WO2010125603A1 - 導光板の製造方法 - Google Patents

導光板の製造方法 Download PDF

Info

Publication number
WO2010125603A1
WO2010125603A1 PCT/JP2009/001922 JP2009001922W WO2010125603A1 WO 2010125603 A1 WO2010125603 A1 WO 2010125603A1 JP 2009001922 W JP2009001922 W JP 2009001922W WO 2010125603 A1 WO2010125603 A1 WO 2010125603A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
manufacturing
light
dots
Prior art date
Application number
PCT/JP2009/001922
Other languages
English (en)
French (fr)
Inventor
坂本光秀
稲葉達也
岩永登
Original Assignee
株式会社エス・ケー・ジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エス・ケー・ジー filed Critical 株式会社エス・ケー・ジー
Priority to PCT/JP2009/001922 priority Critical patent/WO2010125603A1/ja
Priority to CN2009801478516A priority patent/CN102227589A/zh
Priority to EP09843949.0A priority patent/EP2426394A4/en
Priority to US13/266,364 priority patent/US8940200B2/en
Priority to KR1020117008454A priority patent/KR101273957B1/ko
Publication of WO2010125603A1 publication Critical patent/WO2010125603A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0063Means for improving the coupling-out of light from the light guide for extracting light out both the major surfaces of the light guide

Definitions

  • the present invention relates to a method of manufacturing a light-guiding plate for double-sided light emission that can be used for the production of a relatively large-sized light-guiding plate of a small variety and a variety of flexible dot processing using an ultrasonic multihorn.
  • the above-described configuration has a problem that it is difficult to cope with optical characteristics suitable for an arbitrary shape and shape in the production of a small variety of products, and a tact for manufacturing is required.
  • the present invention has optical characteristics suitable for any shape and shape in the production of a small variety of products even for a relatively large light guide plate used for a guide display plate or the like. It is an object of the present invention to provide a method for manufacturing a light guide plate that can be used and that can significantly reduce the tact associated with manufacturing.
  • a method of manufacturing a light guide plate according to the present invention is a method of manufacturing a light guide plate for causing light to enter from a side surface of a light guide plate substrate and to derive the light from a main surface, Processing dots are arranged in a matrix on the rectangular front end surface of the ultrasonic processing horn, and the front end surface of the ultrasonic processing horn is pressed against one main surface of the light guide plate substrate. A reflective dot reflecting the processed dot on the tip surface is formed on one main surface, and the ultrasonic processing horn is moved relative to the light guide plate substrate in the plane of the main surface. The reflective dots are formed repeatedly, and the reflective dots are formed in a predetermined range on one main surface of the light guide plate substrate.
  • a relatively large light guide plate used for a guide display plate or the like corresponds to optical characteristics suitable for any shape or shape in the production of a small variety of products. This is possible, and the tact for manufacturing can be greatly shortened.
  • FIG. 1 It is a schematic diagram which shows the processing tool for embossing which forms the concave pattern trace provided in the light-guide plate of the 1st Embodiment of this invention
  • (a) is a schematic diagram which shows the support part of a processing tool
  • (b) ) Is a schematic diagram showing an ultrasonic processing part of the processing tool
  • It is a perspective view which shows the ultrasonic processing apparatus for embossing which forms the concave pattern trace provided in the light-guide plate of the 1st Embodiment of this invention.
  • FIG. 1 is a schematic diagram showing the light guide plate 10.
  • FIG. 1A is a front surface portion 10A of the light guide plate 10
  • FIG. 1B is a side surface portion 10C of the light guide plate 10.
  • FIG. (C) is a schematic diagram showing a back surface portion 10D of the light guide plate 10.
  • FIG. FIG. 2 is a schematic view showing a part of the surface portion 10A of the light guide plate 10 in an enlarged manner.
  • the light guide plate 10 is composed of a plate-shaped portion having a predetermined size and formed with a plurality of concave pattern marks, for example, made of a methacrylic resin (Polymethyl methacrylate) plate.
  • the size of the plate-like portion is, for example, a rectangular shape of 100 mm ⁇ 100 mm to 1450 mm ⁇ 1030 mm corresponding to the B0 plate size, and corresponds to a thickness of 4 mm to 12 mm.
  • a methacrylic resin Polymethyl methacrylate
  • a front surface concave pattern mark 10 ⁇ / b> B is formed on the front surface part 10 ⁇ / b> A of the light guide plate 10
  • a back surface concave pattern mark 10 ⁇ / b> E is formed on the back surface part 10 ⁇ / b> D of the light guide plate 10.
  • the concave pattern trace is formed from a square pyramid-shaped trace having a major axis of 0.6 mm and a depth of 0.4 mm, for example, as a pitch pattern, for example, 1.2, 1.5, 2.0, and 8.0 mm pitch. It is formed with a matrix-shaped molding mark composed of the like.
  • the processing tool and processing device of the light guide plate 10 will be described. Specifically, the processing tool 20 and the ultrasonic processing apparatus 30 that form the concave pattern marks provided on the light guide plate 10 will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a schematic view showing a processing tool 20 for embossing which forms a concave pattern mark provided on the light guide plate 10
  • FIG. 3A is a view of a support portion 20B of the processing tool 20 as well.
  • 3 (b) is a schematic diagram showing the ultrasonic processing section 20A of the processing tool 20.
  • FIG. 4 shows an embossing ultrasonic processing apparatus 30 for forming concave pattern marks provided on the light guide plate 10.
  • FIG. It is a perspective view.
  • the processing tool 20 is an ultrasonic processing horn, and supports the ultrasonic processing unit 20A in which processing dots are arranged in a matrix on the rectangular front end surface of the ultrasonic processing horn, and the ultrasonic processing unit 20A. It is comprised from the support part 20B. In the ultrasonic processing section 20A, each processing dot is formed in a quadrangular pyramid shape.
  • FIG. 2B shows an ultrasonic processing unit 20A in which processing dots are arranged in a matrix of 4 rows and 4 columns as an example.
  • the ultrasonic processing apparatus 30 includes a machine base 31, a work table 32, a moving mechanism 33, a vacuum pump 34, an ultrasonic oscillator 35, and the like.
  • the light guide plate 10 is manufactured by forming concave pattern marks on both sides.
  • the ultrasonic processing unit 20 ⁇ / b> A of the processing tool 20 is pressed against one main surface of the processing member 5, thereby providing the ultrasonic processing unit 20 ⁇ / b> A on one main surface of the processing member 5.
  • Reflective dots reflecting the processed dots are formed.
  • the reflective dot is formed in the predetermined range of one main surface of the processing member 5 by moving the processing tool 20 relative to the processing member 5 and repeating the formation of the reflective dots.
  • at least one direction of the extending direction of the quadrangular pyramid ridge line of the processing dots is substantially parallel to the incident direction of the light incident from the side surface of the light guide plate 10 formed by processing the processing member 5.
  • the ultrasonic processing portion 20 ⁇ / b> A of the processing tool 20 is pressed against one main surface of the processing member 5. Note that a more specific method for forming the concave pattern trace in consideration of the shape error of the processed member 5 will be described later with reference to FIG.
  • FIG. 5 is a schematic view showing a state of embossing for forming a concave pattern mark provided on the light guide plate 10, and FIGS. 5A to 5E are views of the processed member 5 before embossing. It is a schematic diagram which shows the state which measures a process start reference
  • the processing start reference height H 1 of the surface of the processing member 5 is set to the movable probe D disposed in a measurement unit (not shown) of the ultrasonic processing apparatus 30. Detect by contacting the surface.
  • a transparent methacrylic resin plate having a predetermined shape is used for the processed member 5.
  • the probe D is not limited to a mechanical configuration.
  • the probe D emits measurement light from a measurement unit (not shown) of the ultrasonic processing apparatus 30 and receives reflected light from the surface of the processing member 5. It is good also as a structure.
  • the processing tool 20 mounted on the ultrasonic processing apparatus 30 is moved to a position above the surface portion 10A where the processing start reference height H1 is detected.
  • the processing start reference height H1 as a reference, ultrasonic vibration is applied to the ultrasonic processing portion 20A provided at the tip of the processing tool 20, and ultrasonic processing is performed from the processing start reference height H1 of the surface portion 10A to a predetermined depth. Lower part 20A.
  • the processing start reference height H ⁇ b> 2 of the surface of the processing member 5 that is the next ultrasonic processing location is detected by the movable probe D disposed in the measurement unit of the ultrasonic processing apparatus 30.
  • the processing tool 20 mounted on the ultrasonic processing apparatus 30 is moved to a position above the surface portion 10A where the processing start reference height H4 is detected, and then the processing is performed.
  • the start reference height H4 With reference to the start reference height H4, ultrasonic vibration is applied to the ultrasonic processing unit 20A provided at the tip of the processing tool 20, and the ultrasonic processing unit from the processing start reference height H4 of the surface portion 10A to a predetermined depth. Lower 20A.
  • FIG. 6 is a schematic view showing the side surface portion 10C of the light guide plate 10 according to the present invention. Further, FIG. 6A shows the side surface portion 10C of the light guide plate 10 when the processed member 5 has no curvature or uneven thickness. Similarly, FIG. 6B is a schematic diagram showing the side surface portion 10C of the light guide plate 10 when the processed member 5 has a curve or thickness unevenness. FIG. 7 is a schematic view showing the side surface portion 40A of the light guide plate 40 when the processed member 5 has a curve or thickness unevenness in the manufacture of the conventional light guide plate 40.
  • the surface portion 10A of the light guide plate 10 can be detected without detecting the processing start reference height of the surface portion 10A for each processing. Regardless of the position, the surface portion concave pattern mark 10B having a constant depth can be formed with respect to the surface portion 10A. Similarly, the back surface concave pattern mark 10E having a certain depth can be formed on the back surface portion 10D regardless of the position of the back surface portion 10D of the light guide plate 10.
  • the processing member 5 that is a substrate for the light guide plate 10 is, for example, a resin plate, specifically, a methacrylic resin plate or the like. Since the methacrylic resin plate is manufactured by an extrusion manufacturing method, the individual difference in the thickness of the methacrylic resin plate is about ⁇ 1 mm when the standard value is 8 mm. Further, even in a single methacrylic resin plate, the thickness unevenness is large. Specifically, the difference between the maximum thickness and the minimum thickness is about 0.4 mm. In addition, a methacrylic resin board may deform
  • the methacrylic resin plate has a large error in the thickness component due to individual differences in thickness, thickness unevenness, warping, and the like.
  • the depth of the front surface concave pattern mark 10B formed on the front surface part 10A of the light guide plate 10 and the depth of the back surface concave pattern mark 10E formed on the back surface part 10D of the light guide plate 10 are 0.3 mm to 0 respectively. Often set to 5 mm.
  • the processing start reference height is detected after being detected by the movable probe D attached to the measurement unit of the ultrasonic processing apparatus 30.
  • the surface portion concave pattern trace having a certain depth in the surface portion 40A of the light guide plate 40 as in the conventional light guide plate 40 shown in FIG. 40B cannot be formed.
  • the back surface concave pattern mark 40E having a certain depth cannot be formed on the back surface portion 40D of the light guide plate 40.
  • FIG. 8 is a schematic diagram showing a state in which a front surface concave pattern mark 10B formed on the front surface part 10A of the light guide plate 10 and a back surface concave pattern mark 10E formed on the back surface part 10D are transmitted.
  • the front surface concave pattern mark 10B formed on the front surface part 10A of the light guide plate 10 and the back surface concave pattern mark 10E formed on the back surface part 10D are each formed in a matrix at a pitch P1.
  • the incident light L1 of LED light is irradiated from the horizontal direction X shown in FIG. 8 with respect to the front surface concave pattern mark 10B and the back surface concave pattern mark 10E.
  • the incident light L2 of the LED light is irradiated from the vertical direction Y shown in FIG. 8 to the front surface concave pattern mark 10B and the back surface concave pattern mark 10E.
  • the light guide plate 10 that is a surface light source of double-sided light emission can be configured by the diffused light generated by the plurality of concave pattern marks.
  • the ultrasonic processing unit 20 ⁇ / b> A of the processing tool 20 is pressed against one main surface of the processing member 5, whereby the main surface of the processing member 5 is pressed.
  • a plurality of reflective dots reflecting the matrix-like processed dots can be formed at a time.
  • the ultrasonic processing unit 20A provided with matrix-shaped processing dots enables flexible dot processing using an ultrasonic multihorn to manufacture a relatively large-sized light guide plate of a small amount and a wide variety, and The tact for manufacturing can be greatly shortened.
  • the manufacturing tact can be shortened to 1/16.
  • FIG. 9 is a schematic diagram showing the side surface portion 50C of the light guide plate 50 in which the depths of the front surface concave pattern mark 50B and the back surface concave pattern mark 50E are different.
  • FIG. 10 is a schematic diagram showing the side surface portion 60C of the light guide plate 60 in which the depths of the front surface concave pattern mark 60B and the back surface concave pattern mark 60E are different.
  • the light guide plate 50 and the light guide plate 60 of the second embodiment include a front surface concave pattern mark 10B and a back surface concave pattern mark 10E formed on the light guide plate 10 of the first embodiment and having a substantially uniform depth. Differently, the depth of the concave pattern marks on the front surface portion and the back surface portion is different in stages.
  • the other configurations related to the light guide plate 50 and the light guide plate 60 are the same as the configuration of the light guide plate 10 described in the first embodiment. Therefore, in the light guide plate 50 and the light guide plate 60 of the second embodiment, the structure and effect related to the depth of the concave pattern marks different from the light guide plate 10 of the first embodiment will be specifically described.
  • the depth of the front surface concave pattern mark 50B of the front surface part 50A and the depth of the back surface concave pattern mark 50E of the back surface part 50D are formed so as to increase stepwise.
  • the concave pattern marks on the front and back surfaces on the right side of FIG. 9 are stepwise deeper than the depth of the concave pattern marks on the front and back surfaces on the left side in FIG.
  • a concave pattern mark is formed.
  • the incident light L3 of the LED light is irradiated from the left side of FIG.
  • the light density is high if it is close to the light source due to optical characteristics, and the light density is low if it is far away.
  • the reflection area of the concave pattern trace is small to large.
  • the extraction of diffused light is averaged.
  • the incident light L4 of the LED light is irradiated from the right side of FIG. 9 of the side surface portion 50C
  • the diffused light is extracted by changing the reflection area of the concave pattern trace from the right side of FIG. However, it becomes more uniform on the right side and less uniform on the left side. That is, this concave pattern trace processing is an effective processing method when using one-side light source.
  • the depth of the front surface concave pattern mark 60 ⁇ / b> B of the front surface portion 60 ⁇ / b> A and the depth of the back surface concave pattern mark 60 ⁇ / b> E of the back surface portion 60 ⁇ / b> D advance to the central portion of the light guide plate 60.
  • Each of the light guide plates 60 is formed so as to be relatively deep, that is, shallow at both end surfaces and deep at the center.
  • the incident light L5 of the LED light is irradiated from the left side of FIG. 10 of the side surface portion 60C, the light density is high if it is close to the light source from the optical characteristics from the left side to the right side of FIG.
  • the diffused light from the concave pattern trace on the left side of FIG. 10 is averaged by extracting the diffused light by changing the reflection area of the concave pattern trace reaching the center of FIG. 10 from small to large.
  • the incident light L6 of LED light is irradiated from the right side of FIG. 10 of the side surface portion 60C, the light density increases from the optical characteristics to the light source from the right side to the left side of FIG.
  • the diffused light from the concave pattern trace on the right side of FIG. 10 is averaged for the extraction of the diffused light by changing the reflection area of the left concave pattern trace reaching the center of FIG. 10 from small to large. Therefore, extraction of the entire diffused light is averaged. That is, this concave pattern trace processing is an effective processing method when using both-side light sources.
  • the ultrasonic processing unit 20A of the processing tool 20 is pressed deeply or shallowly into one main surface of the processing member 5 stepwise.
  • a plurality of reflective dots having an arbitrary depth can be formed on one main surface of the processed member 5.
  • FIG. 11 is a schematic diagram showing the light guide plate 70 in which the depths of the front surface concave pattern mark 70B and the back surface concave pattern mark 70E are different from each other, and the side part of the reflective tape 71 bonded to the light guide plate 70. .
  • the light guide plate 70 of the third embodiment is different from the front surface concave pattern trace 10B and the back surface concave pattern trace 10E of substantially uniform depth formed on the light guide plate 10 of the first embodiment.
  • the depth of the concave pattern marks on the back surface portion is varied stepwise, and the reflective tape 71 is adhered to one side of the side surface portion of the light guide plate 70.
  • the other configurations related to the light guide plate 70 are the same as the configurations of the light guide plate 10 described in the first embodiment. Therefore, in the light guide plate 70 of the third embodiment, the structure and effect related to the depth of the concave pattern marks different from the light guide plate 10 of the first embodiment will be specifically described.
  • the depth of the front surface concave pattern mark 70B on the front surface part 70A and the depth of the back surface concave pattern mark 70E on the back surface part 70D are determined from the side surface part 70C ′ on the left side in FIG. '' Is formed so as to become deeper in stages.
  • the right side surface portion 70C ′′ of FIG. 11 is formed such that both the depth of the front surface concave pattern mark 70B of the front surface portion 70A and the depth of the back surface concave pattern mark 70E of the back surface portion 70D are relatively shallow.
  • the depth of the concave pattern trace 70B of the surface portion 70A shown in FIG. 11 the depth of the concave pattern trace is the shallowest in the concave pattern trace T1, the deepest in the concave pattern trace T5, and the concave.
  • the incident light L7 of LED light is irradiated from the side surface portion 70C ′ on the left side of FIG. Since the reflection area of the concave pattern trace is changed from small to large from the left side of FIG. 11, the extraction of diffused light is averaged at the front surface portion 70A and the back surface portion 70D.
  • the incident light L7 of the LED light is reflected by the side surface portion 70C ′′ by the reflective tape 71 adhered to the side surface portion 70C ′′ of the light guide plate 70, and the reflected light L8 is generated. Since the reflected light L8 is converted into diffused light by the concave pattern trace, the rate at which the LED light is converted into diffused light increases.
  • Such reflected light L8 affects the diffused light at the concave pattern marks in the vicinity of the side surface portion 70C ′′. Accordingly, the side surface portion 70C ′′ is formed so that both the depth of the front surface concave pattern mark 70B of the front surface portion 70A and the depth of the back surface concave pattern mark 70E of the back surface portion 70D are relatively shallow.
  • the ultrasonic processing unit 20A of the processing tool 20 is pressed deeply or shallowly into one main surface of the processing member 5 in a stepwise manner.
  • a plurality of reflective dots having an arbitrary depth can be formed on one main surface of the member 5.
  • Processing member 10 Light guide plate 10A Surface portion 10B Surface portion concave pattern mark 10C Side surface portion 10D Back surface portion 10E Back surface concave pattern mark 20 Processing tool 20A Ultrasonic processing section 20B Support section 30 Ultrasonic processing apparatus 31 Machine base 32 Worktable 33 Moving mechanism 34 Vacuum pump 35 Ultrasonic oscillator 40 Light guide plate 40A Surface portion 40B Surface portion concave pattern mark 40C Side surface portion 40D Back surface portion 40E Back surface portion concave pattern mark 50 Light guide plate 50A Surface portion 50B Surface portion concave pattern mark 50C Side surface portion 50D Back surface Portion 50E Back surface concave pattern mark 60 Light guide plate 60A Surface part 60B Surface part concave pattern mark 60C Side surface part 60D Back surface part 60E Back surface part concave pattern mark 60 Light guide plate 60A Surface part 60B Surface part concave pattern mark 60C Side surface part 60D Back surface part 60E Back surface part concave pattern mark 70 Light guide plate 70A Surface part 70B Surface part concave pattern mark 70C ', 70C''S

Abstract

 本発明は、案内表示板等に使用される比較的大型の導光板であっても、少量多品種の生産における任意の形状や形状に適した光学特性に対応可能であり、且つ製造に係るタクトを大幅に短縮させることができる導光板の製造方法を提供することを目的とする。 本発明の導光板の製造方法は、導光板用基板の側面から光を入射して主面から該光を導出させるための導光板の製造方法であって、超音波加工用ホーンの矩形状の先端面にマトリクス状に加工ドットを配列させ、前記超音波加工用ホーンの前記先端面を前記導光板用基板の一主面に押圧させて前記導光板用基板の一主面に前記先端面の前記加工ドットを反映した反射ドットを形成させ、前記超音波加工用ホーンを前記導光板用基板に対して前記主面の面内で相対的に移動させて前記反射ドットの形成を繰り返し、前記導光板用基板の一主面の所定範囲に前記反射ドットを形成することを特徴とする。

Description

導光板の製造方法
 本発明は、少量多品種の比較的大型の導光板の製造に、超音波マルチホーンを用いたフレキシブルなドット加工が対応可能な両面発光用の導光板の製造方法に関する。
 従来、LED光を用いて面光源を生成する導光板において、大画面テレビジョン受像機に内蔵して使用する導光板については、例えば、断面形状が光源から出射した光束の進行方向に向かって広がる形をした逆楔型の反射ドットを設けた導光板の構成がある(例えば、特許文献1参照。)。
特開2008-305713号公報
 しかしながら、前述の構成では、少量多品種の生産における任意の形状や形状に適した光学特性に対応することは困難であり、且つ製造に係るタクトが掛かるという問題点があった。
 そこで、本発明は前述の技術的な課題に鑑み、案内表示板等に使用される比較的大型の導光板であっても、少量多品種の生産における任意の形状や形状に適した光学特性に対応可能であり、且つ製造に係るタクトを大幅に短縮させることができる導光板の製造方法を提供することを目的とする。
 前述の課題を解決すべく、本発明に係る導光板の製造方法は、導光板用基板の側面から光を入射して主面から該光を導出させるための導光板の製造方法であって、超音波加工用ホーンの矩形状の先端面にマトリクス状に加工ドットを配列させ、前記超音波加工用ホーンの前記先端面を前記導光板用基板の一主面に押圧させて前記導光板用基板の一主面に前記先端面の前記加工ドットを反映した反射ドットを形成させ、前記超音波加工用ホーンを前記導光板用基板に対して前記主面の面内で相対的に移動させて前記反射ドットの形成を繰り返し、前記導光板用基板の一主面の所定範囲に前記反射ドットを形成することを特徴とする。
 本発明に係る導光板の製造方法によれば、案内表示板等に使用される比較的大型の導光板であっても、少量多品種の生産における任意の形状や形状に適した光学特性に対応可能であり、且つ製造に係るタクトを大幅に短縮させることができる。
本発明の第1の実施形態の導光板を示す模式図であり、(a)は導光板の表面部を示す模式図、(b)は導光板の側面部を示す模式図、(c)は導光板の裏面部を示す模式図である。 本発明の第1の実施形態の導光板の表面部の一部を示す模式図である。 本発明の第1の実施形態の導光板に設けられた凹パターン痕を形成するエンボス加工用の加工具を示す模式図であり、(a)は加工具の支持部を示す模式図、(b)は加工具の超音波加工部を示す模式図である、 本発明の第1の実施形態の導光板に設けられた凹パターン痕を形成するエンボス加工用の超音波加工装置を示す斜視図である。 本発明の第1の実施形態の導光板に設けられた凹パターン痕を形成するエンボス加工の状態を示す模式図であり、(a)乃至(e)はエンボス加工を行う前に加工部材の加工開始基準高さを測定し、次に該加工開始基準高さに合わせて加工部材に対してエンボス加工を行う状態を順に示す模式図である。 本発明の第1の実施形態の導光板の側面部を示す模式図であり、(a)は加工部材に湾曲や厚み斑が無い場合の導光板の側面部を示す模式図、(b)は加工部材に湾曲や厚み斑が有る場合の導光板の側面部を示す模式図である。 従来の導光板の製造において加工部材に湾曲や厚み斑が有る場合の導光板の側面部を示す模式図である。 本発明の第1の実施形態の導光板の表面部に形成された表面部凹パターン痕と裏面部に形成された裏面部凹パターン痕を透過させた状態で示す模式図である。 本発明の第2の実施形態の表面部凹パターン痕と裏面部凹パターン痕の深さをそれぞれ異ならせた導光板の側面部を示す模式図である。 本発明の第2の実施形態の表面部凹パターン痕と裏面部凹パターン痕の深さをそれぞれ異ならせた導光板の側面部を示す模式図である。 本発明の第3の実施形態の表面部凹パターン痕と裏面部凹パターン痕の深さをそれぞれ異ならせた導光板と該導光板に接着させた反射テープの側面部を示す模式図である。
 以下、本発明の導光板の製造方法に係る好適な実施形態について、図面を参照しながら説明する。なお、本発明の導光板の製造方法は、以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更可能である。
[第1の実施形態]
 最初に本願発明に係る導光板の製造方法により製造された導光板の構成について説明し、次に導光板の加工具及び加工装置について説明し、さらに導光板の製造方法について説明し、最後に本願発明に係る導光板の製造方法により製造された導光板の光学的な仕様について説明する。
 まず、本願発明に係る導光板10の製造方法により製造された導光板10の構成について、図1及び図2を参照しながら説明する。
 なお、図1は導光板10を示す模式図であり、さらに図1(a)は導光板10の表面部10A、同様に図1(b)は導光板10の側面部10C、同様に図1(c)は導光板10の裏面部10Dを示す模式図である。また、図2は導光板10の表面部10Aの一部を拡大して示す模式図である。
 導光板10は、例えばメタクリル樹脂(Polymethylmethacrylate)板から成る、複数の凹パターン痕が形成された所定の大きさの板状部から構成される。具体的には、該板状部の大きさは、例えば100mm×100mmからB0版サイズ相当の1450mm×1030mmの長方形状で、4mmから12mmの厚みに対応する。ここで、図1に示すように、導光板10の表面部10Aには表面部凹パターン痕10Bが形成され、導光板10の裏面部10Dには裏面部凹パターン痕10Eが形成されている。また、その凹パターン痕は、例えば長径0.6mm及び深さ0.4mmの四角錐形状痕から形成されてピッチパターンとして、例えば1.2、1.5、2.0、及び8.0mmピッチ等で構成されたマトリクス状の成形痕にて形成されている。
 次に、導光板10の加工具及び加工装置について説明する。具体的には、導光板10に設けられた凹パターン痕を形成する加工具20、及び超音波加工装置30について、図3及び図4を参照しながら説明する。
 なお、図3は導光板10に設けられた凹パターン痕を形成するエンボス加工用の加工具20を示す模式図であり、さらに図3(a)は加工具20の支持部20B、同様に図3(b)は加工具20の超音波加工部20Aを示す模式図である、また、図4は導光板10に設けられた凹パターン痕を形成するエンボス加工用の超音波加工装置30を示す斜視図である。
 加工具20は、超音波加工用ホーンであり、超音波加工用ホーンの矩形状の先端面にマトリクス状に加工ドットを配列させた超音波加工部20A、及び該超音波加工部20Aを支持する支持部20Bから構成される。また、超音波加工部20Aにおいて、各加工ドットは四角錐形状に形成されている。なお、図2(b)においては、一例として4行4列のマトリクス状に加工ドットを配列させた超音波加工部20Aを記載している。
 超音波加工装置30は、機台31、作業台32、移動機構33、真空ポンプ34、及び超音波発振器35等から構成される。なお、超音波加工装置30には、例えば本願発明と同一の出願人により実用新案登録出願され、登録3140292号として登録済みの超音波加工装置を用いることができる。この様な超音波加工装置30に、加工具20の支持部20Bを装着して、加工具20の超音波加工部20Aに超音波振動を印加することにより、加工部材5の表面又は裏面、もしくは両面に凹パターン痕を形成して導光板10を製造する。
 具体的には、超音波加工装置30において、加工具20の超音波加工部20Aを加工部材5の一主面に押圧させることにより、加工部材5の一主面に超音波加工部20Aに設けられた加工ドットを反映した反射ドットを形成させる。なお、加工具20を加工部材5に対して相対的に移動させて反射ドットの形成を繰り返すことにより、加工部材5の一主面の所定範囲に反射ドットを形成する。また、加工ドットの四角錐形状の稜線の延長方向の少なくとも一方向は加工部材5を加工することにより形成された導光板10の側面から入射する光の入射方向と実質的に略平行とされる様に、加工具20の超音波加工部20Aを加工部材5の一主面に押圧させる。なお、加工部材5の形状誤差を考慮した、より具体的な凹パターン痕の形成方法については、図5を参照しながら後述する。
 次に、導光板10の製造方法について説明する。具体的には、加工部材5の形状誤差を考慮した、導光板10に設けられた凹パターン痕の形成について、図5を参照しながら具体的に説明する。
 なお、図5は導光板10に設けられた凹パターン痕を形成するエンボス加工の状態を示す模式図であり、さらに図5(a)乃至(e)はエンボス加工を行う前に加工部材5の加工開始基準高さを測定し、次に該加工開始基準高さに合わせて加工部材5に対してエンボス加工を行う状態を順に示す模式図である。
 図5(a)に示すように、加工部材5の表面の加工開始基準高さH1を、超音波加工装置30の図示せぬ測定部に配設された可動式のプローブDを加工部材5の表面に接触させることにより検出する。また該加工部材5には、例えば所定の形状で透明なメタクリル樹脂板を用いる。なお、プローブDは、機械的な構成に限定されることはなく、例えば超音波加工装置30の図示せぬ測定部から測定光を照射して、加工部材5の表面からの反射光を受光する構成としても良い。
 同様に、図5(b)に示すように、超音波加工装置30に装着された加工具20を、加工開始基準高さH1を検出した表面部10Aの上方の位置まで移動させた後、該加工開始基準高さH1を基準として、加工具20の先端に設けられた超音波加工部20Aに超音波振動を印加し、表面部10Aの加工開始基準高さH1から所定の深さまで超音波加工部20Aを降下させる。また、次の超音加工箇所である加工部材5の表面の加工開始基準高さH2を、超音波加工装置30の測定部に配設された可動式のプローブDにより検出する。
 同様に、図5(c)に示すように、超音波加工装置30に装着された加工具20を、加工開始基準高さH2を検出した表面部10Aの上方の位置まで移動させた後、該加工開始基準高さH2を基準として、加工具20の先端に設けられた超音波加工部20Aに超音波振動を印加し、表面部10Aの加工開始基準高さH2から所定の深さまで超音波加工部20Aを降下させる。また、次の超音加工箇所である加工部材5の表面の加工開始基準高さH3を、超音波加工装置30の測定部に配設された可動式のプローブDにより検出する。
 同様に、図5(d)に示すように、超音波加工装置30に装着された加工具20を、加工開始基準高さH3を検出した表面部10Aの上方の位置まで移動させた後、該加工開始基準高さH3を基準として、加工具20の先端に設けられた超音波加工部20Aに超音波振動を印加し、表面部10Aの加工開始基準高さH3から所定の深さまで超音波加工部20Aを降下させる。また、次の超音加工箇所である加工部材5の表面の加工開始基準高さH4を、超音波加工装置30の測定部に配設された可動式のプローブDにより検出する。
 さらに、図5(e)に示すように、超音波加工装置30に装着された加工具20を、加工開始基準高さH4を検出した表面部10Aの上方の位置まで移動させた後、該加工開始基準高さH4を基準として、加工具20の先端に設けられた超音波加工部20Aに超音波振動を印加し、表面部10Aの加工開始基準高さH4から所定の深さまで超音波加工部20Aを降下させる。
 次に、上述した導光板10に設けられた凹パターン痕の形成に係る効果について、図6及び図7を参照しながら具体的に説明する。
 なお、図6は本願発明に係る導光板10の側面部10Cを示す模式図であり、さらに図6(a)は加工部材5に湾曲や厚み斑が無い場合の導光板10の側面部10Cを示す模式図、同様に図6(b)は加工部材5に湾曲や厚み斑が有る場合の導光板10の側面部10Cを示す模式図である。また、図7は従来の導光板40の製造において加工部材5に湾曲や厚み斑が有る場合の導光板40の側面部40Aを示す模式図である。
 図6(a)に示すように、加工部材5に湾曲や厚み斑が無い場合には、加工毎に表面部10Aの加工開始基準高さを検出しなくても、導光板10の表面部10Aの位置に寄らず、表面部10Aに対して一定深さの表面部凹パターン痕10Bを形成できる。同様に、導光板10の裏面部10Dの位置に寄らず、裏面部10Dに対して一定深さの裏面部凹パターン痕10Eを形成できる。
 しかし、図6(b)に示すように、加工部材5に湾曲や厚み斑が有る場合には、加工毎に表面部10Aの加工開始基準高さを検出しなければ、表面部10Aに対して一定深さの表面部凹パターン痕10Bを形成できない。同様に、加工毎に裏面部10Dの加工開始基準高さを検出しなければ、裏面部10Dに対して一定深さの裏面部凹パターン痕10Eを形成できない。
 ここで、導光板10用の基板となる加工部材5には、例えば樹脂板であって、具体的にはメタクリル樹脂板等を用いる。メタクリル樹脂板は、押し出し製法により製造されることから、メタクリル樹脂板の厚みの個体差は、基準値が厚み8mmのもので約±1mmもある。また、一枚のメタクリル樹脂板においても厚み斑が大きく、具体的には最大厚みと最少厚みの差分は約0.4mmもある。なお、メタクリル樹脂板は、水分を吸収することにより反り返るように変形することがある。この様に、メタクリル樹脂板は、厚みの個体差、厚み斑、及び反り返り等に起因する厚み成分の誤差が大きい。一方、導光板10の表面部10Aに形成する表面部凹パターン痕10Bの深さ、及び導光板10の裏面部10Dに形成する裏面部凹パターン痕10Eの深さは、それぞれ0.3mmから0.5mmに設定する場合が多い。
 したがって、導光板10用の基板となる加工部材5のメタクリル樹脂板の加工において、超音波加工装置30の測定部に装着された可動式のプローブDにより検出した後に、該加工開始基準高さを基準として、加工具20先端の設けられた超音波加工部20Aに超音波振動を印加しながら、メタクリル樹脂板の表面から所定の深さまで超音波加工部20Aを降下させて、加工することは必須である。
 なお、メタクリル樹脂板の表面の加工開始基準高さを検出しない場合には、図7に示す従来の導光板40の様に、導光板40の表面部40Aにおいて一定深さの表面部凹パターン痕40Bを形成することができない。同様に、導光板40の裏面部40Dにおいて一定深さの裏面部凹パターン痕40Eを形成することができない。
 次に、導光板10の製造方法により製造された導光板10の光学的な仕様について説明する。具体的には、導光板10の両面に形成された凹パターン痕に係る光学的な仕様について、図8を参照しながら具体的に説明する。なお、図8は導光板10の表面部10Aに形成された表面部凹パターン痕10B、及び裏面部10Dに形成された裏面部凹パターン10痕Eを透過させた状態で示す模式図である。
 導光板10の表面部10Aに形成された表面部凹パターン痕10Bと、裏面部10Dに形成された裏面部凹パターン痕10Eは、それぞれピッチP1でマトリクス状に複数形成されている。また、表面部凹パターン痕10B及び裏面部凹パターン痕10Eに対して、図8に示す水平方向XからLED光の入射光L1が照射される。同様に、表面部凹パターン痕10B及び裏面部凹パターン痕10Eに対して、図8に示す垂直方向YからLED光の入射光L2が照射される。この様に導光板10に対してLED光の入射光L1及びL2が照射されると、表面部凹パターン痕10B及び裏面部凹パターン痕10Eの各凹パターン痕において、拡散光が発生する。したがって、導光板10の表面部10A及び裏面部10Dのそれぞれおいて、複数の凹パターン痕により発生する拡散光により、両面発光の面光源である導光板10を構成することができる。
 以上、第1の実施形態に係る導光板10の製造方法によれば、加工具20の超音波加工部20Aを加工部材5の一主面に押圧させることにより、加工部材5の一主面に対して、マトリクス状の加工ドットを反映した複数の反射ドットを1度に形成させることができる。この様にマトリクス状の加工ドットを設けた超音波加工部20Aにより、少量多品種の比較的大型の導光板の製造に、超音波マルチホーンを用いたフレキシブルなドット加工が対応可能であり、且つ製造に係るタクトを大幅に短縮させることができる。具体的には、導光板10の製造方法において、4行4列のマトリクス状に加工ドットを設けた超音波加工部20Aによれば、超音波加工部20Aに加工ドットを1個だけ設けた場合と比較して、製造に係るタクトを1/16に短縮させることができる。
[第2の実施形態]
 次に、第2の実施形態に係る導光板50及び導光板60の構成について、図9及び図10を参照しながら説明する。なお、図9は表面部凹パターン痕50Bと裏面部凹パターン痕50Eの深さをそれぞれ異ならせた導光板50の側面部50Cを示す模式図である。同様に、図10は表面部凹パターン痕60Bと裏面部凹パターン痕60Eの深さをそれぞれ異ならせた導光板60の側面部60Cを示す模式図である。
 なお、第2の実施形態の導光板50及び導光板60は、第1の実施形態の導光板10に形成された略均一な深さの表面部凹パターン痕10B及び裏面部凹パターン痕10Eと異なり、表面部及び裏面部の凹パターン痕の深さを段階的に異ならせていることに特徴を有している。なお、それ以外の導光板50及び導光板60に係る構成は、第1の実施形態で述べた導光板10の構成と同様である。そこで、第2の実施形態の導光板50及び導光板60においては、第1の実施形態の導光板10と異なる凹パターン痕の深さに係る構造及び効果等について具体的に説明する。
 まず、図9に示す導光板50においては、表面部50Aの表面部凹パターン痕50Bの深さと、裏面部50Dの裏面部凹パターン痕50Eの深さが、それぞれ段階的に深くなるように形成されている。具体的には、側面部50Cから見た場合、図9左側の表面及び裏面の凹パターン痕の深さと比較して、図9右側の表面及び裏面の凹パターン痕の方が段階的に深くなるように、凹パターン痕が形成されている。ここで、側面部50Cの図9左側からLED光の入射光L3が照射されると、光学特性から光源に近くなれば光密度が高く、遠くなれば光密度が低くなることから、図9左側よりの凹パターン痕の反射面積を小から大へ変化させることにより拡散光の取り出しが平均化する。また、側面部50Cの図9右側からLED光の入射光L4が照射されると、前述したことから図9右側よりの凹パターン痕の反射面積を大から小へ変化させることにより拡散光の取り出しが、右側では多く左側では少なく均一化しなくなる。すなわち、この凹パターン痕加工は片側光源使用時に有効な加工方法となる。
 次に、図10に示す導光板60においては、表面部60Aの表面部凹パターン痕60Bの深さと、裏面部60Dの裏面部凹パターン痕60Eの深さが、導光板60の中央部に進むごとに相対的に深く、すなわち、導光板60の両端面側では浅く中央部では深くなるように形成されている。ここで、側面部60Cの図10左側からLED光の入射光L5が照射されると、図10左側から右側に光学特性から光源に近くなれば光密度が高く、遠くなれば光密度が低くなることから、図10左側の凹パターン痕での拡散光は、図10中央部に至る凹パターン痕の反射面積を小から大へ変化させることにより拡散光の取り出しが平均化する。同様に、側面部60Cの図10右側からLED光の入射光L6が照射されると、図10右側から左側に光学特性から光源に近くなれば光密度が高く、遠くなれば光密度が低くなることから、図10右側の凹パターン痕での拡散光は、図10中央部に至る左側の凹パターン痕の反射面積を小から大へ変化させることにより拡散光の取り出しが平均化する。したがって、全体の拡散光の取り出しが平均化する。すなわち、この凹パターン痕加工は両側光源使用時に有効な加工方法となる。
 以上、第2の実施形態に係る導光板50及び導光板60の製造方法によれば、加工具20の超音波加工部20Aを、加工部材5の一主面に段階的に深く又は浅く押圧させることにより、加工部材5の一主面に対して、複数の任意の深さを有する反射ドットを形成させることができる。この様な導光板50及び導光板60の製造方法によれば、必要とされる発光面サイズに対応した拡散光の取出しが可能になり、任意の仕様に合わせた導光板の製造を最適化することができる。
[第3の実施形態]
 次に、第3の実施形態に係る導光板70構成について、図11を参照しながら説明する。
なお、図11は表面部凹パターン痕70Bと裏面部凹パターン痕70Eの深さをそれぞれ異ならせた導光板70と該導光板70に接着させた反射テープ71の側面部を示す模式図である。
 なお、第3の実施形態の導光板70は、第1の実施形態の導光板10に形成された略均一な深さの表面部凹パターン痕10B及び裏面部凹パターン痕10Eと異なり、表面部及び裏面部の凹パターン痕の深さを段階的に異ならせ、且つ導光板70の側面部の片側に反射テープ71を接着させていることに特徴を有している。なお、それ以外の導光板70に係る構成は、第1の実施形態で述べた導光板10の構成と同様である。そこで、第3の実施形態の導光板70においては、第1の実施形態の導光板10と異なる凹パターン痕の深さに係る構造及び効果等について具体的に説明する。
 導光板70の構造に関し、表面部70Aの表面部凹パターン痕70Bの深さと、裏面部70Dの裏面部凹パターン痕70Eの深さは、図11左側の側面部70C'から右側の側面部70C''に対して、それぞれ段階的に深くなるように形成されている。但し、図11右端の側面部70C''では、表面部70Aの表面部凹パターン痕70Bの深さと、裏面部70Dの裏面部凹パターン痕70Eの深さともに、相対的に浅くなるように形成されている。具体的には、例えば図11に示す表面部70Aの表面部凹パターン痕70Bにおいて、凹パターン痕の深さは、凹パターン痕T1が一番浅く、凹パターン痕T5が一番深く、且つ凹パターン痕T1<T2<T3<T4<T5の関係にある。
 導光板70の光学特性に係る効果に関し、図11左側の側面部70C'からLED光の入射光L7が照射されると、光学特性から光源に近くなれば光密度が高く、遠くなれば光密度が低くなることから、図11左側から凹パターン痕の反射面積を小から大へ変化させることにより、表面部70A及び裏面部70Dにおいて、拡散光の取り出しが平均化する。ここで、導光板70の側面部70C''に接着された反射テープ71により、LED光の入射光L7が側面部70C''で反射されて反射光L8が発生する。該反射光L8は、凹パターン痕により拡散光に変換されることから、LED光が拡散光に変換される割合が増加する。この様な反射光L8は、側面部70C''近傍の凹パターン痕において拡散光に影響を及ぼしている。したがって、側面部70C''では、表面部70Aの表面部凹パターン痕70Bの深さと、裏面部70Dの裏面部凹パターン痕70Eの深さともに、相対的に浅くなるように形成される。
 以上、第3の実施形態に係る導光板70の製造方法によれば、加工具20の超音波加工部20Aを、加工部材5の一主面に段階的に深く又は浅く押圧させることにより、加工部材5の一主面に対して、複数の任意の深さを有する反射ドットを形成させることができる。この様な導光板70の製造方法によれば、導光板70の側面部の片側に反射テープ71を接着させる構成においても、必要とされる発光面サイズに対応した均一な拡散光の取出しが可能になり、任意の仕様に合わせた導光板の製造を最適化することができる。
5 加工部材
10 導光板
10A 表面部
10B 表面部凹パターン痕
10C 側面部
10D 裏面部
10E 裏面部凹パターン痕
20 加工具
20A 超音波加工部
20B 支持部
30 超音波加工装置
31 機台
32 作業台
33 移動機構
34 真空ポンプ
35 超音波発振器
40 導光板
40A 表面部
40B 表面部凹パターン痕
40C 側面部
40D 裏面部
40E 裏面部凹パターン痕
50 導光板
50A 表面部
50B 表面部凹パターン痕
50C 側面部
50D 裏面部
50E 裏面部凹パターン痕
60 導光板
60A 表面部
60B 表面部凹パターン痕
60C 側面部
60D 裏面部
60E 裏面部凹パターン痕
70 導光板
70A 表面部
70B 表面部凹パターン痕
70C',70C'' 側面部
70D 裏面部
70E 裏面部凹パターン痕
71 反射テープ
D プローブ
H1,H2,H3,H4 加工開始基準高さ
P1 ピッチ
L1,L2,L3,L4,L5,L6,L7 入射光
L8 反射光
T1,T2,T3,T4,T5 凹パターン痕

Claims (9)

  1.  導光板用基板の側面から光を入射して主面から該光を導出させるための導光板の製造方法であって、
     超音波加工用ホーンの矩形状の先端面にマトリクス状に加工ドットを配列させ、
     前記超音波加工用ホーンの前記先端面を前記導光板用基板の一主面に押圧させて前記導光板用基板の一主面に前記先端面の前記加工ドットを反映した反射ドットを形成させ、
     前記超音波加工用ホーンを前記導光板用基板に対して前記主面の面内で相対的に移動させて前記反射ドットの形成を繰り返し、前記導光板用基板の一主面の所定範囲に前記反射ドットを形成すること
     を特徴とする導光板の製造方法。
  2.  前記製造ドットは四角錐形状であること
     を特徴とする請求項1に記載の導光板の製造方法。
  3.  前記製造ドットの四角錐形状の稜線の延長方向の少なくとも一方向は前記導光板用基板の側面から入射する光の入射方向と実質的に略平行とされること
     を特徴とする請求項1に記載の導光板の製造方法。
  4.  前記超音波製造用ホーンによる前記加工ドットを反映した反射ドットの形成後、前記超音波加工用ホーンは前記導光板用基板に対して前記先端面の範囲分だけ相対的に移動し、次の前記超音波加工用ホーンによる前記加工ドットを反映した反射ドットを形成すること
     を特徴とする請求項1に記載の導光板の製造方法。
  5.  前記導光板用基板は前記主面の面内方向に対して固定テーブル上に載置されること
     を特徴とする請求項1に記載の導光板の製造方法。
  6.  前記導光板用基板は透明樹脂製平板であること
     を特徴とする請求項1に記載の導光板の製造方法。
  7.  前記導光板用基板は透明樹脂製の湾曲板であること
     を特徴とする請求項1記載の導光板の製造方法。
  8.  前記反射ドットは前記導光板用基板の対向する両主面の一方若しくは両方に形成されること
     を特徴とする請求項1に記載の導光板の製造方法。
  9.  前記反射ドットは前記導光板用基板の対向する両主面の一方若しくは両方に前記反射ドットの深さを段階的に異ならせて形成されること
     を特徴とする請求項1に記載の導光板の製造方法。
PCT/JP2009/001922 2009-04-27 2009-04-27 導光板の製造方法 WO2010125603A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/001922 WO2010125603A1 (ja) 2009-04-27 2009-04-27 導光板の製造方法
CN2009801478516A CN102227589A (zh) 2009-04-27 2009-04-27 导光板的制造方法
EP09843949.0A EP2426394A4 (en) 2009-04-27 2009-04-27 METHOD FOR MANUFACTURING A LIGHT GUIDE PLATE
US13/266,364 US8940200B2 (en) 2009-04-27 2009-04-27 Manufacturing method for light guide plate
KR1020117008454A KR101273957B1 (ko) 2009-04-27 2009-04-27 도광판 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001922 WO2010125603A1 (ja) 2009-04-27 2009-04-27 導光板の製造方法

Publications (1)

Publication Number Publication Date
WO2010125603A1 true WO2010125603A1 (ja) 2010-11-04

Family

ID=43031772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001922 WO2010125603A1 (ja) 2009-04-27 2009-04-27 導光板の製造方法

Country Status (5)

Country Link
US (1) US8940200B2 (ja)
EP (1) EP2426394A4 (ja)
KR (1) KR101273957B1 (ja)
CN (1) CN102227589A (ja)
WO (1) WO2010125603A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100180479A1 (en) * 2007-12-14 2010-07-22 S.K.G. Co., Ltd. Method for manufacturing light guide plate, light guide plate, and light emitting sign using the light guide plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI518386B (zh) * 2014-04-02 2016-01-21 群創光電股份有限公司 顯示裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022964A (ja) * 2000-07-04 2002-01-23 Enplas Corp 導光板、面光源装置及び液晶表示装置
JP2004200093A (ja) * 2002-12-20 2004-07-15 Citizen Electronics Co Ltd 導光板及び導光板の支持ユニット
JP2005186557A (ja) * 2003-12-26 2005-07-14 Bussan Nanotech Research Institute Inc パターン形成装置、型保持ヘッド
JP2007042562A (ja) * 2005-07-29 2007-02-15 Tamotsu Azuma 面状発光体の精密加工とその製造方法
JP3140292U (ja) * 2008-01-07 2008-03-21 株式会社エス・ケー・ジー 超音波加工装置
JP2008305713A (ja) 2007-06-08 2008-12-18 Fujifilm Corp 面状照明装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597642B1 (fr) * 1986-04-18 1990-01-12 Blanchet Pierre Dispositif d'affichage lumineux de documents translucides
WO2005090855A1 (ja) * 2004-03-22 2005-09-29 System-Lab For K.G. 導光板体
JP4392445B2 (ja) * 2007-12-14 2010-01-06 株式会社エス・ケー・ジー 導光板の製造方法、導光板、及び当該導光板を用いた発光式看板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022964A (ja) * 2000-07-04 2002-01-23 Enplas Corp 導光板、面光源装置及び液晶表示装置
JP2004200093A (ja) * 2002-12-20 2004-07-15 Citizen Electronics Co Ltd 導光板及び導光板の支持ユニット
JP2005186557A (ja) * 2003-12-26 2005-07-14 Bussan Nanotech Research Institute Inc パターン形成装置、型保持ヘッド
JP2007042562A (ja) * 2005-07-29 2007-02-15 Tamotsu Azuma 面状発光体の精密加工とその製造方法
JP2008305713A (ja) 2007-06-08 2008-12-18 Fujifilm Corp 面状照明装置
JP3140292U (ja) * 2008-01-07 2008-03-21 株式会社エス・ケー・ジー 超音波加工装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100180479A1 (en) * 2007-12-14 2010-07-22 S.K.G. Co., Ltd. Method for manufacturing light guide plate, light guide plate, and light emitting sign using the light guide plate
US8549777B2 (en) * 2007-12-14 2013-10-08 S. K. G. Co., Ltd. Method for manufacturing light guide plate, light guide plate, and light emitting sign using the light guide plate

Also Published As

Publication number Publication date
KR101273957B1 (ko) 2013-06-12
US8940200B2 (en) 2015-01-27
US20120091604A1 (en) 2012-04-19
EP2426394A1 (en) 2012-03-07
KR20120024527A (ko) 2012-03-14
EP2426394A4 (en) 2014-08-20
CN102227589A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4481348B1 (ja) 導光板の製造方法、導光板、バックライト装置、及び照明装置。
TWI380896B (zh) 導光板的製造方法、導光板、背光裝置、照明裝置、及導光板製造裝置
WO2011067871A1 (ja) 導光板の製造方法、導光板、バックライト装置、照明装置、及び仕切り板装置
JP5314792B2 (ja) 照明装置
US9776360B2 (en) Transfer printing apparatus and manufacturing method of light guiding film
CN106170733B (zh) 背光单元和包括其的显示装置
US20170205556A1 (en) Display device
US20090279324A1 (en) Light guide plate structure
JP2011003367A (ja) 照明装置
JP4528888B1 (ja) 導光板の製造方法、導光板、バックライト装置、及び照明装置
KR100677122B1 (ko) 백라이트 유닛용 도광판 및 그 제조방법
WO2010125603A1 (ja) 導光板の製造方法
JP4530428B1 (ja) 導光板の製造方法、導光板、バックライト装置、及び照明装置。
JP2010272483A (ja) 照明装置
JP4528887B1 (ja) 導光板の製造方法、導光板、バックライト装置、及び照明装置
JP2010287445A (ja) 照明装置
JPWO2005090855A1 (ja) 導光板体
JP5064443B2 (ja) 照明装置
JP5608113B2 (ja) 導光板及び導光板の成形方法
WO2012032784A1 (ja) 発光装飾ガラス、装飾ガラスおよびその製造方法と製造装置
US20120024829A1 (en) Laser machining device
KR20140064277A (ko) 입체채널간판의 입체프레임 제조방법
JP2012155973A (ja) 導光板、導光板を有する照明装置及び導光板の製造方法
KR100859293B1 (ko) 조사 효율을 향상시키기 위한 프리즘 패턴형상을 적용한키패드 백라이트용 도광필름 및 그 제조 방법
KR101200525B1 (ko) 레이저를 이용한 도광판 가공 방법 및 도광판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147851.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117008454

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009843949

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13266364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP