WO2010124868A2 - Computertomographische werkstückmessvorrichtung - Google Patents

Computertomographische werkstückmessvorrichtung Download PDF

Info

Publication number
WO2010124868A2
WO2010124868A2 PCT/EP2010/002650 EP2010002650W WO2010124868A2 WO 2010124868 A2 WO2010124868 A2 WO 2010124868A2 EP 2010002650 W EP2010002650 W EP 2010002650W WO 2010124868 A2 WO2010124868 A2 WO 2010124868A2
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
carrier unit
detector
ray source
unit
Prior art date
Application number
PCT/EP2010/002650
Other languages
English (en)
French (fr)
Other versions
WO2010124868A3 (de
Inventor
Martin Simon
Siegfried Heeg
Ralf Hock
Manfred Etzel
Uwe Hilpert
Severin Ebner
Original Assignee
Wenzel Volumetrik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzel Volumetrik Gmbh filed Critical Wenzel Volumetrik Gmbh
Priority to EP10722929A priority Critical patent/EP2425233A2/de
Priority to CN201080028051.5A priority patent/CN102460133B/zh
Priority to US13/266,881 priority patent/US20120155606A1/en
Publication of WO2010124868A2 publication Critical patent/WO2010124868A2/de
Publication of WO2010124868A3 publication Critical patent/WO2010124868A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/70Completely encapsulating inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63436Halogen-containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6344Copolymers containing at least three different monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63456Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/6348Melamine-formaldehyde condensation polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2103/00Use of resin-bonded materials as moulding material
    • B29K2103/04Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/10Heat storage materials, e.g. phase change materials or static water enclosed in a space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/309Accessories, mechanical or electrical features support of sample holder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3306Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object rotates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3308Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object translates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/408Imaging display on monitor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/633Specific applications or type of materials thickness, density, surface weight (unit area)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a computer tomographic workpiece measuring device according to the preamble of the main claim.
  • Such devices for non-medical computed tomography are generally known from the prior art and are based on the measurement principle, analogous to human or veterinary computed tomography, workpieces with a high-power X-ray beam as invasive radiation to irradiate and illuminate, with the workpiece as a measuring object is typically located on a turntable as a workpiece carrier between a (high-power) X-ray source and an electronic X-ray detector.
  • the detector captures the X-rays penetrating the object pixel by pixel by means of suitable detector pixels.
  • a plurality of X-ray images can be created from different directions (perspectives), which are then assembled in a downstream evaluation unit in a three-dimensional model as volume information and further evaluations or reprocessing, e.g. for visual display on a monitor or the like. with the possibility for further visual inspection.
  • Such, as known vortexde devices have about so-called tactile measuring method (in which, typically by means of three-dimensional movable buttons, a workpiece with its outer contour can be scanned) the advantage of reliably detect and reproduce even mechanically inaccessible interior areas and cavities or undercuts a workpiece can be, so that, in addition to the range of application known push-button coordinate measuring, a computer tomographic non-medical workpiece measurement (surveying) in particular also suitable for purposes of assembly and defect control, porosity analysis, wall thickness measurement or other complex metrological evaluations, to tasks of reverse Engineering, in which, based on a physically present measurement object, the obtained outer and inner contour data can then be transformed into suitable CAD data.
  • Generic computer tomographic workpiece measuring devices usually employ hardware, X-ray sources which have a punctiform radiation outlet, and line-like or (approximately) square detector arrays associated with this X-ray source (in particular in the present field of so-called cone beam tomography with two-dimensionally arranged detectors). Not least due to the geometric conditions of originating from medical detectors, these typically have pixel sizes in the range between about 200 and 400 .mu.m, wherein, to achieve a sufficient accuracy, a workpiece carrier unit, disposed between the X-ray source and the detector, approximately centrally or in Direction is placed on the X-ray source to achieve, according to the detector geometry and its resolution, the desired magnification of the x-ray image.
  • X-ray tomography requires a (lead) ) Shielding the relevant passages so that large mechanical dimensions (particularly relative to the dimensions of a workpiece to be tested) adversely affect manufacturing costs, weight and installation requirements (such as the need for additional mechanical reinforcement on a substrate). It is therefore an object of the present invention to improve a generic computer-tomographic workpiece measuring device with regard to its measuring and imaging properties, while at the same time creating the possibility of designing such a device more compactly and with less mechanical outlay.
  • the invention provides for providing the carrier unit (with the workpiece to be provided thereon) relatively closer to the detector means, in particular so as to provide that on a middle of the distance between X-ray source and detector, the carrier unit is closer to the detector means.
  • This measure is associated with the inventive measure to use small detector pixels, namely those whose maximum pixel size is smaller than 100 .mu.m.
  • the image quality can be significantly increased since, compared with the prior art, of a constant or improved resolution, unwanted movements or instabilities of the X-ray source have a less pronounced effect.
  • this geometry makes it possible to realize a much more compact arrangement, since the measures described can in fact reduce the distance between the X-ray source and the detector means.
  • these features are associated with the movability of the workpiece carrier unit, in particular in a vertical direction ("vertical” being understood to mean along the center or rotation axis of the workpiece carrier unit and thus parallel to the flat or narrow side of the detector means).
  • this movability makes it possible to provide a workpiece as a measuring object on the workpiece carrier unit, which extends over the detector unit along the vertical direction, so that the various sections of this workpiece successively move through (continuous or sectional) movement along the vertical direction
  • the device is already suitable for workpieces whose dimensions exceed the geometric relationships between the beam path and the effective detector surface (clearly)
  • If such (typically elongated) objects are aligned vertically with their longitudinal axis on the workpiece carrier unit (in contrast to typically known procedure in which such an object is transverse and flat and thus completely in the beam path), which is irradiated by the X-ray beam or to be irradiated mass of the workpiece.
  • a vertical movement realized, not only a (single) object can be vertical This procedure also offers the possibility of ness, the workpiece carrier unit in such a way to design (or provided with suitable support means) that they can carry a plurality of individual workpieces one above the other (even several side by side per height level) arranged.
  • the workpiece carrier unit in such a way to design (or provided with suitable support means) that they can carry a plurality of individual workpieces one above the other (even several side by side per height level) arranged.
  • This then allows again, in the manner of a vertical magazine, a preferably automated sequential processing of individual workpieces, which are successively moved by the vertical movement of the workpiece carrier in the beam path (or back out of this).
  • the detector means as a rectangular-area array.
  • the carrier unit additionally performs a longitudinal or axial movement along the axis of rotation according to further development.
  • resulting X-ray (single) images can in turn be suitably assembled to form complete surface models and then volume models, corresponding to a workpiece to be tested.
  • the rectangular form according to the invention i. no quadratic shape, moreover, by the fact that errors which arise in the reconstruction of generic, almost square detector images can be reduced.
  • surface or “surface” in the context of the invention is not necessarily a flat (rectangular) surface to understand; Rather, this also includes a curved surface, or else an arrangement of individual detectors (eg a plane) arranged in line with one another along a curved line. The side or edge length ratio according to the invention would then be correspondingly dimensioned by an associated arc line. Nevertheless, in order to ensure the flexibility and adaptability to various possible magnification scales, provision is made according to a further development to shift the detector means, in addition or alternatively the X-ray source, in the direction of the beam path.
  • the carrier unit advantageously integrated into a housing, be designed such that both the turntable functionality, including the adjustable rotation about an axis of rotation, as well as a linear displacement of the turntable (bearing surface) in the axial direction, be performed simultaneously or sequentially;
  • the carrier unit advantageously constitutes a modular unit which has the respective drive means integrated into the housing and offers a suitable control interface for carrying out the movements.
  • the housing of the carrier unit would thus offer on the one hand the rotary drive (first drive means) for the workpiece support surface (which could be, for example, an upper end face of the housing), then in addition a motor would be arranged in the housing, for instance in the manner of a spindle drive after the bottom side a propulsion and therefore the linear drive causing spindle drives out of the housing.
  • first drive means for the workpiece support surface
  • a motor would be arranged in the housing, for instance in the manner of a spindle drive after the bottom side a propulsion and therefore the linear drive causing spindle drives out of the housing.
  • this carrier unit (or the associated housing) is designed so that it can additionally cause storage (preferably air storage) of the support surface and / or turntable.
  • storage preferably air storage
  • at least the components X-ray source, detector means and carrier unit (in the housing together with drive units) together on a holding bed or the like. are defined by continuous underlying support device.
  • these units more preferably not buffered by elastic or other means against each other, common to an underlying ground, a surrounding housing or the like. Shock and / or vibration damped stored, this approach reduces mechanical complexity in a simple and elegant way, promotes compactness and at the same time an optimal decoupling of disturbing environmental influences, such as vibrations or the like., Causes.
  • the configuration offers the possibility of a heat-insulating disc or the like.
  • Heat insulation unit to place in the beam path between the X-ray source and the carrier unit, wherein the distance configuration according to the invention for this purpose leaves enough space and nevertheless allows a compact overall arrangement.
  • this heat-insulating pane now makes it possible to provide air-conditioning in the area of the detector unit or of the workpiece carrier, i. a thermal development in the region of the X-ray source that is detrimental to both the detector accuracy and an undesired thermal expansion of a workpiece to be measured thermally effectively separated from this area to be understood as a measuring or climatic chamber.
  • This refinement according to the invention makes it possible to further increase the accuracy of measurement, in particular to require that certain workpieces be measured at predetermined reference temperatures and otherwise not be precluded by the X-ray source from heating up the entire interior space, as in the case of long scan or surveying cycles can.
  • the detector unit associated or downstream evaluation means In principle, known from the prior art electronic processing of the pixel data in two- or three-dimensional data sets (Schaaren) of the workpiece so that in accordance with the invention advantageously known from the prior art aufrungs- and / or Stammzeugungssys- systems, as they in particular be used in connection with mechanical probe coordinate measuring devices, directly loaded with data and so far can be used immediately, without further data processing effort is necessary: So it is especially provided in the context of developments of the invention and preferred, according to the (typically standardized ) To generate and provide a plurality of three-dimensional dot and / or face data to measured data formats of known mechanical probe coordinate measuring devices, in order then to subsequently store an image formation, a generation of raster or gratingmus or from CAD data.
  • the detector unit associated or downstream evaluation means In principle, known from the prior art electronic processing of the pixel data in two- or three-dimensional data sets (Schaaren) of the workpiece so that in accordance with the invention advantageously known
  • the present invention surprisingly allows for the production of compact, high performance and reliable computed tomography workpiece measuring devices, which promise potentially significant dimensional reductions, associated cost savings, and, in addition, potentially increased imaging and surveying quality, the benefits of non-medical computer-tomographic workpiece measurement can be made accessible to new application areas.
  • FIG. 3 shows a block diagram for clarifying essential functional components and their interaction in the realization of a system for computer tomographic workpiece measurement including interface technology for known presentation and evaluation peripherals of probe coordinate measuring devices.
  • FIG. 1 illustrates in the schematic side view, as within a radiation protection (eg via a lead clothing) offering frame 10 on a base plate 12 (holding bed), which via dampers 14 relative to the frame 10 damping (shock and / or vibration-inhibiting) supported, an X-ray source 16 (eg closed microfocus or macro focus X-ray source) is provided.
  • the X-ray source 16 is, schematically indicated by an adjustment unit 18 and arrows 46 in Fig. 2, linear along a travel and adjustable in order to make an adjustment to a predictable on a turntable 20 measuring object (workpiece).
  • the turntable 20 With an X-ray permeable, disc-like heat insulation screen 22 separated from the X-ray source 16, the turntable 20 is seated on a vertically linearly movable housing unit 26 by means of a bearing unit 24, which carries inside a provided for driving the turntable 20 rotary unit (eg stepper motor), further to (preferably air-supported) vertical movement within the plate 12, the necessary means in otherwise known manner.
  • the heat-insulating protective screen 22 produces an air-conditioned chamber in the area to the right of this pane, which can be provided with otherwise known air-conditioning means (not shown) such that the heat-sensitive area of the detector unit or the workpiece carrier unit can be predefined Temperature can be maintained and in particular of adverse heat development of the X-ray source 16 remains unaffected.
  • a detector unit 28 which is positioned relative to the X-ray source and the turntable 20 at the end of a schematically shown beam path 30, that an X-ray passing through a workpiece 30 strikes the detector unit 28 and there, of a plurality of square Surface-mounted, X-ray-sensitive semiconductor photo-elements pixel-wise recorded and fed to further processing. More specifically, in the present embodiment, an X-ray detector is provided which has an effective sensor area of 7.5 cm (horizontal) x 5 cm (vertical) at a resolution of 200 pixels per cm (corresponding to a total pixel count of about 1500,000 pixels ) intended.
  • Its output signal is supplied to a control unit 32 and is then ready for computational further processing, image processing or other interface functions; in a favorable constructive-apparatus configuration, as schematically shown in Fig. 1, the frame-like housing 10 directly associated with a desk surface 34, so that the compactness of the arrangement is further increased.
  • the desk surface 34 also provides in the substructure 36 the possibility of further processing means, e.g. a computer array.
  • the integration of the desk surface is also claimed independently and in connection with the preamble as invention.
  • the result of the configuration shown is an extremely compact system, not least due to the geometric relationships between the units involved, which are illustrated in detail in FIG. 2:
  • the X-ray source A is removed by a distance A of 36.5 cm from the turntable unit 20 or the housing unit 26 (more precisely: from a central axis 42 which extends centrally through these units). Accordingly, this ratio results in a ratio A / B of 0.915.
  • the workpiece 40 is displaceable about a vertical stroke, illustrated by the double arrow 44; a typical example of a maximum stroke is about 20 cm. It is also provided in the invention, the X-ray source 16 to make a horizontal linear stroke of 20 cm (arrows 46) displaceable, as well as (or alternatively) the detector unit 28 by a horizontal linear stroke 48 of 10 cm.
  • FIG. 3 illustrates the schematic interaction of the functional units with an associated processing and evaluation unit: More specifically, the X-ray source 16, the detector unit 28, and a rotation controller 50 and a vertical motion controller 52 (for the turntable 20 and the vertical lift actuator 26, respectively) cooperate with the control unit 32 shown schematically in Fig. 1, which on the one hand controls the necessary movements of the units, on the other hand controls the emission of the X-ray source 16 and causes the radiation detection by the detector unit 28 and the detection of the incoming pixel signals.
  • These signals are first stored in a downstream two-dimensional image memory 54 as a plurality of (two-dimensional) individual images, in order then to be computed or computed into a three-dimensional (volume) image in a further downstream three-dimensional processing unit 56.
  • these three-dimensional data of the unit 56 are also available in the form of 3D data sets, points and / or vectors and correspondingly typical interface or data formats of probe coordinate measuring devices at an interface unit 58 as shown in Fig. 3, with a downstream, standardized evaluation unit 60 (as it can typically interact with just those known probe coordinate measuring devices) and an evaluation result for a display unit 62, eg a screen, a printer od.
  • a display unit 62 eg a screen, a printer od.
  • the units shown as functional components in FIG. 3 can exist as discretely implemented hardware modules, additionally or alternatively in the form of suitably programmed computer or controller units, if appropriate as clusters of parallel computers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Die Erfindung betrifft eine computertomographische Werkstückmessvorrichtung mit einer zum Erzeugen invasiver Strahlung ausgebildeten Röntenquelle (16), zum Erfassen der invasiven Strahlung ausgebildeten Detektormitteln (28) und einer eine Mitten- und/oder Drehachse aufweisende Werkstückträgereinheit (20, 24, 26), die so ausgebildet ist, dass ein von dieser getragenes, zu vermessendes Werkstück (40) in einem Strahlengang (30) der invasiven Strahlung zwischen der Röntgenquelle und den Detektormitteln platzierbar und im Strahlengang bewegbar, insbesondere entlang der Mitten- bzw. Drehachse bewegbar, ist. Erfindungsgemäß ist vorgesehen, dass ein Verhältnis eines ersten kleinsten Abstands A zwischen einem Strahlungsauslass der Röntgenquelle (16) und der sich in dem Strahlengang erstreckenden Mitten- bzw. Drehachse (42) der Trägereinheit im Verhältnis zu einem zweiten kleinsten Abstand B zwischen dem Strahlenauslass und den eine Mehrzahl von in einer Fläche zweidimensional angeordneten Detektorpixeln aufweisenden Detektormitteln A/B > 0,5, bevorzugt > 0,7, weiter bevorzugt > 0,8 beträgt, ein Seiten- und/oder Kantenlängen-Verhältnis der Fläche der Detektormittel im Bereich zwischen 1,5:1 bis 500:1 liegt, bevorzugt im Bereich zwischen 2:1 und 100:1 liegt, und die Detektorpixel eine maximale Pixelgröße kleiner 100μm, bevorzugt kleiner 80μm, weiter bevorzugt kleiner 50μm, aufweisen.

Description

Computertomographische Werkstückmessvorrichtung
Die vorliegende Erfindung betrifft eine computertomographischen Werkstück- messvorrichtung nach dem Oberbegriff des Hauptanspruchs.
Derartige Vorrichtungen zur nicht-medizinischen Computertomographie sind aus dem Stand der Technik allgemein bekannt und basieren auf dem Messprinzip, analog zur human- oder tiermedizinischen Computertomographie, Werkstü- cke mit einem Hochleistungs-Röntgenstrahl als invasiver Strahlung zu beaufschlagen und zu durchleuchten, wobei sich das Werkstück als Messobjekt typischerweise auf einem Drehtisch als Werkstückträger zwischen einer (Hoch- leistungs-)Röntgenquelle und einem elektronischen Röntgendetektor befindet. Der Detektor nimmt die das Objekt durchdringenden Röntgenstrahlen pixelwei- se mittels geeigneter Detektorpixel auf. Indem das zu messende bzw. zu prüfende Werkstück mit dem Drehtisch rotiert, können mehrere Röntgenbilder aus unterschiedlichen Richtungen (Perspektiven) erstellt werden, welche dann in einer nachgeschalteten Auswerteeinheit in ein dreidimensionales Modell als Volumeninformationen zusammengesetzt und weiteren Auswertungen oder Aufbereitungen, z.B. zur visuellen Darstellung auf einem Monitor o.dgl. mit der Möglichkeit zur weiteren visuellen Inspektion, aufbereitet werden.
Derartige, als bekannt vorauszusetzende Vorrichtungen besitzen etwa gegenüber sogenannten taktilen Messverfahren (bei welchen, typischerweise mittels dreidimensional bewegbaren Tastern, ein Werkstück mit seiner Außenkontur abgetastet werden kann) den Vorteil, auch mechanisch nicht zugängliche Innenbereiche und Hohlräume oder Hinterschneidungen eines Werkstücks zuverlässig erfassen und abbilden zu können, so dass, über das Anwendungsspektrum bekannter Taster-Koordinatenmessvorrichtungen hinaus, eine computer- tomographische nicht-medizinische Werkstückmessung (Vermessung) insbesondere sich auch günstig für Zwecke der Montage- und Defektkontrolle, der Porositätsanalyse, zur Wandstärkenmessung oder für andere komplexe messtechnische Auswertungen eignet, bis hin zu Aufgaben des Reverse- Engineering, bei welchen, ausgehend von einem körperlich vorliegenden Messobjekt, die gewonnenen äußeren und inneren Konturdaten dann in geeignete CAD-Daten transformiert werden können.
Gattungsgemäße computertomographische Werkstückmessvorrichtungen setzen dabei üblicherweise Hardware ein, Röntgenquellen, welche einen punktförmigen Strahlenauslass aufweisen, und dieser Röntgenquelle zugeordnete zeilenartige oder (angenähert) quadratische Detektorarrays (insbesondere beim hier vorliegenden Gebiet der sogenannten Kegelstrahl-Tomographie mit zwei- dimensional angeordneten Detektoren). Nicht zuletzt bedingt durch die geometrischen Verhältnisse der aus der Medizintechnik stammenden Detektoren weisen diese typischerweise Pixelgrößen im Bereich zwischen etwa 200 und 400μm auf, wobei, zum Erreichen einer hinreichenden Genauigkeit, eine Werkstückträgereinheit, angeordnet zwischen der Röntgenquelle und dem Detektor, in etwa mittig oder in Richtung auf die Röntgenquelle platziert ist, um, entsprechend der Detektorgeometrie und dessen Auflösung, die gewünschte Vergrößerung des durchleuchteten Röntgenbildes zu erreichen.
Eine derartige, konventionelle Vorgehensweise besitzt jedoch den Nachteil, dass bei diesen geometrischen Verhältnissen und einer stets vorhandenen Instabilität der Röntgenröhre unerwünschte Bewegungen im von der Röntgenquelle ausgesendeten Strahl vorliegen, welche sich dann detektorseitig in Ab- bildungsunschärfen zeigen. Dies führt dazu, dass Bildqualität und Auflösung begrenzt sind. Auch führt die konventionelle Geometrie der beteiligten Partner Röntgenquelle, Detektor und Trägereinheit dazu, dass aus dem Stand der Technik bekannte Vorrichtungen typischerweise mechanisch groß sind, mit dem damit verbundenen Nachteil hohen Gehäuse-, Abschirmungs- und Unterstützungsaufwands: Prinzipbedingt verlangt die Röntgentomographie eine (Blei- )Abschirmung der relevanten Passagen, so dass große mechanische Abmes- sungen (insbesondere relativ zu den Abmessungen eines zu prüfenden Werkstücks) sich nachteilig auf Herstellungskosten, Gewicht und Einbauvoraussetzungen (etwa die Notwendigkeit zusätzlicher mechanischer Verstärkung auf einem Untergrund) auswirken. Aufgabe der vorliegenden Erfindung ist es daher, eine gattungsbildende compu- tertomographische Werkstückmessvorrichtung im Hinblick auf ihre Mess- und Bildgebungseigenschaften zu verbessern, gleichzeitig die Möglichkeit zu schaf- fen, eine solche Vorrichtung kompakter und mit geringerem mechanischem Aufwand realisierbar zu gestalten.
Die Aufgabe wird durch die Vorrichtung mit den Merkmalen des Hauptanspruchs sowie die Verwendung nach dem Anspruch 16 gelöst; vorteilhafte Wei- terbildungen der Erfindung sind in den Unteransprüchen beschrieben. Zusätzlich wird im Rahmen der vorliegenden Erfindung Schutz beansprucht für ein Betriebsverfahren zur Vermessung des auf der Werkstückträgereinheit getragenes Werkstück, insbesondere zur automatisierten Vermessung einer Mehrzahl von einzelnen Werkstücken, welche entlang der Richtung der Mitten- bzw. Drehachse übereinander angeordnet (ggf. mehreren Werkstücken pro Ebene) und durch die erfindungsgemäße Bewegung nacheinander in den Strahlengang bzw. aus diesem heraus verbracht werden können.
In erfindungsgemäß vorteilhafter Weise wird diese Aufgabe durch drei einander ergänzende bzw. synergistisch unterstützende Maßnahmen gelöst: Zum einen ist erfindungsgemäß vorgesehen, die Trägereinheit (mit dem darauf vorzusehenden, zu vermessenden Werkstück) relativ näher zu den Detektormitteln vorzusehen, insbesondere so vorzusehen, dass, bezogen auf eine Mitte der Strecke zwischen Röntgenquelle und Detektor, die Trägereinheit näher zu den De- tektormitteln steht. Diese Maßnahme steht in Verbindung mit der erfindungsgemäßen Maßnahme, kleine Detektorpixel zu verwenden, nämlich solche, deren maximale Pixelgröße kleiner als 100μm beträgt. Hierdurch lässt sich die Bildqualität signifikant erhöhen, da - mit gegenüber dem Stand der Technik gleich bleibender oder verbesserter Auflösung - sich unerwünschte Bewegun- gen bzw. Instabilitäten der Röntgenquelle weniger stark auswirken. Zusätzlich ermöglicht diese Geometrie das Realisieren einer wesentlich kompakteren Anordnung, da sich durch die beschriebenen Maßnahmen faktisch der Abstand zwischen Röntgenquelle und Detektormitteln verringern lässt.
Erfindungsgemäß stehen diese Merkmale im Zusammenhang mit der Bewegbarkeit der Werkstückträgereinheit, insbesondere in einer vertikalen Richtung (wobei „vertikal" in der Bedeutung von entlang der Mitten- bzw. Drehachse der Werkstückträgereinheit und damit parallel zur Flach- bzw. Schmalseite der Detektormittel zu verstehen ist). Erfindungsgemäß vorteilhaft wird nämlich durch diese Bewegbarkeit die Möglichkeit geschaffen, ein Werkstück als Messobjekt auf der Werkstückträgereinheit vorzusehen, welches sich entlang der Vertikalrichtung über die Detektoreinheit hinweg erstreckt, so dass durch (kontinuierliche oder abschnittsweise) Bewegung entlang der Vertikalrichtung sukzessive die verschiedenen Abschnitte dieses Werkstücks erfasst werden können, mit anderen Worten, die Vorrichtung sich bereits für Werkstücke eignet, deren Dimensionen die geometrischen Verhältnisse von Strahlengang und effektiver Detektorfläche (deutlich) übersteigen. Damit verbunden ist ein zweiter Vorteil: Wenn derartige (typischerweise langgestreckte) Objekte mit ihrer Längsachse vertikal auf der Werkstückträgereinheit ausgerichtet sind (im Gegensatz etwa zu typischerweise bekannten Vorgehensweise, bei welchen ein solches Objekt quer und flach und damit vollständig im Strahlengang liegt), verringert sich die durch den Röntgenstrahl durchstrahlte bzw. zu durchstrahlende Masse des Werkstücks. Dies ermöglicht dann wiederum aufgrund der geringeren durchstrahlten Weglängen im Objekt eine höhere Bildqualität des von den Detektor- mittein erfassten Signals. Darüber hinaus bewirken flache (schmale) Detektoren, welche in der erfindungsgemäßen Weise zumindest ein Rechteck- Verhältnis der Schmal- zur Längsseite von 1 ,5:1 aufweisen, durch diesen flachen Aufbau geringere Rekonstruktionsfehler. Wiederum mit diesem Erfindungsaspekt verbunden ist eine bevorzugte Weiterbildung der Erfindung, für welche als Verwendung, jedoch auch im Rahmen eines Verfahrens, unabhängig Schutz beansprucht wird: Wird nämlich in der erfindungsgemäß beanspruchten Weise eine Vertikalbewegung realisiert, lässt sich nicht nur ein (einzelnes) Objekt vertikal platzieren, auch bietet diese Vorgehensweise die Mög- lichkeit, die Werkstückträgereinheit so auszugestalten (bzw. mit geeigneten Trägermitteln zu versehen), dass diese eine Mehrzahl von einzelnen Werkstücken übereinander (auch mehrere nebeneinander pro Höhenebene) angeordnet tragen kann. Dies ermöglicht dann wieder, in der Art eines Vertikal-Magazins, ein bevorzugt automatisiertes aufeinanderfolgendes Bearbeiten von einzelnen Werkstücken, welche durch die Vertikalbewegung des Werkstückträgers nacheinander in den Strahlengang (bzw. wieder aus diesem heraus) bewegt werden. Insbesondere unter dem Gesichtspunkt eines 24-Stunden-Betriebs bei minimierter manueller Bedienung einer erfindungsgemäßen Vorrichtung führt dies zu großer Flexibilisierung der Einsatzmöglichkeiten einer nicht medizinischen computertomographischen Werkstückmessvorrichtung gemäß der vorliegenden Erfindung.
Als weitere erfinderische Maßnahme ist vorgesehen, die Detektormittel als rechteckig-flächiges Array zu realisieren. Hierdurch kann, z.B. bei Ausbildung der Flachseite dieser Rechteckkontur in horizontaler Richtung, die Kompaktheit der Vorrichtung dadurch erhöht werden, dass, neben einer Drehtellerfunktionalität, die Trägereinheit weiterbildungsgemäß zusätzlich eine Längs- bzw. Axialbewegung entlang der Drehachse vollführt. Entsprechend entstehende Rönt- gen(einzel-)bilder können dann wiederum geeignet zu vollständigen Flächen- und dann Volumenmodellen, entsprechend einem zu prüfenden Werkstück, zusammengesetzt werden. Vorteilhaft ist die erfindungsgemäße Rechteckform, d.h. keine quadratische Form, zudem dadurch, dass Fehler, die bei der Rekonstruktion von gattungsgemäßen, nahezu quadratischen Detektorbildern entste- hen, verringert werden können.
Als „Fläche" oder „flächig" im Sinne der Erfindung ist dabei nicht notwendigerweise eine plane (Rechteck-) Fläche zu verstehen; vielmehr ist damit auch eine gebogene Fläche, oder aber eine fassettenartig entlang einer Bogenlinie anei- nandergereihte (z.B. plane) Anordnung aus Einzeldetektoren umfasst. Das erfindungsgemäße Seiten- bzw. Kantenlängenverhältnis wäre entsprechend dann durch eine zugehörige Bogenlinie zu bemessen. Um gleichwohl die Flexibilität und Anpassbarkeit an verschiedene mögliche Vergrößerungsmaßstäbe zu gewährleisten, ist weiterbildungsgemäß vorgesehen, die Detektormittel, ergänzend oder alternativ die Röntgenquelle, in Richtung des Strahlengangs zu verschieben. Dabei ist es jedoch im Rahmen der vorliegenden Erfindung weiterbildungsgemäß nützlich und wichtig, zur Vermeidung sich addierender (bzw. multiplizierender) Positionierungs- und Toleranzfehler, das Paar von Röntgenquelle und Detektormitteln in vertikaler Richtung (d.h. parallel zur Mitten- bzw. Drehachse der Werkstückträgereinheit), ortsfest und stationär auszubilden, weiter bevorzugt Detektor und Quelle generell stati- onär auszubilden, da damit sich dann die Bewegungsachse(n) auf die Bewegung der Werkstückträgereinheit bzw. des dieser zugeordneten Gehäuses beschränkt. Alternativ sind Detektor und/oder Quelle weiterbildungsgemäß horizontal, d.h. senkrecht zur Mitten- bzw. Drehachse, bewegbar, mit wiederum vorteilhaft entkoppelten Bewegungsachsen.
Gemäß bevorzugter Ausführungsformen der Erfindung ist es nämlich vorgesehen, die Trägereinheit, vorteilhaft integriert in ein Gehäuse, so auszugestalten, dass sowohl die Drehtellerfunktionalität, eingeschlossen die einstellbare Rotation um eine Drehachse, als auch eine Linearverschiebung des Drehtellers (Auf- lagefläche) in axialer Richtung, simultan oder sequentiell durchgeführt werden; vorteilhaft stellt insoweit die Trägereinheit eine modulare Einheit dar, welche die jeweiligen Antriebsmittel in das Gehäuse integriert aufweist und eine geeignete Steuerschnittstelle zum Ausführen der Bewegungen anbietet. Konkret würde damit etwa das Gehäuse der Trägereinheit einerseits den Drehantrieb (erste Antriebsmittel) für die Werkstückauflagefläche (welche z.B. eine obere Stirnfläche des Gehäuses sein könnte) anbieten, zusätzlich würde im Gehäuse dann, etwa in der Art eines Spindelantriebs, ein Motor angeordnet sein, welcher nach bodenseitig eine ein Abstützen und mithin den Linearantrieb bewirkende Spindel aus dem Gehäuse heraustreibt.
Weiter vorteilhaft und weiterbildungsgemäß ist zudem diese Trägereinheit (bzw. das zugehörige Gehäuse) so ausgestaltet, dass es zusätzlich eine Lagerung (bevorzugt Luftlagerung) der Auflagefläche und/oder Drehteller bewirken kann. Weiter vorteilhaft und erfindungsgemäß im Rahmen bevorzugter Ausführungsbeispiele ist vorgesehen, dass zumindest die Komponenten Röntgenquelle, Detektormittel und Trägereinheit (im Gehäuse samt Antriebsaggregaten) gemein- sam auf einem Haltebett od.dgl. durchgehender unterliegender Stützvorrichtung festgelegt sind. Damit sind diese Einheiten, weiter bevorzugt nicht durch elastische oder andere Mittel gegeneinander gepuffert, gemeinsam gegenüber einem unterliegenden Boden, einem umgebenen Gehäuse o.dgl. stoß- und/oder schwingungsgedämpft gelagert, wobei diese Vorgehensweise in einfacher und eleganter Weise mechanischen Aufwand verringert, Kompaktheit fördert und gleichzeitig eine optimale Entkopplung von störenden Umwelteinflüssen, etwa Vibrationen od.dgl., bewirkt.
Weiter vorteilhaft bietet die Konfiguration die Möglichkeit, eine wärmeisolieren- de Scheibe o.dgl. Wärmeisolationseinheit in den Strahlengang zwischen Röntgenquelle und Trägereinheit zu platzieren, wobei die erfindungsgemäße Abstandskonfiguration hierfür hinreichend Platz lässt und gleichwohl eine kompakte Gesamtanordnung ermöglicht. Weiterbildungsgemäß gestattet es nunmehr diese wärmeisolierende Scheibe, im Bereich der Detektoreinheit bzw. des Werkstückträgers eine Klimatisierung vorzusehen, d.h. eine für sowohl die Detektorgenauigkeit, als auch eine unerwünschte thermische Ausdehnung eines zu vermessenden Werkstücks schädliche Wärmeentwicklung im Bereich der Röntgenquelle thermisch wirksam von diesem als Mess- bzw. Klimakammer zu begreifenden Bereich zu trennen. Durch diese erfindungsgemäße Weiterbildung lässt sich damit die Messgenauigkeit weiter erhöhen, nicht zuletzt als gewisse Messvorgaben ohnehin verlangen, dass Werkstücke bei vorbestimmten Referenztemperaturen vermessen werden und, etwa bei langen Scan- bzw. Vermessungszyklen, durch die Röntgenquelle eine Aufheizung des gesamten Innenraums ansonsten nicht ausgeschlossen werden kann.
Gemäß weiterer bevorzugter Weiterbildungen der Erfindung, für die zusammen mit dem Oberbegriff auch unabhängig Schutz beansprucht wird, ist vorgesehen, dass der Detektoreinheit zugeordnete bzw. nachgeschaltete Auswertemittel die (prinzipiell aus dem Stand der Technik bekannte) elektronische Aufbereitung der Pixeldaten in zwei- oder dreidimensionale Datensätze (Schaaren) des Werkstücks so vornimmt, dass in erfindungsgemäß vorteilhafter weise aus dem Stand der Technik bekannte Datenaufbereitungs- und/oder Bilderzeugungssys- teme, wie sie insbesondere im Zusammenhang mit mechanischen Taster- Koordinatenmessvorrichtungen verwendet werden, unmittelbar mit Daten beschickt und insoweit unmittelbar weiterbenutzt werden können, ohne dass weitergehender Datenaufbereitungsaufwand notwendig ist: So ist es nämlich insbesondere im Rahmen von Weiterbildungen der Erfindung vorgesehen und be- vorzugt, entsprechend den (typischerweise standardisierten) Messdatenformaten bekannter mechanischer Taster-Koordinatenmessvorrichtungen eine Mehrzahl von dreidimensionalen Punkt- und/oder Flächendaten zu erzeugen und bereitzustellen, um auf diesem Wege dann nachgelagert eine Bilderzeugung, eine Erzeugung von Raster- oder Gittermustern oder aber von CAD-Daten zu ermöglichen.
Im Ergebnis gestattet die vorliegende Erfindung in überraschend einfach und eleganter Weise das Herstellen von kompakten, leistungsfähigen und betriebssicheren computertomographischen Werkstückmessvorrichtungen, welche po- tenziell beachtliche Dimensionsreduzierungen, damit verbundene Kostenersparnisse versprechen und, bei zusätzlich potenziell erhöhter Abbildungs- und Vermessungsqualität, die Vorteile nicht-medizinischer computertomographi- scher Werkstückvermessung neuen Anwendungsgebieten zugänglich machen kann.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiel sowie anhand der Zeichnungen; diese zeigen in:
Fig. 1 : eine schematische Ansicht der computertomographischen Werkstückmessvorrichtung gemäß einer ersten bevorzugten Ausführungsform der Erfindung (best-mode); Fig. 2: eine Schemaansicht zum Verdeutlichen der geometrischen Verhältnisse zwischen Röntgenquelle, Trägereinheit und Detektormitteln samt relativer Beweglichkeit zwischen diesen und
Fig. 3: ein Blockschaltbild zum Verdeutlichen wesentlicher Funktionskomponenten und deren Zusammenwirken in der Realisierung eines Systems zur computertomographischen Werkstückvermessung samt Schnittstellentechnologie für bekannte Darstellungs- und Auswerteperipherie von Taster-Koordinatenmess-vorrichtungen.
Die Fig. 1 verdeutlicht in der schematischen Seitenansicht, wie innerhalb eines Strahlenschutz (z.B. über eine Bleiverkleidung) anbietenden Rahmengestells 10 auf einer Basisplatte 12 (Haltebett), welche über Dämpfereinheiten 14 gegenüber dem Rahmengestell 10 dämpfend (stoß- und/oder vibrationshemmend) abgestützt, eine Röntgenquelle 16 (z.B. geschlossene Mikrofokus- oder Makro- fokus-Röntgenquelle) vorgesehen ist. Die Röntgenquelle 16 ist, schematisch durch eine Verstelleinheit 18 sowie Pfeile 46 in Fig. 2 angedeutet, linear entlang eines Verfahrweges beweg- und einstellbar, um insoweit eine Anpassung an ein auf einem Drehtisch 20 vorsehbares Messobjekt (Werkstück) vornehmen zu können.
Mit einen für Röntgenstrahlen durchlässigen, scheibenartigen Wärmeisolations- Schutzschirm 22 von der Röntgenquelle 16 getrennt, sitzt der Drehtisch 20 auf einer mittels einer Lagereinheit 24 vertikal linear bewegbaren Gehäuseeinheit 26, die im Inneren ein zum Antreiben des Drehtisches 20 vorgesehenes Drehaggregat (z.B. Schrittmotor) trägt, ferner zu (bevorzugt luftgelagerter) Vertikalbewegung innerhalb der Platte 12 die nötigen Einrichtungen in ansonsten bekannter Weise aufweist. Durch den Wärmeisolations-Schutzschirm 22 entsteht im Bereich rechts dieser Scheibe eine klimatisierbare Kammer, welche weiter- bildungsgemäß (in nicht gezeigter Weise) mit ansonsten bekannten Klimatisierungsmitteln so versehen sein kann, dass damit der wärmeempfindliche Bereich der Detektoreinheit bzw. der Werkstückträgereinheit auf einer vorbestimmbaren Temperatur gehalten werden kann und insbesondere von nachteiliger Wärmeentwicklung der Röntgenquelle 16 unbeeinträchtigt bleibt.
Weiterhin montiert auf der Basisplatte 12 ist eine Detektoreinheit 28, welche so relativ zur Röntgenquelle und zum Drehtisch 20 am Ende eines schematisch gezeigten Strahlengangs 30 positioniert ist, dass ein ein Werkstück 30 durchstrahlender Röntgenstrahl auf die Detektoreinheit 28 trifft und dort, von einer Mehrzahl von eckig-flächig angeordneten, röntgen-sensitiven Halbleiter- Photoelementen pixelweise aufgenommen und einer weiteren Verarbeitung zu- geführt wird. Genauer gesagt ist im vorliegenden Ausführungsbeispiel ein Rönt- gendetektor vorgesehen, welcher eine effektive Sensorfläche von 7,5 cm (horizontal) x 5 cm (vertikal) bei einer Auflösung von 200 Pixeln pro/cm (entsprechend daher einer totalen Pixelzahl von ca. 1500000 Pixeln) vorgesehen.
Dessen Ausgangssignal wird einer Steuereinheit 32 zugeführt und steht dann zur rechnerischen Weiterverarbeitung, Bildaufbereitung oder anderen Schnittstellenfunktionen bereit; in einer günstigen konstruktiv-apparativen Konfiguration ist, wie schematisch in der Fig. 1 gezeigt, dem rahmenartigen Gehäuse 10 eine Schreibtischfläche 34 unmittelbar zugeordnet, so dass die Kompaktheit der Anordnung weiter erhöht wird. Die Schreibtischfläche 34 bietet zudem im Unterbau 36 die Möglichkeit, weitere Verarbeitungseinrichtungen, z.B. ein Rech- nerarray, vorzusehen. Das Integrieren der Schreibtischfläche wird auch unabhängig und in Verbindung mit dem Oberbegriff als Erfindung beansprucht.
Im Ergebnis entsteht durch die gezeigte Konfiguration ein überaus kompaktes System, nicht zuletzt bedingt durch die geometrischen Verhältnisse zwischen den beteiligten Aggregaten, die im Detail in der Fig. 2 verdeutlicht sind: So ist im gezeigten Ausführungsbeispiel in einer typischen Messposition (etwa für ein Messobjekt 40 einer horizontalen Ausdehnung von 6,5 mm), die Röntgenquelle 16 um einen Abstand B = 40 cm von der Detektoreinheit 28 entfernt. Gleichzeitig ist in dieser Konfiguration die Röntgenquelle A um einen Abstand A von 36,5 cm von der Drehtischeinheit 20 bzw. der Gehäuseeinheit 26 entfernt (genauer: von einer Mittenachse 42, welche sich mittig durch diese Einheiten erstreckt). Entsprechend ergibt sich für diese Konfiguration ein Verhältnis A/B von 0,915.
Wie zusätzlich die Fig. 2 verdeutlicht, ist das Werkstück 40 um einen Vertikal- hub, verdeutlicht durch den Doppelpfeil 44, verschiebbar; ein typisches Beispiel eines Maximalhubes liegt bei ca. 20 cm. Auch ist im Rahmen der Erfindung vorgesehen, die Röntgenquelle 16 um einen horizontalen Linearhub von 20 cm (Pfeile 46) verschiebbar zu gestalten, ebenso wie (oder alternativ) die Detektoreinheit 28 um einen horizontalen Linearhub 48 von 10 cm.
Die Fig. 3 verdeutlicht das schematische Zusammenwirken der Funktionseinheiten mit einer zugeordneten Aufbereitungs- und Auswertungseinheit: Genauer gesagt wirken die Röntgenquelle 16, die Detektoreinheit 28 sowie eine Drehsteuerung 50 bzw. eine Vertikalbewegungssteuerung 52 (für den Drehtisch 20 bzw. den vertikalen Hubantrieb 26) zusammen mit der in Fig. 1 schematisch gezeigten Steuereinheit 32, welche einerseits die nötigen Bewegungen der Einheiten ansteuert, andererseits die Emission der Röntgenquelle 16 steuert sowie die Strahlungsdetektion durch die Detektoreinheit 28 sowie die Erfassung der eingehenden Pixelsignale bewirkt. Diese Signale werden zunächst in einen nachgeschalteten zweidimensionalen Bildspeicher 54 als Mehrzahl von (zweidimensionalen) Einzelbildern abgelegt, um dann in einer weiter nachgeschalteten dreidimensionalen Verarbeitungseinheit 56 in ein dreidimensionales (Volumen-) Bild zusammengefasst bzw. verrechnet zu werden.
In erfindungsgemäß vorteilhafter Weise stehen zudem bei diesem gezeigten Ausführungsbeispiel diese dreidimensionalen Daten der Einheit 56 in der Art von 3D-Datensätzen, -Punkten und/oder -Vektoren und entsprechend typischen Schnittstellen- bzw. Datenformaten von Taster-Koordinatenmessvorrichtungen an einer Schnittstelleneinheit 58 bereit, um, wie in der Fig. 3 gezeigt, mit einer nachgeschalteten, standardisierten Auswerteeinheit 60 (wie sie typischerweise auch mit eben jenen bekannten Taster-Koordinatenmessvorrichtungen zusammenwirken kann) verbunden zu werden und ein Auswerteergebnis für eine Darstellungseinheit 62, z.B. einen Bildschirm, einen Drucker od.dgl., auszugeben. Die in der Fig. 3 als Funktionskomponenten gezeigten Einheiten können als diskret realisierte Hardware-Baugruppen existieren, ergänzend oder alternativ in Form von geeignet programmierten Computer- oder Controllereinheiten, ge- gebenenfalls als Cluster von Parallelrechnern.

Claims

Patentansprüche
1. Computertomographische Werkstückmessvorrichtung mit einer zum Erzeugen invasiver Strahlung ausgebildeten Röntenquelle
(16), zum Erfassen der invasiven Strahlung ausgebildeten Detektormitteln (28) und einer eine Mitten- und/oder Drehachse aufweisende Werkstückträgereinheit (20, 24, 26), die so ausgebildet ist, dass ein von dieser getra- genes, zu vermessendes Werkstück (40) in einem Strahlengang (30) der invasiven Strahlung zwischen der Röntgenquelle und den Detektormitteln platzierbar und im Strahlengang bewegbar, insbesondere entlang der Mitten- bzw. Drehachse bewegbar, ist, dadurch gekennzeichnet, dass ein Verhältnis eines ersten kleinsten Abstands A zwischen einem Strah- lungsauslass der Röntgenquelle (16) und der sich in dem Strahlengang erstreckenden Mitten- bzw. Drehachse (42) der Trägereinheit im Verhältnis zu einem zweiten kleinsten Abstand B zwischen dem Strahlenauslass und den eine Mehrzahl von in einer Fläche zweidimensional angeordne- ten Detektorpixeln aufweisenden Detektormitteln A/B > 0,5, bevorzugt >
0,7, weiter bevorzugt > 0,8 beträgt, ein Seiten- und/oder Kantenlängenverhältnis der Fläche der Detektormittel im Bereich zwischen 1 ,5:1 bis 500:1 liegt, bevorzugt im Bereich zwischen 2:1 und 100:1 liegt, und die Detektorpixel eine maximale Pixelgröße kleiner 100μm, bevorzugt kleiner 80μm, weiter bevorzugt kleiner 50μm, aufweisen.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Detektormittel und/oder die Röntgenquelle so ausgebildet sind, dass diese in einer Richtung des Strahlengangs einstell- und/oder verschiebbar (46,
48) sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trägereinheit eine Drehtellerfunktionalität mit einer um eine Drehachse (42) drehbar antreibbaren Werkstückauflagefläche (20) aufweist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Trägereinheit so ausgebildet ist, dass die Werkstück-Auflagefläche entlang der Drehachse um einen vorbestimmten Längshub (44) verfahrbar ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Trä- gereinheit ein Gehäuse aufweist, welches erste Antriebsmittel zum Drehen der Werkstück-Auflagefläche um die Drehachse sowie zweite Antriebsmittel zum linearen Bewegen der Werkstück-Auflagefläche entlang der Drehachse aufweist, wobei zumindest eines der Antriebsmittel, bevorzugt beide Antriebsmittel, in das Gehäuse integriert ist/sind.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die ersten und die zweiten Antriebsmittel so ausgebildet und ansteuerbar sind, dass das Drehen und das lineare Bewegen simultan erfolgen kann.
7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Trägereinheit Mittel (24) zur Lagerung, insbesondere Luftlagerung, der Werkstück-Auflagefläche, insbesondere an oder in einem bewegbaren Gehäuse oder Schlitten der Trägereinheit, aufweist.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Röntgenquelle, die Detektormittel sowie die Antriebsmittel aufweisende Trägereinheit an einem gemeinsamen Haltebett (12) festgelegt sind, welches Haltebett bevorzugt gegenüber einem Untergrund und/oder einem umgebenen Gehäuse (10) durch mechanische Puffermit- tel (14) stoß- oder schwingungsgedämpft abgestützt ist.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine scheibenartige, für Röntgenstrahlung durchlässige Wärmeisolationseinheit (22) im Strahlengang zwischen der Röntgenquelle (16) und der Trägereinheit (20, 24, 26).
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Wärmeisolationseinheit eine Klimatisierungsmittel aufweisende temperierbare Kammer für die Werkstückträgereinheit abschließt, in welcher die Werkstückträgereinheit sowie die Detektormittel vorgesehen sind.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Detektoreinheit elektronische Auswertemittel (58, 60) nachgeschaltet sind, die so ausgebildet sind, dass sie entsprechend ei- nem Messdatenformat einer mechanischen Taster-
Koordinatenmessvorrichtung aus einer Mehrzahl von Röntgendetektor- bildern der Detektionseinheit dreidimensionale Konturdaten eines vermessenen Werkstücks erzeugen und elektronisch ausgeben.
12. Vorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass die dreidimensionalen Konturdaten dreidimensionale Punkt- und/oder Flächendaten und/oder Körper-Dimensionsdaten aufweisen und so elektronisch strukturiert und/oder aufbereitet sind, dass sie durch Bilderzeugungssysteme (62) einer Tasten-Koordinatenmessvorrichtung in visuelle Darstel- lungen umsetzbar sind.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Werkstückmessvorrichtung in einem Gehäuse und/oder einer umschließenden Rahmenstruktur vorgesehen ist und an dem Ge- häuse bzw. der Rahmenstruktur (10) ein Schreibtischabschnitt oder
Schreibtischansatz (34) ausgebildet ist.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Werkstückträgereinheit Mittel zum Aufnehmen und/oder Halten einer Mehrzahl von zu vermessenden Werkstücken in der Richtung der Mitten- bzw. Drehachse übereinander so zugeordnet sind, dass durch die gesteuerte Bewegung der Werkstückträgereinheit entlang der
Mitten- bzw. Drehachse aufeinanderfolgend die Mehrzahl der Werkstücke, bevorzugt automatisiert, vermessbar ist.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Mittel zum Aufnehmen bzw. Halten eine Mehrzahl von Ebenen entlang der Mitten- bzw. Drehachse ausbilden, von denen mindestens eine Ebene zum Aufnehmen einer Mehrzahl von Werkstücken in dieser Ebene ausgestaltet ist.
16. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 15 zum automatisierten Vermessen einer Mehrzahl von entlang der Richtung der Mitten- bzw. Drehachse übereinander auf der Werkstückträgereinheit vorgesehenen Werkstücke durch aufeinanderfolgendes Bewegen der Werkstücke in den Strahlengang.
PCT/EP2010/002650 2009-04-30 2010-04-30 Computertomographische werkstückmessvorrichtung WO2010124868A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10722929A EP2425233A2 (de) 2009-04-30 2010-04-30 Computertomographische werkstückmessvorrichtung
CN201080028051.5A CN102460133B (zh) 2009-04-30 2010-04-30 计算机断层成像工件测量设备
US13/266,881 US20120155606A1 (en) 2009-04-30 2010-04-30 Computer tomographic workpiece measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009019215.8 2009-04-30
DE102009019215A DE102009019215A1 (de) 2009-04-30 2009-04-30 Computertomographische Werkstückmessvorrichtung

Publications (2)

Publication Number Publication Date
WO2010124868A2 true WO2010124868A2 (de) 2010-11-04
WO2010124868A3 WO2010124868A3 (de) 2011-02-24

Family

ID=42932289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/002650 WO2010124868A2 (de) 2009-04-30 2010-04-30 Computertomographische werkstückmessvorrichtung

Country Status (5)

Country Link
US (1) US20120155606A1 (de)
EP (1) EP2425233A2 (de)
CN (1) CN102460133B (de)
DE (2) DE102009019215A1 (de)
WO (1) WO2010124868A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226112A (zh) * 2012-01-27 2013-07-31 通用电气公司 用于检查物品的设备和系统
WO2014105798A1 (en) 2012-12-28 2014-07-03 E. I. Du Pont De Nemours And Company Insulating material containing nanocellulose
CN103959048A (zh) * 2011-10-04 2014-07-30 株式会社尼康 X射线装置、x射线照射方法及构造物的制造方法
EP2765407A1 (de) * 2011-10-04 2014-08-13 Nikon Corporation Vorrichtung, röntgenbestrahlungsverfahren und herstellungsverfahren für eine struktur
WO2014184127A1 (en) * 2013-05-13 2014-11-20 Nikon Metrology Nv Enclosed x-ray imaging system
EP3809123A1 (de) * 2019-10-09 2021-04-21 Baker Hughes Oilfield Operations LLC Schnelle industrielle computertomographie für grosse objekte

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706909A (zh) * 2012-06-17 2012-10-03 无锡市优耐特石化装备有限公司 一种薄壁容器环缝周向检测装置
GB2533659B (en) * 2012-09-10 2020-01-22 Werth Messtechnik Gmbh Method and device for correcting computed tomography measurements, comprising a coordinate measuring machine
JP6246724B2 (ja) * 2012-09-26 2017-12-13 株式会社ニコン X線装置、及び構造物の製造方法
DE102013104490A1 (de) * 2013-01-25 2014-07-31 Werth Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung der Geometrie von Strukturen mittels Computertomografie
JP6316991B2 (ja) 2014-06-20 2018-04-25 ヴェロ・スリー・ディー・インコーポレイテッド 3次元物体を生成するための方法
JP6376698B2 (ja) * 2015-01-20 2018-08-22 日本装置開発株式会社 X線検査装置およびx線検査装置の調整方法
KR102621477B1 (ko) * 2015-06-30 2024-01-04 일리노이즈 툴 워크스 인코포레이티드 인라인 x-선 측정 장치 및 방법
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
CN108883575A (zh) * 2016-02-18 2018-11-23 维洛3D公司 准确的三维打印
US9835568B2 (en) * 2016-04-12 2017-12-05 General Electric Company Defect correction using tomographic scanner for additive manufacturing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
EP3263316B1 (de) 2016-06-29 2019-02-13 VELO3D, Inc. Dreidimensionales drucken und dreidimensionaler drucken
WO2018064349A1 (en) 2016-09-30 2018-04-05 Velo3D, Inc. Three-dimensional objects and their formation
US20180126462A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
WO2018129089A1 (en) 2017-01-05 2018-07-12 Velo3D, Inc. Optics in three-dimensional printing
DE102017202852A1 (de) 2017-02-22 2018-08-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Durchführung einer computertomographischen Untersuchung an einem Objekt
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US20180281237A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
DE102018116790B4 (de) * 2018-07-11 2024-10-10 Intom GmbH Vorrichtung und Verfahren zur additiven Fertigung eines Werkstücks
JP2022544339A (ja) 2019-07-26 2022-10-17 ヴェロ3ディー,インコーポレーテッド 三次元オブジェクトの形成における品質保証

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740224A (en) * 1994-09-27 1998-04-14 University Of Delaware Cone beam synthetic arrays in three-dimensional computerized tomography
US5848115A (en) * 1997-05-02 1998-12-08 General Electric Company Computed tomography metrology
US6005918A (en) * 1997-12-19 1999-12-21 Picker International, Inc. X-ray tube window heat shield
DE19843397C1 (de) * 1998-09-22 2000-05-11 Hans Juergen Beierling Computertomographisches Verfahren und Computertomograph zur Prüfung eine Gegenstandes
DE60021972T2 (de) * 1999-09-21 2006-06-22 Konica Corp. Vorrichtung und Verfahren zur Bildgebung mittels Röntgenstrahlen
US7356115B2 (en) * 2002-12-04 2008-04-08 Varian Medical Systems Technology, Inc. Radiation scanning units including a movable platform
JP2005274277A (ja) * 2004-03-24 2005-10-06 Microscopic Scan:Kk X線顕微ct装置
WO2005119174A1 (de) * 2004-05-26 2005-12-15 Werth Messtechnik Gmbh Koordinatenmessgerät und verfahren zum messen eines objektes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959048A (zh) * 2011-10-04 2014-07-30 株式会社尼康 X射线装置、x射线照射方法及构造物的制造方法
EP2765408A1 (de) * 2011-10-04 2014-08-13 Nikon Corporation Röntgenstrahlenvorrichtung, röntgenbestrahlungsverfahren und herstellungsverfahren für eine struktur
EP2765407A1 (de) * 2011-10-04 2014-08-13 Nikon Corporation Vorrichtung, röntgenbestrahlungsverfahren und herstellungsverfahren für eine struktur
EP2765408A4 (de) * 2011-10-04 2015-04-22 Nikon Corp Röntgenstrahlenvorrichtung, röntgenbestrahlungsverfahren und herstellungsverfahren für eine struktur
EP2765407A4 (de) * 2011-10-04 2015-04-22 Nikon Corp Vorrichtung, röntgenbestrahlungsverfahren und herstellungsverfahren für eine struktur
US9234855B2 (en) 2011-10-04 2016-01-12 Nikon Corporation Apparatus, X-ray irradiation method, and structure manufacturing method
US10705030B2 (en) 2011-10-04 2020-07-07 Nikon Corporation X-ray device, X-ray irradiation method, and manufacturing method for structure
CN103226112A (zh) * 2012-01-27 2013-07-31 通用电气公司 用于检查物品的设备和系统
WO2014105798A1 (en) 2012-12-28 2014-07-03 E. I. Du Pont De Nemours And Company Insulating material containing nanocellulose
WO2014184127A1 (en) * 2013-05-13 2014-11-20 Nikon Metrology Nv Enclosed x-ray imaging system
US9810647B2 (en) 2013-05-13 2017-11-07 Niko Metrology Nv Enclosed X-ray imaging system
EP3809123A1 (de) * 2019-10-09 2021-04-21 Baker Hughes Oilfield Operations LLC Schnelle industrielle computertomographie für grosse objekte

Also Published As

Publication number Publication date
US20120155606A1 (en) 2012-06-21
EP2425233A2 (de) 2012-03-07
DE102009019215A1 (de) 2010-11-11
CN102460133B (zh) 2014-06-04
WO2010124868A3 (de) 2011-02-24
DE202009019014U1 (de) 2015-08-31
CN102460133A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2010124868A2 (de) Computertomographische werkstückmessvorrichtung
EP1380263B1 (de) Verfahren und Vorrichtung zur Bestimmung der Ist-Position einer Struktur eines Untersuchungsobjektes
EP2399237B1 (de) Verfahren zum messen eines objekts
EP2268204B1 (de) Vorrichtung und computer implementiertes verfahren zur rotationsfreien computertomographie
DE102012208305B4 (de) Röntgendetektor und Röntgensystem
EP1754969B1 (de) Computertomograph und Verfahren zur Untersuchung unterschiedlich großer Objekte
EP2192380A2 (de) Verfahren zum Messen eines Objektes mit einem Koordinatenmessgerät sowie Koordinatenmessgerät
DE102010010723B4 (de) Verwendung einer Laminographieanlage
EP3077763B1 (de) Verfahren zur auswertung von koordinatenmessdaten, entsprechende vorrichtung zum vermessen eines messobjektes und entsprechendes computerprogrammprodukt
DE102015111621A1 (de) Vorrichtung und Verfahren zur computertomografischen Messung eines Werkstücks
EP0436986B1 (de) Anordnung zur Untersuchung eines Prüfobjekts mit Gamma- oder Röntgenstrahlung
DE10351741A1 (de) Präzises Röntgenüberprüfungssystem, das mehrere lineare Sensoren benutzt
DE102007023925B4 (de) Verfahren, Vorrichtung und Anordnung zur Kompensation der Auswirkungen von Brennfleckenwanderung bei der Aufnahme von Röntgenprojektionsbildern
EP3894846B1 (de) Industrielles röntgen-werkstückvermessungssystem und verfahren zum betreiben eines solchen
DE102020005478A1 (de) Röntgen-ct-messapparat
DE102017222151A1 (de) Kalibrierung eines Koordinatenmessgeräts, das Messobjekte mit invasiver Strahlung durchstrahlt
DE102020111067A1 (de) Messvorrichtung zum Messen und/oder Überprüfen eines Werkstückes
EP3201612B1 (de) Computertomographie vorrichtung und deren verwendung
DE202017104053U1 (de) Computertomografie-Vorrichtung
DE102010019186A1 (de) Computertomographische Werkstückmessvorrichtung
DE102018105460A1 (de) Computertomographiesystem sowie computertomographisches Verfahren
DE10043474B4 (de) Detektor zum Erzeugen eines Bildes aus einfallender Strahlung
EP0975953B1 (de) Vorrichtung zur inspektion von testobjekten und verwendung der vorrichtung
DE102021206401A1 (de) Computertomographieanordnung und Verfahren zum Betreiben einer Computertomographieanordnung
WO2001061326A2 (de) Röntgensystem

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028051.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10722929

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010722929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13266881

Country of ref document: US