WO2010125924A1 - Ceramic multilayer substrate producing method - Google Patents

Ceramic multilayer substrate producing method Download PDF

Info

Publication number
WO2010125924A1
WO2010125924A1 PCT/JP2010/056738 JP2010056738W WO2010125924A1 WO 2010125924 A1 WO2010125924 A1 WO 2010125924A1 JP 2010056738 W JP2010056738 W JP 2010056738W WO 2010125924 A1 WO2010125924 A1 WO 2010125924A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ceramic layer
toner
forming
laminate
Prior art date
Application number
PCT/JP2010/056738
Other languages
French (fr)
Japanese (ja)
Inventor
一生 山元
邦男 岩越
明彦 鎌田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201080019491.4A priority Critical patent/CN102415227B/en
Priority to JP2010534704A priority patent/JP5093356B2/en
Publication of WO2010125924A1 publication Critical patent/WO2010125924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • H05K3/4667Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders characterized by using an inorganic intermediate insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/221Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
    • G03G15/224Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6582Special processing for irreversibly adding or changing the sheet copy material characteristics or its appearance, e.g. stamping, annotation printing, punching
    • G03G15/6585Special processing for irreversibly adding or changing the sheet copy material characteristics or its appearance, e.g. stamping, annotation printing, punching by using non-standard toners, e.g. transparent toner, gloss adding devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6588Apparatus which relate to the handling of copy material characterised by the copy material, e.g. postcards, large copies, multi-layered materials, coloured sheet material
    • G03G15/6591Apparatus which relate to the handling of copy material characterised by the copy material, e.g. postcards, large copies, multi-layered materials, coloured sheet material characterised by the recording material, e.g. plastic material, OHP, ceramics, tiles, textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09881Coating only between conductors, i.e. flush with the conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0517Electrographic patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1266Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by electrographic or magnetographic printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil

Definitions

  • the present invention relates to a method for manufacturing a ceramic multilayer substrate in which electrodes are formed on the front and back main surfaces, and more particularly to a method for manufacturing a ceramic multilayer substrate in which electrodes are formed using electrophotography.
  • electrophotography is known as a novel circuit forming method that replaces a wiring printing method using a screen mask.
  • This method forms an electrode pattern-like charge image (electrostatic latent image) on the surface of the photoreceptor, and electrostatically attaches electrode forming chargeable powder (electrode toner) to the electrostatic latent image.
  • An electrode pattern-like electrode toner image is transferred onto a ceramic green sheet and then fixed (for example, see Patent Document 1).
  • Patent Document 2 proposes a method for manufacturing a ceramic multilayer substrate in which not only electrode patterns but also ceramic layers are formed by electrophotography.
  • a ceramic layer is formed on a carrier member using a ceramic toner (chargeable powder for forming a ceramic layer) by electrophotography, and an electrode pattern is formed on the ceramic layer using an electrode toner by electrophotography.
  • a ceramic layer is similarly formed thereon by electrophotography, an electrode pattern and a ceramic layer are repeatedly formed according to the number of stacked layers to form a stacked body, and then the stacked body is fired.
  • the electrode toner has a structure in which, for example, conductive metal powder and a charge control agent are uniformly dispersed in a thermoplastic resin.
  • the electrode toner has a large content ratio of the conductive metal powder to the thermoplastic resin, and therefore has a larger mass than a normal OA toner.
  • the amount of the thermoplastic resin contained in the toner is small, it is extremely difficult to improve the specific charge. For this reason, only the electrostatic attraction between the electrode toner and the carrier cannot hold the electrode toner on the surface of the carrier when the developing device (development sleeve) is rotated, and the electrode toner is scattered to form a non-image portion of the photoreceptor or a ceramic green sheet. It adheres and causes image disturbance (fogging), which in turn causes the electrical characteristics of the obtained circuit to be impaired.
  • FIG. 6 shows a state in which the surface electrode 110 is formed on the green ceramic substrate 100 by electrophotography.
  • the substrate 100 is composed of two ceramic layers 101 and 102, and an internal electrode 103 is formed therebetween.
  • the fog toner 111 adheres between the surface electrodes 110, the fog toner 111 becomes a nucleus of abnormal deposition of plating when the plating is formed on the surface electrode 110 after the substrate 100 is baked.
  • the fog toner causes a short circuit between electrodes and IR deterioration.
  • migration occurs between electrodes with a potential difference, but fog toner mimics the distance between the electrodes in a pseudo manner. It encourages progress.
  • the fog toner adhered to the periphery of the surface electrode diffuses into the substrate during firing, or causes abnormal deposition due to plating, resulting in poor appearance.
  • a fifth step of forming a second outer layer ceramic layer so as to fill a region other than the back electrode on the formed layered product, and peeling the layered product formed with the second outer layer ceramic layer from the carrier member Proposes a method for producing a ceramic multilayer substrate comprising a sixth step of obtaining a ceramic multilayer substrate by firing the laminated body.
  • the second embodiment of the present invention includes a first step of forming a surface electrode on the first intermediate transfer member by electrophotography using an electrode toner, and a method other than the surface electrode on the first intermediate transfer member.
  • a second step of forming a first outer ceramic layer so as to fill the region; a third step of transferring the surface electrode and the first outer ceramic layer on the first intermediate transfer member onto a carrier member; and the carrier member A fourth step of obtaining a laminate by alternately forming inner ceramic layers and inner electrode patterns on the surface electrode and the first outer ceramic layer transferred above, and a back electrode on the second intermediate transfer member
  • the first to be formed by electrophotography A step, a seventh step in which the second outer layer ceramic layer and the back electrode formed on the second intermediate transfer body are transferred onto the laminate, and a laminate in which the second outer layer
  • the third embodiment of the present invention includes a first step of forming a first outer ceramic layer having an opening at a location where a surface electrode is to be formed on a carrier member, and a first outer layer formed on the carrier member.
  • the fourth embodiment of the present invention includes a first step of forming a surface electrode on the first intermediate transfer member by electrophotography using an electrode toner, and a method other than the surface electrode on the first intermediate transfer member.
  • a second step of forming a first outer ceramic layer so as to fill the region; a third step of transferring the surface electrode and the first outer ceramic layer on the first intermediate transfer member onto a carrier member; and the carrier member A fourth step of alternately forming inner ceramic layers and inner electrode patterns on the surface electrode and the first outer ceramic layer transferred thereon to obtain a laminated body; and a back electrode on the laminated body with electrode toner.
  • the formed laminate was peeled off from the carrier member, and a seventh step of obtaining the ceramic multilayer substrate by firing the laminate, a method for producing a ceramic multilayer substrate including.
  • the surface electrode of the ceramic multilayer substrate is formed by electrophotography, it is difficult to completely eliminate the fog toner due to the electrical characteristics of the electrode toner. Therefore, there are problems that fog toner causes short-circuit between electrodes and IR deterioration, and promotes migration.
  • the outer layer ceramic layer covers a portion other than the surface electrode so that the fog toner does not cause a short circuit between the electrodes or IR deterioration. It is a feature.
  • the ceramic layer covers it, so that abnormal deposition due to plating on the electrodes does not occur, it is possible to prevent short-circuit between electrodes and IR deterioration, and to the surface of the part Even when moisture adheres, migration is not promoted. Further, since the fog toner is not exposed on the surface of the substrate, the appearance is not deteriorated.
  • the first embodiment relates to a method of directly forming a ceramic layer and an electrode on a carrier member (direct transfer method).
  • a method of directly forming a ceramic layer and an electrode on a carrier member direct transfer method.
  • an outer layer ceramic layer is first formed, and a surface electrode is formed thereon by electrophotography, and the surface layer electrode is formed on the outer layer ceramic layer.
  • An opening is formed in advance at a location to be formed. Therefore, when the carrier member is peeled later, only the surface electrode is exposed from the outer ceramic layer, and even if the fog toner is generated around the surface electrode, the fog toner is covered with the outer ceramic layer.
  • a back electrode is first formed by electrophotography, and an outer ceramic layer is formed thereon so as to fill a region other than the back electrode. Also in this case, only the back electrode is exposed from the outer ceramic layer, and the fog toner is reliably covered with the outer ceramic layer.
  • the second embodiment relates to a method (intermediate transfer method) for transferring a ceramic layer and an electrode onto a carrier member using an intermediate transfer member.
  • a surface electrode is formed on the first intermediate transfer member by electrophotography, and an outer layer ceramic is formed so as to fill a region other than the surface electrode thereon.
  • a layer is formed, and the surface electrode and the outer ceramic layer on the first intermediate transfer member are transferred onto the carrier member. Therefore, when the carrier member is peeled later, only the surface electrode is exposed from the outer ceramic layer, and even if the fog toner is generated around the surface electrode, the fog toner is covered with the outer ceramic layer.
  • an outer ceramic layer having an opening is formed on the second intermediate transfer member, and a back electrode is formed in the opening by electrophotography, The outer ceramic layer and the back electrode are transferred onto the laminate. Also in this case, only the back electrode is exposed from the outer ceramic layer, and the fog toner is reliably covered with the outer ceramic layer.
  • the third embodiment of the present invention is a method that uses the fifth to seventh steps in the second embodiment instead of the fourth and fifth steps in the first embodiment.
  • the fourth embodiment is a method that uses the fourth and fifth steps of the first embodiment instead of the fifth to seventh steps of the second embodiment. Both methods have the same characteristics as those of the first embodiment and the second embodiment.
  • the electrode toner has a problem that the bonding strength with the ceramic substrate, that is, the electrode strength is lower than that of the conductive paste.
  • the cross section of the surface layer electrode has a trapezoidal shape (the outer peripheral portion is reversely tapered), and the outer peripheral portion of the electrode is covered with a ceramic layer. Therefore, the bonding strength between the electrode and the ceramic substrate is improved, and the electrode strength is improved.
  • the outer ceramic layer and the inner ceramic layer are desirably formed by electrophotography using a ceramic toner.
  • the manufacturing equipment can be shared, and the positioning accuracy is stabilized.
  • the outer ceramic layer and the inner ceramic layer may be formed using a ceramic green sheet.
  • the ceramic green sheet can form a dense and high-quality sheet by existing technology, so that a multilayer substrate having excellent electrical properties can be manufactured with good adhesion to the electrode formed thereon.
  • the internal electrode pattern is formed by electrophotography using electrode toner, a part of the internal electrode pattern is formed thick, and an opening is formed on the internal electrode pattern at a portion corresponding to the thick part.
  • the via may be formed by a thick portion.
  • the electrode and the via are formed differently, so that the manufacturing process becomes complicated and causes quality variations. become. Therefore, when the internal electrode pattern is formed by electrophotography, a part of the internal electrode pattern is formed thick, and an inner layer is formed on the internal electrode pattern so as to have an opening at a portion corresponding to the thick part. If the ceramic layer is formed, the via can be formed by the thick portion, and the electrode and the via can be formed by using the same electrophotographic method.
  • the front and back electrodes exposed on the front and back main surfaces of the fired laminate It is preferable to perform plating on the front and back electrodes exposed on the front and back main surfaces of the fired laminate. Since the strength of the front and back electrodes formed by electrophotography is low, the bonding strength is low when these electrodes are bonded using an external circuit and solder. Therefore, plating is performed on the front electrode and the back electrode. If fog toner adheres to the periphery of the electrode, the toner becomes the nucleus of abnormal deposition of the plating, causing short-circuit between electrodes and IR deterioration. . In the present invention, since the fog toner is covered with the outer ceramic layer, such a problem can be solved.
  • the electrode is formed by electrophotography by devising the formation order of the outer ceramic layer and the electrode and forming the opening exposing the electrode in the outer ceramic layer.
  • the fog toner can be reliably covered with the outer ceramic layer. For this reason, it is possible to prevent short-circuiting between electrodes and IR deterioration, and it is possible to suppress migration.
  • FIG. 1 shows a first embodiment of a manufacturing process of a ceramic multilayer substrate.
  • This embodiment relates to a method of directly forming a ceramic layer and an electrode on a carrier member (direct transfer method), and a method of forming both the ceramic layer and the electrode by electrophotography. Below, a manufacturing process is demonstrated according to the lamination order.
  • FIG. 1A shows a state in which an outer ceramic layer 2 is formed on a carrier member 1 by electrophotography using a ceramic toner (chargeable powder for forming a ceramic layer).
  • the carrier member 1 may be a resin film having a heat resistance equal to or higher than a fixing temperature such as a PET film, or may be a metal thin plate.
  • an opening 2a having the same size as a surface electrode to be formed later is formed.
  • An example of a specific method for forming the ceramic layer 2 is as follows. (1) Charge the photoreceptor uniformly. (2) The charged photoreceptor is irradiated with light in the form of a negative pattern on the surface layer using an LED to form a latent image. The size of the opening where the ceramic toner is not printed was 200 ⁇ m ⁇ 200 ⁇ m, which is the same size as the surface electrode pattern. (3) Apply a development bias to develop ceramic toner on the photoreceptor. (4) The pattern-developed photoconductor and the carrier PET film are stacked, and the toner is transferred to the PET film. (5) The PET film 1 to which the ceramic toner has been transferred is placed in an oven to fix the ceramic toner, and a ceramic layer 2 having an opening 2a formed on the surface electrode portion on the PET film 1 is obtained.
  • a known ceramic toner can be used.
  • ceramic powder, a charge control agent, and a thermoplastic resin are mixed at a predetermined weight ratio, and the ceramic powder and the charge control agent are uniformly dispersed in the thermoplastic resin.
  • any other ceramic toner can be used.
  • the size of the opening 2a is designed to be the same as that of the surface electrode, but it may be designed to be about 10 to 50 ⁇ m larger in consideration of printing misalignment. Even when positional deviation occurs, the surface electrode can be exposed without the surface electrode and the outer ceramic layer 2 overlapping. Further, the size of the opening 2a may be reduced by about 10 to 50 ⁇ m with respect to the surface electrode pattern in consideration of the gap with the surface electrode. There is no gap between the surface electrode and the ceramic layer, and the electrode strength does not decrease.
  • FIG. 1B shows a state in which the surface electrode 3 is formed by electrophotography on the carrier member 1 on which the outer ceramic layer 2 is formed using an electrode toner (chargeable powder for electrode formation).
  • the surface electrode 3 is filled in the opening 2 a of the outer ceramic layer 2, but the fog toner 3 a may be placed on the surface of the outer ceramic layer 2.
  • a specific example of the method for forming the surface electrode 3 is as follows. (1) Charge the photoreceptor uniformly. (2) The charged photoreceptor is irradiated with light in the form of a surface electrode pattern by an LED to form a latent image. The size of the surface electrode was 200 ⁇ m ⁇ 200 ⁇ m. (3) Apply a developing bias to develop the electrode toner on the photoreceptor. (4) The pattern-developed photoconductor and the PET film on which the ceramic layer is formed are stacked, and the electrode toner is transferred to the PET film. (5) The PET film on which the electrode toner has been transferred is placed in an oven, and the electrode toner is fixed to obtain the surface electrode 3 on the PET film.
  • a conductive metal powder and a charge control agent may be uniformly dispersed in a heat-meltable resin, or an adhesion reinforcing agent and a heat-meltable resin may be provided around the conductive metal powder. It can be arbitrarily selected, such as one having an outer wall made of
  • FIG. 1C shows a state in which the inner ceramic layer 4 is formed by electrophotography using a ceramic toner on the carrier member 1 on which the outer ceramic layer 2 and the surface electrode 3 are formed.
  • the inner ceramic layer 4 covers the entire surface and no opening is formed, but an opening for forming a via may be formed as appropriate.
  • a specific method for forming the inner ceramic layer 4 is the same as that for the outer ceramic layer 2.
  • FIG. 1D shows a state in which the internal electrode 5 is formed on the inner ceramic layer 4 by electrophotography using electrode toner.
  • the fog toner 5 a may be placed on the inner ceramic layer 4 around the inner electrode 5.
  • the internal electrode 5 may be formed with a constant thickness, in this example, a part 5b of the internal electrode 5 is formed thick.
  • the specific formation method of the internal electrode 5 is the same as that of the surface electrode 3, but in order to form the thick part 5b, after forming the internal electrode 5 by electrophotography, only the thick part 5b is formed thereon. May be formed in layers.
  • the surface electrode 3 and the internal electrode 5 are not connected. However, if the via opening is formed when the inner ceramic layer 4 is formed as described above, the inner electrode 5 is formed. It is possible to connect to the surface electrode 3 through this opening.
  • FIG. 1E shows a state in which an inner ceramic layer 6 is formed on the internal electrode 5 by using an electrophotographic method using a ceramic toner.
  • the inner ceramic layer 6 is formed so as to cover a region other than the thick part 5 b of the internal electrode 5, and an opening 6 a is formed at a position corresponding to the thick part 5 b of the internal electrode 5.
  • the thick part 5 b of the internal electrode 5 is exposed from the inner ceramic layer 6. Note that the steps (c) to (e) in FIG. 1 may be repeated as necessary for necessary layers.
  • the inner ceramic layers 4 and 6 and the inner electrode pattern 5 are repeatedly formed on necessary layers, sequentially transferred and fixed on the PET film 1 as a carrier member, and stacked.
  • a narrow gap via can be formed by transferring the ceramic layer first.
  • the via When transferring from the via first, the via may collapse when the ceramic layer is transferred, and adjacent vias may be short-circuited. However, when transferring first from the ceramic layer, the via is short-circuited because a gap is secured. Because there is nothing.
  • the diameter of the upper surface of the via which is the same layer as the wiring, becomes larger than the bottom surface, and the gap with the wiring is narrowed and the possibility of occurrence of a short circuit increases.
  • the via is formed first, the diameter of the via upper surface that becomes the same plane as the wiring is smaller than the bottom surface, and the gap with the wiring is widened, so that the occurrence of a short circuit can be suppressed.
  • FIG. 1F shows a state in which the back electrode 7 is formed on the inner ceramic layer 6 by using an electrode toner by electrophotography.
  • fog toner 7 a is generated around the back electrode 7, and this toner 7 a may be placed on the inner ceramic layer 6.
  • a part of the back electrode 7 is formed so as to be connected to the thick part 5 b of the internal electrode 5 exposed from the opening 6 a of the inner ceramic layer 6, and the thick part 5 b is connected to the back electrode 7 and the internal electrode 5. Functions as a via.
  • An example of a specific method for forming the back electrode 7 is as follows. (1) Charge the photoreceptor uniformly. (2) The charged photoconductor is irradiated with light in the form of a back electrode pattern using an LED to form a latent image. The size of the back electrode 7 was 300 ⁇ m ⁇ 300 ⁇ m. (3) Apply a developing bias to develop the electrode toner on the photoreceptor. (4) The pattern-developed photoconductor and the PET film on which the laminate is formed are stacked, and the electrode toner is transferred to the laminate. (5) The laminated body onto which the electrode toner has been transferred is placed in an oven to fix the electrode toner.
  • FIG. 1G shows a state in which the outer ceramic layer 8 is formed on the back electrode 7 using a ceramic toner by electrophotography. At this time, the outer ceramic layer 8 is formed so as to fill a region other than the back electrode 7, and the back electrode 7 is exposed from the opening 8 a of the outer ceramic layer 8.
  • An example of a specific method for forming the outer ceramic layer 8 on the back surface is as follows. (1) Charge the photoreceptor uniformly. (2) The charged photoconductor is irradiated with light in the form of a negative pattern on the back electrode with an LED to form a latent image. The size of the opening where the ceramic toner is not printed was set to 300 ⁇ m ⁇ 300 ⁇ m, which is the same size as the back electrode pattern. (3) Apply a development bias to develop ceramic toner on the photoreceptor. (4) The pattern-developed photoconductor and the PET film on which the laminate is formed are stacked, and the ceramic toner is transferred to the laminate. (5) Put the laminated body onto which the ceramic toner has been transferred into an oven to fix the ceramic toner.
  • FIG. This state is shown in FIG.
  • the surface electrode 3 of the laminate 10 is exposed from the opening 2 a of the outer ceramic layer 2, and the back electrode 7 is exposed from the opening 8 a of the outer ceramic layer 8.
  • the fog toner 3 a generated around the front electrode 3 is completely covered with the outer ceramic layer 2, and the fog toner 7 a generated around the back electrode 7 is also completely covered with the outer ceramic layer 8.
  • FIG. 1I shows the ceramic multilayer substrate 11 completed in this manner. Plating layers 12 and 13 are formed on the front electrode 3 and the back electrode 7, respectively.
  • the fog toners 3a and 7a are covered with the outer ceramic layers 2 and 8 when the plating layers 12 and 13 are formed, the fog toners 3a and 7a do not become nuclei for abnormal deposition of plating, but short between electrodes or IR deterioration. There is no risk of this. Further, when used in a high humidity environment or when moisture adheres to the surface of a component, migration occurs between electrodes having a potential difference, but the fog toners 3a and 7a are buried in the ceramic layer. Does not encourage the progress of The fog toners 3a and 7a adhering to the periphery of the surface electrodes 3 and 7 do not diffuse into the substrate during firing. Thereafter, the ceramic multilayer substrate 11 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
  • FIG. 2 is an enlarged view of the surface electrode 3 and the surrounding ceramic layer in the laminate (unfired).
  • the cross section of the surface electrode 3 has a trapezoidal shape (reverse taper) as shown in FIG. 2 and the surface electrode 3 is covered with the outer ceramic layer 2. Therefore, when fired, the bonding strength between the electrode 3 and the ceramic substrate is improved, and the electrode 3 is difficult to peel off.
  • Table 1 shows the results of comparing the frequency of occurrence of shorts between the surface electrodes and IR deterioration with the prior art.
  • the gap between the surface electrodes was designed in the range of 50 to 200 ⁇ m.
  • the conditions of the moisture resistance load test were “temperature: 85 ° C., humidity: 85%, load voltage: 12 V, test time: 500 h, 1000 h”.
  • the amount of fog toner is affected by the potential difference between the photoreceptor surface potential and the developing bias.
  • the potential difference between the photosensitive member surface potential and the developing bias was set to 200 V (the number of fog: about 20 k to 40 k pieces / cm 2 ) as the actual use value.
  • the potential difference between the photoreceptor surface potential and the developing bias was set to 200 V, which is an actual use value.
  • appearance defects such as substrate discoloration and abnormal plating deposition occur.
  • the fog toner since the fog toner is not exposed on the surface, the appearance defects were not confirmed.
  • Table 3 shows a comparison result of the electrode joint strength between the conventional structure and the present invention.
  • a jig was soldered to the electrode ( ⁇ 2 mm) after plating, and a tensile test was performed at 10 mm / s.
  • the plating conditions were Ni: 5 ⁇ m and Au: 0.1 ⁇ m.
  • the present invention improved the tensile strength by about 50%.
  • FIG. 3 shows a second embodiment of the manufacturing process of the ceramic multilayer substrate.
  • This embodiment relates to a method of transferring a ceramic layer and an electrode onto a carrier member using an intermediate transfer member (intermediate transfer method), and a method of forming both the ceramic layer and the electrode by electrophotography.
  • intermediate transfer method intermediate transfer method
  • FIG. 3A shows a state in which a surface electrode 21 is formed on an intermediate transfer member (for example, a PET film) 20 by an electrophotographic method using an electrode toner.
  • the fog toner 21 a generated in the vicinity of the surface electrode 21 is placed on the intermediate transfer member 20.
  • the formation method of the surface electrode 21 and the material of the electrode toner are the same as in the first embodiment.
  • FIG. 3B shows a state in which an outer ceramic layer 22 is formed by electrophotography using a ceramic toner on the intermediate transfer member 20 on which the surface electrode 21 is formed.
  • the outer ceramic layer 22 is formed so as to fill a region other than the surface electrode 21, and the fog toner 21 a is covered with the outer ceramic layer 22.
  • the surface electrode 21 is exposed from the opening 22 a of the outer ceramic layer 22.
  • the method for forming the ceramic layer 22 and the material of the ceramic toner are the same as in the first embodiment.
  • FIG. 3C shows a state in which the outer ceramic layer 22 and the surface electrode 21 formed on the intermediate transfer body 20 are transferred onto a carrier member (for example, a PET film) 23.
  • a carrier member for example, a PET film
  • FIG. 3D shows a state in which an inner ceramic layer 25 is formed on the intermediate transfer member 24 using a ceramic toner by an electrophotographic method.
  • the inner ceramic layer 25 is formed on the entire surface, but an opening may be formed at a via formation position as necessary.
  • FIG. 3E shows a state in which the inner ceramic layer 25 formed on the intermediate transfer body 24 is transferred onto the outer ceramic layer 22 and the surface electrode 21 formed on the carrier member 23. By the transfer of the inner ceramic layer 25, the fog toner 21a is completely covered with the ceramic layer 25.
  • FIG. 3F shows a state in which the internal electrode 27 is formed on the intermediate transfer member 26 using an electrode toner by electrophotography.
  • the fog toner 27 a generated in the vicinity of the internal electrode 27 is placed on the intermediate transfer member 26.
  • FIG. 3G shows a state in which the internal electrode 27 formed on the intermediate transfer body 26 is transferred onto the outer ceramic layer 22, the surface electrode 21, and the inner ceramic layer 25 formed on the carrier member 23. Show.
  • the fog toner 27 a is also transferred onto the ceramic layer 25 by the transfer of the internal electrode 27.
  • FIG. 3 (h) shows a state in which the inner ceramic layer 29 is formed on the intermediate transfer member 28 by using an electrophotographic method on the intermediate transfer member 28, as in FIG. 3 (d).
  • the inner ceramic layer 29 is formed on the entire surface, but an opening may be formed at a via formation portion as necessary.
  • FIG. 3 (i) shows a state where the inner ceramic layer 29 created in FIG. 3 (h) is transferred onto the carrier member 23 in the stage of FIG. 3 (g).
  • the fog toner 27 a is completely covered with the ceramic layer 29 by the transfer of the intermediate ceramic layer 29. Note that the steps (d) to (i) in FIG. 3 may be repeatedly performed according to the required number of layers.
  • FIG. 3J shows a state in which the outer ceramic layer 31 is patterned on the intermediate transfer member 30 by using an electrophotographic method using ceramic toner.
  • an opening 31a is formed at a position corresponding to a back electrode 32 described later.
  • FIG. 3K shows a state in which the back electrode 32 is formed by electrophotography using an electrode toner on the intermediate transfer body 30 on which the outer ceramic layer 31 is formed.
  • the back electrode 32 fills the opening 31 a of the outer ceramic layer 31, but the fog toner 32 a may be placed on the surface of the outer ceramic layer 31.
  • FIG. 3 (l) shows a state where the outer ceramic layer 31 and the back electrode 32 created in FIG. 3 (k) are transferred onto the carrier member 23 in the stage of FIG. 3 (i).
  • the fog toner 32 a is completely covered with the outer ceramic layer 31.
  • FIG. 3 shows a state in which a laminate (before firing) 33 is obtained by pressure-bonding the laminate prepared as described above and peeling off the carrier member 23.
  • the surface electrode 21 of the multilayer body 33 is exposed from the outer ceramic layer 22, and the back electrode 32 is exposed from the outer ceramic layer 31.
  • the fog toner 21a generated around the front electrode 21 and the fog toner 32a generated around the back electrode 32 are completely covered with the outer ceramic layers 22 and 31, respectively.
  • FIG. 3 (n) shows the ceramic multilayer substrate 34 thus completed. Plating layers 35 and 36 are formed on the front electrode 21 and the back electrode 32, respectively. Thereafter, the ceramic multilayer substrate 34 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
  • the ceramic layer and the electrode are not sequentially stacked on the carrier member by electrophotography, but are previously formed on the intermediate transfer member by electrophotography, and then the carrier member is formed. Since the image is transferred to the upper side, it is not necessary to fix it for each stacking step, and the number of heat histories can be reduced. Therefore, the difference in the number of thermal histories of each layer due to the manufacturing order is reduced, and a ceramic multilayer substrate with stable quality can be manufactured.
  • FIG. 4 shows a third embodiment of a method for producing a ceramic multilayer substrate.
  • This embodiment relates to a method of directly forming a ceramic layer and an electrode on a carrier member (direct transfer method) and using a ceramic green sheet.
  • a manufacturing process is demonstrated according to the lamination order.
  • FIG. 4A shows a state in which the outer ceramic layer 41 is patterned on the carrier member 40 using a ceramic green sheet.
  • an opening 41a having the same size as a surface electrode to be formed later is formed.
  • a method for forming the opening a known method, for example, a hole is formed by a mechanical punch, or a screen printing method can be used.
  • An example of a method for forming the outer ceramic layer 41 is as follows.
  • a material (BAS material) composed mainly of Ba, Al, and Si is used, and each material is prepared and mixed so as to have a predetermined composition, and calcined at 800-1000 ° C.
  • the calcined powder obtained in (1) is pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder.
  • An organic solvent such as toluene and echinene is added to the ceramic powder obtained in (2) and mixed.
  • a binder and a plasticizer are added and mixed to obtain a slurry.
  • the obtained slurry is molded by a doctor blade method to obtain a green sheet having a thickness of 30 ⁇ m.
  • Drill holes in the surface electrode shape on the ceramic green sheet by mechanical punch were 180 ⁇ m ⁇ 180 ⁇ m, which is 20 ⁇ m smaller than the surface electrode pattern.
  • the ceramic green sheet with punch holes is overlapped with the PET film, which is a carrier member, and pressed at 100 tons for 10 seconds to bond the green sheet and the PET film.
  • the ceramic material is not particularly limited to this material, and may be any insulating material, so other materials such as forsterite added with glass and CaZrO 3 added with glass are used. Also good.
  • FIG. 4B shows a state in which the surface electrode 42 is formed on the carrier member 40 on which the outer ceramic layer 41 is formed by using an electrode toner (chargeable powder for electrode formation) by electrophotography.
  • the surface electrode 42 is filled in the opening 41 a of the outer ceramic layer 41, but the fog toner 42 a may be placed on the surface of the outer ceramic layer 41.
  • FIG. 4C shows a state in which an inner ceramic layer 43 is laminated using a ceramic green sheet on a carrier member 40 on which an outer ceramic layer 41 and a surface electrode 42 are formed.
  • the ceramic green sheet may be formed in advance on the intermediate transfer member and transferred onto the outer ceramic layer 41.
  • FIG. 4D shows a state in which the internal electrode 44 is formed on the inner ceramic layer 43 by electrophotography using electrode toner.
  • the fog toner 44 a may be placed on the inner ceramic layer 43 around the inner electrode 44.
  • FIG. 4E shows a state in which an inner ceramic layer 45 is laminated on the inner electrode 44 using a ceramic green sheet.
  • the inner ceramic layer 45 is formed so as to cover the entire surface of the internal electrode 44, but an opening may be formed so as to expose a part of the internal electrode 44. Note that the steps (c) to (e) in FIG. 4 may be repeated as many times as necessary.
  • FIG. 4F shows a state in which the back electrode 46 is formed on the inner ceramic layer 45 using an electrode toner by electrophotography.
  • fog toner 46 a is generated around the back electrode 46, and this toner 46 a may be placed on the inner ceramic layer 45.
  • FIG. 4G shows a state in which the outer ceramic layer 47 is laminated on the back electrode 46 using a ceramic green sheet. At this time, the outer ceramic layer 47 is patterned so as to fill a region other than the back electrode 46, and the back electrode 46 is exposed from the opening 47 a of the outer ceramic layer 47.
  • An example of a method for forming the outer ceramic layer 47 by green sheet processing is as follows. (1) A hole in the shape of the back electrode is machined on the ceramic green sheet with a mechanical punch. The size of the punch hole was 280 ⁇ m ⁇ 280 ⁇ m, which is 20 ⁇ m smaller than the back electrode pattern. (2) The ceramic green sheet with punch holes is stacked on the laminate on the carrier member and pressed at 100 tons to 10 seconds to adhere the green sheet to the laminate.
  • FIG. 4H shows a state in which a laminate (before firing) 48 is obtained by pressure-bonding the laminate produced as described above and peeling off the carrier member 40.
  • the surface electrode 42 of the multilayer body 48 is exposed from the opening 41 a of the outer ceramic layer 41, and the back electrode 46 is exposed from the opening 47 a of the outer ceramic layer 47.
  • the fog toner 42a generated around the front electrode 42 and the fog toner 46a generated around the back electrode 46 are completely covered by the outer ceramic layers 41 and 47, respectively.
  • FIG. 4 shows a state in which the multilayer body 49 is obtained by firing the laminate 48 and then performing plating on the front electrode 42 and the back electrode 46.
  • Plating layers 50 and 51 are formed on the front electrode 42 and the back electrode 46, respectively.
  • the ceramic multilayer substrate 49 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
  • FIG. 5 shows a fourth embodiment of the manufacturing process of the ceramic multilayer substrate.
  • This embodiment relates to a method of transferring a ceramic layer and an electrode onto a carrier member using an intermediate transfer member (intermediate transfer method), and also to a method of using a ceramic green sheet.
  • intermediate transfer method intermediate transfer method
  • FIG. 5A shows a state in which the surface electrode 61 is formed on the intermediate transfer body 60 by electrophotography using electrode toner.
  • the fog toner 61 a generated in the vicinity of the surface electrode 61 is placed on the intermediate transfer member 60.
  • the formation method of the surface electrode 61 and the material of the electrode toner are the same as those in the first embodiment.
  • FIG. 5B shows a state in which the outer ceramic layer 62 is formed using a ceramic green sheet on the intermediate transfer member 60 on which the surface electrode 61 is formed.
  • the outer ceramic layer 62 is formed so as to fill a region other than the surface electrode 61, and the fog toner 61 a is covered with the outer ceramic layer 62.
  • the surface electrode 61 is exposed from the opening 62 a of the outer ceramic layer 62.
  • FIG. 5C shows a state in which the outer ceramic layer 62 and the surface electrode 61 formed on the intermediate transfer body 60 are transferred onto the carrier member 63.
  • the fog toner 61a is exposed on the upper surface.
  • FIG. 5D shows a state in which an inner ceramic layer 65 is laminated on the intermediate transfer member 64 using a ceramic green sheet.
  • the inner ceramic layer 65 may be formed on the entire surface, or an opening may be formed at a via formation location as necessary.
  • FIG. 5E shows a state in which the inner ceramic layer 65 formed on the intermediate transfer body 64 is transferred onto the outer ceramic layer 62 and the surface electrode 61 formed on the carrier member 63. By the transfer of the intermediate ceramic layer 65, the fog toner 61a is completely covered with the ceramic layer 65.
  • FIG. 5F shows a state in which the internal electrode 67 is formed on the intermediate transfer member 66 by electrophotography using electrode toner.
  • the fog toner 67 a generated in the vicinity of the internal electrode 67 is placed on the intermediate transfer member 66.
  • FIG. 5G shows a state in which the internal electrode 67 formed on the intermediate transfer body 66 is transferred onto the outer ceramic layer 62, the surface electrode 61, and the inner ceramic layer 65 formed on the carrier member 63. Show. By the transfer of the internal electrode 67, the fog toner 67 a is also transferred onto the ceramic layer 65.
  • FIG. 5H shows a state in which an inner ceramic layer 69 is laminated on the intermediate transfer member 68 using a ceramic green sheet, as in FIG. 5D.
  • the inner ceramic layer 69 may be formed on the entire surface, or an opening may be formed at a via formation location as necessary.
  • FIG. 5I shows a state where the inner ceramic layer 69 created in FIG. 5H is transferred onto the carrier member 63 in the stage of FIG. 5G.
  • the fog toner 67 a is completely covered with the ceramic layer 69. Note that the steps (d) to (i) in FIG. 5 may be repeatedly performed according to the required number of layers.
  • FIG. 5J shows a state in which the outer ceramic layer 71 is patterned on the intermediate transfer member 70 using a ceramic green sheet.
  • an opening 71a is formed at a position corresponding to a back electrode 72 described later.
  • FIG. 5K shows a state in which the back electrode 72 is formed by electrophotography using an electrode toner on the intermediate transfer body 70 on which the outer ceramic layer 71 is formed.
  • the back electrode 72 fills the opening 71 a of the outer ceramic layer 71, but the fog toner 72 a may be placed on the surface of the outer ceramic layer 71.
  • FIG. 5 (l) shows a state where the outer ceramic layer 71 and the back electrode 72 created in FIG. 5 (k) are transferred onto the carrier member 63 in the stage of FIG. 5 (i).
  • the fog toner 72 a is completely covered with the outer ceramic layer 71.
  • FIG. 5 shows the state which obtained the laminated body (before baking) 73 by crimping
  • the front surface electrode 61 of the multilayer body 73 is exposed from the outer ceramic layer 62
  • the back surface electrode 72 is exposed from the outer ceramic layer 71.
  • the fog toner 61a generated around the front electrode 61 and the fog toner 72a generated around the back electrode 72 are completely covered by the outer ceramic layers 62 and 71, respectively.
  • FIG. 5 shows a state in which the multilayer body 73 is obtained by firing the laminate 73 and then performing plating on the front electrode 61 and the back electrode 72, respectively.
  • Plating layers 75 and 76 are formed on the front electrode 61 and the back electrode 72, respectively.
  • the ceramic multilayer substrate 74 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
  • steps (f) to (h) in FIG. 1 steps (j) to (m) in FIG. 3 may be used, or instead of steps (j) to (m) in FIG. Steps (f) to (h) in FIG. 1 may be used.
  • steps (f) to (h) in FIG. 4 steps (j) to (m) in FIG. 5 may be used, or in place of steps (j) to (m) in FIG. Steps (f) to (h) in FIG. 4 may be used.
  • the surface electrode / back electrode and the outer ceramic layer have the same thickness and the outer surfaces thereof are flush with each other.
  • the electrode is made thicker than the outer ceramic layer and the electrode is convex.
  • the electrode may be made thinner than the outer ceramic layer, and the electrode may be recessed.
  • solder adheres also to the side surfaces of the electrodes, and the bonding surface area increases.
  • the electrode since the electrode is recessed, it is possible to prevent the electrode from being rubbed and scratched during handling or the electrode from being deformed.
  • the fog toner is not exposed on the substrate surface in the present invention, the following three problems of the prior art can be solved.
  • (1) Prevention of IR degradation between surface electrodes and promotion of migration Since there is no fog toner between surface electrodes, abnormal precipitation does not occur during plating, and migration is promoted even when moisture adheres to the part surface. There is no.
  • (2) Prevention of appearance defects Since the fog toner is not exposed on the substrate surface, it does not cause appearance defects.
  • (3) Improvement of electrode bonding strength When a surface layer electrode is formed according to the present invention, the cross section of the surface layer electrode has a trapezoidal shape (reverse taper) and the periphery of the electrode is covered with a ceramic layer. Therefore, the bonding strength between the electrode and the ceramic substrate is improved.

Abstract

When electrodes are formed on the front and back main surfaces of a ceramic multilayer substrate by xerography, faults generated by fog toner are improved. A first outer layer ceramic layer which has openings at locations in which surface electrodes should be formed is formed on a carrier member, and surface electrodes are formed in the openings of the outer layer ceramic layer by xerography, using electrode toner. Further, after a laminated body is obtained by alternately forming inner layer ceramic layers and inner electrode patterns on the first outer layer ceramic layer and the surface electrodes, back surface electrodes are formed on the laminated body by xerography, using the electrode toner. After that, a second outer layer ceramic layer is formed so as to bridge the area other than the back surface electrodes, and the laminated body is removed from the carrier member, and is sintered to obtain a ceramic multilayer substrate. Thus, the fog toner generated when the front and back surface electrodes are formed is covered by the outer layer ceramic layer. Accordingly, the short circuit between the electrodes or the deterioration of IR can be resolved.

Description

セラミック多層基板の製造方法Manufacturing method of ceramic multilayer substrate
本発明は表裏主面に電極を形成したセラミック多層基板の製造方法、特に電子写真法を用いて電極を形成するセラミック多層基板の製造方法に関するものである。 The present invention relates to a method for manufacturing a ceramic multilayer substrate in which electrodes are formed on the front and back main surfaces, and more particularly to a method for manufacturing a ceramic multilayer substrate in which electrodes are formed using electrophotography.
従来より、スクリーンマスクを用いた配線印刷法に代わる新規な回路形成法として電子写真法が知られている。この方式は、感光体の表面に電極パターン状の電荷の像(静電潜像)を形成し、その静電潜像に電極形成用荷電性粉末(電極トナー)を静電的に付着させ、電極パターン状の電極トナーによる像をセラミックグリーンシート上に転写させた後、定着させるものである(例えば特許文献1参照)。 2. Description of the Related Art Conventionally, electrophotography is known as a novel circuit forming method that replaces a wiring printing method using a screen mask. This method forms an electrode pattern-like charge image (electrostatic latent image) on the surface of the photoreceptor, and electrostatically attaches electrode forming chargeable powder (electrode toner) to the electrostatic latent image. An electrode pattern-like electrode toner image is transferred onto a ceramic green sheet and then fixed (for example, see Patent Document 1).
電極パターンだけでなく、セラミック層も電子写真法により形成するセラミック多層基板の製造方法が特許文献2により提案されている。この方法は、キャリア部材上にセラミックトナー(セラミック層形成用荷電性粉末)を用いてセラミック層を電子写真法により形成し、そのセラミック層上に電極トナーを用いて電極パターンを電子写真法により形成し、その上にセラミック層を同じく電子写真法により形成し、その積層数に応じて電極パターン及びセラミック層の形成を繰り返して積層体を形成した後、積層体を焼成するものである。 Patent Document 2 proposes a method for manufacturing a ceramic multilayer substrate in which not only electrode patterns but also ceramic layers are formed by electrophotography. In this method, a ceramic layer is formed on a carrier member using a ceramic toner (chargeable powder for forming a ceramic layer) by electrophotography, and an electrode pattern is formed on the ceramic layer using an electrode toner by electrophotography. Then, a ceramic layer is similarly formed thereon by electrophotography, an electrode pattern and a ceramic layer are repeatedly formed according to the number of stacked layers to form a stacked body, and then the stacked body is fired.
電極トナーは、例えば導電性の金属粉末と荷電制御剤とを熱可塑性樹脂中に均一分散させた構造をなしている。一般に、電極トナーは、導電性金属粉末の熱可塑性樹脂に対する含有比率が大きいため、質量が通常のOA用トナーに比べて大きい。しかも、トナー中に含有する熱可塑性樹脂量が少ないため、比電荷の向上が極めて困難である。このため、電極トナーとキャリア間の静電引力のみでは現像器(現像スリーブ)回転時にキャリア表面に電極トナーを保持できず、電極トナーが飛散して感光体の非画像部やセラミックグリーンシート上に付着し、画像乱れ(かぶり)を引き起こし、ひいては、得られた回路の電気的特性を損なう原因となっていた。 The electrode toner has a structure in which, for example, conductive metal powder and a charge control agent are uniformly dispersed in a thermoplastic resin. In general, the electrode toner has a large content ratio of the conductive metal powder to the thermoplastic resin, and therefore has a larger mass than a normal OA toner. In addition, since the amount of the thermoplastic resin contained in the toner is small, it is extremely difficult to improve the specific charge. For this reason, only the electrostatic attraction between the electrode toner and the carrier cannot hold the electrode toner on the surface of the carrier when the developing device (development sleeve) is rotated, and the electrode toner is scattered to form a non-image portion of the photoreceptor or a ceramic green sheet. It adheres and causes image disturbance (fogging), which in turn causes the electrical characteristics of the obtained circuit to be impaired.
図6は、未焼成のセラミック基板100の上に表面電極110を電子写真法で形成した様子を示す。ここでは、基板100は2層のセラミック層101,102で構成され、その間に内部電極103が形成されている。図示するように、表面電極110間にかぶりトナー111が付着していると、基板100の焼成後、表面電極110上にメッキを形成する際にかぶりトナー111がメッキの異常析出の核になり、電極間ショートやIR劣化の原因になるという問題がある。また、高湿度の環境下で使用した場合や部品表面に水分が付着した場合、電位差のある電極間ではマイグレーションが発生するが、かぶりトナーは電極間の距離を擬似的に縮めさせるため、マイグレーションの進行を助長してしまう。さらに、表面電極の周辺部に付着したかぶりトナーが焼成時に基板内に拡散したり、メッキでの異常析出を生じさせたりし、外観不良の原因になる。 FIG. 6 shows a state in which the surface electrode 110 is formed on the green ceramic substrate 100 by electrophotography. Here, the substrate 100 is composed of two ceramic layers 101 and 102, and an internal electrode 103 is formed therebetween. As shown in the figure, when the fog toner 111 adheres between the surface electrodes 110, the fog toner 111 becomes a nucleus of abnormal deposition of plating when the plating is formed on the surface electrode 110 after the substrate 100 is baked. There is a problem that it causes a short circuit between electrodes and IR deterioration. Also, when used in a high-humidity environment or when moisture adheres to the surface of a component, migration occurs between electrodes with a potential difference, but fog toner mimics the distance between the electrodes in a pseudo manner. It encourages progress. Further, the fog toner adhered to the periphery of the surface electrode diffuses into the substrate during firing, or causes abnormal deposition due to plating, resulting in poor appearance.
特開平11-251718号公報Japanese Patent Laid-Open No. 11-251718 特開平11-354371号公報JP 11-354371 A
本発明は、上述のようなかぶりトナーによる表面電極の問題を解消できるセラミック多層基板の製造方法を提供することを目的とする。 It is an object of the present invention to provide a method for manufacturing a ceramic multilayer substrate that can solve the problem of surface electrodes caused by fog toner as described above.
前記目的を達成するため、本発明の第1実施形態は、キャリア部材上に、表面電極を形成すべき箇所に開口部を持つ第1外層セラミック層を形成する第1工程と、前記キャリア部材上に形成された第1外層セラミック層の開口部に、表面電極を電極トナーを用いて電子写真法により形成する第2工程と、前記キャリア部材上の第1外層セラミック層及び表面電極上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第3工程と、前記積層体上に裏面電極を電極トナーを用いて電子写真法により形成する第4工程と、前記裏面電極を形成した前記積層体上に、当該裏面電極以外の領域を埋めるように第2外層セラミック層を形成する第5工程と、前記第2外層セラミック層を形成した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第6工程と、を含むセラミック多層基板の製造方法を提案する。 To achieve the above object, according to a first embodiment of the present invention, a first step of forming a first outer ceramic layer having an opening at a location where a surface electrode is to be formed on a carrier member; A second step of forming a surface electrode by electrophotography using an electrode toner in an opening of the first outer ceramic layer formed on the inner layer, and an inner layer on the first outer ceramic layer and the surface electrode on the carrier member. A third step of obtaining a laminate by alternately forming ceramic layers and internal electrode patterns; a fourth step of forming a back electrode on the laminate by electrophotography using an electrode toner; and the back electrode. A fifth step of forming a second outer layer ceramic layer so as to fill a region other than the back electrode on the formed layered product, and peeling the layered product formed with the second outer layer ceramic layer from the carrier member Proposes a method for producing a ceramic multilayer substrate comprising a sixth step of obtaining a ceramic multilayer substrate by firing the laminated body.
本発明の第2実施形態は、第1中間転写体上に、表面電極を電極トナーを用いて電子写真法により形成する第1工程と、前記第1中間転写体上に、前記表面電極以外の領域を埋めるように、第1外層セラミック層を形成する第2工程と、前記第1中間転写体上の表面電極及び第1外層セラミック層をキャリア部材上に転写する第3工程と、前記キャリア部材上に転写された表面電極及び第1外層セラミック層上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第4工程と、第2中間転写体上に、裏面電極を形成すべき箇所に開口部を持つ第2外層セラミック層を形成する第5工程と、前記第2中間転写体上に形成された第2外層セラミック層の開口部に、裏面電極を電極トナーを用いて電子写真法により形成する第6工程と、前記第2中間転写体上に形成された第2外層セラミック層及び裏面電極を、前記積層体上に転写する第7工程と、前記第2外層セラミック層及び裏面電極を転写した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第8工程と、を含むセラミック多層基板の製造方法を提案する。 The second embodiment of the present invention includes a first step of forming a surface electrode on the first intermediate transfer member by electrophotography using an electrode toner, and a method other than the surface electrode on the first intermediate transfer member. A second step of forming a first outer ceramic layer so as to fill the region; a third step of transferring the surface electrode and the first outer ceramic layer on the first intermediate transfer member onto a carrier member; and the carrier member A fourth step of obtaining a laminate by alternately forming inner ceramic layers and inner electrode patterns on the surface electrode and the first outer ceramic layer transferred above, and a back electrode on the second intermediate transfer member A fifth step of forming a second outer layer ceramic layer having an opening at a position to be formed, and an electrode toner as a back electrode in the opening of the second outer layer ceramic layer formed on the second intermediate transfer member The first to be formed by electrophotography A step, a seventh step in which the second outer layer ceramic layer and the back electrode formed on the second intermediate transfer body are transferred onto the laminate, and a laminate in which the second outer layer ceramic layer and the back electrode are transferred. And a eighth step of obtaining a ceramic multilayer substrate by firing the laminate, and proposing a ceramic multilayer substrate.
本発明の第3実施形態は、キャリア部材上に、表面電極を形成すべき箇所に開口部を持つ第1外層セラミック層を形成する第1工程と、前記キャリア部材上に形成された第1外層セラミック層の開口部に、表面電極を電極トナーを用いて電子写真法により形成する第2工程と、前記キャリア部材上の第1外層セラミック層及び表面電極上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第3工程と、中間転写体上に、裏面電極を形成すべき箇所に開口部を持つ第2外層セラミック層を形成する第4工程と、前記中間転写体上に形成された第2外層セラミック層の開口部に、裏面電極を電極トナーを用いて電子写真法により形成する第5工程と、前記中間転写体上に形成された第2外層セラミック層及び裏面電極を、前記積層体上に転写する第6工程と、前記第2外層セラミック層及び裏面電極を転写した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第7工程と、を含むセラミック多層基板の製造方法である。 The third embodiment of the present invention includes a first step of forming a first outer ceramic layer having an opening at a location where a surface electrode is to be formed on a carrier member, and a first outer layer formed on the carrier member. A second step of forming a surface electrode in an opening of the ceramic layer by electrophotography using an electrode toner; an inner ceramic layer and an internal electrode pattern on the first outer ceramic layer and the surface electrode on the carrier member; A third step of obtaining a laminated body by alternately forming, a fourth step of forming a second outer ceramic layer having an opening at a position where a back electrode is to be formed on the intermediate transfer member, and the intermediate transfer member A fifth step of forming a back electrode by electrophotography using an electrode toner in an opening of the second outer layer ceramic layer formed thereon; a second outer layer ceramic layer formed on the intermediate transfer member; and a back surface Electrodes A sixth step of transferring onto the laminate, and a seventh step of obtaining a ceramic multilayer substrate by peeling the laminate transferred with the second outer ceramic layer and the back electrode from the carrier member and firing the laminate. And a method for producing a ceramic multilayer substrate.
本発明の第4実施形態は、第1中間転写体上に、表面電極を電極トナーを用いて電子写真法により形成する第1工程と、前記第1中間転写体上に、前記表面電極以外の領域を埋めるように、第1外層セラミック層を形成する第2工程と、前記第1中間転写体上の表面電極及び第1外層セラミック層をキャリア部材上に転写する第3工程と、前記キャリア部材上に転写された表面電極及び第1外層セラミック層上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第4工程と、前記積層体上に裏面電極を電極トナーを用いて電子写真法により形成する第5工程と、前記裏面電極を形成した前記積層体上に、当該裏面電極以外の領域を埋めるように第2外層セラミック層を形成する第6工程と、前記第2外層セラミック層を形成した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第7工程と、を含むセラミック多層基板の製造方法である。 The fourth embodiment of the present invention includes a first step of forming a surface electrode on the first intermediate transfer member by electrophotography using an electrode toner, and a method other than the surface electrode on the first intermediate transfer member. A second step of forming a first outer ceramic layer so as to fill the region; a third step of transferring the surface electrode and the first outer ceramic layer on the first intermediate transfer member onto a carrier member; and the carrier member A fourth step of alternately forming inner ceramic layers and inner electrode patterns on the surface electrode and the first outer ceramic layer transferred thereon to obtain a laminated body; and a back electrode on the laminated body with electrode toner. And a sixth step of forming a second outer ceramic layer so as to fill a region other than the back electrode on the laminated body on which the back electrode is formed, 2 outer ceramic layers The formed laminate was peeled off from the carrier member, and a seventh step of obtaining the ceramic multilayer substrate by firing the laminate, a method for producing a ceramic multilayer substrate including.
セラミック多層基板の表面電極を電子写真法で形成する場合、電極トナーの電気的特性のために、かぶりトナーの発生を完全に無くすことは難しい。そのため、かぶりトナーが電極間ショートやIR劣化の原因になったり、マイグレーションを助長させるという問題がある。本発明では、表面電極の形成時にかぶりトナーが発生していても、そのかぶりトナーが電極間ショートやIR劣化等の原因にならないように、外層セラミック層で表面電極以外の部位をカバーすることを特徴としている。表面電極間にかぶりトナーがあっても、その上をセラミック層がカバーしているため、電極上のメッキでの異常析出は発生せず、電極間ショートやIR劣化を防止できると共に、部品表面に水分が付着した場合でもマイグレーションが促進されることはない。また、基板表面にかぶりトナーが露出しないので、外観不良にもならない。 When the surface electrode of the ceramic multilayer substrate is formed by electrophotography, it is difficult to completely eliminate the fog toner due to the electrical characteristics of the electrode toner. Therefore, there are problems that fog toner causes short-circuit between electrodes and IR deterioration, and promotes migration. In the present invention, even if fog toner is generated during the formation of the surface electrode, the outer layer ceramic layer covers a portion other than the surface electrode so that the fog toner does not cause a short circuit between the electrodes or IR deterioration. It is a feature. Even if there is fog toner between the surface electrodes, the ceramic layer covers it, so that abnormal deposition due to plating on the electrodes does not occur, it is possible to prevent short-circuit between electrodes and IR deterioration, and to the surface of the part Even when moisture adheres, migration is not promoted. Further, since the fog toner is not exposed on the surface of the substrate, the appearance is not deteriorated.
第1実施形態は、キャリア部材上にセラミック層と電極とを直接形成する方法(直接転写法)に関する。セラミック多層基板の表面側(キャリア部材との接触面側)については、まず外層セラミック層を形成し、その上に表面電極を電子写真法で形成するものであり、外層セラミック層には表面電極を形成すべき箇所に予め開口部が形成されている。そのため、後でキャリア部材を剥離したとき、表面電極だけが外層セラミック層から露出し、表面電極の周囲にかぶりトナーが発生していても、かぶりトナーは外層セラミック層で覆われる。一方、セラミック多層基板の裏面側については、まず裏面電極を電子写真法で形成し、その上に裏面電極以外の領域を埋めるように外層セラミック層を形成する。この場合も、裏面電極だけが外層セラミック層から露出し、かぶりトナーは外層セラミック層で確実に覆われる。 The first embodiment relates to a method of directly forming a ceramic layer and an electrode on a carrier member (direct transfer method). On the surface side of the ceramic multilayer substrate (contact surface side with the carrier member), an outer layer ceramic layer is first formed, and a surface electrode is formed thereon by electrophotography, and the surface layer electrode is formed on the outer layer ceramic layer. An opening is formed in advance at a location to be formed. Therefore, when the carrier member is peeled later, only the surface electrode is exposed from the outer ceramic layer, and even if the fog toner is generated around the surface electrode, the fog toner is covered with the outer ceramic layer. On the other hand, for the back side of the ceramic multilayer substrate, a back electrode is first formed by electrophotography, and an outer ceramic layer is formed thereon so as to fill a region other than the back electrode. Also in this case, only the back electrode is exposed from the outer ceramic layer, and the fog toner is reliably covered with the outer ceramic layer.
第2実施形態は、中間転写体を用いてキャリア部材上にセラミック層と電極とを転写する方法(中間転写法)に関する。セラミック多層基板の表面側(キャリア部材との接触面側)については、まず第1中間転写体上に表面電極を電子写真法で形成し、その上に表面電極以外の領域を埋めるように外層セラミック層を形成し、第1中間転写体上の表面電極及び外層セラミック層をキャリア部材上に転写する。そのため、後でキャリア部材を剥離したとき、表面電極だけが外層セラミック層から露出し、表面電極の周囲にかぶりトナーが発生していても、かぶりトナーは外層セラミック層で覆われる。一方、セラミック多層基板の裏面側については、まず第2中間転写体上に開口部を持つ外層セラミック層を形成し、その開口部に裏面電極を電子写真法で形成し、第2中間転写体上の外層セラミック層と裏面電極とを積層体上に転写する。この場合も、裏面電極だけが外層セラミック層から露出し、かぶりトナーは外層セラミック層で確実に覆われる。 The second embodiment relates to a method (intermediate transfer method) for transferring a ceramic layer and an electrode onto a carrier member using an intermediate transfer member. For the surface side of the ceramic multilayer substrate (contact surface side with the carrier member), first, a surface electrode is formed on the first intermediate transfer member by electrophotography, and an outer layer ceramic is formed so as to fill a region other than the surface electrode thereon. A layer is formed, and the surface electrode and the outer ceramic layer on the first intermediate transfer member are transferred onto the carrier member. Therefore, when the carrier member is peeled later, only the surface electrode is exposed from the outer ceramic layer, and even if the fog toner is generated around the surface electrode, the fog toner is covered with the outer ceramic layer. On the other hand, for the back side of the ceramic multilayer substrate, first, an outer ceramic layer having an opening is formed on the second intermediate transfer member, and a back electrode is formed in the opening by electrophotography, The outer ceramic layer and the back electrode are transferred onto the laminate. Also in this case, only the back electrode is exposed from the outer ceramic layer, and the fog toner is reliably covered with the outer ceramic layer.
本発明の第3実施形態は、第1実施形態における第4工程及び第5工程に代えて、第2実施形態における第5工程~第7工程を用いた方法である。第4実施形態は、第2実施形態の第5工程~第7工程に代えて、第1実施形態の第4工程及び第5工程を用いた方法である。いずれの方法も、第1実施形態及び第2実施形態と同様の特徴を持つ。 The third embodiment of the present invention is a method that uses the fifth to seventh steps in the second embodiment instead of the fourth and fifth steps in the first embodiment. The fourth embodiment is a method that uses the fourth and fifth steps of the first embodiment instead of the fifth to seventh steps of the second embodiment. Both methods have the same characteristics as those of the first embodiment and the second embodiment.
一般に、電極トナーは導電ペーストに比べて、セラミック基板との接合強度、つまり電極強度が低いという問題がある。これに対し、本発明の方法で表層電極を形成した場合、表層電極の断面は台形状(外周部が逆テーパ状)になり、その電極の外周部をセラミック層で覆った形になる。そのため、電極とセラミック基板の接合強度が向上し、電極強度が向上する。 In general, the electrode toner has a problem that the bonding strength with the ceramic substrate, that is, the electrode strength is lower than that of the conductive paste. On the other hand, when the surface layer electrode is formed by the method of the present invention, the cross section of the surface layer electrode has a trapezoidal shape (the outer peripheral portion is reversely tapered), and the outer peripheral portion of the electrode is covered with a ceramic layer. Therefore, the bonding strength between the electrode and the ceramic substrate is improved, and the electrode strength is improved.
外層セラミック層及び内層セラミック層を、セラミックトナーを用いて電子写真法により形成するのが望ましい。この場合には、セラミック層の形成方法として、表面電極及び裏面電極の形成方法と同じ電子写真法を用いるため、製造設備を共用化でき、かつ位置決め精度が安定する。 The outer ceramic layer and the inner ceramic layer are desirably formed by electrophotography using a ceramic toner. In this case, since the same electrophotographic method as the method for forming the front surface electrode and the back surface electrode is used as the method for forming the ceramic layer, the manufacturing equipment can be shared, and the positioning accuracy is stabilized.
外層セラミック層及び内層セラミック層を、セラミックグリーンシートを用いて形成してもよい。セラミックグリーンシートは既存技術により緻密で高品質なシートを形成できるので、その上に形成される電極との密着性がよく、電気特性の優れた多層基板を製造できる。 The outer ceramic layer and the inner ceramic layer may be formed using a ceramic green sheet. The ceramic green sheet can form a dense and high-quality sheet by existing technology, so that a multilayer substrate having excellent electrical properties can be manufactured with good adhesion to the electrode formed thereon.
内部電極パターンを電極トナーを用いて電子写真法により形成すると共に、内部電極パターンの一部を厚肉に形成し、内部電極パターンの上に、厚肉部と対応する部位に開口部を持つように内層セラミック層を形成することにより、厚肉部でビアを構成してもよい。セラミック多層基板の内部電極パターン同士、及び表裏電極と内部電極パターンとの間を相互に接続する必要があるが、その接続のためにビアが用いられる。電子写真法を用いて電極を形成する従来の多層基板の製造方法において、ビアの形成は既存の方法(例えばレーザー加工と導電ペースト充填との組み合わせ)を用いていることが多い。しかし、内部電極及び表面電極を電子写真法で形成し、ビアを既存の方法で形成する場合には、電極とビアとが異なる形成方法となるので、製造工程が複雑になり、品質ばらつきの原因になる。そこで、内部電極パターンを電子写真法で形成する場合に、内部電極パターンの一部を厚肉に形成し、内部電極パターンの上に、厚肉部と対応する部位に開口部を持つように内層セラミック層を形成すれば、厚肉部でビアを構成でき、同じ電子写真法を用いて電極とビアとを形成できる。 The internal electrode pattern is formed by electrophotography using electrode toner, a part of the internal electrode pattern is formed thick, and an opening is formed on the internal electrode pattern at a portion corresponding to the thick part. By forming an inner ceramic layer, the via may be formed by a thick portion. Although it is necessary to mutually connect the internal electrode patterns of the ceramic multilayer substrate and between the front and back electrodes and the internal electrode patterns, vias are used for the connection. In conventional multilayer substrate manufacturing methods in which electrodes are formed using electrophotography, vias are often formed using an existing method (for example, a combination of laser processing and conductive paste filling). However, when the internal electrode and the surface electrode are formed by electrophotography and the via is formed by an existing method, the electrode and the via are formed differently, so that the manufacturing process becomes complicated and causes quality variations. become. Therefore, when the internal electrode pattern is formed by electrophotography, a part of the internal electrode pattern is formed thick, and an inner layer is formed on the internal electrode pattern so as to have an opening at a portion corresponding to the thick part. If the ceramic layer is formed, the via can be formed by the thick portion, and the electrode and the via can be formed by using the same electrophotographic method.
焼成された積層体の表裏主面に露出している表面電極及び裏面電極上にめっき処理を施すのがよい。電子写真法で形成した表裏面電極は強度が低いので、これら電極を外部回路と半田などを用いて接合した場合に、接合強度が低くなる。そこで、表面電極及び裏面電極上にめっき処理を施すが、電極の周囲にかぶりトナーが付着していると、これらトナーがメッキの異常析出の核になり、電極間ショートやIR劣化の原因になる。本発明では、かぶりトナーが外層セラミック層で覆われているので、このような問題を解消できる。 It is preferable to perform plating on the front and back electrodes exposed on the front and back main surfaces of the fired laminate. Since the strength of the front and back electrodes formed by electrophotography is low, the bonding strength is low when these electrodes are bonded using an external circuit and solder. Therefore, plating is performed on the front electrode and the back electrode. If fog toner adheres to the periphery of the electrode, the toner becomes the nucleus of abnormal deposition of the plating, causing short-circuit between electrodes and IR deterioration. . In the present invention, since the fog toner is covered with the outer ceramic layer, such a problem can be solved.
以上のように、本発明によれば、外層セラミック層と電極との形成順序を工夫すると共に、外層セラミック層に電極を露出させる開口部を形成することにより、電極を電子写真法で形成する場合のかぶりトナーを外層セラミック層によって確実に覆うことができる。そのため、電極間ショートやIR劣化を防止できると共に、マイグレーションの促進を抑制することができる。 As described above, according to the present invention, the electrode is formed by electrophotography by devising the formation order of the outer ceramic layer and the electrode and forming the opening exposing the electrode in the outer ceramic layer. The fog toner can be reliably covered with the outer ceramic layer. For this reason, it is possible to prevent short-circuiting between electrodes and IR deterioration, and it is possible to suppress migration.
本発明に係るセラミック多層基板の製造方法を示す第1実施形態の工程図である。It is process drawing of 1st Embodiment which shows the manufacturing method of the ceramic multilayer substrate concerning this invention. 第1実施形態の製造方法により作製された積層体の一部拡大図である。It is a partial enlarged view of the laminated body produced by the manufacturing method of 1st Embodiment. 本発明に係るセラミック多層基板の製造方法を示す第2実施形態の工程図である。It is process drawing of 2nd Embodiment which shows the manufacturing method of the ceramic multilayer substrate concerning this invention. 本発明に係るセラミック多層基板の製造方法を示す第3実施形態の工程図である。It is process drawing of 3rd Embodiment which shows the manufacturing method of the ceramic multilayer substrate concerning this invention. 本発明に係るセラミック多層基板の製造方法を示す第4実施形態の工程図である。It is process drawing of 4th Embodiment which shows the manufacturing method of the ceramic multilayer substrate concerning this invention. 従来のセラミック多層基板の表面電極を形成した状態を断面図である。It is sectional drawing in the state in which the surface electrode of the conventional ceramic multilayer substrate was formed.
以下に、本発明の好ましい実施の形態を図面に基づいて説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
-第1実施形態-
図1は、セラミック多層基板の製造工程の第1実施形態を示す。この実施形態は、キャリア部材上にセラミック層と電極とを直接形成する方法(直接転写法)であって、セラミック層と電極の両方を電子写真法により形成する方法に関する。以下に、製造工程をその積層順序にしたがって説明する。
-First embodiment-
FIG. 1 shows a first embodiment of a manufacturing process of a ceramic multilayer substrate. This embodiment relates to a method of directly forming a ceramic layer and an electrode on a carrier member (direct transfer method), and a method of forming both the ceramic layer and the electrode by electrophotography. Below, a manufacturing process is demonstrated according to the lamination order.
図1の(a)は、キャリア部材1の上に、セラミックトナー(セラミック層形成用荷電性粉末)を用いて外層セラミック層2を電子写真法により形成した状態を示す。キャリア部材1としては、PETフィルムのような定着温度以上の耐熱性のある樹脂フィルムであってもよいし、金属薄板であってもよい。外層セラミック層2には、後で形成される表面電極と同じサイズの開口部2aが形成されている。 FIG. 1A shows a state in which an outer ceramic layer 2 is formed on a carrier member 1 by electrophotography using a ceramic toner (chargeable powder for forming a ceramic layer). The carrier member 1 may be a resin film having a heat resistance equal to or higher than a fixing temperature such as a PET film, or may be a metal thin plate. In the outer ceramic layer 2, an opening 2a having the same size as a surface electrode to be formed later is formed.
セラミック層2の具体的な形成方法の一例は次の通りである。
(1) 感光体を一様に帯電させる。
(2) 帯電した感光体にLEDにて表層のネガパターン状に光を照射し、潜像を形成する。セラミックトナーが印刷されない開口部分のサイズは、表面電極パターンと同サイズの200μm×200μmとした。
(3) 現像バイアスをかけ、感光体上にセラミックトナーを現像する。
(4) パターンが現像された感光体とキャリア部材であるPETフィルムを重ね、トナーをPETフィルムに転写する。
(5) セラミックトナーが転写されたPETフィルム1をオーブンに入れセラミックトナーを定着させ、PETフィルム1上に表面電極部分に開口部2aが形成されたセラミック層2を得る。
An example of a specific method for forming the ceramic layer 2 is as follows.
(1) Charge the photoreceptor uniformly.
(2) The charged photoreceptor is irradiated with light in the form of a negative pattern on the surface layer using an LED to form a latent image. The size of the opening where the ceramic toner is not printed was 200 μm × 200 μm, which is the same size as the surface electrode pattern.
(3) Apply a development bias to develop ceramic toner on the photoreceptor.
(4) The pattern-developed photoconductor and the carrier PET film are stacked, and the toner is transferred to the PET film.
(5) The PET film 1 to which the ceramic toner has been transferred is placed in an oven to fix the ceramic toner, and a ceramic layer 2 having an opening 2a formed on the surface electrode portion on the PET film 1 is obtained.
なお、セラミックトナーは公知のものを使用できる。例えば特許文献2に記載のように、セラミック粉末と荷電制御剤と熱可塑性樹脂とを所定の重量比で混合し、セラミック粉末と荷電制御剤を熱可塑性樹脂中に均一分散させたものを使用してもよいし、その他の任意のセラミックトナーを使用できる。 A known ceramic toner can be used. For example, as described in Patent Document 2, ceramic powder, a charge control agent, and a thermoplastic resin are mixed at a predetermined weight ratio, and the ceramic powder and the charge control agent are uniformly dispersed in the thermoplastic resin. Alternatively, any other ceramic toner can be used.
開口部2aのサイズは表面電極と同サイズに設計したが、印刷ズレを考慮して10~50μm程度大きめに設計してもよい。位置ズレが発生した場合でも表面電極と外層セラミック層2とが重なることなく、表面電極を露出させることができる。また、開口部2aのサイズは表面電極との隙間を考慮し、表面電極パターンに対して10~50μm程度小さくしても構わない。表面電極とセラミック層の間に隙間が発生することがなく電極強度が低下しない。 The size of the opening 2a is designed to be the same as that of the surface electrode, but it may be designed to be about 10 to 50 μm larger in consideration of printing misalignment. Even when positional deviation occurs, the surface electrode can be exposed without the surface electrode and the outer ceramic layer 2 overlapping. Further, the size of the opening 2a may be reduced by about 10 to 50 μm with respect to the surface electrode pattern in consideration of the gap with the surface electrode. There is no gap between the surface electrode and the ceramic layer, and the electrode strength does not decrease.
図1の(b)は、外層セラミック層2を形成したキャリア部材1の上に、電極トナー(電極形成用荷電性粉末)を用いて表面電極3を電子写真法により形成した状態を示す。ここで、表面電極3は外層セラミック層2の開口部2aに充填されるが、かぶりトナー3aが外層セラミック層2の表面に載ることがある。 FIG. 1B shows a state in which the surface electrode 3 is formed by electrophotography on the carrier member 1 on which the outer ceramic layer 2 is formed using an electrode toner (chargeable powder for electrode formation). Here, the surface electrode 3 is filled in the opening 2 a of the outer ceramic layer 2, but the fog toner 3 a may be placed on the surface of the outer ceramic layer 2.
表面電極3の形成方法の具体的な一例は次の通りである。
(1) 感光体を一様に帯電させる。
(2) 帯電した感光体にLEDにて表層電極のパターン状に光を照射し、潜像を形成する。表面電極のサイズは200μm×200μmとした。
(3) 現像バイアスをかけ、感光体上に電極トナーを現像する。
(4) パターンが現像された感光体とセラミック層が形成されているPETフィルムを重ね、電極トナーをPETフィルムに転写する。
(5) 電極トナーが転写されたPETフィルムをオーブンに入れ、電極トナーを定着させてPETフィルム上に表面電極3を得る。
A specific example of the method for forming the surface electrode 3 is as follows.
(1) Charge the photoreceptor uniformly.
(2) The charged photoreceptor is irradiated with light in the form of a surface electrode pattern by an LED to form a latent image. The size of the surface electrode was 200 μm × 200 μm.
(3) Apply a developing bias to develop the electrode toner on the photoreceptor.
(4) The pattern-developed photoconductor and the PET film on which the ceramic layer is formed are stacked, and the electrode toner is transferred to the PET film.
(5) The PET film on which the electrode toner has been transferred is placed in an oven, and the electrode toner is fixed to obtain the surface electrode 3 on the PET film.
電極トナーは公知のものを使用できる。例えば特許文献1に記載のように、導電性金属粉末と荷電制御剤とを熱溶融性樹脂中に均一分散させたものでもよいし、導電性金属粉末の周囲に接着強化剤及び熱溶融性樹脂からなる外壁を形成したものなど、任意に選択できる。 Known electrode toners can be used. For example, as described in Patent Document 1, a conductive metal powder and a charge control agent may be uniformly dispersed in a heat-meltable resin, or an adhesion reinforcing agent and a heat-meltable resin may be provided around the conductive metal powder. It can be arbitrarily selected, such as one having an outer wall made of
図1の(c)は、外層セラミック層2と表面電極3とを形成したキャリア部材1の上に、セラミックトナーを用いて内層セラミック層4を電子写真法により形成した状態を示す。なお、内層セラミック層4は全面を覆っており、開口部が形成されていないが、適宜ビア形成のための開口部を形成してもよい。内層セラミック層4の具体的形成方法は、外層セラミック層2と同様である。 FIG. 1C shows a state in which the inner ceramic layer 4 is formed by electrophotography using a ceramic toner on the carrier member 1 on which the outer ceramic layer 2 and the surface electrode 3 are formed. The inner ceramic layer 4 covers the entire surface and no opening is formed, but an opening for forming a via may be formed as appropriate. A specific method for forming the inner ceramic layer 4 is the same as that for the outer ceramic layer 2.
図1の(d)は、内層セラミック層4の上に、電極トナーを用いて内部電極5を電子写真法により形成した状態を示す。ここで、内部電極5の周囲にはかぶりトナー5aが内層セラミック層4の上に載ることがある。内部電極5は一定の厚みに形成してもよいが、この例では内部電極5の一部5bを厚肉に形成してある。この内部電極5の具体的形成方法は、表面電極3と同様であるが、厚肉部5bを形成するために、内部電極5を電子写真法により形成した後、その上に厚肉部5bのみを重ねて形成してもよい。図1の(d)では表面電極3と内部電極5とが接続されていないが、前述のように内層セラミック層4の形成時にビア用開口部を形成しておけば、内部電極5の形成時にこの開口部を介して表面電極3と接続することが可能である。 FIG. 1D shows a state in which the internal electrode 5 is formed on the inner ceramic layer 4 by electrophotography using electrode toner. Here, the fog toner 5 a may be placed on the inner ceramic layer 4 around the inner electrode 5. Although the internal electrode 5 may be formed with a constant thickness, in this example, a part 5b of the internal electrode 5 is formed thick. The specific formation method of the internal electrode 5 is the same as that of the surface electrode 3, but in order to form the thick part 5b, after forming the internal electrode 5 by electrophotography, only the thick part 5b is formed thereon. May be formed in layers. In FIG. 1D, the surface electrode 3 and the internal electrode 5 are not connected. However, if the via opening is formed when the inner ceramic layer 4 is formed as described above, the inner electrode 5 is formed. It is possible to connect to the surface electrode 3 through this opening.
図1の(e)は、内部電極5の上に、セラミックトナーを用いて内層セラミック層6を電子写真法により形成した状態を示す。内層セラミック層6は、内部電極5の厚肉部5b以外の領域を覆うように形成され、内部電極5の厚肉部5bに対応する位置に開口部6aが形成されている。内部電極5の厚肉部5bが内層セラミック層6から露出している。なお、図1の(c)~(e)の工程は、必要な層について適宜繰り返し実施すればよい。 FIG. 1E shows a state in which an inner ceramic layer 6 is formed on the internal electrode 5 by using an electrophotographic method using a ceramic toner. The inner ceramic layer 6 is formed so as to cover a region other than the thick part 5 b of the internal electrode 5, and an opening 6 a is formed at a position corresponding to the thick part 5 b of the internal electrode 5. The thick part 5 b of the internal electrode 5 is exposed from the inner ceramic layer 6. Note that the steps (c) to (e) in FIG. 1 may be repeated as necessary for necessary layers.
内層セラミック層4,6及び内部電極パターン5の形成は必要な層について繰り返し実施し、キャリア部材であるPETフィルム1上に逐次転写および定着し、重ねていく。上下層を導通するビアを形成する場合に、セラミック層を先に転写すると、狭ギャップのビアを形成することができる。ビアから先に転写した場合、セラミック層の転写時にビアが崩れて、隣接するビア同士がショートする可能性があるが、セラミック層から先に転写すると、ギャップが確保されるためにビアがショートすることがないからである。一方、配線とのギャップが狭いビアを形成する場合、セラミック部の前にビアを形成する方が望ましい。セラミック部から形成すると、配線と同一層になるビア上面の径は底面に比べて大きくなり、配線とのギャップが狭くなりショートが発生する可能性が高くなる。それに対し、ビアから先に形成すると、配線と同一面になるビア上面の径は底面よりも小さくなり、配線とのギャップが広くなるためショートの発生を抑えることができるからである。 The inner ceramic layers 4 and 6 and the inner electrode pattern 5 are repeatedly formed on necessary layers, sequentially transferred and fixed on the PET film 1 as a carrier member, and stacked. In the case of forming vias for conducting the upper and lower layers, a narrow gap via can be formed by transferring the ceramic layer first. When transferring from the via first, the via may collapse when the ceramic layer is transferred, and adjacent vias may be short-circuited. However, when transferring first from the ceramic layer, the via is short-circuited because a gap is secured. Because there is nothing. On the other hand, when forming a via having a narrow gap with the wiring, it is desirable to form the via before the ceramic portion. When formed from a ceramic portion, the diameter of the upper surface of the via, which is the same layer as the wiring, becomes larger than the bottom surface, and the gap with the wiring is narrowed and the possibility of occurrence of a short circuit increases. On the other hand, if the via is formed first, the diameter of the via upper surface that becomes the same plane as the wiring is smaller than the bottom surface, and the gap with the wiring is widened, so that the occurrence of a short circuit can be suppressed.
図1の(f)は、内層セラミック層6の上に、電極トナーを用いて裏面電極7を電子写真法により形成した状態を示す。ここで、裏面電極7の周囲にはかぶりトナー7aが発生し、このトナー7aが内層セラミック層6の上に載ることがある。なお、一部の裏面電極7は、内層セラミック層6の開口部6aから露出する内部電極5の厚肉部5bと接続するように形成され、厚肉部5bが裏面電極7と内部電極5とを接続するビアとして機能している。 FIG. 1F shows a state in which the back electrode 7 is formed on the inner ceramic layer 6 by using an electrode toner by electrophotography. Here, fog toner 7 a is generated around the back electrode 7, and this toner 7 a may be placed on the inner ceramic layer 6. A part of the back electrode 7 is formed so as to be connected to the thick part 5 b of the internal electrode 5 exposed from the opening 6 a of the inner ceramic layer 6, and the thick part 5 b is connected to the back electrode 7 and the internal electrode 5. Functions as a via.
裏面電極7の具体的形成方法の一例は次の通りである。
(1) 感光体を一様に帯電させる。
(2) 帯電した感光体にLEDにて裏面電極のパターン状に光を照射し、潜像を形成する。裏面電極7のサイズは300μm×300μmとした。
(3) 現像バイアスをかけ、感光体上に電極トナーを現像する。
(4) パターンが現像された感光体と積層体が形成されているPETフィルムを重ね、電極トナーを積層体に転写する。
(5) 電極トナーが転写された積層体をオーブンに入れ、電極トナーを定着させる。
An example of a specific method for forming the back electrode 7 is as follows.
(1) Charge the photoreceptor uniformly.
(2) The charged photoconductor is irradiated with light in the form of a back electrode pattern using an LED to form a latent image. The size of the back electrode 7 was 300 μm × 300 μm.
(3) Apply a developing bias to develop the electrode toner on the photoreceptor.
(4) The pattern-developed photoconductor and the PET film on which the laminate is formed are stacked, and the electrode toner is transferred to the laminate.
(5) The laminated body onto which the electrode toner has been transferred is placed in an oven to fix the electrode toner.
図1の(g)は、裏面電極7の上に、セラミックトナーを用いて外層セラミック層8を電子写真法により形成した状態を示す。このとき、外層セラミック層8は、裏面電極7以外の領域を埋めるように形成され、裏面電極7は外層セラミック層8の開口部8aから露出している。 FIG. 1G shows a state in which the outer ceramic layer 8 is formed on the back electrode 7 using a ceramic toner by electrophotography. At this time, the outer ceramic layer 8 is formed so as to fill a region other than the back electrode 7, and the back electrode 7 is exposed from the opening 8 a of the outer ceramic layer 8.
裏面の外層セラミック層8の具体的形成方法の一例は次の通りである。
(1) 感光体を一様に帯電させる。
(2) 帯電した感光体にLEDにて裏面電極のネガパターン状に光を照射し、潜像を形成する。セラミックトナーが印刷されない開口部分のサイズは裏面電極パターンと同サイズの300μm×300μmとした。
(3) 現像バイアスをかけ、感光体上にセラミックトナーを現像する。
(4) パターンが現像された感光体と積層体が形成されているPETフィルムを重ね、セラミックトナーを積層体に転写する。
(5) セラミックトナーが転写された積層体をオーブンに入れ、セラミックトナーを定着させる。
An example of a specific method for forming the outer ceramic layer 8 on the back surface is as follows.
(1) Charge the photoreceptor uniformly.
(2) The charged photoconductor is irradiated with light in the form of a negative pattern on the back electrode with an LED to form a latent image. The size of the opening where the ceramic toner is not printed was set to 300 μm × 300 μm, which is the same size as the back electrode pattern.
(3) Apply a development bias to develop ceramic toner on the photoreceptor.
(4) The pattern-developed photoconductor and the PET film on which the laminate is formed are stacked, and the ceramic toner is transferred to the laminate.
(5) Put the laminated body onto which the ceramic toner has been transferred into an oven to fix the ceramic toner.
上述のようにして積層体を作成した後、この積層体を圧着し、キャリア部材1を剥離することで、積層体(焼成前)10を得る。この状態を図1の(h)に示す。積層体10の表面電極3は外層セラミック層2の開口部2aから露出しており、裏面電極7は外層セラミック層8の開口部8aから露出している。表面電極3の周囲に発生したかぶりトナー3aは外層セラミック層2によって完全に覆われており、裏面電極7の周囲に発生したかぶりトナー7aも外層セラミック層8によって完全に覆われている。 After producing a laminated body as mentioned above, this laminated body is crimped | bonded, and the laminated body (before baking) 10 is obtained by peeling the carrier member 1. FIG. This state is shown in FIG. The surface electrode 3 of the laminate 10 is exposed from the opening 2 a of the outer ceramic layer 2, and the back electrode 7 is exposed from the opening 8 a of the outer ceramic layer 8. The fog toner 3 a generated around the front electrode 3 is completely covered with the outer ceramic layer 2, and the fog toner 7 a generated around the back electrode 7 is also completely covered with the outer ceramic layer 8.
上述のように積層体10を作成した後、焼成を行うことで、各トナーに含まれる樹脂成分が消失し、各セラミック層及び電極が焼結し、電極が相互に電気的に導通してセラミック多層基板11を得る。セラミック多層基板11の表裏面に露出している表面電極3及び裏面電極7上にはそれぞれめっき処理が施され、外部電極となる。図1の(i)はこのようにして完成したセラミック多層基板11を示す。表面電極3及び裏面電極7の上にはそれぞれめっき層12,13が形成されている。めっき層12,13の形成時、かぶりトナー3a,7aは外層セラミック層2,8によって覆われているので、かぶりトナー3a,7aがメッキの異常析出の核にならず、電極間ショートやIR劣化の原因になるおそれがない。また、高湿度の環境下で使用した場合や部品表面に水分が付着した場合、電位差のある電極間ではマイグレーションが発生するが、かぶりトナー3a,7aはセラミック層内に埋没しているので、マイグレーションの進行を助長することがない。表面電極3,7の周辺部に付着したかぶりトナー3a,7aが焼成時に基板内に拡散することもない。その後、セラミック多層基板11は図示しない配線基板などに実装され、子基板に分割される。 After the laminate 10 is formed as described above, firing is performed, so that the resin component contained in each toner disappears, each ceramic layer and the electrode are sintered, and the electrodes are electrically connected to each other. A multilayer substrate 11 is obtained. The front surface electrode 3 and the back surface electrode 7 exposed on the front and back surfaces of the ceramic multilayer substrate 11 are each subjected to a plating process to become external electrodes. FIG. 1I shows the ceramic multilayer substrate 11 completed in this manner. Plating layers 12 and 13 are formed on the front electrode 3 and the back electrode 7, respectively. Since the fog toners 3a and 7a are covered with the outer ceramic layers 2 and 8 when the plating layers 12 and 13 are formed, the fog toners 3a and 7a do not become nuclei for abnormal deposition of plating, but short between electrodes or IR deterioration. There is no risk of this. Further, when used in a high humidity environment or when moisture adheres to the surface of a component, migration occurs between electrodes having a potential difference, but the fog toners 3a and 7a are buried in the ceramic layer. Does not encourage the progress of The fog toners 3a and 7a adhering to the periphery of the surface electrodes 3 and 7 do not diffuse into the substrate during firing. Thereafter, the ceramic multilayer substrate 11 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
図2は、積層体(未焼成)における表面電極3とその周囲のセラミック層との拡大図である。上述の工程で表層電極3を形成した場合、表面電極3の断面は図2に示すように台形状(逆テーパ)になり、表面電極3の周囲を外層セラミック層2で覆った形になる。そのため、焼成したとき、電極3とセラミック基板の接合強度が向上し、電極3が剥離しにくくなる。 FIG. 2 is an enlarged view of the surface electrode 3 and the surrounding ceramic layer in the laminate (unfired). When the surface layer electrode 3 is formed in the above-described process, the cross section of the surface electrode 3 has a trapezoidal shape (reverse taper) as shown in FIG. 2 and the surface electrode 3 is covered with the outer ceramic layer 2. Therefore, when fired, the bonding strength between the electrode 3 and the ceramic substrate is improved, and the electrode 3 is difficult to peel off.
本発明の効果を確認するために、表面電極間のショートやIR劣化の発生頻度を従来技術と比較した結果を表1に示す。表層電極間ギャップは50~200μmの範囲で設計した。耐湿負荷試験の条件は「温度:85℃、湿度:85%、負荷電圧:12V、試験時間:500h、1000h」とした。また、かぶりトナーの量は、感光体表面電位と現像バイアス間の電位差に影響される。現実のかぶりトナー量を再現するために、感光体表面電位と現像バイアス間の電位差は実使用値の200V(かぶり数:約20k~40k個/cm2)とした。 In order to confirm the effect of the present invention, Table 1 shows the results of comparing the frequency of occurrence of shorts between the surface electrodes and IR deterioration with the prior art. The gap between the surface electrodes was designed in the range of 50 to 200 μm. The conditions of the moisture resistance load test were “temperature: 85 ° C., humidity: 85%, load voltage: 12 V, test time: 500 h, 1000 h”. Further, the amount of fog toner is affected by the potential difference between the photoreceptor surface potential and the developing bias. In order to reproduce the actual amount of fog toner, the potential difference between the photosensitive member surface potential and the developing bias was set to 200 V (the number of fog: about 20 k to 40 k pieces / cm 2 ) as the actual use value.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1から明らかなように、従来技術では初期ショートおよび負荷試験でのIR劣化が発生したが、本発明においては不良は発生しなかった。 As is clear from Table 1, in the prior art, the initial short circuit and the IR deterioration in the load test occurred, but no defect occurred in the present invention.
従来構造と本発明での外観不良の比較結果(□5mmの商品サンプル、n=300個分)を表2に示す。感光体表面電位と現像バイアス間の電位差は実使用値の200Vとした。従来構造では、基板変色やメッキ異常析出などの外観不良が発生するが、本発明ではかぶりトナーが表面に露出していないため、外観不良は確認されなかった。 Table 2 shows the comparison results of the appearance defects in the conventional structure and the present invention (□ 5 mm product sample, n = 300 pieces). The potential difference between the photoreceptor surface potential and the developing bias was set to 200 V, which is an actual use value. In the conventional structure, appearance defects such as substrate discoloration and abnormal plating deposition occur. However, in the present invention, since the fog toner is not exposed on the surface, the appearance defects were not confirmed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
さらに、従来構造と本発明での電極接合強度の比較結果を表3に示す。めっき後の電極(□2mm)に冶具を半田付けし、10mm/sで引張り試験を行った。めっき条件はNi:5μm、Au:0.1μmとした。従来技術と比較し本発明では、引張り強度が約50%向上した。 Further, Table 3 shows a comparison result of the electrode joint strength between the conventional structure and the present invention. A jig was soldered to the electrode (□ 2 mm) after plating, and a tensile test was performed at 10 mm / s. The plating conditions were Ni: 5 μm and Au: 0.1 μm. Compared to the prior art, the present invention improved the tensile strength by about 50%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
-第2実施形態-
図3は、セラミック多層基板の製造工程の第2実施形態を示す。この実施形態は、中間転写体を用いてキャリア部材上にセラミック層と電極とを転写する方法(中間転写法)であって、セラミック層と電極の両方を電子写真法により形成する方法に関する。以下に、製造工程をその積層順序にしたがって説明する。
-Second Embodiment-
FIG. 3 shows a second embodiment of the manufacturing process of the ceramic multilayer substrate. This embodiment relates to a method of transferring a ceramic layer and an electrode onto a carrier member using an intermediate transfer member (intermediate transfer method), and a method of forming both the ceramic layer and the electrode by electrophotography. Below, a manufacturing process is demonstrated according to the lamination order.
図3の(a)は、中間転写体(例えばPETフィルム)20の上に、電極トナーを用いて表面電極21を電子写真法により形成した状態を示す。ここで、表面電極21の近傍に発生したかぶりトナー21aは、中間転写体20上に載っている。表面電極21の形成方法及び電極トナーの材質は第1実施形態と同様である。 FIG. 3A shows a state in which a surface electrode 21 is formed on an intermediate transfer member (for example, a PET film) 20 by an electrophotographic method using an electrode toner. Here, the fog toner 21 a generated in the vicinity of the surface electrode 21 is placed on the intermediate transfer member 20. The formation method of the surface electrode 21 and the material of the electrode toner are the same as in the first embodiment.
図3の(b)は、表面電極21を形成した中間転写体20の上に、セラミックトナーを用いて外層セラミック層22を電子写真法により形成した状態を示す。外層セラミック層22は、表面電極21以外の領域を埋めるように形成され、かぶりトナー21aは外層セラミック層22で覆われる。表面電極21は外層セラミック層22の開口部22aから露出している。セラミック層22の形成方法及びセラミックトナーの材質は第1実施形態と同様である。 FIG. 3B shows a state in which an outer ceramic layer 22 is formed by electrophotography using a ceramic toner on the intermediate transfer member 20 on which the surface electrode 21 is formed. The outer ceramic layer 22 is formed so as to fill a region other than the surface electrode 21, and the fog toner 21 a is covered with the outer ceramic layer 22. The surface electrode 21 is exposed from the opening 22 a of the outer ceramic layer 22. The method for forming the ceramic layer 22 and the material of the ceramic toner are the same as in the first embodiment.
図3の(c)は、中間転写体20上に形成した外層セラミック層22と表面電極21とを、キャリア部材(例えばPETフィルム)23の上に転写した状態を示す。ここで、外層セラミック層22と表面電極21とは表裏反転するため、かぶりトナー21aは表面に露出することになる。 FIG. 3C shows a state in which the outer ceramic layer 22 and the surface electrode 21 formed on the intermediate transfer body 20 are transferred onto a carrier member (for example, a PET film) 23. Here, since the outer ceramic layer 22 and the surface electrode 21 are reversed, the fog toner 21a is exposed on the surface.
図3の(d)は、中間転写体24の上に、セラミックトナーを用いて内層セラミック層25を電子写真法により形成した状態を示す。この内層セラミック層25では全面に形成してあるが、必要に応じてビア形成箇所に開口部を形成してもよい。 FIG. 3D shows a state in which an inner ceramic layer 25 is formed on the intermediate transfer member 24 using a ceramic toner by an electrophotographic method. The inner ceramic layer 25 is formed on the entire surface, but an opening may be formed at a via formation position as necessary.
図3の(e)は、キャリア部材23上に形成された外層セラミック層22及び表面電極21上に、中間転写体24上に形成された内層セラミック層25を転写した状態を示す。内層セラミック層25の転写によって、かぶりトナー21aはセラミック層25で完全に覆われる。 FIG. 3E shows a state in which the inner ceramic layer 25 formed on the intermediate transfer body 24 is transferred onto the outer ceramic layer 22 and the surface electrode 21 formed on the carrier member 23. By the transfer of the inner ceramic layer 25, the fog toner 21a is completely covered with the ceramic layer 25.
図3の(f)は、中間転写体26の上に、電極トナーを用いて内部電極27を電子写真法により形成した状態を示す。ここで、内部電極27の近傍に発生したかぶりトナー27aが中間転写体26上に載っている。 FIG. 3F shows a state in which the internal electrode 27 is formed on the intermediate transfer member 26 using an electrode toner by electrophotography. Here, the fog toner 27 a generated in the vicinity of the internal electrode 27 is placed on the intermediate transfer member 26.
図3の(g)は、キャリア部材23上に形成された外層セラミック層22、表面電極21、内層セラミック層25の上に、中間転写体26上に形成された内部電極27を転写した状態を示す。内部電極27の転写によって、かぶりトナー27aもセラミック層25の上に転写される。 FIG. 3G shows a state in which the internal electrode 27 formed on the intermediate transfer body 26 is transferred onto the outer ceramic layer 22, the surface electrode 21, and the inner ceramic layer 25 formed on the carrier member 23. Show. The fog toner 27 a is also transferred onto the ceramic layer 25 by the transfer of the internal electrode 27.
図3の(h)は、図3の(d)と同様に、中間転写体28の上にセラミックトナーを用いて内層セラミック層29を電子写真法により形成した状態を示す。この内層セラミック層29では全面に形成されているが、必要に応じてビア形成箇所に開口部を形成してもよい。 FIG. 3 (h) shows a state in which the inner ceramic layer 29 is formed on the intermediate transfer member 28 by using an electrophotographic method on the intermediate transfer member 28, as in FIG. 3 (d). The inner ceramic layer 29 is formed on the entire surface, but an opening may be formed at a via formation portion as necessary.
図3の(i)は、図3の(g)の段階にあるキャリア部材23上に、図3の(h)で作成した内層セラミック層29を転写した状態を示す。中間セラミック層29の転写によって、かぶりトナー27aはセラミック層29で完全に覆われる。なお、図3の(d)~(i)の工程は、必要な層数に応じて繰り返し実施すればよい。 FIG. 3 (i) shows a state where the inner ceramic layer 29 created in FIG. 3 (h) is transferred onto the carrier member 23 in the stage of FIG. 3 (g). The fog toner 27 a is completely covered with the ceramic layer 29 by the transfer of the intermediate ceramic layer 29. Note that the steps (d) to (i) in FIG. 3 may be repeatedly performed according to the required number of layers.
図3の(j)は、中間転写体30の上に、セラミックトナーを用いて外層セラミック層31を電子写真法によりパターン形成した状態を示す。この外層セラミック層31には、後述する裏面電極32と対応する位置に開口部31aが形成されている。 FIG. 3J shows a state in which the outer ceramic layer 31 is patterned on the intermediate transfer member 30 by using an electrophotographic method using ceramic toner. In the outer ceramic layer 31, an opening 31a is formed at a position corresponding to a back electrode 32 described later.
図3の(k)は、外層セラミック層31を形成した中間転写体30の上に、電極トナーを用いて裏面電極32を電子写真法により形成した状態を示す。ここで、裏面電極32は外層セラミック層31の開口部31aに充填されるが、かぶりトナー32aが外層セラミック層31の表面に載ることがある。 FIG. 3K shows a state in which the back electrode 32 is formed by electrophotography using an electrode toner on the intermediate transfer body 30 on which the outer ceramic layer 31 is formed. Here, the back electrode 32 fills the opening 31 a of the outer ceramic layer 31, but the fog toner 32 a may be placed on the surface of the outer ceramic layer 31.
図3の(l)は、図3の(i)の段階にあるキャリア部材23上に、図3の(k)で作成した外層セラミック層31及び裏面電極32を転写した状態を示す。外層セラミック層31の転写によって、かぶりトナー32aは外層セラミック層31で完全に覆われる。 FIG. 3 (l) shows a state where the outer ceramic layer 31 and the back electrode 32 created in FIG. 3 (k) are transferred onto the carrier member 23 in the stage of FIG. 3 (i). By the transfer of the outer ceramic layer 31, the fog toner 32 a is completely covered with the outer ceramic layer 31.
図3の(m)は、上述のように作成した積層体を圧着し、キャリア部材23を剥離することで、積層体(焼成前)33を得た状態を示す。積層体33の表面電極21は外層セラミック層22から露出しており、裏面電極32は外層セラミック層31から露出している。表面電極21の周囲に発生したかぶりトナー21a及び裏面電極32の周囲に発生したかぶりトナー32aは、それぞれ外層セラミック層22、31によって完全に覆われている。 (M) of FIG. 3 shows a state in which a laminate (before firing) 33 is obtained by pressure-bonding the laminate prepared as described above and peeling off the carrier member 23. The surface electrode 21 of the multilayer body 33 is exposed from the outer ceramic layer 22, and the back electrode 32 is exposed from the outer ceramic layer 31. The fog toner 21a generated around the front electrode 21 and the fog toner 32a generated around the back electrode 32 are completely covered with the outer ceramic layers 22 and 31, respectively.
上述のように積層体33を作成した後、焼成を行うことで、各トナーに含まれる樹脂成分が消失し、各セラミック層及び電極が焼結し、電極が相互に電気的に導通してセラミック多層基板34を得る。その後、セラミック多層基板34の表裏面に露出している表面電極21及び裏面電極32上にはそれぞれめっき処理が施され、外部電極となる。図3の(n)はこのようにして完成したセラミック多層基板34を示す。表面電極21及び裏面電極32の上にはそれぞれめっき層35,36が形成されている。その後、セラミック多層基板34は図示しない配線基板などに実装され、子基板に分割される。 After the laminate 33 is formed as described above, firing is performed, so that the resin component contained in each toner disappears, each ceramic layer and electrode are sintered, and the electrodes are electrically connected to each other. A multilayer substrate 34 is obtained. Thereafter, the surface electrode 21 and the back electrode 32 exposed on the front and back surfaces of the ceramic multilayer substrate 34 are each subjected to a plating process to become external electrodes. FIG. 3 (n) shows the ceramic multilayer substrate 34 thus completed. Plating layers 35 and 36 are formed on the front electrode 21 and the back electrode 32, respectively. Thereafter, the ceramic multilayer substrate 34 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
第2実施形態の製造方法では、キャリア部材の上にセラミック層と電極とを電子写真法により順次積み重ねるのではなく、予め中間転写体の上に電子写真法により形成した上で、これをキャリア部材上に転写するため、1回の積層工程毎に定着させる必要がなく、熱履歴の回数を少なくできる。そのため、製造順序による各層の熱履歴回数の差が少なくなり、品質の安定したセラミック多層基板を作製できる。 In the manufacturing method of the second embodiment, the ceramic layer and the electrode are not sequentially stacked on the carrier member by electrophotography, but are previously formed on the intermediate transfer member by electrophotography, and then the carrier member is formed. Since the image is transferred to the upper side, it is not necessary to fix it for each stacking step, and the number of heat histories can be reduced. Therefore, the difference in the number of thermal histories of each layer due to the manufacturing order is reduced, and a ceramic multilayer substrate with stable quality can be manufactured.
-第3実施形態-
図4は、セラミック多層基板の製造方法の第3実施形態を示す。この実施形態は、キャリア部材上にセラミック層と電極とを直接形成する方法(直接転写法)であって、しかもセラミックグリーンシートを用いる方法に関する。以下に、製造工程をその積層順序にしたがって説明する。
-Third embodiment-
FIG. 4 shows a third embodiment of a method for producing a ceramic multilayer substrate. This embodiment relates to a method of directly forming a ceramic layer and an electrode on a carrier member (direct transfer method) and using a ceramic green sheet. Below, a manufacturing process is demonstrated according to the lamination order.
図4の(a)は、キャリア部材40の上に、セラミックグリーンシートを用いて外層セラミック層41をパターン形成した状態を示す。外層セラミック層41には、後で形成される表面電極と同じサイズの開口部41aが形成されている。開口部の形成方法としては公知の方法、例えばメカパンチによって穴を形成したり、スクリーン印刷法を用いることができる。 FIG. 4A shows a state in which the outer ceramic layer 41 is patterned on the carrier member 40 using a ceramic green sheet. In the outer ceramic layer 41, an opening 41a having the same size as a surface electrode to be formed later is formed. As a method for forming the opening, a known method, for example, a hole is formed by a mechanical punch, or a screen printing method can be used.
外層セラミック層41の形成方法の一例は、次の通りである。
(1) セラミック材料にはBa、Al、Siを中心とした組成からなる材料(BAS材)を用い、各素材を所定の組成になるよう調合、混合し、800-1000℃で仮焼する。
(2)(1)で得られた仮焼粉末をジルコニアボールミルで12時間粉砕し、セラミック粉末を得る。
(3)(2)で得られたセラミック粉末に、トルエン・エキネンなどの有機溶媒を加え混合する。さらにバインダー、可塑剤を加え混合しスラリーを得る。
(4) 得られたスラリーをドクターブレード法により成形し、厚さ30μmのグリーンシートを得る。
(5) セラミックグリーンシートにメカパンチにより表面電極形状の穴を加工する。パンチ穴のサイズは、表面電極パターンより20μm小さい180μm×180μmとした。
(6) パンチ穴が加工されたセラミックグリーンシートをキャリア部材であるPETフィルムと重ね、100トン-10秒でプレスし、グリーンシートとPETフィルムを接着させる。
なお、セラミック材料は特に本材料に限定されるものでなく、絶縁性のものであればよいため、フォルステライトにガラスを加えたものやCaZrO3にガラスを加えたものなど他のものを用いてもよい。
An example of a method for forming the outer ceramic layer 41 is as follows.
(1) As the ceramic material, a material (BAS material) composed mainly of Ba, Al, and Si is used, and each material is prepared and mixed so as to have a predetermined composition, and calcined at 800-1000 ° C.
(2) The calcined powder obtained in (1) is pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder.
(3) An organic solvent such as toluene and echinene is added to the ceramic powder obtained in (2) and mixed. Furthermore, a binder and a plasticizer are added and mixed to obtain a slurry.
(4) The obtained slurry is molded by a doctor blade method to obtain a green sheet having a thickness of 30 μm.
(5) Drill holes in the surface electrode shape on the ceramic green sheet by mechanical punch. The size of the punch hole was 180 μm × 180 μm, which is 20 μm smaller than the surface electrode pattern.
(6) The ceramic green sheet with punch holes is overlapped with the PET film, which is a carrier member, and pressed at 100 tons for 10 seconds to bond the green sheet and the PET film.
The ceramic material is not particularly limited to this material, and may be any insulating material, so other materials such as forsterite added with glass and CaZrO 3 added with glass are used. Also good.
図4の(b)は、外層セラミック層41を形成したキャリア部材40の上に、電極トナー(電極形成用荷電性粉末)を用いて表面電極42を電子写真法により形成した状態を示す。ここで、表面電極42は外層セラミック層41の開口部41aに充填されるが、かぶりトナー42aが外層セラミック層41の表面に載ることがある。 FIG. 4B shows a state in which the surface electrode 42 is formed on the carrier member 40 on which the outer ceramic layer 41 is formed by using an electrode toner (chargeable powder for electrode formation) by electrophotography. Here, the surface electrode 42 is filled in the opening 41 a of the outer ceramic layer 41, but the fog toner 42 a may be placed on the surface of the outer ceramic layer 41.
図4の(c)は、外層セラミック層41と表面電極42とを形成したキャリア部材40の上に、セラミックグリーンシートを用いて内層セラミック層43を積層した状態を示す。セラミックグリーンシートは、予め中間転写体上に形成しておき、これを外層セラミック層41上に転写してもよい。 FIG. 4C shows a state in which an inner ceramic layer 43 is laminated using a ceramic green sheet on a carrier member 40 on which an outer ceramic layer 41 and a surface electrode 42 are formed. The ceramic green sheet may be formed in advance on the intermediate transfer member and transferred onto the outer ceramic layer 41.
図4の(d)は、内層セラミック層43の上に、電極トナーを用いて内部電極44を電子写真法により形成した状態を示す。ここで、内部電極44の周囲にはかぶりトナー44aが内層セラミック層43の上に載ることがある。 FIG. 4D shows a state in which the internal electrode 44 is formed on the inner ceramic layer 43 by electrophotography using electrode toner. Here, the fog toner 44 a may be placed on the inner ceramic layer 43 around the inner electrode 44.
図4の(e)は、内部電極44の上に、セラミックグリーンシートを用いて内層セラミック層45を積層した状態を示す。内層セラミック層45は、内部電極44の全面を覆うように形成されているが、内部電極44の一部を露出させるように開口部を形成してもよい。なお、図4の(c)~(e)の工程は、必要な層数分だけ繰り返し実施すればよい。 FIG. 4E shows a state in which an inner ceramic layer 45 is laminated on the inner electrode 44 using a ceramic green sheet. The inner ceramic layer 45 is formed so as to cover the entire surface of the internal electrode 44, but an opening may be formed so as to expose a part of the internal electrode 44. Note that the steps (c) to (e) in FIG. 4 may be repeated as many times as necessary.
図4の(f)は、内層セラミック層45の上に、電極トナーを用いて裏面電極46を電子写真法により形成した状態を示す。ここで、裏面電極46の周囲にはかぶりトナー46aが発生し、このトナー46aが内層セラミック層45の上に載ることがある。 FIG. 4F shows a state in which the back electrode 46 is formed on the inner ceramic layer 45 using an electrode toner by electrophotography. Here, fog toner 46 a is generated around the back electrode 46, and this toner 46 a may be placed on the inner ceramic layer 45.
図4の(g)は、裏面電極46の上に、セラミックグリーンシートを用いて外層セラミック層47を積層した状態を示す。このとき、外層セラミック層47は、裏面電極46以外の領域を埋めるようにパターン形成され、裏面電極46は外層セラミック層47の開口部47aから露出している。 FIG. 4G shows a state in which the outer ceramic layer 47 is laminated on the back electrode 46 using a ceramic green sheet. At this time, the outer ceramic layer 47 is patterned so as to fill a region other than the back electrode 46, and the back electrode 46 is exposed from the opening 47 a of the outer ceramic layer 47.
グリーンシート加工による外層セラミック層47の形成方法の一例は次の通りである。
(1) セラミックグリーンシートにメカパンチにより裏面電極形状の穴を加工する。パンチ穴のサイズは裏面電極パターンより20μm小さい280μm×280μmとした。
(2) パンチ穴が加工されたセラミックグリーンシートをキャリア部材上の積層体に重ね、100トン-10秒でプレスし、グリーンシートを積層体に接着させる。
An example of a method for forming the outer ceramic layer 47 by green sheet processing is as follows.
(1) A hole in the shape of the back electrode is machined on the ceramic green sheet with a mechanical punch. The size of the punch hole was 280 μm × 280 μm, which is 20 μm smaller than the back electrode pattern.
(2) The ceramic green sheet with punch holes is stacked on the laminate on the carrier member and pressed at 100 tons to 10 seconds to adhere the green sheet to the laminate.
図4の(h)は、上述のようにして作製した積層体を圧着し、キャリア部材40を剥離することで、積層体(焼成前)48を得た状態を示す。積層体48の表面電極42は外層セラミック層41の開口部41aから露出しており、裏面電極46は外層セラミック層47の開口部47aから露出している。表面電極42の周囲に発生したかぶりトナー42aと、裏面電極46の周囲に発生したかぶりトナー46aは、それぞれ外層セラミック層41、47によって完全に覆われている。 FIG. 4H shows a state in which a laminate (before firing) 48 is obtained by pressure-bonding the laminate produced as described above and peeling off the carrier member 40. The surface electrode 42 of the multilayer body 48 is exposed from the opening 41 a of the outer ceramic layer 41, and the back electrode 46 is exposed from the opening 47 a of the outer ceramic layer 47. The fog toner 42a generated around the front electrode 42 and the fog toner 46a generated around the back electrode 46 are completely covered by the outer ceramic layers 41 and 47, respectively.
図4の(i)は、積層体48を焼成した後、表面電極42及び裏面電極46上にそれぞれめっき処理を施してセラミック多層基板49を得た状態を示す。表面電極42及び裏面電極46の上にはそれぞれめっき層50,51が形成されている。その後、セラミック多層基板49は図示しない配線基板などに実装され、子基板に分割される。 (I) of FIG. 4 shows a state in which the multilayer body 49 is obtained by firing the laminate 48 and then performing plating on the front electrode 42 and the back electrode 46. Plating layers 50 and 51 are formed on the front electrode 42 and the back electrode 46, respectively. Thereafter, the ceramic multilayer substrate 49 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
-第4実施形態-
図5は、セラミック多層基板の製造工程の第4実施形態を示す。この実施形態は、中間転写体を用いてキャリア部材上にセラミック層と電極とを転写する方法(中間転写法)であって、しかもセラミックグリーンシートを用いる方法に関する。以下に、製造工程をその積層順序にしたがって説明する。
-Fourth embodiment-
FIG. 5 shows a fourth embodiment of the manufacturing process of the ceramic multilayer substrate. This embodiment relates to a method of transferring a ceramic layer and an electrode onto a carrier member using an intermediate transfer member (intermediate transfer method), and also to a method of using a ceramic green sheet. Below, a manufacturing process is demonstrated according to the lamination order.
図5の(a)は、中間転写体60の上に、電極トナーを用いて表面電極61を電子写真法により形成した状態を示す。ここで、表面電極61の近傍に発生したかぶりトナー61aは、中間転写体60上に載っている。表面電極61の形成方法及び電極トナーの材質は第1実施形態と同様である。 FIG. 5A shows a state in which the surface electrode 61 is formed on the intermediate transfer body 60 by electrophotography using electrode toner. Here, the fog toner 61 a generated in the vicinity of the surface electrode 61 is placed on the intermediate transfer member 60. The formation method of the surface electrode 61 and the material of the electrode toner are the same as those in the first embodiment.
図5の(b)は、表面電極61を形成した中間転写体60の上に、セラミックグリーンシートを用いて外層セラミック層62を形成した状態を示す。外層セラミック層62は、表面電極61以外の領域を埋めるように形成され、かぶりトナー61aは外層セラミック層62で覆われる。表面電極61は外層セラミック層62の開口部62aから露出している。 FIG. 5B shows a state in which the outer ceramic layer 62 is formed using a ceramic green sheet on the intermediate transfer member 60 on which the surface electrode 61 is formed. The outer ceramic layer 62 is formed so as to fill a region other than the surface electrode 61, and the fog toner 61 a is covered with the outer ceramic layer 62. The surface electrode 61 is exposed from the opening 62 a of the outer ceramic layer 62.
図5の(c)は、中間転写体60上に形成した外層セラミック層62と表面電極61とを、キャリア部材63の上に転写した状態を示す。ここで、外層セラミック層62と表面電極61とは表裏反転するため、かぶりトナー61aは上面に露出することになる。 FIG. 5C shows a state in which the outer ceramic layer 62 and the surface electrode 61 formed on the intermediate transfer body 60 are transferred onto the carrier member 63. Here, since the outer ceramic layer 62 and the surface electrode 61 are reversed, the fog toner 61a is exposed on the upper surface.
図5の(d)は、中間転写体64の上に、セラミックグリーンシートを用いて内層セラミック層65を積層した状態を示す。この内層セラミック層65は、全面に形成してもよいし、必要に応じてビア形成箇所に開口部を形成してもよい。 FIG. 5D shows a state in which an inner ceramic layer 65 is laminated on the intermediate transfer member 64 using a ceramic green sheet. The inner ceramic layer 65 may be formed on the entire surface, or an opening may be formed at a via formation location as necessary.
図5の(e)は、キャリア部材63上に形成された外層セラミック層62及び表面電極61上に、中間転写体64上に形成された内層セラミック層65を転写した状態を示す。中間セラミック層65の転写によって、かぶりトナー61aはセラミック層65で完全に覆われる。 FIG. 5E shows a state in which the inner ceramic layer 65 formed on the intermediate transfer body 64 is transferred onto the outer ceramic layer 62 and the surface electrode 61 formed on the carrier member 63. By the transfer of the intermediate ceramic layer 65, the fog toner 61a is completely covered with the ceramic layer 65.
図5の(f)は、中間転写体66の上に、電極トナーを用いて内部電極67を電子写真法により形成した状態を示す。ここで、内部電極67の近傍に発生したかぶりトナー67aが中間転写体66上に載っている。 FIG. 5F shows a state in which the internal electrode 67 is formed on the intermediate transfer member 66 by electrophotography using electrode toner. Here, the fog toner 67 a generated in the vicinity of the internal electrode 67 is placed on the intermediate transfer member 66.
図5の(g)は、キャリア部材63上に形成された外層セラミック層62、表面電極61、内層セラミック層65の上に、中間転写体66上に形成された内部電極67を転写した状態を示す。内部電極67の転写によって、かぶりトナー67aもセラミック層65の上に転写される。 FIG. 5G shows a state in which the internal electrode 67 formed on the intermediate transfer body 66 is transferred onto the outer ceramic layer 62, the surface electrode 61, and the inner ceramic layer 65 formed on the carrier member 63. Show. By the transfer of the internal electrode 67, the fog toner 67 a is also transferred onto the ceramic layer 65.
図5の(h)は、図5の(d)と同様に、中間転写体68の上にセラミックグリーンシートを用いて内層セラミック層69を積層した状態を示す。この内層セラミック層69は、全面に形成してもよいし、必要に応じてビア形成箇所に開口部を形成してもよい。 FIG. 5H shows a state in which an inner ceramic layer 69 is laminated on the intermediate transfer member 68 using a ceramic green sheet, as in FIG. 5D. The inner ceramic layer 69 may be formed on the entire surface, or an opening may be formed at a via formation location as necessary.
図5の(i)は、図5の(g)の段階にあるキャリア部材63上に、図5の(h)で作成した内層セラミック層69を転写した状態を示す。中間セラミック層69の転写によって、かぶりトナー67aはセラミック層69で完全に覆われる。なお、図5の(d)~(i)の工程は、必要な層数に応じて繰り返し実施すればよい。 FIG. 5I shows a state where the inner ceramic layer 69 created in FIG. 5H is transferred onto the carrier member 63 in the stage of FIG. 5G. By the transfer of the intermediate ceramic layer 69, the fog toner 67 a is completely covered with the ceramic layer 69. Note that the steps (d) to (i) in FIG. 5 may be repeatedly performed according to the required number of layers.
図5の(j)は、中間転写体70の上に、セラミックグリーンシートを用いて外層セラミック層71をパターン形成した状態を示す。この外層セラミック層71には、後述する裏面電極72と対応する位置に開口部71aが形成されている。 FIG. 5J shows a state in which the outer ceramic layer 71 is patterned on the intermediate transfer member 70 using a ceramic green sheet. In the outer ceramic layer 71, an opening 71a is formed at a position corresponding to a back electrode 72 described later.
図5の(k)は、外層セラミック層71を形成した中間転写体70の上に、電極トナーを用いて裏面電極72を電子写真法により形成した状態を示す。ここで、裏面電極72は外層セラミック層71の開口部71aに充填されるが、かぶりトナー72aが外層セラミック層71の表面に載ることがある。 FIG. 5K shows a state in which the back electrode 72 is formed by electrophotography using an electrode toner on the intermediate transfer body 70 on which the outer ceramic layer 71 is formed. Here, the back electrode 72 fills the opening 71 a of the outer ceramic layer 71, but the fog toner 72 a may be placed on the surface of the outer ceramic layer 71.
図5の(l)は、図5の(i)の段階にあるキャリア部材63上に、図5の(k)で作成した外層セラミック層71及び裏面電極72を転写した状態を示す。外層セラミック層71の転写によって、かぶりトナー72aは外層セラミック層71で完全に覆われる。 FIG. 5 (l) shows a state where the outer ceramic layer 71 and the back electrode 72 created in FIG. 5 (k) are transferred onto the carrier member 63 in the stage of FIG. 5 (i). By the transfer of the outer ceramic layer 71, the fog toner 72 a is completely covered with the outer ceramic layer 71.
図5の(m)は、上述のように作成した積層体を圧着し、キャリア部材63を剥離することで、積層体(焼成前)73を得た状態を示す。積層体73の表面電極61は外層セラミック層62から露出しており、裏面電極72は外層セラミック層71から露出している。表面電極61の周囲に発生したかぶりトナー61a及び裏面電極72の周囲に発生したかぶりトナー72aは、それぞれ外層セラミック層62、71によって完全に覆われている。 (M) of FIG. 5 shows the state which obtained the laminated body (before baking) 73 by crimping | bonding the laminated body produced as mentioned above and peeling the carrier member 63. FIG. The front surface electrode 61 of the multilayer body 73 is exposed from the outer ceramic layer 62, and the back surface electrode 72 is exposed from the outer ceramic layer 71. The fog toner 61a generated around the front electrode 61 and the fog toner 72a generated around the back electrode 72 are completely covered by the outer ceramic layers 62 and 71, respectively.
図5の(n)は、積層体73を焼成した後、表面電極61及び裏面電極72上にそれぞれめっき処理を施してセラミック多層基板74を得た状態を示す。表面電極61及び裏面電極72の上にはそれぞれめっき層75,76が形成されている。その後、セラミック多層基板74は図示しない配線基板などに実装され、子基板に分割される。 (N) of FIG. 5 shows a state in which the multilayer body 73 is obtained by firing the laminate 73 and then performing plating on the front electrode 61 and the back electrode 72, respectively. Plating layers 75 and 76 are formed on the front electrode 61 and the back electrode 72, respectively. Thereafter, the ceramic multilayer substrate 74 is mounted on a wiring substrate (not shown) or the like and divided into child substrates.
前述の通り第1~第4実施形態の製造方法について説明したが、第1実施形態と第2実施形態の製造方法を組み合わせてもよいし、第3実施形態と第4実施形態の製造方法を組み合わせてもよい。例えば、図1の工程(f)~(h)に代えて、図3の工程(j)~(m)を用いても良いし、図3の工程(j)~(m)に代えて、図1の工程(f)~(h)を用いても良い。さらに、図4の工程(f)~(h)に代えて、図5の工程(j)~(m)を用いても良いし、図5の工程(j)~(m)に代えて、図4の工程(f)~(h)を用いても良い。 As described above, the manufacturing methods of the first to fourth embodiments have been described. However, the manufacturing methods of the first embodiment and the second embodiment may be combined, or the manufacturing methods of the third embodiment and the fourth embodiment may be combined. You may combine. For example, instead of steps (f) to (h) in FIG. 1, steps (j) to (m) in FIG. 3 may be used, or instead of steps (j) to (m) in FIG. Steps (f) to (h) in FIG. 1 may be used. Furthermore, instead of steps (f) to (h) in FIG. 4, steps (j) to (m) in FIG. 5 may be used, or in place of steps (j) to (m) in FIG. Steps (f) to (h) in FIG. 4 may be used.
前記実施例では、表面電極/裏面電極と外層セラミック層との厚みを同じにし、それらの外表面が面一状とされた例を示したが、電極を外層セラミック層より厚くし、電極を凸状に突出させてもよいし、逆に電極を外層セラミック層より薄くし、電極を凹状に凹んだ状態としてもよい。前者の場合には、電極側面にも半田が付着し、接合表面積が大きくなるため、接合強度が向上する利点がある。後者の場合には、電極が凹んでいるため、ハンドリング時に電極が擦れて傷が入ったり、電極が変形したりすることを防ぐことができる。 In the above embodiment, the surface electrode / back electrode and the outer ceramic layer have the same thickness and the outer surfaces thereof are flush with each other. However, the electrode is made thicker than the outer ceramic layer and the electrode is convex. Alternatively, the electrode may be made thinner than the outer ceramic layer, and the electrode may be recessed. In the former case, solder adheres also to the side surfaces of the electrodes, and the bonding surface area increases. In the latter case, since the electrode is recessed, it is possible to prevent the electrode from being rubbed and scratched during handling or the electrode from being deformed.
以上のように、本発明ではかぶりトナーが基板表面に露出しないため、従来技術の以下3点の問題が解決できる。
(1) 表面電極間のIR劣化やマイグレーション促進の防止
表面電極間にかぶりトナーがないために、メッキでの異常析出は発生せず、部品表面に水分が付着した場合でもマイグレーションが促進されることはない。
(2) 外観不良の防止
基板表面にかぶりトナーが露出しないので、外観不良にならない。
(3) 電極接合強度の向上
本発明で表層電極を形成した場合、表層電極の断面は台形状(逆テーパ)になり電極周囲をセラミック層で覆った形になる。そのため、電極とセラミック基板の接合強度が向上する。
As described above, since the fog toner is not exposed on the substrate surface in the present invention, the following three problems of the prior art can be solved.
(1) Prevention of IR degradation between surface electrodes and promotion of migration Since there is no fog toner between surface electrodes, abnormal precipitation does not occur during plating, and migration is promoted even when moisture adheres to the part surface. There is no.
(2) Prevention of appearance defects Since the fog toner is not exposed on the substrate surface, it does not cause appearance defects.
(3) Improvement of electrode bonding strength When a surface layer electrode is formed according to the present invention, the cross section of the surface layer electrode has a trapezoidal shape (reverse taper) and the periphery of the electrode is covered with a ceramic layer. Therefore, the bonding strength between the electrode and the ceramic substrate is improved.
1,23   キャリア部材
2,22   第1外層セラミック層
2a     開口部
3,21   表面電極
3a,21a   かぶりトナー
4,6,25,29  内層セラミック層
5,27   内部電極
5a     かぶりトナー
5b     厚肉部
7,32   裏面電極
7a,32a かぶりトナー
8,31   第2外層セラミック層
8a     開口部
10,33  積層体(焼成前)
11,34  セラミック多層基板
12,13,35,36  めっき層
20     第1中間転写体
24~,26,28 中間転写体
30     第2中間転写体
1,23 Carrier member 2,22 First outer layer ceramic layer 2a Opening 3,3 Surface electrode 3a, 21a Fog toner 4,6,25,29 Inner layer ceramic layer 5,27 Internal electrode 5a Fog toner 5b Thick part 7, 32 Back electrode 7a, 32a Fog toner 8, 31 Second outer ceramic layer 8a Opening 10, 33 Laminate (before firing)
11, 34 Ceramic multilayer substrates 12, 13, 35, 36 Plating layer 20 First intermediate transfer member 24 to 26, 28 Intermediate transfer member 30 Second intermediate transfer member

Claims (8)

  1. キャリア部材上に、表面電極を形成すべき箇所に開口部を持つ第1外層セラミック層を形成する第1工程と、
    前記キャリア部材上に形成された第1外層セラミック層の開口部に、表面電極を電極トナーを用いて電子写真法により形成する第2工程と、
    前記キャリア部材上の第1外層セラミック層及び表面電極上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第3工程と、
    前記積層体上に裏面電極を電極トナーを用いて電子写真法により形成する第4工程と、
    前記裏面電極を形成した前記積層体上に、当該裏面電極以外の領域を埋めるように第2外層セラミック層を形成する第5工程と、
    前記第2外層セラミック層を形成した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第6工程と、を含むセラミック多層基板の製造方法。
    A first step of forming a first outer ceramic layer having an opening at a location where a surface electrode is to be formed on the carrier member;
    A second step of forming a surface electrode by electrophotography using an electrode toner at the opening of the first outer ceramic layer formed on the carrier member;
    A third step of alternately forming inner ceramic layers and inner electrode patterns on the first outer ceramic layer and the surface electrode on the carrier member to obtain a laminate;
    A fourth step of forming a back electrode on the laminate by electrophotography using an electrode toner;
    A fifth step of forming a second outer ceramic layer so as to fill a region other than the back electrode on the laminate on which the back electrode is formed;
    And a sixth step of obtaining a ceramic multilayer substrate by peeling the laminate having the second outer ceramic layer from the carrier member and firing the laminate.
  2. 第1中間転写体上に、表面電極を電極トナーを用いて電子写真法により形成する第1工程と、
    前記第1中間転写体上に、前記表面電極以外の領域を埋めるように、第1外層セラミック層を形成する第2工程と、
    前記第1中間転写体上の表面電極及び第1外層セラミック層をキャリア部材上に転写する第3工程と、
    前記キャリア部材上に転写された表面電極及び第1外層セラミック層上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第4工程と、
    第2中間転写体上に、裏面電極を形成すべき箇所に開口部を持つ第2外層セラミック層を形成する第5工程と、
    前記第2中間転写体上に形成された第2外層セラミック層の開口部に、裏面電極を電極トナーを用いて電子写真法により形成する第6工程と、
    前記第2中間転写体上に形成された第2外層セラミック層及び裏面電極を、前記積層体上に転写する第7工程と、
    前記第2外層セラミック層及び裏面電極を転写した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第8工程と、を含むセラミック多層基板の製造方法。
    A first step of forming a surface electrode on the first intermediate transfer member by electrophotography using an electrode toner;
    A second step of forming a first outer ceramic layer on the first intermediate transfer member so as to fill a region other than the surface electrode;
    A third step of transferring the surface electrode and the first outer ceramic layer on the first intermediate transfer member onto a carrier member;
    A fourth step of alternately forming inner ceramic layers and inner electrode patterns on the surface electrode and first outer ceramic layer transferred onto the carrier member to obtain a laminate;
    A fifth step of forming, on the second intermediate transfer member, a second outer ceramic layer having an opening at a position where a back electrode is to be formed;
    A sixth step of forming a back electrode by electrophotography using an electrode toner at the opening of the second outer ceramic layer formed on the second intermediate transfer member;
    A seventh step of transferring the second outer ceramic layer and the back electrode formed on the second intermediate transfer body onto the laminate;
    An eighth step of separating the laminate to which the second outer ceramic layer and the back electrode have been transferred from the carrier member, and firing the laminate to obtain a ceramic multilayer substrate.
  3. キャリア部材上に、表面電極を形成すべき箇所に開口部を持つ第1外層セラミック層を形成する第1工程と、
    前記キャリア部材上に形成された第1外層セラミック層の開口部に、表面電極を電極トナーを用いて電子写真法により形成する第2工程と、
    前記キャリア部材上の第1外層セラミック層及び表面電極上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第3工程と、
    中間転写体上に、裏面電極を形成すべき箇所に開口部を持つ第2外層セラミック層を形成する第4工程と、
    前記中間転写体上に形成された第2外層セラミック層の開口部に、裏面電極を電極トナーを用いて電子写真法により形成する第5工程と、
    前記中間転写体上に形成された第2外層セラミック層及び裏面電極を、前記積層体上に転写する第6工程と、
    前記第2外層セラミック層及び裏面電極を転写した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第7工程と、を含むセラミック多層基板の製造方法。
    A first step of forming a first outer ceramic layer having an opening at a location where a surface electrode is to be formed on the carrier member;
    A second step of forming a surface electrode by electrophotography using an electrode toner at the opening of the first outer ceramic layer formed on the carrier member;
    A third step of alternately forming inner ceramic layers and inner electrode patterns on the first outer ceramic layer and the surface electrode on the carrier member to obtain a laminate;
    A fourth step of forming a second outer ceramic layer having an opening at a position where a back electrode is to be formed on the intermediate transfer member;
    A fifth step of forming a back electrode by electrophotography using an electrode toner at the opening of the second outer ceramic layer formed on the intermediate transfer member;
    A sixth step of transferring the second outer ceramic layer and the back electrode formed on the intermediate transfer body onto the laminate;
    A seventh step of obtaining a ceramic multilayer substrate by peeling off the laminate to which the second outer ceramic layer and the back electrode have been transferred from the carrier member and firing the laminate.
  4. 第1中間転写体上に、表面電極を電極トナーを用いて電子写真法により形成する第1工程と、
    前記第1中間転写体上に、前記表面電極以外の領域を埋めるように、第1外層セラミック層を形成する第2工程と、
    前記第1中間転写体上の表面電極及び第1外層セラミック層をキャリア部材上に転写する第3工程と、
    前記キャリア部材上に転写された表面電極及び第1外層セラミック層上に、内層セラミック層と内部電極パターンとを交互に形成して積層体を得る第4工程と、
    前記積層体上に裏面電極を電極トナーを用いて電子写真法により形成する第5工程と、
    前記裏面電極を形成した前記積層体上に、当該裏面電極以外の領域を埋めるように第2外層セラミック層を形成する第6工程と、
    前記第2外層セラミック層を形成した積層体を前記キャリア部材から剥離し、当該積層体を焼成することでセラミック多層基板を得る第7工程と、を含むセラミック多層基板の製造方法。
    A first step of forming a surface electrode on the first intermediate transfer member by electrophotography using an electrode toner;
    A second step of forming a first outer ceramic layer on the first intermediate transfer member so as to fill a region other than the surface electrode;
    A third step of transferring the surface electrode and the first outer ceramic layer on the first intermediate transfer member onto a carrier member;
    A fourth step of alternately forming inner ceramic layers and inner electrode patterns on the surface electrode and first outer ceramic layer transferred onto the carrier member to obtain a laminate;
    A fifth step of forming a back electrode on the laminate by electrophotography using an electrode toner;
    A sixth step of forming a second outer ceramic layer so as to fill a region other than the back electrode on the laminate on which the back electrode is formed;
    And a seventh step of peeling the laminate having the second outer ceramic layer from the carrier member and firing the laminate to obtain a ceramic multilayer substrate.
  5. 前記外層セラミック層及び内層セラミック層は、セラミックトナーを用いて電子写真法により形成されることを特徴とする請求項1乃至4のいずれか1項に記載のセラミック多層基板の製造方法。 5. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein the outer ceramic layer and the inner ceramic layer are formed by electrophotography using a ceramic toner.
  6. 前記外層セラミック層及び内層セラミック層は、セラミックグリーンシートを用いて形成されることを特徴とする請求項1乃至4のいずれか1項に記載のセラミック多層基板の製造方法。 The method for manufacturing a ceramic multilayer substrate according to any one of claims 1 to 4, wherein the outer ceramic layer and the inner ceramic layer are formed using a ceramic green sheet.
  7. 前記内部電極パターンを電極トナーを用いて電子写真法により形成すると共に、当該内部電極パターンの一部を厚肉に形成し、
    前記内部電極パターンの上に、前記厚肉部と対応する部位に開口部を持つように内層セラミック層を形成することにより、前記厚肉部でビアを形成することを特徴とする請求項1乃至6のいずれか1項に記載のセラミック多層基板の製造方法。
    The internal electrode pattern is formed by electrophotography using an electrode toner, and a part of the internal electrode pattern is formed thick.
    The via is formed in the thick part by forming an inner ceramic layer on the internal electrode pattern so as to have an opening at a part corresponding to the thick part. 7. The method for producing a ceramic multilayer substrate according to any one of 6 above.
  8. 前記焼成された積層体の表裏主面に露出している前記表面電極及び裏面電極上にめっき処理を施すことを特徴とする、請求項1乃至7のいずれか1項に記載のセラミック多層基板の製造方法。 The ceramic multilayer substrate according to any one of claims 1 to 7, wherein a plating treatment is performed on the front surface electrode and the back surface electrode exposed on the front and back main surfaces of the fired laminate. Production method.
PCT/JP2010/056738 2009-04-30 2010-04-15 Ceramic multilayer substrate producing method WO2010125924A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080019491.4A CN102415227B (en) 2009-04-30 2010-04-15 Ceramic multilayer substrate producing method
JP2010534704A JP5093356B2 (en) 2009-04-30 2010-04-15 Manufacturing method of ceramic multilayer substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009110688 2009-04-30
JP2009-110688 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010125924A1 true WO2010125924A1 (en) 2010-11-04

Family

ID=43032077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056738 WO2010125924A1 (en) 2009-04-30 2010-04-15 Ceramic multilayer substrate producing method

Country Status (3)

Country Link
JP (1) JP5093356B2 (en)
CN (1) CN102415227B (en)
WO (1) WO2010125924A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032900A1 (en) 2011-08-31 2013-03-07 Lexmark International, Inc. Screening process for manufacturing a z-directed component for a printed circuit board
WO2015110293A1 (en) * 2014-01-22 2015-07-30 Robert Bosch Gmbh Electronic functional component and method for producing an electronic functional component
EP2865250A4 (en) * 2012-06-20 2015-08-12 Lexmark Int Inc Process for manufacturing a z-directed component for a printed circuit board using a sacrificial constraining material
FR3033977A1 (en) * 2015-03-20 2016-09-23 Thales Sa METHOD FOR MANUFACTURING A PRINTED CIRCUIT AND CORRESPONDING PRINTED CIRCUITS
US9564272B2 (en) 2011-08-31 2017-02-07 Lexmark International, Inc. Continuous extrusion method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board
US9814145B2 (en) 2011-08-31 2017-11-07 Lexmark International, Inc. Methods for manufacturing a Z-directed printed circuit board component having a removable end portion
US9984820B2 (en) 2009-07-23 2018-05-29 Lexmark International, Inc. Z-directed capacitor components for printed circuit boards
EP3468317A1 (en) * 2017-10-06 2019-04-10 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with at least one portion in the form of three-dimensionally printed structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013021944A1 (en) * 2013-12-20 2015-06-25 Dominique Paetz Generative production facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562860A (en) * 1991-08-30 1993-03-12 Murata Mfg Co Ltd Manufacture of laminated electronic component
JP2002299835A (en) * 2001-03-30 2002-10-11 Kyocera Corp Multilayered circuit board precursor and method of manufacturing multilayered circuit board
JP2005044925A (en) * 2003-07-25 2005-02-17 Kyocera Corp Method of manufacturing composite sheet and method of manufacturing multilayer component
JP2007158352A (en) * 2005-12-07 2007-06-21 Samsung Electro Mech Co Ltd Method of manufacturing wiring board, and wiring board
JP2008242352A (en) * 2007-03-29 2008-10-09 Murata Mfg Co Ltd Charging powder and method of manufacturing multilayer ceramic electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505993B2 (en) * 1998-03-03 2004-03-15 株式会社村田製作所 Chargeable powder for circuit formation and multilayer wiring board using the same
JPH11354371A (en) * 1998-06-04 1999-12-24 Murata Mfg Co Ltd Manufacture of ceramic electronic parts
JP2005038945A (en) * 2003-07-16 2005-02-10 Murata Mfg Co Ltd Method of manufacturing ceramic laminate for multilayer wiring substrate and manufacturing apparatus thereof
JP2009054832A (en) * 2007-08-28 2009-03-12 Daiken Kagaku Kogyo Kk Method and device for forming lamination pattern, laminated body, electronic circuit component, and method for manufacturing multilayered circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562860A (en) * 1991-08-30 1993-03-12 Murata Mfg Co Ltd Manufacture of laminated electronic component
JP2002299835A (en) * 2001-03-30 2002-10-11 Kyocera Corp Multilayered circuit board precursor and method of manufacturing multilayered circuit board
JP2005044925A (en) * 2003-07-25 2005-02-17 Kyocera Corp Method of manufacturing composite sheet and method of manufacturing multilayer component
JP2007158352A (en) * 2005-12-07 2007-06-21 Samsung Electro Mech Co Ltd Method of manufacturing wiring board, and wiring board
JP2008242352A (en) * 2007-03-29 2008-10-09 Murata Mfg Co Ltd Charging powder and method of manufacturing multilayer ceramic electronic component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9984820B2 (en) 2009-07-23 2018-05-29 Lexmark International, Inc. Z-directed capacitor components for printed circuit boards
WO2013032900A1 (en) 2011-08-31 2013-03-07 Lexmark International, Inc. Screening process for manufacturing a z-directed component for a printed circuit board
EP2751830A1 (en) * 2011-08-31 2014-07-09 Lexmark International, Inc. Screening process for manufacturing a z-directed component for a printed circuit board
EP2751830A4 (en) * 2011-08-31 2015-04-29 Lexmark Int Inc Screening process for manufacturing a z-directed component for a printed circuit board
US9078374B2 (en) 2011-08-31 2015-07-07 Lexmark International, Inc. Screening process for manufacturing a Z-directed component for a printed circuit board
US9564272B2 (en) 2011-08-31 2017-02-07 Lexmark International, Inc. Continuous extrusion method for manufacturing a Z-directed component for insertion into a mounting hole in a printed circuit board
US9814145B2 (en) 2011-08-31 2017-11-07 Lexmark International, Inc. Methods for manufacturing a Z-directed printed circuit board component having a removable end portion
EP2865250A4 (en) * 2012-06-20 2015-08-12 Lexmark Int Inc Process for manufacturing a z-directed component for a printed circuit board using a sacrificial constraining material
EP3078493A3 (en) * 2012-06-20 2016-10-26 Lexmark International, Inc. Process for manufacturing a z-directed component for a printed circuit board using a sacrificial constraining material
WO2015110293A1 (en) * 2014-01-22 2015-07-30 Robert Bosch Gmbh Electronic functional component and method for producing an electronic functional component
FR3033977A1 (en) * 2015-03-20 2016-09-23 Thales Sa METHOD FOR MANUFACTURING A PRINTED CIRCUIT AND CORRESPONDING PRINTED CIRCUITS
EP3468317A1 (en) * 2017-10-06 2019-04-10 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with at least one portion in the form of three-dimensionally printed structure

Also Published As

Publication number Publication date
JP5093356B2 (en) 2012-12-12
JPWO2010125924A1 (en) 2012-10-25
CN102415227B (en) 2014-07-09
CN102415227A (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5093356B2 (en) Manufacturing method of ceramic multilayer substrate
US6977130B2 (en) Method of manufacturing an electronic circuit and manufacturing apparatus of an electronic circuit
JP5257679B2 (en) Manufacturing method of ESD protection device and ESD protection device
JP4710974B2 (en) Circuit pattern forming method
JP4947137B2 (en) Method for forming via-hole conductor by electrophotographic printing method
JP2008242352A (en) Charging powder and method of manufacturing multilayer ceramic electronic component
JP5585576B2 (en) Manufacturing method of electronic parts
JP5056950B2 (en) Chargeable powder for conductor pattern formation and multilayer ceramic electronic component using the same
JP4363488B2 (en) Chargeable powder for circuit formation and multilayer wiring board using the same
JPH11312859A (en) Formation of circuit pattern and multilayer wiring board formed the method
JP3903590B2 (en) Circuit pattern forming method and multilayer wiring board formed thereby
JPH11298119A (en) Charged powder for circuit formation, method for forming circuit pattern using the same, and multilayer wiring board formed thereby
JPH11354371A (en) Manufacture of ceramic electronic parts
WO2010106969A1 (en) Charged powder for forming conductor pattern, method for producing same, and method for manufacturing multilayer ceramic electronic component using same
JP2011165992A (en) Manufacturing method of ceramic multilayer substrate
JP2008134656A (en) Charged powder for forming circuit and multilayer wiring board using same
JPH11354926A (en) Manufacture of ceramic electronic component
JPH11346056A (en) Ceramic multilayered board with cavity and manufacture thereof
JP2001284770A (en) Circuit-patten formation method and wiring board formed thereby
JPH11354927A (en) Manufacture of ceramic electronic component
JP4811066B2 (en) Chargeable powder for circuit formation, method for producing the same, and method for producing a glass substrate having a circuit pattern
JP4427861B2 (en) Circuit pattern forming method and wiring board formed thereby
JP2001044070A (en) Method and device for manufacture of laminated electronic component
JPH11330672A (en) Method for forming circuit pattern and multilayer wiring board formed by the method
JPS63180952A (en) Formation of resist pattern of printed circuit board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019491.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010534704

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769623

Country of ref document: EP

Kind code of ref document: A1