WO2010127612A1 - 一种柴油车的气缸减压机构 - Google Patents

一种柴油车的气缸减压机构 Download PDF

Info

Publication number
WO2010127612A1
WO2010127612A1 PCT/CN2010/072427 CN2010072427W WO2010127612A1 WO 2010127612 A1 WO2010127612 A1 WO 2010127612A1 CN 2010072427 W CN2010072427 W CN 2010072427W WO 2010127612 A1 WO2010127612 A1 WO 2010127612A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure reducing
decompression
solenoid valve
speed relay
normally open
Prior art date
Application number
PCT/CN2010/072427
Other languages
English (en)
French (fr)
Inventor
洪选民
Original Assignee
Hong Xuanmin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Xuanmin filed Critical Hong Xuanmin
Publication of WO2010127612A1 publication Critical patent/WO2010127612A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start

Definitions

  • the invention relates to a pressure reducing mechanism, in particular to a cylinder pressure reducing mechanism of a diesel vehicle. Background technique
  • An object of the present invention is to provide a cylinder decompression mechanism for a diesel vehicle that overcomes the above-described deficiencies of the prior art.
  • the present invention adopts the following design scheme:
  • a cylinder decompression mechanism for a diesel vehicle comprising a pressure reducing shaft and a pressure reducing arm connected to the pressure reducing shaft And a power supply connected to the decompression arm through a pressure reduction control circuit and a pressure reducing solenoid valve
  • the pressure reduction control circuit includes a normally closed switch connected to the brake pedal, and one end of the normally closed switch is electrically connected to the power source The other end of the normally closed switch is connected to the pressure reducing solenoid valve through a normally open switch that is coupled with an oil pump rod or a rack of a diesel vehicle.
  • the pressure reduction control circuit further includes a speed relay control circuit
  • the speed relay control circuit includes a speed relay, a flameout solenoid valve, and a speed relay normally open switch, and one end of the speed relay normally open switch and the normally closed switch
  • the switch and the speed relay are connected, and the other end of the speed relay normally open switch is connected to the normally open switch through the flameout solenoid valve and a pump pull rod or a rack coupled with the flameout solenoid valve, the normally open switch
  • One end of the normally open switch is electrically connected to the speed relay and the normally closed switch.
  • the pressure reduction control circuit further includes control means for setting an upper limit and a lower limit of the speed connected to the speed relay.
  • the invention has the advantages that: the invention fully utilizes the cylinder pressure reducing mechanism, and in a specific case, opens the pressure reducing mechanism to force the engine to stop working; in the case of oil cutoff, the inertia of the diesel vehicle is used to drive the engine to idle .
  • the decompression mechanism is returned to the non-decompressed state.
  • the supply system resumes normal operation, and under the force of inertia, the diesel engine can resume normal operation, and so on, thereby achieving the goal of being safe and fuel efficient.
  • FIG. 1 is a schematic diagram of a circuit in a normal working state of an engine according to an embodiment of the present invention
  • FIG. 2 is a circuit diagram showing an engine cylinder decompression and an engine not working in the embodiment shown in FIG.
  • Figure 3 is a schematic view showing the circuit of the embodiment shown in Figure 1 when the engine cylinder is not decompressed and the engine is not operating;
  • FIG. 4 is a circuit diagram of the engine cylinder under the control of the speed relay in the embodiment shown in FIG. 1 when the engine is decompressed and the engine is not operating;
  • Figure 5 is a schematic illustration of another embodiment of the present invention. detailed description
  • a cylinder decompression mechanism for a diesel vehicle including a decompression shaft 1, a decompression arm 3 connected to the decompression shaft 1, and a decompression mechanism.
  • a control circuit and a decompression solenoid valve 4 connected to the decompression arm 3 the decompression control circuit includes a normally closed switch 15 connected to the brake pedal 9, one end of the normally closed switch 15 and the power source 13 is electrically connected, and the other end of the normally closed switch 15 is connected to the pressure reducing solenoid valve 4 through a normally open switch 19 that is coupled with an oil pump lever or a rack 16 of a diesel vehicle.
  • the pressure reduction control circuit further includes a speed relay control circuit
  • the speed relay 14 control circuit includes a speed relay 14, a flameout solenoid valve 17, and a speed relay normally open switch 18, one end of the speed relay normally open switch 18 and the The normally closed switch 15 and the speed relay 14 are connected, and the other end of the speed relay normally open switch 18 passes through the flameout solenoid valve 17 and an oil pump rod or rack 16 that is coupled with the flameout solenoid valve 17 and the normally open
  • the switch 19 is connected, one end of the normally open switch 19 is electrically connected to the pressure reducing solenoid valve 4, and the other end of the normally open switch 19 is electrically connected to the speed relay 14 and the normally closed switch 15.
  • the pressure reduction control circuit further includes control means (not shown) for setting the upper and lower speed limits to the speed relay.
  • the cylinder decompression mechanism of the automobile of the present embodiment can be either manually controlled or automatically controlled.
  • the decompression mechanism can be effectively controlled by installing a decompression arm 3 for driving the decompression solenoid valve 4 (or a pneumatic combination valve controlled by a solenoid valve) at one end of the decompression shaft 1. Controlling the energization and de-energization of the pressure reducing solenoid valve 4 allows the engine to be in a normal working state, or the decompression is not in a working state.
  • a normally open switch 19 and a normally closed switch 15 are installed in series in the working circuit of the pressure reducing solenoid valve 4. The normally open switch 19 is controlled by a fuel pump lever or a rack 16, and the normally closed switch 15 is controlled by a brake pedal 9 at a reduced pressure.
  • the flameout solenoid valve 17 and the speed relay 14 are installed in parallel in the working circuit of the solenoid valve 4, wherein the flameout solenoid valve 17 is installed at the other end of the oil pump lever or the rack 16 for controlling the normally open switch, and the normally open contact of the speed relay 14 is connected in series. In the flameout solenoid circuit.
  • the driver can arbitrarily set the upper and lower limits of the speed by the control device (not shown) depending on the situation.
  • the operating state of the engine is automatically controlled by the pressure reducing solenoid valve 4, the speed relay 14, and the flameout solenoid valve 17 within the set speed range.
  • the speed relay 4 receives the signal command from the control device to start the operation, and closes the speed relay normally open switch 18.
  • the circuit of the flameout solenoid valve 17 is turned on.
  • the flameout solenoid valve 17 is energized to cause the oil pump rod or the rack 16 to be quickly cut off, and the circuit of the pressure reducing solenoid valve 4 is turned on, the pressure reducing solenoid valve 4 is actuated, and the pressure reducing mechanism is opened to decompress the valve.
  • the motive is in a decompressed and inoperative state, and is driven to idle by the inertial force of the diesel vehicle, as shown in Figure 4.
  • the diesel vehicle continues to drive.
  • the speed relay 14 operates again, and the speed relay normally opens the switch 18, so that the circuit of the flameout solenoid valve 17 is disconnected, and after the flameout solenoid valve 17 is powered off, the original is quickly recovered.
  • the oil pump lever or rack 16 quickly returns to its original position.
  • the normally open switch 19 controlled by the oil pump lever or the rack 16 in the decompression circuit automatically disconnects the decompression circuit, and the decompression mechanism quickly returns the engine valve to normal, and the engine re-enters the normal working state, as shown in FIG. .
  • the driver of the horse does not release the throttle, the diesel engine is always in the normal working state and the decompression and non-working state alternate, thus eliminating the frequent operation of the driver, the speed relay can not be controlled The speed below the lower limit is still automatically controlled by the driver.
  • FIG. 5 there is shown another preferred embodiment of the present invention.
  • the main difference between this embodiment and the above-described embodiment 1 is that the present invention can be controlled only by manual means.
  • the cylinder pressure reducing mechanism of the present embodiment includes a pressure reducing shaft 1, a pressure reducing arm 3 connected to the pressure reducing shaft 1, and a power source 13 connected to the pressure reducing arm 3 through a pressure reducing control circuit and a pressure reducing solenoid valve 4,
  • the decompression control circuit includes a normally closed switch 15 connected to the brake pedal 9, one end of the normally closed switch 15 is electrically connected to the power source 13, and the other end of the normally closed switch 15 is passed through a fuel pump lever of a diesel vehicle or a normally open switch 19 to which the rack 16 is coupled and the pressure reducing solenoid valve 4 Connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Valve Device For Special Equipments (AREA)

Description

一种柴油车的气缸减压机构 技术领域
本发明涉及一种减压机构, 特别是涉及一种柴油车的气缸减压机构。 背景技术
国内外早期生产的柴油机大部分都是涡流式或预燃室式的, 其优点 是工作时噪音低、 排气中的 NO含量低, 但其最大的缺点是气温低时特别 难以启动。 针对这一缺点, 很多厂家为了提高柴油机启动时的转速, 都 在柴油机的缸头上设计有气门减压机构。 当发动机低温启动时, 按下减 压手柄, 减压轴转动使得减压螺丝压在摇臂头上, 迫使进气门部分打开。 发动机转动时, 进入气缸内的空气不再受到压缩。 在启动机的驱动下, 发动机的转速很快升高, 当发动机转速达到一定时, 松开减压手柄, 使 减压机构失去减压作用, 气门恢复正常工作。 气缸内的空气在快速压缩 时, 压力和温度很快升高。 当燃油供给系统及时向缸内喷油时, 发动机 很快就能够启动。 起初减压机构是专为发动机启动便利设计的, 现在生 产的大部分单缸柴油机启动时仍使用此项技术。
近年来, 随着涡流式和预燃室式的发动机数量的减少大部分柴油机 都采用了易启动的直接喷射式燃烧方式, 气缸减压机构作为辅助发动机 启动的功能已显得不太重要, 因此在多缸直喷式柴油机上, 气缸减压机 构已被全部取消。 但是气缸减压机构安全、 节油的重要功能, 目前尚未 被发现和充分地利用。 发明内容
本发明的目的在于, 克服上述现有技术的缺陷而提供一种柴油车的 气缸减压机构。
为实现上述目的, 本发明采取以下设计方案:
一种柴油车的气缸减压机构, 包括减压轴、 与减压轴相连的减压臂 以及通过减压控制电路和减压电磁阀与所述减压臂相连的电源, 所述减 压控制电路包括与刹车踏板相连的常闭开关, 所述常闭开关的一端与所 述电源电连接, 所述常闭开关的另一端通过跟柴油车的油泵拉杆或齿条 相配合连接的常开开关与所述减压电磁阀相连。
优选地, 所述减压控制电路还包括速度继电器控制电路, 所述速度 继电器控制电路包括速度继电器、 熄火电磁阀以及速度继电器常开开关, 所述速度继电器常开开关的一端与所述常闭开关以及速度继电器相连, 所述速度继电器常开开关的另一端通过所述熄火电磁阀以及与该熄火电 磁阀相配合连接的油泵拉杆或齿条与所述常开开关相连, 所述常开开关 的一端与所述减压电磁阀电连接, 所述常开开关的另一端与所述速度继 电器以及常闭开关电连接。
进一步优选地, 所述减压控制电路还包括与所述速度继电器相连的 设定速度上限和下限的控制装置。
本发明的优点是: 本发明充分利用了气缸减压机构, 在特定的情况 下, 打开减压机构, 迫使发动机停止工作; 在断油熄火的情况下, 利用 柴油车行进时的惯性推动发动机空转。 需要正常工作时, 再使减压机构 恢复到非减压状态。 与此同时, 供给系统恢复正常工作, 在惯性力的推 动下, 柴油机又可以恢复正常工作, 如此反复, 从而达到既安全又省油 的目的。 附图说明
图 1为本发明一种实施例中发动机正常工作状态下的电路示意图; 图 2为图 1所示实施例中发动机气缸减压、 发动机不工作时的电路示 意图;
图 3为图 1所示实施例中发动机气缸不减压、 发动机不工作时的电路 示意图;
图 4为图 1所示实施例中速度继电器控制下的发动机气缸减压、 发动 机不工作时的电路示意图; 图 5为本发明另一种实施例的示意图。 具体实施方式
实施例 1 :
参见图 1至图 4, 其中示出本发明的一种优选实施例, 一种柴油车的 气缸减压机构, 包括减压轴 1、 与减压轴 1相连的减压臂 3以及通过减压 控制电路和减压电磁阀 4与所述减压臂 3相连的电源 13, 所述减压控制 电路包括与刹车踏板 9相连的常闭开关 15,所述常闭开关 15的一端与所 述电源 13电连接, 所述常闭开关 15的另一端通过跟柴油车的油泵拉杆 或齿条 16相配合连接的常开开关 19与所述减压电磁阀 4相连。 所述减 压控制电路还包括速度继电器控制电路, 所述速度继电器 14控制电路包 括速度继电器 14、 熄火电磁阀 17 以及速度继电器常开开关 18, 所述速 度继电器常开开关 18的一端与所述常闭开关 15以及速度继电器 14相连, 所述速度继电器常开开关 18的另一端通过所述熄火电磁阀 17 以及与该 熄火电磁阀 17相配合连接的油泵拉杆或齿条 16与所述常开开关 19相连, 所述常开开关 19的一端与所述减压电磁阀 4 电连接, 所述常开开关 19 的另一端与所述速度继电器 14以及常闭开关 15 电连接。 所述减压控制 电路还包括与所述速度继电器相连的设定速度上限和下限的控制装置 (图中未示出)。 在本实施例中, 本实施例的机动车气缸减压机构既可以 采用人工控制, 也可以采用自动控制。
本实施例柴油车的人工控制方法和自动控制方法
只要在减压轴 1一端安装一个供减压电磁阀 4 (或受电磁阀控制的气 动组合阀)驱动的减压臂 3, 即可对减压机构进行有效的控制。 控制减压 电磁阀 4 的通电和断电就可以使发动机处于正常工作状态, 或减压不工 作状态。 在减压电磁阀 4的工作电路中串联安装有常开开关 19以及常闭 开关 15, 常开开关 19由喷油泵拉杆或齿条 16控制, 常闭开关 15由刹车 踏板 9控制, 在减压电磁阀 4的工作电路中并联安装熄火电磁阀 17、 速 度继电器 14,其中熄火电磁阀 17安装在控制常开开关的油泵拉杆或齿条 16的另一端, 速度继电器上 14的常开触点串联在熄火电磁阀电路里。 柴油车人工控制工作原理
发动机正常工作时油泵拉杆或齿条 16不接触所述常开开关 19的常 开触点, 减压电磁阀 14因无电处于静止状态, 如图 1所示。 当柴油车运 行中遇到下列情况之一时: (1 )、 小坡下行无障碍, (2 )、 转弯, (3 )、 緩 慢减速, (4 )、 停车, (5 )、 高速行驶中有意减速, (6 )、 会车; 如果驾驶 员的脚松开油门踏板或完全脱离油门踏板, 燃油泵的调速器就会使燃油 泵瞬间停止供油, 此时油泵拉杆或齿条 16便会处于完全停油的位置, 并 且使减压电磁阀 4电路中的常开开关 19闭合, 从而接通减压电磁阀 4的 电路, 使减压电磁阀 4通电工作, 驱动减压机构打开气门减压, 此时发 动机停止工作, 同时受柴油车惯性力的驱动空转, 如图 2 所示。 当车速 降至一定时, 驾驶员用脚踩下油门踏板, 油泵拉杆或齿条脱离常开开关 19, 从而使减压电磁阀 4的电路自动断开, 减压电磁阀 4回到原始位置, 减压机构回到静止状态, 发动机又重新开始正常工作, 如图 1 所示。 如 果在减压状态下柴油车需要进一步减速, 只要踩下刹车踏板 9, 就会将电 路中的常闭开关 15强行断开, 从而切断电路使减压机构回到静止状态。 虽然此时发动机气门已恢复到正常工作状态, 但因喷油泵不供油, 发动 机仍处于不工作状态,如图 3所示。如果现在松开刹车踏板 9,不踩油门, 减压电磁阀电路自动接通, 减压电磁阀将再次驱动减压机构打开气门, 使发动机重新处于减压不工作状态, 如图 1 所示。 此种情况在下坡时经 常出现。
本实施例柴油车的自动控制工作原理
在中、 高速范围内, 驾驶员可以根据情况通过所述控制装置 (图中 未示出) 随意设定速度的上限和下限。 在设定的速度范围内, 发动机的 工作状况由减压电磁阀 4、速度继电器 14和熄火电磁阀 17进行自动控制。 例如柴油车在中、 高行驶中, 如果速度达到或超过设定的上限, 在驾驶 员不知的情况下, 速度继电器 4接受所述控制装置的信号指令开始动作, 闭合速度继电器常开开关 18,使熄火电磁阀 17的电路接通。 熄火电磁阀 17通电动作,使油泵拉杆或齿条 16迅速断油, 同时将减压电磁阀 4的电 路接通, 减压电磁阀 4动作, 使减压机构打开气门减压, 此时柴油车发 动机处在减压不工作状态, 并由柴油车的惯性力驱动空转, 如图 4所示。 柴油车继续行驶, 当车速下降至速度的下限时,速度继电器 14再次动作, 断开速度继电器常开开关 18, 使熄火电磁阀 17 电路断开, 熄火电磁阀 17断电后,迅速追回原始位置, 油泵拉杆或齿条 16迅速回到原来油量的 位置。 与此同时, 减压电路中由油泵拉杆或齿条 16控制的常开开关 19 自动断开减压电路, 减压机构迅速使发动机气门恢复正常, 发动机重新 进入正常工作状态, 如图 1 所示。 如此反复, 驾马史员在不松开油门的情 况下, 柴油车发动机始终处于正常工作状态和减压不工作状态的相互交 替中, 由此免除了驾驶员频繁操作之劳, 速度继电器不能控制的下限以 下的车速仍由驾驶员自动控制。 如果在速度继电器控制的范围内需要减 速, 驾驶员只要丟掉油门、 踩下刹车, 减压电路将因断电而使气门恢复 正常, 此时发动机处于不减压不工作状态, 如图 3所示。
从以上的实施例中可以看出, 在人工控制范围内, 只要踩下油门, 发动机必然工作, 如图 1所示; 丟掉油门, 发动机马上停止工作, 如图 2 所示; 踩下刹车, 气门虽然恢复正常, 但发动机仍不工作, 如图 3所示; 丟掉刹车, 不踩油门, 发动机重新回到减压不工作状态, 如图 2 所示。 在自动控制范围内, 转速达到速度上限时, 驾驶员不松油门, 发动机也 会停止工作, 如图 4 所示。 转速降至下限时, 发动机自动恢复工作, 如 图 1 所示。 另外不论在何种情况下, 只要踩下刹车, 发动机的气门都会 恢复到正常工作状。 实施例 2 :
参见图 5, 其中示出本发明的另一优选实施例, 本实施例与上述实施 例 1的主要区别在于, 可以只采用人工方式对本发明进行控制。
本实施例的气缸减压机构包括减压轴 1、 与减压轴 1相连的减压臂 3 以及通过减压控制电路和减压电磁阀 4与所述减压臂 3相连的电源 13, 所述减压控制电路包括与刹车踏板 9相连的常闭开关 15, 所述常闭开关 15的一端与所述电源 13电连接, 所述常闭开关 15的另一端通过跟柴油 车的油泵拉杆或齿条 16相配合连接的常开开关 19与所述减压电磁阀 4 相连。
显而易见, 本领域的普通技术人员, 可以用本发明的一种柴油车的 气缸减压机构, 构成各种类型的发动机减压机构。
上述实施例仅供说明本发明之用, 而并非是对本发明的限制, 有关 技术领域的普通技术人员, 在不脱离本发明范围的情况下, 还可以作出 各种变化和变型, 因此所有等同的技术方案也应属于本发明的范畴, 本 发明的专利保护范围应由各权利要求限定。

Claims

权 利 要 求
1、 一种柴油车的气缸减压机构, 包括减压轴 (1)、 与减压轴 (1) 相连的减压臂(3) 以及通过减压控制电路和减压电磁阀 (4) 与所述减 压臂(3)相连的电源 (13), 其特征在于: 所述减压控制电路包括与刹 车踏板 (9)相连的常闭开关 (15), 所述常闭开关 (15) 的一端与所述 电源 (13) 电连接, 所述常闭开关 (15) 的另一端通过跟柴油车的油泵 拉杆或齿条(16)相配合连接的常开开关 (19) 与所述减压电磁阀 (4) 相连。
2、 根据权利要求 1所述的气缸减压机构, 其特征在于: 所述减压控 制电路还包括速度继电器控制电路, 所述速度继电器 (14)控制电路包 括速度继电器(14)、 熄火电磁阀 (17) 以及速度继电器常开开关(18), 所述速度继电器常开开关 (18) 的一端与所述常闭开关 (15) 以及速度 继电器 (14)相连, 所述速度继电器常开开关 (18) 的另一端通过所述 熄火电磁阀 (17) 以及与该熄火电磁阀 (17)相配合连接的油泵拉杆或 齿条( 16 ) 与所述常开开关 ( 19 )相连, 所述常开开关 ( 19 ) 的一端与 所述减压电磁阀 (4) 电连接, 所述常开开关(19) 的另一端与所述速度 继电器 U4) 以及常闭开关 (I5) 电连接。
3、 根据权利要求 2所述的气缸减压机构, 其特征在于: 所述减压控 制电路还包括与所述速度继电器相连的设定速度上限和下限的控制装 置。
PCT/CN2010/072427 2009-05-04 2010-05-04 一种柴油车的气缸减压机构 WO2010127612A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009201519250U CN201412203Y (zh) 2009-05-04 2009-05-04 一种柴油车的气缸减压机构
CN200920151925.0 2009-05-04

Publications (1)

Publication Number Publication Date
WO2010127612A1 true WO2010127612A1 (zh) 2010-11-11

Family

ID=41714087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072427 WO2010127612A1 (zh) 2009-05-04 2010-05-04 一种柴油车的气缸减压机构

Country Status (2)

Country Link
CN (1) CN201412203Y (zh)
WO (1) WO2010127612A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201412203Y (zh) * 2009-05-04 2010-02-24 洪选民 一种柴油车的气缸减压机构
CN103742223A (zh) * 2013-05-31 2014-04-23 东风汽车电气有限公司 一种多缸柴油发动机减压起动系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936273A (en) * 1989-04-28 1990-06-26 Myers Vaughn D Decompression system for diesel engines
CN2319597Y (zh) * 1997-09-15 1999-05-19 粱龙有 一种多缸柴油机节油装置
CN2713145Y (zh) * 2003-09-04 2005-07-27 韩怀民 自控式汽车节油装置
CN201129217Y (zh) * 2007-11-21 2008-10-08 姜培营 柴油机停缸装置
CN201412203Y (zh) * 2009-05-04 2010-02-24 洪选民 一种柴油车的气缸减压机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936273A (en) * 1989-04-28 1990-06-26 Myers Vaughn D Decompression system for diesel engines
CN2319597Y (zh) * 1997-09-15 1999-05-19 粱龙有 一种多缸柴油机节油装置
CN2713145Y (zh) * 2003-09-04 2005-07-27 韩怀民 自控式汽车节油装置
CN201129217Y (zh) * 2007-11-21 2008-10-08 姜培营 柴油机停缸装置
CN201412203Y (zh) * 2009-05-04 2010-02-24 洪选民 一种柴油车的气缸减压机构

Also Published As

Publication number Publication date
CN201412203Y (zh) 2010-02-24

Similar Documents

Publication Publication Date Title
US4630577A (en) Stop-start device for controlling the operation of an internal combustion engine of a vehicle provided with an automatic transmission
JP4200987B2 (ja) エンジンのアイドルストップ制御装置
WO2010127612A1 (zh) 一种柴油车的气缸减压机构
JPS58210332A (ja) デイ−ゼルエンジンの燃料噴射装置
US9599088B2 (en) System for cranking internal combustion engine by engagement of pinion with ring gear
WO2010127611A1 (zh) 一种机动车的气缸减压机构
US6536850B2 (en) Method of controlling vacuum
US20110197836A1 (en) Internal combustion engine control unit
JPH10147161A (ja) 自動車の内燃機関の制御方法および装置
KR20140037706A (ko) 차량의 진동 저감장치
JPS6042205Y2 (ja) 減速時の空燃比制御装置
JPH0392550A (ja) エンジン搭載車のエキゾーストブレーキ代替装置
JPH0244578Y2 (zh)
JPS6040862Y2 (ja) 自動車用エンジンの再始動装置
JPH0435555Y2 (zh)
JPS63987Y2 (zh)
JPH0441227Y2 (zh)
JP2606942Y2 (ja) 噴射燃料遮断装置
JPS5813099Y2 (ja) 減速時燃料制御装置
JP2502301Y2 (ja) ディ―ゼルエンジンの燃料噴射装置
TW202415856A (zh) 具怠速系統開關之怠速起停控制系統之引擎控制方法
JPS6316850Y2 (zh)
KR200247110Y1 (ko) 배기 브레이크 시스템
JP3615261B2 (ja) ディーゼルエンジン
JPS6410647B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10772015

Country of ref document: EP

Kind code of ref document: A1