁群53、54は、駆動対象物30及び中心梁40aに2分されるように配置された、長さの短い第2の方向(縦方向)に延在する平行な複数の梁57aを含んでいる。外梁群55、56は、第2の方向に分割されることなく、長く延在する平行な複数の梁58を含んでいる。また、第1梁群51aの内梁群53と外梁群55とは、連結部91で連結され、外梁群55と固定枠120とは、連結部81aで接続されている。同様に、第2梁群52aの内梁群54と外梁群56とは、連結部92で連結され、外梁群56と固定枠120とは、連結部82aで連結されている。連結部91、92は、外梁群55、56の内側の梁58の端部ではなく、中間点に設けられており、内梁群53、54の外側の梁57aの端部と連結されている。そして、外枠群55と外枠群56の内側端部同士は、1対の横梁100により各々接続されている。1対の横梁100は、各々第1の方向に平行に延在し、外梁群55と外梁群56の奥側の端部同士と、外梁群55と外梁群56の手前側の端部同士を、連結部110において各々連結している。
 次に、かかる構成を有する実施例2に係る圧電アクチュエータの、技術的意義について、実施例1に係る圧電アクチュエータとの比較も含めて説明する。
 実施例1に係る中心梁40は、固定枠120付近まで延在しているため、蛇行型梁50全体の横幅を長くとることができる。しかしながら、実施例1に係る圧電アクチュエータは、第1梁群51の出力端である連結部61と、第2梁群52の出力端である連結部62とが、中心梁40を介して接続されているため、中心梁40が、両者の出力を均衡させるように作用してしまい、第1梁群51及び第2梁群52で生成される駆動力を最大限活用していないという点がある。つまり、例えば、第1梁群51が上昇傾動で、第2梁群52が下降傾動の場合を考えると、第1梁群51の上昇が蓄積され、最も梁57が上昇するのは、本来的には、連結点61である。同様に、第2梁群52の下降が蓄積され、最も梁57が下降するのは、本来的には連結点62である。しかしながら、連結点61と連結点62は、中心梁40で接続されているため、互いの変位を抑制するように作用し、本来的な第1梁群51で得られる傾動変位及び第2梁群で得られる傾動変位よりも小さくなってしまう。つまり、実施例1に係る中心梁40及び蛇行型梁50の構成は、省スペースという点では非常に優れているが、より大きな傾角感度を得るという点においては、改善の余地を残している。
 そこで、実施例2においては、同一スペースにおける傾角感度を更に高めるため、中心梁40aを、実施例1に係る中心梁40よりも短くし、中心梁40aの第1の方向の両側には、長く延在する梁58を配置し、傾角感度を更に向上させる構成としている。つまり、中心梁40a及び駆動対象物30の存在する中央領域は、実施例1に係る圧電アクチュエータと同様に、中心梁40a及び駆動対象物30を、第2の方向(縦方向)の両側から、1対の内梁群53、54が取り囲むような構成となっている。一方、中心梁40a及び駆動対象物30が存在しない両側の領域は、中心梁40a及び駆動対象物30を第1の方向(横方向)の両側から、1対の外梁群55、56が取り囲むように配置されている。そして、外梁群55、56の各梁58の長さは、中心梁40a及び駆動対象物30の制約が無いので、固定枠120が有する四角形の開口の縦方向の長さを総て用いて、内梁群53、54の梁57aよりも長く2倍以上の長さに構成されている。
 ここで、外梁群55、56は、内梁群53、54に使用されている梁57a全体の長さと同じ長さの梁58を使用した場合に、内梁群53、54よりも傾角感度を向上させることができる。つまり、外梁群55、56は、固定枠120に連結された連結部81a、82aを出発点として、駆動対象物30の存在する中央方向に向けて、各梁58において傾角を蓄積してゆくことができる。また、外梁群55、56の最終的な出力端は、外梁群55、56と内梁群53、54との連結点91、92であり、特に中心梁40aからの抑制は受けない構成となっている。
 一方、内梁群53、54は、上述のように、中心梁40aからの抑制を受けるため、外梁群55、56よりも単位長さ当たりの梁57aの傾角感度は低いものの、中心梁40a及び駆動対象物30の縦方向の両側に隙間無く内梁群53、54を敷き詰めることができるため、外梁群55、56で生成した傾角感度を更に増加させることができる。つまり、実施例2に係る圧電アクチュエータにおいては、蛇行型梁50aを、内梁群53、54と外梁群55、56の二重構造とすることで、印加電圧に対する傾角感度を更に向上させることができる。
 ここで、1対の中心梁40aは、固定枠120との間隔が、第2の方向に延在する外梁群55、56の梁58の1本の幅より大きくなるように延在すれば、図9Cに示したように、内梁群53、54の外側に更に外梁群55、56を設けることができる。
 図10Aと図10Bは、実施例2に係る圧電アクチュエータを駆動させた状態を示す図である。図10Aは、実施例2に係る圧電アクチュエータを駆動させた状態を示す斜視図であり、図10Bは、実施例2に係る圧電アクチュエータを駆動させた状態を示す上面図である。
 図10Aにおいて、第1梁群51a及び第2梁群52aの外梁群55、56と内梁群53、54が協働し、駆動対象物30が手前側に傾動した状態が示されている。外梁群55、56の傾動変位は、内梁群53、54の傾動変位よりも大きく、外梁群55、56を設けることにより、傾角感度を向上させることができることが示されている。
 図10Bにおいては、図10Aの駆動状態における上面図が示されている。上面図では、傾動による形状の変化は認識できないが、図10Bにおいては、変移度合いを模様の違いで示しており、模様の境界線は、地図の等高線と同様に考えることができる。図10Bにおいて、変位度合いを示す模様の境界線となっている等高線が、駆動対称物30の存在する中央付近において、実施例1の図6Aに示された等高線よりも水平になり、不要傾角の少ない傾動駆動をしていることが示されている。
 図11は、実施例2に係る圧電アクチュエータの外梁群55、56のみを駆動させ、内梁群53、54を駆動させなかった場合の斜視図である。図11において、外梁群55、56のみが傾動駆動させた場合には、傾斜を示す等高線が水平となり、不要傾角が殆ど生じない状態であることが分かる。
 図12は、実施例2に係る圧電アクチュエータの内梁群53、54のみを駆動させ、外梁群55、56を駆動させなかった場合の斜視図である。図12において、内梁群53、54のみを駆動させると、傾斜を示す等高線に偏りが生じ、不要傾角が生じ易い状態となるが、手前側への傾動は行われており、内梁群53、54による駆動も、駆動対象物30の傾動駆動に寄与していることが分かる。
 図13は、図10A-図12に示した実施例2に係る圧電アクチュエータの駆動状態に応じた単位電圧におけるミラー傾角感度を示す図である。図13において、図10Aのように、内梁群53、54及び外梁群55、56の総ての梁57a、58を駆動させた場合には、0.8deg/Vの傾角感度が得られる。一方、図11に示すような外梁群55、56のみ駆動させた場合には、0.63deg/Vの傾角感度が得られ、図12に示すような内梁群53、54のみを駆動させた場合には、0.17deg/Vの傾角感度が得られた。
 図13より、外梁駆動は、内梁駆動よりも傾角感度への寄与が3倍以上あって大きく、外梁群55、56を設けることにより、傾角感度を大きく向上させることができることが分かる。一方、内梁駆動も、外梁駆動より大きさは小さいものの、傾角感度の向上に寄与しており、外梁群55、56に加えて、内梁群53、54を設けることが、傾角感度の向上に効果的であることが示されている。
 従来技術においては、ミラー31の傾動軸と同じ延在方向にのみ、梁を設けている状態であったので、実施例2に係る圧電アクチュエータの外梁駆動を行った状態にほぼ等しいと考えられる。よって、本実施例に係る圧電アクチュエータは、駆動対象物30の傾動軸方向の両側のみならず、傾動軸と直角な方向の両側にも内梁群53、54を配置して傾角感度を高めているので、省スペースで高効率の傾角感度を達成できる構成であると言える。
 図9Cに戻り、横梁100の意義について説明する。図9Cにおいて、外梁群55、56の第1の方向について内側の両端同士を連結する横梁100が設けられているが、横梁100は、駆動時の不要傾角を抑制するのに効果がある。実施例2に係る圧電アクチュエータにおいては、内梁群53、54の外側端部は、実施例1に係る圧電アクチュエータと異なり、固定枠120ではなく、可動状態にある外梁群55、56に連結点91、92で連結されている。このように、実施例2に係る圧電アクチュエータにおいては、内梁群53、54が、固定枠120ではなく、可動状態の外梁群55、56に連結されているため、不要傾角が生じ易い状態にある。
 そこで、図9Cに示すように、可動状態の外梁群55、56の内側の梁58の両端同士を連結して内梁群53、54の基準点が固定状態に近くなるようにし、不要傾角を低減させることができる。
 図14Aと図14Bは、参考比較例として、横梁100を設けない場合の圧電アクチュエータを示す図である。図14Aは、実施例2に係る圧電アクチュエータから、横梁100を除去した状態の圧電アクチュエータの構成を示す上面図である。横梁100が除去されたことより、外梁群55、56は、一端が固定枠120と連結部81a、82aされ、他端が内梁群53、54の連結部91、92とのみ連結された状態となる。
 図14Bは、横梁100を設けない圧電アクチュエータを駆動した場合を示す斜視図である。図14Bを、横梁100を有する実施例2に係る圧電アクチュエータの駆動時の斜視図である図10Aと比較すると、傾き角を示す等高線の偏りが大きくなり、不要傾角が増加した状態が示されている。
 図15は、横梁100を有する実施例2に係る圧電アクチュエータと、横梁100を有しない比較例の圧電アクチュエータのミラー傾角感度と不要傾角を示す図である。図15において、横梁100を有する場合と有しない場合を比較すると、ミラー傾角感度については、横梁100を有する場合の0.80deg/Vに比較して、横梁100が無い方が1.12deg/Vと大きなミラー傾角感度を示している。
 しかしながら、不要傾角を比較すると、横梁100を有する場合は、0.12deg.であるのに対して、横梁100を有しない場合は、2.09deg.と10倍以上大きくなってしまっている。よって、横梁100を有する場合と有しない場合のミラー傾角感度の差は、0.32deg/Vしか無いが、不要傾角については、1.92deg.となり、その差が大きい。よって、若干傾角感度を低下させたとしても、横梁100を設けた方が、全体として高性能な圧電アクチュエータを実現することができることが分かる。
 図16Aと図16Bは、横梁100を有する実施例2に係る圧電アクチュエータと、横梁100を有しない比較例に係る圧電アクチュエータの状態を比較した図である。図16Aは、本実施例に係る横梁100を備えた圧電アクチュエータの側面図であり、図16Bは、横梁100を有しない比較例に係る圧電アクチュエータの側面図である。
 図16Aは、図10Bの状態を示しており、不要傾角は生じていない。一方、図16Bは、図14Bの状態を示しており、右端が下降する不要傾角が生じている。 このように、横梁100を設けることにより、不要傾角の少ない圧電アクチュエータを実現することができる。
 図17A-図17Dは、内梁群53、54と外梁群55、56の連結部90と、外梁群55、56と固定枠120の連結部80aとの配置関係を示す図である。図17A-図17Dに示す各配置構成のパターン中から1つを適切に設定することにより、不要傾角を低減させることができる。図17A-図17D及び図18を用いて、その点について説明する。
 図17Aは、モデルAの圧電アクチュエータの連結部81a、82a、91、92の配置構成を示す図である。図17Aにおいて、内梁群53と外梁群55との連結部91及び外梁群55と固定枠120との連結部81aが、内梁群54と外梁群56との連結部92及び外梁群56と固定枠120との連結部82aと、中心の駆動対象物20に関して点対称の関係にあるとともに、総ての連結部81a、91、92、82aが、略同一対角線上にある配置構成の圧電アクチュエータが示されている。
 図17Bは、モデルBの圧電アクチュエータの連結部81a、82a、91、92の配置構成を示す図である。図17Bにおいて、内梁群53と外梁群55との連結部91及び外梁群55と固定枠120との連結部81aが、内梁群54と外梁群56との連結部92及び外梁群56と固定枠120との連結部82aと対称の関係に無く、連結部81a及び連結部82aが第2の方向について奥側に配置された構成の圧電アクチュエータが示されている。
 図17Cは、モデルCの圧電アクチュエータの連結部81a、82a、91、92の配置構成を示す図である。図17Cにおいて、内梁群53と外梁群55との連結部91及び外梁群55と固定枠120との連結部81aが、内梁群54と外梁群56との連結部92及び外梁群56と固定枠120との連結部82aと対称の関係に無く、連結部81a及び連結部82aが第2の方向について手前側に配置された構成の圧電アクチュエータが示されている。
 図17Dは、モデルDの圧電アクチュエータの連結部81a、82a、91、92の配置構成を示す図である。図17Dにおいて、内梁群53と外梁群55との連結部91及び外梁群55と固定枠120との連結部81aが、内梁群54と外梁群56との連結部92及び外梁群56と固定枠120との連結部82aと、中心の駆動対象物20に関して点対称の関係にあるとともに、連結部81a、82a同士と連結部91、92同士を結ぶ直線が、タスキ掛けで交わる配置構成の圧電アクチュエータが示されている。
 図18は、図17A-図17Dに示す各配置構成のパターンの外梁群55、56と、内梁群53、54と、蛇行型梁50a全体における不要傾角を示す図である。
 図18において、1V当たりの不要傾角deg/Vについて着目すると、外梁群55、56と内梁群53、54とで正負の符号が逆になっているのは、図17AのモデルAの場合のみである(図18の矢印Tで示す)。つまり、総てのモデルA-Dについて、内梁群53、54の1V当たりの不要傾角は、-0.014又は-0.013deg/Vと負の値になっている。一方、外梁群55、56の1V当たりの不要傾角は、モデルB、C、Dが-0.0002又は-0.0072deg/Vと負の値となっているのに対し、モデルAのみが0.008deg/Vと正の値となっている。蛇行型梁50a全体の1V当たりの不要傾角は、内梁群53、54と外梁群55、56の1V当たりの不要傾角を加算したものである。モデルAの場合、内梁群53、54と外梁群55、56の1V当たりの不要傾角は異符号であり、互いに相殺しあう(図18の矢印Tで示す)。一方、他のモデルB~Dの場合は、同符号で不要傾角を増大させる結果となっている。よって、蛇行型梁50a全体の1V当たりの不要傾角は、モデルAの場合が-0.006で最小であり、他のモデルB~Dの場合は、-0.014又は-0.020と負の向きに大きくなっている。従って、図17Aに示すモデルAのみが、外梁群55、56と内梁群53、54の不要傾角が互いに打ち消し合う構造になっている。
 図18において、ミラー18deg.傾角時の不要傾角及びA3描画時のずれ量の項目についても同様の結果が示されている。モデルB~Dの場合、外梁群55、56と内梁群53、54の不要傾角及びずれ量がともに負の値で、蛇行型梁50a全体の不要傾角及びずれ量の絶対値を増大させている。これに対し、モデルAの場合、外梁群55、56の不要傾角及びずれ量の正の値と、内梁群53、54の不要傾角及びずれ量の負の値とが互いに相殺し合って、蛇行型梁50a全体の不要傾角及びずれ量(負の値)の絶対値を減少させている。モデルAの場合のように、外梁群55、56と内梁群53、54の不要傾角の符号(つまり、傾動方向)が逆となるように、内梁群53、54と外梁群55、56との連結部91、92、及び外梁群55、56と固定枠120との連結部81a、82aを配置することにより、圧電アクチュエータの蛇行型梁50aの不要傾角及びずれ量を低減させることができる。
 なお、図17A-図17D及び図18において、内梁群53と外梁群55との連結部91、及び外梁群55と固定枠120との連結部81aが、内梁群54と外梁群56との連結部92、及び外梁群56と固定枠120との連結部82aと点対称の関係に配置されない図17BのモデルB及び図17CのモデルCは、上述の図18の不要傾角及びずれ量の3項目の全梁、外梁及び内梁について、ほぼ同様の中間の値を示している。一方、内梁群53と外梁群55との連結部91、及び外梁群55と固定枠120との連結部81aが、内梁群54と外梁群56との連結部92、及び外梁群56と固定枠120との連結部82aと、中心の駆動対象物20に関して点対称の関係に配置される図17AのモデルA及び図17DのモデルDは、不要傾角及びずれ量の3項目について、モデルAが最小でモデルDが最大の値を示している。また、モデルA~Dについて、内梁及び外梁の項目を個々に比較すると、内梁の不要傾角及びずれ量の値の差は小さく、外梁の項目の差が大きくなっている。
 このことから、内梁群53と外梁群55との連結部91、及び外梁群55と固定枠120との連結部81aが、内梁群54と外梁群56との連結部92、及び外梁群56と固定枠120との連結部82aと、中心の駆動対象物20に関して点対称の関係に配置されると、外梁群55、56と、内梁群53、54との不要傾角及びずれ量は互いに相殺し合って梁全体の不要傾角及びずれ量を最小又は最大にさせることが分かる。
 よって、実施例2に係る圧電アクチュエータの不要傾角を低減させるためには、1つの蛇行型梁50aを構成する固定枠120と外梁群55、56との連結部90及び外梁群55、56と内梁群53、54との連結部80aの配置関係が、他方の対をなしている蛇行型梁50aを構成する固定枠120と外梁群55、56との連結部90及び外梁群55、56と内梁群53、54との連結部80aと駆動対象物30に関して点対称をなすように配置し、かつ1対の蛇行型梁50a全体で外梁群55、56と内梁群53、54の不要傾角の向きが相殺するような配置構成とすればよい。
 本実施例においては、そのような不要傾角を相殺する配置構成は、モデルDのような、1対の連結部80a同士を結んだ直線と、1対の連結部90同士を結んだ直線がタスキ掛けで交わる異なる方向の対角線上に乗る配置ではなく、モデルAの1対の連結部80a同士を結んだ直線と1対の連結部90同士を結んだ直線が同方向の対角線に乗る配置である。このように、1対の蛇行型梁50aの連結部80a、90同士が、中心の駆動対象物30について点対称となるように配置し、かつ外梁群55、56と内梁群53、54同士の不要傾角の傾動の向きが相殺するように配置することにより、スペース効率が高く、不要傾角も少ない高精度の圧電アクチュエータとすることができる。
 また、図18において、モデルA~Dについて、1V当たりのミラー傾角を比較すると、モデルB、Cが0.86deg/Vで最も高く、次いでモデルDが0.83deg/Vで高く、モデルAが0.80deg/Vが最も低くなっている。しかしながら、その差は0.06又は0.03deg/Vで小さいので、単位印加電圧当たりの傾角感度が若干低下しても、不要傾角を低減する構成とした方が、全体として高性能な圧電アクチュエータとして構成することができる。
 同様に、図18において、モデルA~Dについて、ミラー18deg傾角時に必要な電圧を比較すると、モデルB、Cが21.0Vで最も低く、次いでモデルDが21.7Vで低く、モデルAが22.5Vで最も高い値となっており、モデルB~Dの方が、モデルAよりも低消費電力型で高効率であることが分かる。しかし、この項目についても、電圧差は1.5又は0.8Vと大きくなく、また本実施例に係る圧電アクチュエータは、十分に傾角感度が向上した構成であるので、低消費電力の低減よりも不要傾角の低減の要請の方が高い場合には、モデルAを採用する方が好ましい。
 このように、本実施例に係る圧電アクチュエータにおいては、1対の蛇行型梁50aの連結部80a、90の配置構成を、外梁群55、56と内梁群53、54の不要傾角が相殺する配置構成とすることにより、不要傾角の少ない高精度な圧電アクチュエータとすることができる。また、横梁100を設けることにより、相乗的に不要傾角を低減させることができる。
 図19Aと図19Bは、実施例2に係る圧電アクチュエータを、2軸駆動用の圧電アクチュエータとして構成した場合を示す図である。図19Aは、実施例2に係る2軸圧電アクチュエータの表面を示す斜視図であり、図19Bは、実施例2に係る2軸圧電アクチュエータの駆動時の表面を示す斜視図である。
 図19Aにおいて、第1の方向に延在する1対の中心梁40aの表面に、駆動源である圧電素子20が被覆されている。これにより、本実施例に係る2軸圧電アクチュエータは、駆動対象物30を、第2の方向を軸として、第1の方向にも傾動駆動させることが可能となる。この場合、圧電素子20は、1対しか存在しないので、十分な傾角感度を得るため、共振駆動させることが好ましい。例えば、中心梁40aを用いて、駆動対称物30を、共振駆動により第2の方向を軸として30kHzで傾動駆動するとともに、蛇行型梁50aを用いて、第2の方向と直角な第1の方向を軸として、非共振駆動により60Hzで傾動駆動するようにしてもよい。
 図19Bにおいて、1対の中心梁40aの共振駆動により、駆動対象物30が第2の方向を軸とする傾動運動している状態が示されている。具体的には、駆動対象物30の右側が上昇し、左側が下降した傾動状態が示されている。中心梁40aによる第2の方向を軸とする第1の方向の傾動駆動は、共振駆動を用いるので、駆動対象物30を高速に傾動駆動することが可能である。例えば、本実施例に係る2軸圧電アクチュエータを、マイクロプロジェクタやマイクロスキャナに用いた場合には、中心梁40aを共振駆動させて駆動対象物30のミラー31でレーザ光の反射光を水平方向に高速走査させ、蛇行型梁50aを非共振駆動させて鉛直方向に反射光を低速走査させることにより、ミラー31を2軸駆動することができる。
 このように、実施例2に係る圧電アクチュエータは、駆動対象物30を支持する中心梁40aを、2つ目の軸方向の傾動駆動源とすることにより、2軸駆動用のアクチュエータに容易に適用することができる。
 以上説明したように、本実施例に係る圧電アクチュエータによれば、傾角感度を向上させることができ、低価格化を図ることができる。つまり、不要傾角を構造的に減少させつつ、印加電圧に対する傾角感度の高い圧電アクチュエータを得ることができる。具体的には、実施例2に係る圧電アクチュエータにより、従来技術と同じ態様である外梁群55、56のみの駆動に対し、内梁群53、54を設けたことにより、27%の傾角感度の向上が可能となった。27%の傾角感度の向上により、駆動電圧を従来の約78%に下げることが可能となる。つまり、消費電力は、駆動電圧の2乗に比例するため、消費電力を従来の約62%に抑えることが可能になる。
 また、駆動電圧を従来と同等に保つと、小型化が可能となる。素子面積が78%程度になるため、1枚の半導体ウェハ10から素子に利用できる数が増加し、小型化と低価格化を実現できる。
 更に、実施例2に係る圧電アクチュエータは、スペース効率の高いアクチュエータを実現できる。特に、2軸用の圧電アクチュエータとして用いる場合には、非共振駆動用の圧電素子パターンを伴う蛇行型梁50aと、共振駆動用の圧電素子パターンを伴う中心梁40aを、固定枠120の開口部内に隙間無く、無駄なく敷き詰めるように配置することがで、高いスペース効率を実現することができる。
 また、実施例2に係る圧電アクチュエータは、外梁群55、56を設けて傾角感度を高める構成を採用した際に、横梁100を設け、不要傾角を抑制している。更に、外梁群55、56と内梁群53、54とに発生する不要傾角を、構造的に打ち消す配置とし、傾角感度を高めつつ不要傾角を抑制する構成としている。
 なお、本実施例に係る圧電アクチュエータは、10×10×0.5mm以下の小型に構成することができる。また、本実施例に係る圧電アクチュエータをプロジェクションミラー用アクチュエータとして利用した場合には、50cmの距離で、A3サイズの大画面にXGA(1024×768ピクセルの解像度)で高速描画を行うことができる。この場合、例えば、非共振駆動の1軸は60Hzで18deg.傾動させ、共振駆動のもう1軸は、30kHzで24deg.傾動させることができる。圧電素子20には、0-25Vの電圧を印加し、非共振駆動側の第1の方向の軸周りに、ミラー31を0-18deg.傾けることができる。このように、本実施例に係る圧電アクチュエータによれば、小型で高性能なミラー用アクチュエータを実現することができる。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。特に、本実施例においては、不要傾角の補正は、実施例1及び実施例2の双方とも、機械的構成を用いて補正を行ったが、演算時のソフトウェアにおいて補正処理を行うようにしてもよい。この場合、不要傾角の補正は、総てソフトウェアで行ってもよいし、一部、本実施例において説明した構成を採用するようにしてもよい。この場合においても、本実施例に係る圧電アクチュエータは、スペース効率が高い、高感度で小型の圧電アクチュエータとすることができる。
 本国際出願は、2009年5月11日に出願された日本国特許出願2009-114275号に基づく優先権を主張するものであり、日本国特許出願2009-114275号の全内容を本国際出願に援用する。

Claims (9)

  1.  第1の方向に延在し、駆動対象物に連結されて前記駆動対象物を前記第1の方向の両側から支持する1対の中心梁と、
     前記第1の方向と略直交する第2の方向に平行に延在する複数の梁の、隣接する端部同士が両端で交互に連結されたジグザグ状の梁群を含んで構成されるとともに、各梁が圧電素子を備え、前記圧電素子の伸縮変形により前記第2の方向の傾き角度の蓄積が可能な1対の蛇行型梁と、
     前記駆動対象物、前記中心梁及び前記蛇行型梁を取り囲む固定枠と、を有する圧電アクチュエータであって、
     前記1対の蛇行型梁は、一端が前記固定枠に連結され、他端が前記固定枠との連結位置から遠い方の前記中心梁の端部に連結されるとともに、前記駆動対象物及び前記中心梁を両側から囲むように対称に配置されることを特徴とする圧電アクチュエータ。
  2.  前記固定枠は、略四角形の開口を有する枠形状であって、
     前記開口内の前記駆動対象物及び前記中心梁と前記固定端との間は、前記1対の蛇行型梁が敷き詰められて配置されることを特徴とする請求項1に記載の圧電アクチュエータ。
  3.  前記1対の中心梁は、前記第1の方向に、前記固定枠と前記第2の方向に延在する梁の1本の幅よりも接近した位置まで延在し、
     前記1対の蛇行型梁は、前記中心梁及び前記駆動対象物に仕切られるように、前記中心梁及び前記駆動対象物の両側に配置されることを特徴とする請求項1に記載の圧電アクチュエータ。
  4.  前記1対の中心梁は、前記第1の方向に、前記固定枠と前記第2の方向に延在する梁の1本の幅より大きい間隔を有して延在し、
     前記1対の蛇行型梁は、前記中心梁及び前記駆動対象物に前記第2の方向に仕切られるように配置された1対の内梁群と、
     前記内梁群の外側の梁に連結され、前記第1の方向の両側から前記中心梁及び前記駆動対象物を挟むように配置された1対の外梁群と、を含むことを特徴とする請求項1に記載の圧電アクチュエータ。
  5.  前記外梁群の前記内梁群と連結される位置は、前記外梁群の内側の梁の端部以外の部分であって、前記1対の外梁群の内側の梁の端部同士は、前記内梁群を前記第1の方向の両側から挟むように配置された横梁で連結されることを特徴とする請求項4に記載の圧電アクチュエータ。
  6.  前記内梁群及び前記外梁群による前記第2の方向への傾動駆動時に、前記内梁群に前記第1の方向への傾きが生じる場合に、前記外梁群が前記内梁群に生じる前記第1の方向の傾きを相殺するように、前記固定枠に連結されることを特徴とする請求項5に記載の圧電アクチュエータ。
  7.  前記蛇行型梁は、非共振により前記駆動対象物を前記第2の方向に傾動駆動することを特徴とする請求項1に記載の圧電アクチュエータ。
  8.  前記中心梁は、前記駆動対象物を前記第1の方向に傾動可能な圧電素子を備えることを特徴とする請求項1に記載の圧電アクチュエータ。
  9.  前記中心梁は、共振により前記駆動対象物を前記第1の方向に傾動駆動することを特徴とする請求項8に記載の圧電アクチュエータ。
     
PCT/JP2010/057090 2009-05-11 2010-04-21 圧電アクチュエータ WO2010131556A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-114275 2009-05-11
JP2009114275A JP2010263736A (ja) 2009-05-11 2009-05-11 圧電アクチュエータ

Publications (1)

Publication Number Publication Date
WO2010131556A1 true WO2010131556A1 (ja) 2010-11-18

Family

ID=43084933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057090 WO2010131556A1 (ja) 2009-05-11 2010-04-21 圧電アクチュエータ

Country Status (2)

Country Link
JP (1) JP2010263736A (ja)
WO (1) WO2010131556A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083701A1 (ja) * 2010-01-05 2011-07-14 船井電機株式会社 振動ミラー素子
EP2781948A1 (en) * 2013-03-18 2014-09-24 Stanley Electric Co., Ltd. Optical deflector including meander-type piezoelectric actuators coupled by crossing bars therebetween
EP2955561A1 (en) * 2014-06-12 2015-12-16 Stanley Electric Co., Ltd. Optical deflector apparatus capable of increasing offset deflecting amount of mirror
US9261669B2 (en) 2011-02-17 2016-02-16 Panasonic Intellectual Property Management Co., Ltd. Vibrating element having meandering shape, and optical reflection element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6680364B2 (ja) * 2016-11-09 2020-04-15 第一精工株式会社 可動反射素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516282A (ja) * 2004-10-05 2008-05-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 微小電気機械システムにおけるアモルファス屈曲部
JP2008170565A (ja) * 2007-01-10 2008-07-24 Canon Inc 揺動体装置、及び揺動体装置を用いた画像形成装置
JP2009009067A (ja) * 2007-06-29 2009-01-15 Canon Inc 揺動体装置及びその製造方法
WO2009028152A1 (ja) * 2007-08-27 2009-03-05 Panasonic Corporation 圧電アクチュエータおよびこれを用いた光学反射素子および圧電駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516282A (ja) * 2004-10-05 2008-05-15 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 微小電気機械システムにおけるアモルファス屈曲部
JP2008170565A (ja) * 2007-01-10 2008-07-24 Canon Inc 揺動体装置、及び揺動体装置を用いた画像形成装置
JP2009009067A (ja) * 2007-06-29 2009-01-15 Canon Inc 揺動体装置及びその製造方法
WO2009028152A1 (ja) * 2007-08-27 2009-03-05 Panasonic Corporation 圧電アクチュエータおよびこれを用いた光学反射素子および圧電駆動装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083701A1 (ja) * 2010-01-05 2011-07-14 船井電機株式会社 振動ミラー素子
US8867114B2 (en) 2010-01-05 2014-10-21 Funai Electric Co., Ltd. Vibrating mirror element
US9261669B2 (en) 2011-02-17 2016-02-16 Panasonic Intellectual Property Management Co., Ltd. Vibrating element having meandering shape, and optical reflection element
EP2781948A1 (en) * 2013-03-18 2014-09-24 Stanley Electric Co., Ltd. Optical deflector including meander-type piezoelectric actuators coupled by crossing bars therebetween
US9323048B2 (en) 2013-03-18 2016-04-26 Stanley Electric Co., Ltd. Optical deflector including meander-type piezoelectric actuators coupled by crossing bars therebetween
EP2955561A1 (en) * 2014-06-12 2015-12-16 Stanley Electric Co., Ltd. Optical deflector apparatus capable of increasing offset deflecting amount of mirror
US9488828B2 (en) 2014-06-12 2016-11-08 Stanley Electric Co., Ltd. Optical deflector apparatus capable of increasing offset deflecting amount of mirror

Also Published As

Publication number Publication date
JP2010263736A (ja) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5444968B2 (ja) アクチュエータ及びこれを用いた光走査装置
JP6333079B2 (ja) 光スキャナ
JP6205587B2 (ja) 光学反射素子
US8659811B2 (en) Actuator, optical scanner and image forming device
CN100335934C (zh) 带有双万向架的mems镜子结构及单一万向架铰合件
US10018833B2 (en) MEMS device and electronic device having projector function
EP2781948B1 (en) Optical deflector including meander-type piezoelectric actuators coupled by crossing bars therebetween
WO2010131556A1 (ja) 圧電アクチュエータ
EP2749526A1 (en) Scanning mirror device
JP4972781B2 (ja) マイクロスキャナ及びそれを備えた光走査装置。
WO2011081045A2 (ja) 振動ミラー素子および振動ミラー素子の製造方法
JP2011141333A (ja) 振動ミラー素子
CN104011583A (zh) 微镜
JP2007010823A (ja) 駆動ミラー及び光走査光学装置並びに画像表示装置
JP6506212B2 (ja) 光偏向器及び製造方法
WO2015145943A1 (ja) 光走査デバイス
JP7121258B2 (ja) 光走査装置
JP2011069954A (ja) 光スキャナ
JP2013160891A (ja) 振動ミラー素子およびプロジェクタ機能を有する電子機器
JP6301017B2 (ja) ミラー駆動装置およびその製造方法
JP6648443B2 (ja) 光偏向器、2次元画像表示装置、光走査装置及び画像形成装置
JP2017009635A (ja) 圧電アクチュエータ装置、光偏向器、画像投影装置及び画像形成装置
WO2023281993A1 (ja) 光偏向器
JP2011137911A (ja) 振動ミラー素子
JP2008129280A (ja) アクチュエータ、アクチュエータの製造方法、光スキャナおよび画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774814

Country of ref document: EP

Kind code of ref document: A1