WO2010124649A1 - 机动车颠簸动能再生利用系统、减震系统及机动车 - Google Patents

机动车颠簸动能再生利用系统、减震系统及机动车 Download PDF

Info

Publication number
WO2010124649A1
WO2010124649A1 PCT/CN2010/072353 CN2010072353W WO2010124649A1 WO 2010124649 A1 WO2010124649 A1 WO 2010124649A1 CN 2010072353 W CN2010072353 W CN 2010072353W WO 2010124649 A1 WO2010124649 A1 WO 2010124649A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor vehicle
spring seat
air
piston
cylinder block
Prior art date
Application number
PCT/CN2010/072353
Other languages
English (en)
French (fr)
Inventor
丛洋
Original Assignee
Cong Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cong Yang filed Critical Cong Yang
Publication of WO2010124649A1 publication Critical patent/WO2010124649A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/60Vehicles using regenerative power

Definitions

  • the invention relates to a motor vehicle.
  • the above-mentioned invention firstly proposes a ventilating engine and a motor vehicle that use high-pressure gas as a main power and directly utilizes a wind-impedance airflow as an auxiliary power, and the vehicle does not need to convert the wind-resistant airflow into electric energy, and does not require a complicated electromechanical energy conversion system, simplifying
  • the structure of the motor vehicle provides a new way to save energy and find alternatives to fuel.
  • Patent application 2008/022556 discloses a combined blast engine comprising left and right damper engines having a second impeller and independently mounted on the left and right damper engines
  • the first high-pressure gas engine of an impeller, the first high-pressure gas engine and the surrounding first high-pressure gas engine, and the right first-pressure engine and the surrounding first high-pressure gas engine output power through the left power output shaft, the right power output shaft, and the exchange After the wheel and gear are driven, the main power is output.
  • the technical problem to be solved by the present invention is to provide a motor vehicle kinetic energy regeneration system, a damper system and a motor vehicle capable of regenerating the shock impact force when the vehicle is bumped up and down.
  • a motor vehicle kinetic energy regeneration utilization system includes a cylinder block, a piston and a connecting rod, the piston being disposed in an inner cavity of the cylinder block and dividing the inner cavity of the cylinder block into a first working chamber and a second working chamber, a sliding sealing fit between the piston and the inner wall of the cylinder block, wherein one end of the connecting rod is a receiving end for receiving a shock impact force when the wheel of the motor vehicle is bumped up and down, and the other end of the connecting rod is a force applying end, a force applying end of the connecting rod extends into the first working chamber and is connected to the piston for pushing the piston to reciprocate, and the cylinder block is provided with a ventilation hole communicating with the first working chamber, and the cylinder block is provided with a suction hole and an air outlet communicating with the second working chamber, wherein the air suction hole is provided with a first one-way valve for drawing air into the second working chamber, and the air outlet hole is used for outputting the piston to reciprocate Compressed gas.
  • the recycling system further includes a second one-way valve, the output of the air outlet is connected to the second one-way valve, and the compressed gas is output through the second one-way valve.
  • a vehicle shock absorption system using the above-mentioned motor vehicle kinetic energy regeneration system comprising a shock absorbing spring, an upper spring seat fixedly connected with the vehicle body support frame, a lower spring seat movably supported on the wheel axle, and a damping spring Between the upper spring seat and the lower spring seat, the force receiving end of the connecting rod is coupled to the lower spring seat, and the cylinder block is coupled to the upper spring seat.
  • the force receiving end of the connecting rod is hinged with the lower spring seat, and the force applying end of the connecting rod is hinged to the piston.
  • a motor vehicle includes a vehicle body support frame, a compressed gas engine mounted on a vehicle body support frame, a drive train, a wheel, and a vehicle shock absorption system, wherein the compressed gas engine, the drive train, and the wheel are sequentially connected.
  • the vehicle shock absorption system comprises a rocker arm, a shock absorbing spring, an upper spring seat fixedly connected with the vehicle body support frame, a lower spring seat movably supported on the wheel axle, and the above-mentioned motor vehicle kinetic energy regeneration utilization system, the shock absorbing spring Positioned between the upper spring seat and the lower spring seat, the first end of the rocker arm is rotatably connected with the wheel axle, and the second end of the rocker arm is movably connected with the vehicle body support frame, and the force end of the connecting rod Connected to the lower spring seat, the cylinder block is coupled to the upper spring seat.
  • a motor vehicle includes a vehicle body support frame, a compressed gas engine mounted on a vehicle body support frame, a drive train, a wheel, and a vehicle shock absorption system, wherein the compressed gas engine, the drive train, and the wheel are sequentially connected.
  • the vehicle shock absorption system comprises a rocker arm, a shock absorbing spring, an upper spring seat fixedly connected with the vehicle body support frame, a lower spring seat movably supported on the wheel axle, and the above-mentioned motor vehicle kinetic energy regeneration utilization system, the shock absorbing spring Positioned between the upper spring seat and the lower spring seat, one end of the rocker arm is rotatably connected to the wheel axle, and the other end of the rocker arm is hinged with the force receiving end of the connecting rod, and the cylinder block is mounted On the vehicle body support frame, the middle portion of the rocker arm is hinged to the vehicle body support frame.
  • the beneficial effects of the invention by setting the motor vehicle kinetic energy regeneration and utilization system, the vibration impact force when the motor vehicle is bumped can be used to promote the piston movement in time, and the compressed gas storage standby is generated in the second working chamber, thereby pulsing the motor up and down.
  • the energy generated during the regeneration is converted into compressed air for recycling.
  • the consumption of compressed air can be reduced; on the other hand, the process of the connecting rod pushing the piston to generate compressed gas works, and it has the function of damping.
  • FIG. 1 is a schematic structural view of a compressed air container, a jet system, and a compressed gas engine of a motor vehicle;
  • FIG. 2 is a schematic structural view of a gas pressure regulator of a motor vehicle in a closed position
  • Figure 3 is a schematic view showing the structure of a gas pressure regulator of a motor vehicle in an open position
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • FIG. 5 is a schematic diagram of the structure of a motor vehicle (only two wheels are shown);
  • Figure 6 is a top plan view of a motor vehicle
  • Figure 7 is a top plan view of an integrated windage engine and a compressed gas engine
  • Figure 8 is a front elevational view of the integrated windage engine and compressed gas engine
  • Figure 9 is a top plan view of a compressor gas engine of a motor vehicle
  • Figure 10 is a front elevational view of a compressed gas engine of a motor vehicle
  • Figure 11 is a schematic structural view of a vehicle shock absorption system
  • Figure 12 is a partial enlarged view of the portion indicated by A in Figure 11;
  • Figure 13 is a partial enlarged view of the portion indicated by B in Figure 11;
  • Figure 14 is a structural view of the second working chamber of the cylinder block when inhaling
  • Figure 15 is a block diagram of another embodiment of a vehicle shock absorption system.
  • the motor vehicle of the present embodiment includes a jet system, a compressed gas engine 4, a damper engine 3, 3', a drive train 11, and wheels 123.
  • the jet system has an air nozzle 61 having a main power output shaft 120.
  • the air nozzle 61 of the jet system blows the compressed gas engine 4, and the compressed gas engine 4 compresses and re-expands the gas to drive the main power of the compressed gas engine.
  • the output shaft 120 rotates, and the main power output shaft 120 drives the wheel 123 to rotate through the drive train 11.
  • the powertrain 11 may include a transmission 112, a universal transmission 113, and a transaxle 114 that are sequentially connected.
  • a first clutch 56 is connected between the main power output shaft 120 of the compressed gas engine 4 and the drive train 11, and the drive axle 114 is connected. Connect the wheels 123.
  • the jet system includes a compressed gas container 20 that stores compressed gas, a reduced pressure gas storage device, a distributor 30, and an air nozzle 61, and the output of the compressed gas container 20 is connected to a reduced pressure reservoir via a line 3.
  • the air inlet of the air device, the air outlet of the vacuum gas storage device is connected to the air nozzle 61 via the distributor 30, and the distributor 30 is configured to divide the gas outputted from the vacuum gas storage device into multiple gases, and the respective gases pass through corresponding The air nozzle 61 is ejected.
  • the reduced pressure gas storage device includes a gas storage container and a heat exchange device.
  • the gas storage container has a first gas chamber 2 having a first gas inlet 21 for gas input and a first gas outlet 22 for outputting gas.
  • the two ends of the pipeline 3 are respectively connected to the compressed gas container 20 and the first air inlet 21 of the first air chamber 2, and the pipeline 3 may have one or more.
  • the cross-sectional area of the pipeline 3 is smaller than the sectional area of the compressed gas container 20. And the cross-sectional area of the first gas chamber 2.
  • the heat exchange device includes a first heat exchange unit 40, the first heat exchange unit 40 is mounted on the first gas chamber 2, and the first heat exchange unit 40 includes a first temperature adjustment chamber 41 and a first medium 42, the first temperature adjustment The chamber 41 surrounds the circumference of the first air chamber 2, and the first medium 42 is installed between the first temperature adjustment chamber 41 and the first air chamber 2, and the first medium 42 may be a liquid (such as water) or a gas, or Other media that can function as heat exchange.
  • the temperature of the first medium 42 is higher than the temperature of the gas in the first gas chamber 2, so that the compressed gas in the compressed gas container 20 is released to the first gas chamber 2 through the line 3, and is exchanged with the first medium 42 to be exchanged.
  • the first gas chamber 2 may be made of a material having better thermal conductivity to facilitate heat exchange between the gas in the first gas chamber 2 and the first medium 42.
  • the first temperature adjustment chamber 41 may be made of a material that is not thermally conductive or has poor thermal conductivity, so that heat is not easily dissipated into the ambient air.
  • the first heat exchange unit 40 is connected to the air cooler 5 of the refrigerating air conditioner, and both ends of the air cooler 5 are connected to the first temperature adjustment chamber 41 to form a refrigeration cycle, and the first cooler is provided on the air cooler 5
  • the pump 51 and the first circulating pump 51 are controlled to open the closed first circulating pump switch 52. After the heat exchange with the gas in the first gas chamber 2, the temperature of the first medium 42 in the first temperature adjustment chamber 41 is lowered, and the temperature-reduced first medium 42 is performed in the diffuser 5 and the first temperature adjustment chamber 41. Cycling, the refrigerating air conditioner circulates the ambient air and exchanges heat with the diffuser 5 to cool the ambient air for cooling purposes.
  • the gas outputted from the compressed gas container 20 is heated by the first heat exchange unit 40 of the vacuum gas storage device, and then ejected through the air nozzle 61, so that the air nozzle 61 is not condensed or even frozen due to too low temperature;
  • the first heat exchange unit 40 By connecting the first heat exchange unit 40 to the refrigerating air conditioner, the first medium 42 after cooling is used as a circulating medium to achieve the purpose of cooling the ambient air, thereby saving energy.
  • the air injection system may further include a gas pressure regulator 6 for maintaining the air pressure in the first air chamber 2 at a set air pressure.
  • the gas pressure regulator 6 includes a housing 610, a valve core 620, an elastomer 630, a locking block 640, and an adjustment block 650.
  • the housing 610 is mounted by a fastener 14 at a first air inlet 21 of the first air chamber 2, the housing 610 being partially located inside the first air chamber 2, and the housing 610 partially extending outside the first air chamber 2.
  • the housing 610 has a housing 611 extending axially through the housing and an air passage 612 extending radially through the housing.
  • the housing 611 is in communication with an intake duct 613 that communicates with the conduit 3, the gas Lane 612 is in communication with first plenum 2.
  • the valve core 620 is disposed inside the housing 611 and is sealingly fitted with the housing.
  • the two ends of the valve core 620 in the axial direction of the housing 610 are respectively a sealing end 621 and an adjusting end 622.
  • the sealing end 621 can seal the gas.
  • the elastic body 630 can be elastically deformed in the axial direction of the housing 610.
  • the two ends of the elastic body 630 respectively press against the adjusting end 620 of the valve core 620 and the adjusting block 650, and the adjusting block 650 is screwed to the housing 610, and the locking block 640 is locked.
  • the first and second air guiding holes are respectively axially penetrated, and the adjusting block 650 and the locking block 640 respectively have first and second air guiding holes 651 and 641, and the first and second air guiding holes are respectively screwed into the elastic body 630.
  • 651 and 641 are connected to introduce gas into the cavity 611 and act on the regulating end 622 of the valve core 620, and the diameter of the first air guiding hole 651 is smaller than the diameter of the second air guiding hole 641.
  • the sealing end 621 of the valve core has a truncated cone shape, and a sealing ring 623 having elasticity is fixed on the contour surface.
  • An elastic sealing ring 623 is also fixed to the contour surface of the regulating end of the valve body.
  • the cross-sectional area of the sealed end 621 of the spool is smaller than the cross-sectional area of the adjustment end 622.
  • the pressure acting on the sealed end 621 includes the gas pressure of the gas input from the line 3, and the pressure acting on the regulating end 622 includes the gas pressure of the gas in the first gas chamber 2 and the elastic force of the elastic body 630.
  • the elastic body is, for example, a spring, or other member that can be deformed in the axial direction of the housing 610.
  • the working principle of the gas pressure regulator is as follows: when the gas pressure of the gas input from the pipeline 3 is stabilized, a pressure reducing passage 614 is formed between the valve core 620 and the casing 610, so that the gas in the pipeline 3 can pass through the pressure reducing passage 614 and the gas.
  • the passage 612 enters the first air chamber 2; when the air pressure of the gas input from the pipeline is greater than the set air pressure, the air pressure of the input gas pushes the spool 620 to move toward the adjustment end 622 side, and the pressure reduction passage 614 increases in volume, first The air pressure in the air chamber 2 is reduced; when the air pressure of the gas input from the pipeline is less than the set air pressure, the force acting on the regulating end 622 is greater than the force acting on the sealing end 621, so that the valve core faces the sealing end 621 side. Moving, the pressure reducing passage 614 is reduced in volume, and the air pressure in the first pneumatic chamber 2 is increased.
  • the spool moves linearly according to the change in the force acting on the sealed end 621 and the regulating end 622, so that the air pressure in the first air chamber 2 can be stabilized at the set air pressure.
  • the sealing end 621 blocks the air passage 612 and the intake duct 613, and the gas in the line 3 cannot enter the first air chamber 2.
  • the preload of the elastomer 630 can be adjusted so that the initial set air pressure of the gas pressure regulator can be varied.
  • the reduced pressure gas storage device may further include a second gas chamber 7 and a second heat exchange unit 8.
  • the first gas chamber 2 is located before the second gas chamber 7.
  • the second air chamber 7 has a second air inlet 71 and a second air outlet 72, and the second air inlet 71 is connected to the first air outlet 22 of the first air chamber 2.
  • the second heat exchange unit 8 includes a second temperature adjustment chamber 81, a second medium 82, and a heater 83.
  • the second temperature adjustment chamber 81 surrounds the circumference of the second air chamber 7, and the second medium 82 is loaded into the second temperature adjustment chamber 81. Between the second chamber 7, the second medium 82 is such as a liquid or a gas.
  • the heater 83 is used to heat the second medium 82, such as a solar heater, an electric heater or a microwave heater, or other heaters that can be used for medium heating; the heater may have one or more, There may be one or more types of heaters.
  • the second temperature adjustment chamber 81 is connected to the radiator 9 of the heating air conditioner to form a heating cycle.
  • the radiator 9 is provided with a second circulation pump 901 and a second circulation pump switch 902 that controls the second circulation pump 901 to open and close.
  • the heated second medium 82 circulates in the second temperature adjustment chamber 81 and the radiator 9, and the heating air conditioner circulates the ambient air to exchange heat with the radiator 9, so that the ambient air is heated to achieve the purpose of heating. .
  • the gas can be further heated on the basis of the heating of the first heat exchange unit 40, making the nozzle of the jet system more difficult to condense or even freeze.
  • the second air inlet 71 of the second air chamber 7 may also be provided with a gas pressure regulator 6.
  • first temperature adjustment chamber 41 and the second temperature adjustment chamber 81 are connected by a pipeline to form a circulation loop, and the circulation loop is provided with a third circulation pump 903 and a third circulation pump switch for controlling the third circulation pump 903 to be turned on and off. 904.
  • the heat exchange device may only include a first heat exchange unit that utilizes heat exchange to heat the gas in the gas storage container, the number of the first heat exchange units may be one or more; the heat exchange device may also include only the heater
  • the second heat exchange unit may have one or more of the second heat exchange units; the heat exchange device may also include the first and second heat exchange units.
  • the first heat exchange unit not only the gas can be heated, but also the cooled first medium can be used as a medium to cool the interior of the vehicle.
  • the heated second medium acts as a medium for the purpose of warming the interior of the vehicle.
  • the windage engine has two symmetrical structures, which are a first damper engine 3 and a second damper engine 3', respectively.
  • the first windshield engine includes a first casing 117, a first impeller chamber 43, a first impeller 44, and a first impeller shaft 45.
  • the first impeller chamber 43 is surrounded by the first casing 117, and the first impeller 44 has a plurality of Each of the first impellers 44 is fixed on the first impeller shaft 45 and located inside the first impeller chamber 43, and the first casing 117 is provided with a first air inlet 1 for receiving the forward resistance fluid when the vehicle is running.
  • the air inlet 1 has an air inlet port and an air inlet port, and the air inlet port has a larger diameter than the air inlet port.
  • the first air inlet 1 communicates with the first impeller chamber 43 , and the resistance fluid is introduced into the first impeller chamber 43 through the first air inlet 1 to push the first impeller 44 and the first impeller shaft 45 to rotate, and is output through the first impeller shaft 45.
  • the second damper engine 3' has a second casing 117', a second impeller chamber 43', a second impeller 44', a second impeller shaft 45', and a second air inlet 1' for receiving a resistance fluid.
  • the first impeller chamber 43 and the second impeller chamber 43' are independently disposed and are not in communication with each other.
  • the first impeller shaft 45 and the second impeller shaft 45' are parallel and steered oppositely, a first transmission gear 46 is fixed to the first impeller shaft 45, and a second transmission gear 118 is fixed to the second impeller shaft 45'.
  • the motor vehicle also includes a first reversing device, a second reversing device, and an auxiliary power take-off shaft.
  • the first reversing device includes a reversing gear 119 and a conveyor belt 47.
  • the second reversing device includes a first transmission bevel gear 49 and a second transmission bevel gear 50 that are meshed and axially perpendicular, the reversing gear 119 and the first transmission gear 46.
  • the conveyor belt 47 Engaging and parallel to the axis, the conveyor belt 47 is wound around a first transmission bevel gear 49, a second transmission gear 118 and a reversing gear 119 which are distributed in a triangular shape, and the first transmission bevel gear 49 is fixed to the auxiliary power output shaft 130.
  • the power outputted by the first impeller shaft 45 and the second impeller shaft 45' is converted to the auxiliary power output shaft 130 via the first reversing device, and the power output from the auxiliary power output shaft 130 is converted to the motor vehicle by the second reversing device.
  • Drive train 11 The wind resistance engine can have two or more than one or two.
  • the impeller chamber of the damper engine is provided with a plurality of impellers fixed on the impeller shaft, and the resistance fluid drives the imp
  • the power output of the impeller shaft of the wind resistance engine can directly drive the drive train of the motor vehicle after being commutated by the reversing device; or can be driven by the commutation device to drive the motor vehicle in series with the main power output shaft of the compressed gas engine. Drive Train.
  • the compressed gas engine 4 is disposed independently of the first and second damper engines 3, 3' and located behind the first and second damper engines 3, 3'.
  • the compressed gas engine 4 has a main power output shaft 120, and the second transmission bevel gear 50 is fixed at the end of the main power output shaft 120, and the first and second transmission bevel gears 49, 50 that are vertically meshed with each other serve the first,
  • the power outputted by the two-resistance engine 3, 3' is vertically commutated and output to the main power output shaft 120 of the compressed gas engine.
  • the motor vehicle is provided with a first clutch device 160 through which the power outputted by the first and second wind resistance engines 3, 3' is output to the auxiliary power output shaft 130, as shown in FIG.
  • the wind resistance engine has no power output, and the first clutch device 160 is separated, so that the auxiliary power output shaft 130 does not rotate with the main power output shaft 120, thereby reducing the starting load of the motor vehicle; the motor vehicle is in normal condition.
  • the first clutch device 160 is engaged, and the power output from the auxiliary power output shaft 130 and the power output from the main power output shaft 120 drive the power train 11 of the motor vehicle.
  • the first clutch device 160 is a conventional one-way clutch, and of course, other clutch devices having a disengaged and engaged state.
  • the compressed gas engine 4 further has a housing 70 and a circular impeller body 74 disposed inside the housing 70.
  • the housing 70 includes an annular side shell 72, an upper cover 73 and a lower cover 73'.
  • the upper cover 73 and the lower cover 73' are respectively fixed to the upper end opening and the lower end opening of the annular side shell 72, so that the side shell 72,
  • a closed impeller body chamber 68 is formed between the upper cover 73 and the lower cover 73'.
  • the impeller body 74 is located inside the impeller body chamber 68 and the middle portion of the impeller body 74 is sleeved on the main power output shaft 120.
  • a circular working chamber 69 uniformly distributed around the axis of the main power output shaft 120 is formed by notching the circumferential surface of the impeller body 74 and the inner surface of the side casing 72.
  • the working chamber 69 On the cross section of the axis of the vertical main power output shaft 120, the working chamber 69 has a triangular shape formed by connecting three curves end to end.
  • the working chamber 69 may have one turn or multiple turns.
  • the working cavity may be a through groove structure penetrating in the axial direction of the impeller body, the inner surface of the upper cover plate, the inner surface of the lower cover plate and the inner surface of the side case enclosing the working cavity; the working cavity may also be disposed on the circumference of the impeller body
  • the non-grooved structure in the middle of the face, the inner surface of the side case closes the working cavity; of course, the inner surface of the upper cover, the inner surface of the side cover closes the working cavity, or the inner surface and side of the lower cover
  • the inner surface of the shell encloses the working chamber, ie the working chamber is closed by the inner surface of the housing.
  • the inner surface of the side casing 72 is further provided with a plurality of injection ports 67 and a plurality of discharge ports 64, and the injection ports 67 and the discharge ports 64 are spaced apart from each other.
  • the inner side of the side shell 72 is further provided with an annular first-stage muffler chamber 63.
  • the outer surface of the side shell 72 is provided with a plurality of first-stage exhaust ports 65, and each of the spray outlets 64 corresponds to a first-stage exhaust port 65, and the discharge port 64
  • the primary exhaust port 65 is connected through the primary muffler chamber 63.
  • the injection port 67 is not in communication with the discharge port 64, the primary exhaust port 65, and the primary muffler chamber 63.
  • the discharge port 64 and the corresponding primary exhaust port 65 are offset by an angle on a circumference centered on the axis of the main power output shaft 120.
  • the nozzle housing 71 is fixed to the side casing 72 at a position corresponding to each of the injection ports 67.
  • Each of the nozzle housings 71 is fixed with two air nozzles 61, and both of the air nozzles 61 extend into the nozzle inlet 67.
  • Each of the air nozzles 61 is connected to a jet pipe 54, and the axes of the two air nozzles 61 on each of the jet inlets 67 have an acute angle.
  • the compressed gas of the compressed gas container 20 is sent to the working chamber 69 through the gas injection tube 54 and the air nozzle 61.
  • the gas injected from the air nozzle 61 pushes the impeller body 74 to rotate and is compressed in the working chamber 69.
  • the compressed gas temporarily stored in the working chamber 69 is expanded and ejected from the discharge port 64 at a high speed, and the reaction force at the time of ejection again pushes the impeller body 74 to rotate.
  • the impeller body 74 rotates, the main power output shaft 120 is driven to rotate, thereby driving the power train 11 of the motor vehicle.
  • the gas injected from the receiving air nozzle 61 there is a time difference between the gas injected from the receiving air nozzle 61 and the gas ejected from the ejection port 64. During this time difference, the gas is temporarily compressed in the working chamber 69 so that it is ejected. The reaction is greater and can provide more power to the motor vehicle. Since the working chamber 69 is closed by the inner surface of the housing, it is also convenient for the compressed gas to be temporarily stored in the working chamber 69. Further, in order to prevent condensation gas from being condensed when input to the compressed gas engine, the first heater 77 for heating the air nozzle 61 may be mounted on the air nozzle housing 71.
  • the motor vehicle further includes a first electric motor 53 that is power-connected to the main power output shaft 120 of the compressed gas engine 4 via a belt drive mechanism 51 that includes a pulley 511 and a belt 512 that is wound around the pulley 511.
  • the motor vehicle further includes a compressed gas reuse system for communicating the primary exhaust port 65 of the compressed gas engine with the impeller chambers 43, 43' of the drag resistant engine.
  • the compressed gas reuse system includes a primary exhaust pipe 57, a secondary muffler chamber 59, and a secondary exhaust pipe 58.
  • the inlet of the primary exhaust pipe 57 is in one-to-one correspondence with the primary exhaust port 65.
  • the outlet of the primary exhaust pipe 57 is collected to the secondary muffler chamber 59, and the secondary muffler 59 and the secondary exhaust pipe 58 are connected. In communication, the outlet of the secondary exhaust pipe 58 is in communication with both the first impeller chamber 43 and the second impeller chamber 43'.
  • the gas ejected at a high speed from the discharge port 64 of the compressed gas engine passes through the first muffler chamber 63 and the first-stage exhaust port 65, and then enters the first-stage exhaust pipe 57, and is silenced by the second muffler chamber 59 to enter the second-stage exhaust pipe.
  • the gas pipe 58 finally enters the first and second impeller chambers 43, 43' to drive the first and second impellers to rotate, thereby realizing the reuse of the compressed gas, thereby effectively saving energy and further improving the driving of the motor vehicle. force.
  • the motor vehicle further includes a vehicle shock absorption system including a motor vehicle kinetic energy regeneration utilization system 19, a shock absorber and a pressure regulating valve.
  • the damper includes a rocker arm 18, an upper spring seat 97 fixedly coupled to the vehicle body support frame 122, a lower spring seat 121, and a damper spring 96.
  • One end of the rocker arm 18 is rotatably mounted on the vehicle body via the rocker arm shaft 85.
  • the other end of the rocker arm 18 is rotatably coupled to the wheel axle 1231 and the other end is fixed to the lower spring seat 121.
  • the damper spring 96 is fixed between the upper spring seat 97 and the lower spring seat 121.
  • the motor vehicle kinetic energy regeneration system includes a cylinder block 89, a piston 93 and a connecting rod 87.
  • the piston 93 is placed in the inner cavity of the cylinder block 89 and divides the inner cavity of the cylinder block 89 into a first working chamber 128 and a second working chamber 92.
  • the piston 93 is slidably and sealingly engaged with the inner wall of the cylinder block 89.
  • One end of the connecting rod 87 is a force receiving end for receiving a shock impact force when the wheel of the motor vehicle is bumped up and down, and the other end of the connecting rod 87 For the urging end, the urging end of the connecting rod 87 extends into the first working chamber 128 and is connected with the piston 93 for pushing the piston 93 to reciprocate.
  • the cylinder block 89 is provided with a change with the first working chamber 128. a gas hole 88, the cylinder block 89 is provided with an air inlet hole 110 and an air outlet hole 95 for communicating with the second working chamber 92, and the air inlet hole 110 is provided with a first one-way valve 171 for The second working chamber 92 takes in air, and the air outlet 95 is used to output the compressed gas generated when the piston 93 reciprocates.
  • the first check valve 171 is a cantilever-shaped elastic piece disposed on the air suction hole 110.
  • the cylinder block has a limiting surface 170 above the elastic piece.
  • the elastic piece bends downward. Folding, the suction hole 110 is opened, as shown in FIG. 13; when the piston moves upward and the second working chamber 92 compresses the air, under the constraint of the limiting surface 170 of the cylinder block 89, the elastic piece cannot be bent upward, so that the suction
  • the air vent 110 is closed as shown in FIG.
  • the top end of the cylinder block 89 is connected to the upper spring seat 97 via a connecting shaft 94, and the piston 93 is slidably sealed with the cylinder block 89.
  • the upper end of the connecting rod 87 is rotatably connected with the piston 93 through the upper connecting rod shaft 90.
  • the lower end is rotatably coupled to the lower spring seat 121 via the lower link shaft 86.
  • the second check valve 129 includes a valve body 99 and a valve ball 104 disposed inside the valve body 99, a pressure regulating spring 102, a pressure regulating screw 101, and a pressure regulating locking screw 100.
  • the valve body also has an air supply passage 103 therein.
  • the air outlet 95 is connected to the air supply passage 103 through the air outlet duct 105.
  • the valve ball 104 is disposed at the connection between the air supply passage 103 and the air outlet duct 105. When the pressure does not reach the set value, the valve ball 104 blocks the connection. At this point, the gas in the outlet duct 105 cannot enter the air supply passage.
  • FIG. 15 it is a second embodiment of a vehicle shock absorption system, which includes a motor vehicle kinetic energy regeneration system, a shock absorber and a pressure regulating valve, and the shock absorber includes a shaker.
  • the middle portion of the rocker arm 18 is hinged to the vehicle body support frame 122 via a rocker arm shaft 85.
  • One end of the rocker arm 18 is connected to the wheel 123.
  • the spring seat 97 is fixed to the vehicle body support frame 122.
  • the lower spring seat 121 is movably supported on the wheel axle 1231.
  • the damper spring 96 is fixed between the upper spring seat 97 and the lower spring seat 121.
  • the motor vehicle kinetic energy regeneration system includes a cylinder block 89, a piston 93 and a connecting rod 87.
  • the cylinder block 89 is hinged to the vehicle body support frame 122 via a connecting shaft 94.
  • One end of the connecting rod 87 passes through the lower connecting rod shaft 86 and the rocker arm 18 The other end is hinged, and the other end of the link 87 is hinged to the piston 93 via the upper link shaft 90.
  • Other configurations of the motor vehicle kinetic energy regeneration system are as previously described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Vehicle Body Suspensions (AREA)

Description

机动车颠簸动能再生利用系统、减震系统及机动车 技术领域
本发明是关于一种机动车。
背景技术
为了避免严重的环境污染和将机动车在行驶过程中遇到的风阻气流直接加以利用,本发明的申请人提出了专利号为US 7,641,005 B2的美国专利申请,该发明公开了一种发动机,其包括呈对称结构布置的左、右风气发动机,左、右风气发动机包括叶轮室和装设在叶轮室内的叶轮、叶片,该发动机以压缩气体作为主动力、以接收运动风阻作为辅助动力,共同驱动叶轮、叶片运转产生动力输出,所述动力经中央主动力输出变速箱变速后驱动机动车运转。
上述发明首创性的提出了采用高压气体作为主动力并直接利用风阻气流作为辅助动力的风气发动机及机动车,该机动车不需要将风阻气流转换为电能,不需要复杂的机电能量转换系统,简化了机动车的结构,为节约能源和寻找燃油替代品提供了一个崭新的途径。
为了进一步优化风气发动机的性能,提高风气发动机及机动车的工作效率,在前述申请的基础上,本发明人的申请人又提出了美国申请号为12/377,513(WO 2008/022556)的专利申请,该专利申请公开了一种组合式风气发动机,其包括各自独立工作的具有第二叶轮的左、右风阻发动机及安装在左、右风阻发动机周围的多个具有第一叶轮的第一高压气体发动机,左风阻发动机及其周围的第一高压气体发动机、和右风阻发动机及其周围的第一高压气体发动机输出的动力经过左动力输出轴、右动力输出轴、换向轮、齿轮传动后输出主动力。
但是,由于上述以压缩气体作为主动力来源的风气发动机及机动车还是一种新兴的技术,仍有必要对该发明的风气发动机及采用该风气发动机的机动车的结构作进一步的完善和改进。特别是在动力性能方面,更是如此。
技术问题
本发明所要解决的技术问题是提供一种能够对机动车上下颠簸时的震动冲击力进行再生利用的机动车颠簸动能再生利用系统、减震系统及机动车。
技术解决方案
本发明解决其技术问题所采用的技术方案是:
一种机动车颠簸动能再生利用系统,包括气缸体、活塞及连杆,所述活塞置于气缸体的内腔并将气缸体的内腔分隔为第一工作室和第二工作室,所述活塞与气缸体的内壁之间滑动密封配合,所述连杆的一端为受力端,用于接受机动车的车轮上下颠簸时的震动冲击力,所述连杆的另一端为施力端,所述连杆的施力端伸入第一工作室并与所述活塞连接,用于推动活塞往复运动,所述气缸体上设置有与第一工作室相通的换气孔,所述气缸体上设置有用于与第二工作室相通的吸气孔和出气孔,所述吸气孔上设置有第一单向阀,用于向第二工作室内吸入空气,所述出气孔用于输出活塞往复运动时产生的压缩气体。
所述再生利用系统还包括第二单向阀,所述出气孔的输出接第二单向阀,经第二单向阀输出压缩气体。
一种采用上述机动车颠簸动能再生利用系统的机动车减震系统,包括减震弹簧、与车体支撑架固定连接的上弹簧座、活动支撑在车轮轴上的下弹簧座,减震弹簧置于该上弹簧座和下弹簧座之间,所述连杆的受力端与下弹簧座连接,所述气缸体与上弹簧座连接。所述连杆的受力端与下弹簧座铰接,所述连杆的施力端与活塞铰接。
一种机动车,包括车体支撑架、装设于车体支撑架上的压缩气体发动机、传动系、车轮和机动车减震系统,所述压缩气体发动机、传动系及车轮顺次动力连接,所述机动车减震系统包括摇臂、减震弹簧、与车体支撑架固定连接的上弹簧座、活动支撑在车轮轴上的下弹簧座和上述机动车颠簸动能再生利用系统,减震弹簧置于该上弹簧座和下弹簧座之间,所述摇臂的第一端与车轮轴可转动连接,摇臂的第二端与车体支撑架活动连接,所述连杆的受力端与下弹簧座连接,所述气缸体与上弹簧座连接。
一种机动车,包括车体支撑架、装设于车体支撑架上的压缩气体发动机、传动系、车轮和机动车减震系统,所述压缩气体发动机、传动系及车轮顺次动力连接,所述机动车减震系统包括摇臂、减震弹簧、与车体支撑架固定连接的上弹簧座、活动支撑在车轮轴上的下弹簧座和上述机动车颠簸动能再生利用系统,减震弹簧置于该上弹簧座和下弹簧座之间,所述摇臂的一端与车轮轴可转动连接,所述摇臂的另一端与所述连杆的受力端铰接,所述气缸体装设在车体支撑架上,所述摇臂的中部与车体支撑架铰接。
有益效果
本发明的有益效果:通过设置机动车颠簸动能再生利用系统,可以将机动车颠簸时的震动冲击力及时用于推动活塞运动,在第二工作室内产生压缩气体存储备用,从而将机动上下颠簸震动时产生的能量再生转换成压缩空气再生利用。一方面可以减少压缩空气的消耗量;另一方面,连杆推动活塞产生压缩气体作功的过程,本身就具有减震的作用。
附图说明
图1是机动车的压缩空气容器、喷气系统和压缩气体发动机连接时的结构示意图;
图2是机动车的气压调节器在关闭位置时的结构示意图;
图3是机动车的气压调节器在打开位置时的结构示意图;
图4是图3中A-A处的剖面图;
图 5 是机动车的结构示意简图 ( 仅示出两个车轮 ) ;
图6是机动车的俯视示意图;
图7是组装一体的风阻发动机和压缩气体发动机的俯视示意图;
图8是组装一体的风阻发动机和压缩气体发动机的主视示意图;
图9是机动车的压缩机气体发动机的俯视示意图;
图10是机动车的压缩气体发动机的主视示意图;
图11是机动车减震系统的结构示意图;
图12是图11中A所指处的局部放大图;
图13是图11中B所指处的局部放大图;
图14是气缸体的第二工作室吸气时的结构图;
图15是机动车减震系统另一种实施方式的结构图。
本发明的实施方式
如图1至5所示,本实施方式机动车包括喷气系统、压缩气体发动机4、风阻发动机3、3’、传动系11及车轮123。喷气系统具有喷气嘴61,压缩气体发动机4具有主动力输出轴120,喷气系统的喷气嘴61向压缩气体发动机4喷气,压缩气体发动机4将气体先压缩再膨胀后,驱动压缩气体发动机的主动力输出轴120转动,主动力输出轴120通过传动系11带动车轮123转动。传动系11可以包括顺次连接的变速器112、万向传动装置113及驱动桥114,压缩气体发动机4的主动力输出轴120和传动系11之间设有连接第一离合装置56,驱动桥114连接车轮123。
如图1至图4所述,喷气系统包括存储压缩气体的压缩气体容器20、减压储气装置、分配器30和喷气嘴61,所述压缩气体容器20的输出经管路3接减压储气装置的进气口,所述减压储气装置的出气口经分配器30接喷气嘴61,分配器30用于将减压储气装置输出的气体分成多路气体,各路气体通过对应的喷气嘴61喷出。减压储气装置包括储气容器和热交换装置。储气容器具有第一气室2,第一气室2具有第一进气口21和第一出气口22,第一进气口21用于供气体输入,第一出气口22用于输出气体。管路3的两端分别连接压缩气体容器20和第一气室2的第一进气口21,管路3可以有一根或多根,管路3的截面积小于压缩气体容器20的截面积和第一气室2的截面积。热交换装置包括第一热交换单元40,第一热交换单元40装于第一气室2上,第一热交换单元40包括第一温度调节室41和第一介质42,该第一温度调节室41包围第一气室2的四周,第一介质42装入第一温度调节室41和第一气室2之间,该第一介质42可以是液体(如水),也可以是气体,或者其它可以起到热交换作用的介质。第一介质42的温度高于第一气室2内气体的温度,使压缩气体容器20内的压缩气体通过管路3释放到第一气室2后,与第一介质42进行热交换,被加热后从第一气室2的第一出气口22输出。第一气室2可以由具有较佳导热性能的材料制成,从而便于第一气室2内的气体和第一介质42进行热交换。第一温度调节室41可以由不导热或导热性能较差的材料制成,使热量不易散发到环境空气中。
第一热交换单元40与制冷空调器的散冷器5连接,散冷器5的两端均与第一温度调节室41连接,形成一个制冷循环回路,散冷器5上设有第一循环泵51及控制第一循环泵51开启关闭的第一循环泵开关52。与第一气室内2的气体热交换后,第一温度调节室41内的第一介质42的温度降低,该降温后的第一介质42在散冷器5和第一温度调节室41内进行循环,制冷空调器使环境空气循环而与散冷器5进行热交换,即可使环境空气降温,达到制冷的目的。
压缩气体容器20输出的气体被减压储气装置的第一热交换单元40加热后,再通过喷气嘴61喷出,使喷气嘴61处不会因温度太低而冷凝甚至结冰;同时,通过将第一热交换单元40与制冷空调器连接,以降温后的第一介质42作为循环媒介,达到使环境空气降温的目的,节约了能源。
如图3至图5所示,喷气系统还可包括气压调节器6,该气压调节器6用于将第一气室2内的气压保持在设定气压。气压调节器6包括壳体610、阀芯620、弹性体630、锁紧块640及调节块650。壳体610通过紧固件14安装在第一气室2的第一进气口21处,壳体610部分位于第一气室2内部,壳体610部分伸出第一气室2外。壳体610具有轴向贯穿该壳体的壳腔611及径向贯穿该壳体的气道612,该壳腔611与进气管道613连通,该进气管道613与管路3连通,该气道612与第一气室2连通。阀芯620置于壳腔611的内部并与该壳体密封滑动配合,阀芯620的在壳体610轴向上的两端分别为密封端621和调节端622,该密封端621可以密封气道612和进气管道613。弹性体630可以在壳体610的轴向上伸缩变形,弹性体630的两端分别抵压阀芯620的调节端620和调节块650,调节块650与壳体610螺纹连接,锁紧块640与壳体610螺纹连接并将调节块650紧压在弹性体630上,且调节块650和锁紧块640分别具有轴向贯穿的第一、二导气孔651、641,第一、二导气孔651、641连通而将气体导入壳腔611内并作用在阀芯620的调节端622上,且第一导气孔651的孔径小于第二导气孔641的孔径。阀芯的密封端621呈圆台形,其轮廓面上固定有具有弹性的密封圈623。阀芯的调节端的轮廓面上也固定有弹性密封圈623。在垂直壳体610轴线的截面上,阀芯的密封端621的截面积小于调节端622的截面积。作用在密封端621上的压力包括自管路3输入的气体的气压,作用在调节端622的压力包括第一气室2内气体的气压和弹性体630的弹性力。弹性体如弹簧,或其它可以在壳体610的轴向上伸缩变形的元件。
气压调节器的工作原理如下:由管路3输入的气体的气压稳定时,阀芯620与壳体610之间形成减压通道614,使管路3内的气体能够通过减压通道614、气道612进入第一气室2;当管路输入的气体的气压大于设定气压时,该输入气体的气压推动阀芯620向调节端622一侧移动,减压通道614体积增大,第一气室2内的气压减小;当管路输入的气体的气压小于设定气压时,作用在调节端622上的力大于作用在密封端621上的力,使阀芯向密封端621一侧移动,减压通道614体积减小,第一气压室2内的气压增大。当管路3输入的气体的气压变化时,阀芯根据作用在密封端621和调节端622上的力的变化直线移动,使第一气室2内的气压能够稳定在设定气压上。气压调节器关闭时,密封端621堵住气道612和进气管道613,管路3内的气体不能进入第一气室2。通过设置该气压调节器,使减压储气装置输出气体的气压能够稳定在设定气压。
通过旋紧或旋松调节块640,可以调节弹性体630的预紧力,从而可以改变气压调节器的初始设定气压。
减压储气装置还可以包括第二气室7和第二热交换单元8。在气流方向上,第一气室2位于第二气室7之前。第二气室7具有第二进气口71和第二出气口72,第二进气口71与第一气室2的第一出气口22连接。第二热交换单元8包括第二温度调节室81、第二介质82及加热器83,第二温度调节室81包围第二气室7的四周,第二介质82装入第二温度调节室81和第二气室7之间,第二介质82如液体或气体。加热器83用于对第二介质82进行加热,该加热器83如太阳能加热器、电加热器或微波加热器,或其它可以用于介质加热的加热器;加热器可以有一个或多个,加热器的种类也可以有一种或多种。第二温度调节室81与制热空调器的散热器9连接,形成制热循环回路。散热器9上设有第二循环泵901及控制第二循环泵901开启关闭的第二循环泵开关902。加热后的第二介质82在第二温度调节室81和散热器9内循环,制热空调器使环境空气循环而与散热器9进行热交换,即可使环境空气升温,达到制热的目的。通过该第二热交换单元8,可以在第一热交换单元40加热的基础上对气体进行进一步的加热,使喷气系统的喷嘴更加不易冷凝甚至结冰。第二气室7的第二进气口71也可以设置气压调节器6。
另外,第一温度调节室41和第二温度调节室81通过管路连接而形成循环回路,该循环回路上设有第三循环泵903及控制第三循环泵903开启关闭的第三循环泵开关904。
热交换装置可以仅包括利用热交换实现对储气容器内的气体加热的第一热交换单元,该第一热交换单元的数量可以有一个或多个;热交换装置也可以仅包括具有加热器的第二热交换单元,该第二热交换单元的数量可以有一个或多个;热交换装置也可以同时包括第一、二热交换单元。当采用第一热交换单元时,不仅可以对气体进行加热,而且可以将冷却后的第一介质作为媒介,起到使机动车内降温的目的。当采用第二热交换单元时,加热后的第二介质作为媒介,起到使机动车内升温的目的。
如图6至图8所示,风阻发动机有呈对称结构布置的两个,分别为第一风阻发动机3和第二风阻发动机3’。第一风阻发动机包括第一机壳117、第一叶轮室43、第一叶轮44及第一叶轮轴45,第一叶轮室43由第一机壳117围出,第一叶轮44有多个,各第一叶轮44固定在第一叶轮轴45上并位于第一叶轮室43内部,且第一机壳117上设有用于接收机动车行驶时前方阻力流体的第一进风口1,该第一进风口1具有进风口外口和进风口内口,进风口外口的口径大于进风口内口的口径。第一进风口1与第一叶轮室43连通,通过第一进风口1将阻力流体导入第一叶轮室43内部,推动第一叶轮44和第一叶轮轴45转动,通过第一叶轮轴45输出辅助动力。第二风阻发动机3’具有第二机壳117’、第二叶轮室43’、第二叶轮44’、第二叶轮轴45’及用于接收阻力流体的第二进风口1’。 第一叶轮室43和第二叶轮室43’独立设置而互不连通。第一叶轮轴45和第二叶轮轴45’平行且转向相反,第一叶轮轴45上固定有第一传动齿轮46,第二叶轮轴45’上固定有第二传动齿轮118。机动车还包括第一换向装置、第二换向装置及辅助动力输出轴。第一换向装置包括换向齿轮119和传送带47,第二换向装置包括相啮合且轴线垂直的第一传动锥齿轮49和第二传动锥齿轮50,换向齿轮119与第一传动齿轮46啮合且轴线平行,传送带47绕在呈三角形分布的第一传动锥齿轮49、第二传动齿轮118和换向齿轮119上,第一传动锥齿轮49固定在辅助动力输出轴130上。第一叶轮轴45和第二叶轮轴45’输出的动力经过第一换向装置转换到辅助动力输出轴130上,该辅助动力输出轴130输出的动力经过第二换向装置转换到机动车的传动系11。风阻发动机可以有两个,也可以有一个或两个以上。风阻发动机的叶轮室内装有固定在叶轮轴上的多个叶轮,阻力流体驱动叶轮和叶轮轴转动。
风阻发动机叶轮轴输出的动力经过换向装置换向后可以直接驱动机动车的传动系;也可以经过换向装置换向后通过与压缩气体发动机的主动力输出轴串联的方式来驱动机动车的传动系。
如图6至图8所示,压缩气体发动机4与第一、二风阻发动机3、3’独立设置并位于第一、二风阻发动机3、3’的后方。压缩气体发动机4具有主动力输出轴120,第二传动锥齿轮50固定在该主动力输出轴120的端部,通过相互垂直啮合的第一、二传动锥齿轮49、50起到将第一、二风阻发动机3、3’输出的动力垂直换向后输出到压缩气体发动机主动力输出轴120的目的。
机动车设有第一离合装置160,第一、二风阻发动机3、3’输出的动力通过该第一离合装置160输出到辅助动力输出轴130上,如图8所示。在机动车的起动阶段,风阻发动机没有动力输出,第一离合装置160分离,使辅助动力输出轴130不会随着主动力输出轴120转动,从而减轻了机动车的起动负荷;机动车在正常行驶阶段,第一离合装置160接合,辅助动力输出轴130输出的动力和主动力输出轴120输出的动力一起驱动机动车的传动系11。该第一离合装置160如现有的单向离合器,当然,也可以为其它具有分离和接合状态的离合装置。
如图6至图10所示,压缩气体发动机4还具有壳体70及置于该壳体70内部的一个圆形叶轮体74。壳体70包括环形侧壳72、上盖板73及下盖板73’,上盖板73和下盖板73’分别固定在环形侧壳72的上端开口和下端开口,使该侧壳72、上盖板73和下盖板73’之间形成一个封闭的叶轮体室68,叶轮体74位于该叶轮体室68内部且该叶轮体74的中部固套在主动力输出轴120上。通过在叶轮体74与侧壳72内表面贴合的圆周面开槽而形成围绕主动力输出轴120的轴线均匀分布的一圈工作腔69。在垂直主动力输出轴120轴线的截面上,工作腔69呈由三条曲线首尾相连形成的三角状。工作腔69可以有一圈,也可以有多圈。工作腔可以为在叶轮体轴向上贯穿的通槽结构,上盖板的内表面、下盖板的内表面和侧壳的内表面封闭该工作腔;工作腔也可以为设在叶轮体圆周面中部的非通槽结构,侧壳的内表面封闭该工作腔;当然,也可以是上盖板的内表面、侧壳的内表面封闭该工作腔,或是下盖板的内表面、侧壳的内表面封闭工作腔,即工作腔被壳体的内表面封闭。
侧壳72的内表面还设有多个喷入口67和多个喷出口64,喷入口67和喷出口64相间分布。侧壳72的内部还设有环形的一级消音室63,侧壳72的外表面设有多个一级排气口65,每个喷出口64对应一个一级排气口65,喷出口64通过一级消音室63连通一级排气口65。喷入口67与喷出口64、一级排气口65、一级消音室63均不连通。喷出口64和对应的一级排气口65在以主动力输出轴120轴线为中心的圆周上错开一个角度。侧壳72上对应每个喷入口67的位置均固定有喷气嘴座体71,每个喷气嘴座体71固定有两个喷气嘴61,两个喷气嘴61均伸入该喷入口67。每个喷气嘴61连接一个喷气管54,且每个喷入口67上的两个喷气嘴61的轴线具有一个为锐角的夹角。压缩气体容器20的压缩气体通过喷气管54、喷气嘴61输送到工作腔69中,对于每个工作腔69,喷气嘴61喷入的气体推动叶轮体74转动并在工作腔69内被压缩暂存,当运动到喷出口64时,工作腔69内暂存的压缩气体膨胀后从喷出口64高速喷出,喷出时的反作用力再次推动叶轮体74转动。叶轮体74转动时,带动主动力输出轴120转动,进而驱动机动车的传动系11。
对于各工作腔69,从接收喷气嘴61喷入的气体到从喷出口64喷出气体之间,具有一个时间差,在该时间差内,气体在工作腔69内被压缩暂存,使喷出时的反作用力更大,能够给机动车提供更大的动力。由于工作腔69被壳体内表面封闭,所以也便于压缩气体在工作腔69内压缩暂存。 另外,为了防止压缩气体在输入到压缩气体发动机时冷凝,喷气嘴座体71上可以安装有用于对喷气嘴61加热的第一加热器77。
机动车还包括第一电动机53,第一电动机53通过皮带传动机构51与压缩气体发动机4的主动力输出轴120动力连接,皮带传动机构51包括皮带轮511及绕在皮带轮511上的皮带512。
如图6至图8所示,机动车还包括压缩气体再利用系统,该压缩气体再利用系统用于连通压缩气体发动机的一级排气口65和风阻发动机的叶轮室43、43’。压缩气体再利用系统包括一级排气管57、二级消音室59及二级排气管58。一级排气管57的入口与一级排气口65一一对应连通,一级排气管57的出口汇集到二级消音室59,二级消音室59与二级排气管58的入口连通,二级排气管58的出口与第一叶轮室43和第二叶轮室43’均连通。从压缩气体发动机的喷出口64高速喷出的气体,顺次经过一级消音室63、一级排气口65后进入一级排气管57,经过二级消音室59消音后进入二级排气管58,最后再进入第一、二叶轮室43、43’来驱动第一、二叶轮转动,实现对压缩气体的再利用,从而能够有效的节约能源,并且能够进一步提高对机动车的驱动力。
如图6、图11至图14所示,机动车还包括机动车减震系统,该机动车减震系统包括机动车颠簸动能再生利用系统19、减震器及调压阀。减震器包括摇臂18、与车体支撑架122固定连接的上弹簧座97、下弹簧座121及减震弹簧96,该摇臂18的一端通过摇臂轴85可转动的安装在车体支撑架122上,该摇臂18的另一端与车轮轴1231可转动连接且该另一端与下弹簧座121固定,减震弹簧96固定于上弹簧座97和下弹簧座121之间。机动车颠簸动能再生利用系统包括气缸体89、活塞93及连杆87,活塞93置于气缸体89的内腔并将气缸体89的内腔分隔为第一工作室128和第二工作室92,活塞93与气缸体89的内壁之间滑动密封配合,所述连杆87的一端为受力端,用于接受机动车的车轮上下颠簸时的震动冲击力,所述连杆87的另一端为施力端,所述连杆87的施力端伸入第一工作室128并与所述活塞93连接,用于推动活塞93往复运动,所述气缸体89上设置有与第一工作室128相通的换气孔88,所述气缸体89上设置有用于与第二工作室92相通的吸气孔110和出气孔95,所述吸气孔110上设置有第一单向阀171,用于向第二工作室92内吸入空气,所述出气孔95用于输出活塞93往复运动时产生的压缩气体。
第一单向阀171如悬臂状设于吸气孔110的弹片,气缸体具有位于弹片上方的限位面170,当活塞93向下移动,第二工作室92吸气时,弹片向下弯折,使吸气孔110打开,如图13所示;当活塞向上移动,第二工作室92压缩空气时,在气缸体89的限位面170的约束下,弹片不能向上弯折,使吸气孔110封闭,如图14所示。
气缸体89的顶端通过连接轴94与上弹簧座97连接,活塞93与该气缸体89之间滑动密封配合,连杆87的上端与活塞93通过上连杆轴90转动连接,连杆87的下端通过下连杆轴86与下弹簧座121转动连接。
第二单向阀129包括阀体99及设于该阀体99内部的阀球104、调压弹簧102、调压螺丝101及调压锁紧螺丝100,该阀体内部还具有送气气道103,出气孔95通过出气导管105与送气气道103连接,阀球104设于该送气气道103与出气导管105的连接处,在压力达不到设定值时,阀球104堵住该连接处,使出气导管105内的气体不能进入送气气道。调压弹簧102的一端抵住阀球104,调压弹簧102的另一端抵住调压螺丝101,调压螺丝101被调压锁紧螺丝100压紧,调压螺丝101和调压锁紧螺丝100均与该阀体99螺纹连接。通过旋转调压螺丝,可以调节调压弹簧的压缩变形量,进而实现对进入送气气道的气体压力进行调节的目的。机动车在行使过程中震动时,连杆87运动,带着活塞93在气缸体89内上下运动,当第二工作室92内的空气被压缩达到调压阀的设定压力值时,压缩空气通过管路98输送到压缩气体容器20。
如图15所示,其为机动车减震系统的第二种实施方式,该实施方式机动车减震系统包括机动车颠簸动能再生利用系统、减震器及调压阀,减震器包括摇臂18、上弹簧座97、下弹簧座121及减震弹簧96,该摇臂18的中部通过摇臂轴85与车体支撑架122铰接,该摇臂18的一端与车轮123连接,该上弹簧座97固定在车体支撑架122上,该下弹簧座121活动支撑在车轮轴1231上,该减震弹簧96固定于上弹簧座97和下弹簧座121之间。机动车颠簸动能再生利用系统包括气缸体89、活塞93及连杆87,气缸体89通过连接轴94与车体支撑架122铰接,连杆87的一端通过下连接杆轴86与摇臂18的另一端铰接,该连杆87的另一端通过上连杆轴90与活塞93铰接。该机动车颠簸动能再生利用系统的其它结构如前所述。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (12)

  1. 一种机动车颠簸动能再生利用系统,其特征在于:包括气缸体、活塞及连杆,所述活塞置于气缸体的内腔并将气缸体的内腔分隔为第一工作室和第二工作室,所述活塞与气缸体的内壁之间滑动密封配合,所述连杆的一端为受力端,用于接受机动车的车轮上下颠簸时的震动冲击力,所述连杆的另一端为施力端,所述连杆的施力端伸入第一工作室并与所述活塞连接,用于推动活塞往复运动,所述气缸体上设置有与第一工作室相通的换气孔,所述气缸体上设置有用于与第二工作室相通的吸气孔和出气孔,所述吸气孔上设置有第一单向阀,用于向第二工作室内吸入空气,所述出气孔用于输出活塞往复运动时产生的压缩气体。
  2. 根据权利要求1所述的机动车颠簸动能再生利用系统,其特征在于:所述第一单向阀为悬臂状设于所述吸气口的弹片,所述气缸体具有位于所述弹片上方的限位面,当活塞向下移动时,第二工作室吸气,弹片向下弯折,使吸气孔打开;当活塞向上移动时,第二工作室压缩空气,所述限位面约束弹片,使吸气孔封闭。
  3. 根据权利要求1所述的机动车颠簸动能再生利用系统,其特征在于:还包括第二单向阀,所述出气孔的输出接第二单向阀,经第二单向阀输出压缩气体。
  4. 根据权利要求3所述的机动车颠簸动能再生利用系统,其特征在于:所述第二单向阀包括阀体及设于所述阀体的内部的阀球、调压弹簧、调压螺丝及调压锁紧螺丝,所述阀体的内部还具有送气气道,所述出气孔通过出气导管与所述送气气道连接,所述阀球设于所述送气气道与出气导管的连接处,所述调压弹簧的一端抵住阀球,所述调压弹簧的另一端抵住所述调压螺丝,所述调压螺丝被所述调压锁紧螺丝压紧,所述调压锁紧螺丝和调压螺丝均与所述阀体螺纹连接。
  5. 一种机动车减震系统,包括减震弹簧、与车体支撑架固定连接的上弹簧座、活动支撑在车轮轴上的下弹簧座,减震弹簧置于该上弹簧座和下弹簧座之间,其特征在于:还包括权利要求1-4中任意一项所述的机动车颠簸动能再生利用系统,所述连杆的受力端与下弹簧座连接,所述气缸体与上弹簧座连接。
  6. 根据权利要求5所述的机动车减震系统,其特征在于:所述连杆的受力端与下弹簧座铰接,所述连杆的施力端与活塞铰接。
  7. 根据权利要求6所述的机动车减震系统,其特征在于:所述气缸体与上弹簧座铰接。
  8. 一种机动车,包括车体支撑架、装设于车体支撑架上的压缩气体发动机、传动系、车轮和机动车减震系统,所述压缩气体发动机、传动系及车轮顺次动力连接,所述机动车减震系统包括摇臂、减震弹簧、与车体支撑架固定连接的上弹簧座、活动支撑在车轮轴上的下弹簧座,减震弹簧置于该上弹簧座和下弹簧座之间,所述摇臂的第一端与车轮轴转动连接,摇臂的第二端与车体支撑架活动连接,其特征在于:还包括权利要求1-4中任意一项所述的机动车颠簸动能再生利用系统,所述连杆的受力端与下弹簧座连接,所述气缸体与上弹簧座连接。
  9. 根据权利要求8所述的机动车,其特征在于:所述连杆的受力端与下弹簧座铰接,连杆的施力端与活塞铰接。
  10. 根据权利要求9所述的机动车,其特征在于:所述气缸体与上弹簧座铰接。
  11. 一种机动车,包括车体支撑架、装设于车体支撑架上的压缩气体发动机、传动系、车轮和机动车减震系统,所述压缩气体发动机、传动系及车轮顺次动力连接,所述机动车减震系统包括摇臂、减震弹簧、与车体支撑架固定连接的上弹簧座、活动支撑在车轮轴上的下弹簧座,减震弹簧置于该上弹簧座和下弹簧座之间,所述摇臂的一端与车轮轴转动连接,其特征在于:还包括权利要求1-4中任意一项所述的机动车颠簸动能再生利用系统,所述摇臂的另一端与所述连杆的受力端铰接,所述气缸体装设在车体支撑架上,所述摇臂的中部与车体支撑架铰接。
  12. 根据权利要求11所述的机动车,其特征在于:所述气缸体与车体支撑架铰接。
PCT/CN2010/072353 2009-05-01 2010-04-30 机动车颠簸动能再生利用系统、减震系统及机动车 WO2010124649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910107198.2 2009-05-01
CN2009101071982A CN101876300A (zh) 2009-05-01 2009-05-01 机动车颠簸动能再生利用系统、减震系统及机动车

Publications (1)

Publication Number Publication Date
WO2010124649A1 true WO2010124649A1 (zh) 2010-11-04

Family

ID=43018936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072353 WO2010124649A1 (zh) 2009-05-01 2010-04-30 机动车颠簸动能再生利用系统、减震系统及机动车

Country Status (2)

Country Link
CN (1) CN101876300A (zh)
WO (1) WO2010124649A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332869A (zh) * 2015-10-23 2016-02-17 柳超 一种基于曲柄摇杆的板簧减震器发电机构
CN109269928A (zh) * 2018-10-19 2019-01-25 青岛科技大学 一种轮胎磨耗试验机及其检测方法
CN110201846A (zh) * 2019-07-04 2019-09-06 十堰科威机电装备股份有限公司 一种轮胎装配膏自动润滑机

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102678483A (zh) * 2012-06-05 2012-09-19 杨亦勇 一种使电动汽车动能发电的受迫振动的实现方法
CN104015579A (zh) * 2014-06-11 2014-09-03 刘言成 电动车震动能收集系统
CN104192015A (zh) * 2014-08-04 2014-12-10 陈德万 一种高效节能气压电动车
CN107053984A (zh) * 2017-04-13 2017-08-18 顺丰科技有限公司 一种具有悬挂系统的车架及小车
CN106949027B (zh) * 2017-05-09 2019-04-09 杨亦勇 基于电动汽车共振发电的双轴杠杆驱动装置
CN107013430B (zh) * 2017-05-09 2019-04-19 杨亦勇 用于电动汽车共振发电的杠杆侧向受力减轻方法
CN110271375A (zh) * 2018-03-14 2019-09-24 北京京东尚科信息技术有限公司 行走驱动机构及具有该机构的输送设备
CN109377827B (zh) * 2018-11-23 2021-07-16 烟台职业学院 一种安全型综合实验教学平台
CN109365026B (zh) * 2018-11-23 2021-11-12 吕敏 一种移动式综合实验教学平台
CN109703313B (zh) * 2019-01-16 2021-12-28 胡捷 汽车振动储能供能系统
CN109899254B (zh) * 2019-03-11 2021-01-05 卢奕彰 重力联动装置
CN111520298A (zh) * 2020-04-30 2020-08-11 南通大学 一种用于小型燃料电池车的震动能发电装置及发电方法
TWI819246B (zh) * 2020-10-20 2023-10-21 緯創資通股份有限公司 輪型載具、其獨立驅動組件及其獨立驅動套件
CN113071402B (zh) * 2021-05-14 2022-04-08 大冶市古华实业有限公司 一种冷链物流运输车
CN113895766B (zh) * 2021-10-12 2022-05-17 南通市妇幼保健院 一种盒装物品的输送装置
CN114148244B (zh) * 2021-12-16 2022-06-28 三河科达实业有限公司 一种多灶台型高效烹煮炊事车

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921746A (en) * 1972-12-28 1975-11-25 Alexander J Lewus Auxiliary power system for automotive vehicle
DE3540931A1 (de) * 1985-11-19 1987-05-21 Koetke Claus Dieter Vorrichtung zur erzeugung nutzbarer druckluft bei einem kraftrad
CN2158955Y (zh) * 1993-03-24 1994-03-16 新大丰塑胶厂股份有限公司 空气流向控制阀
KR960011920B1 (ko) * 1993-07-27 1996-09-04 지용운 쇽업쇼버의 흡수에너지를 이용한 자동차의 구동장치
CN2281455Y (zh) * 1996-12-06 1998-05-13 樊增兰 手扶拖拉机轮胎充气阀
JP2002310060A (ja) * 2001-04-16 2002-10-23 Isamu Domoto エネルギー変換システム
CN200948845Y (zh) * 2006-09-27 2007-09-19 肖云述 悬挂式后桥三轮车
US20070284155A1 (en) * 2004-11-22 2007-12-13 Yang Cong Wind-powered pneumatic engine and a motor vehicle equipped with the engine
WO2009094861A1 (fr) * 2008-01-29 2009-08-06 Jianquan Li Véhicule à air comprimé et dispositif de génération d'air comprimé
CN201287601Y (zh) * 2008-09-25 2009-08-12 周登荣 利用空气混合动力机动车自身重力收集压缩空气的装置
CN201484192U (zh) * 2009-05-07 2010-05-26 丛洋 机动车颠簸动能再生利用系统、减震系统及机动车

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921746A (en) * 1972-12-28 1975-11-25 Alexander J Lewus Auxiliary power system for automotive vehicle
DE3540931A1 (de) * 1985-11-19 1987-05-21 Koetke Claus Dieter Vorrichtung zur erzeugung nutzbarer druckluft bei einem kraftrad
CN2158955Y (zh) * 1993-03-24 1994-03-16 新大丰塑胶厂股份有限公司 空气流向控制阀
KR960011920B1 (ko) * 1993-07-27 1996-09-04 지용운 쇽업쇼버의 흡수에너지를 이용한 자동차의 구동장치
CN2281455Y (zh) * 1996-12-06 1998-05-13 樊增兰 手扶拖拉机轮胎充气阀
JP2002310060A (ja) * 2001-04-16 2002-10-23 Isamu Domoto エネルギー変換システム
US20070284155A1 (en) * 2004-11-22 2007-12-13 Yang Cong Wind-powered pneumatic engine and a motor vehicle equipped with the engine
CN200948845Y (zh) * 2006-09-27 2007-09-19 肖云述 悬挂式后桥三轮车
WO2009094861A1 (fr) * 2008-01-29 2009-08-06 Jianquan Li Véhicule à air comprimé et dispositif de génération d'air comprimé
CN201287601Y (zh) * 2008-09-25 2009-08-12 周登荣 利用空气混合动力机动车自身重力收集压缩空气的装置
CN201484192U (zh) * 2009-05-07 2010-05-26 丛洋 机动车颠簸动能再生利用系统、减震系统及机动车

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332869A (zh) * 2015-10-23 2016-02-17 柳超 一种基于曲柄摇杆的板簧减震器发电机构
CN109269928A (zh) * 2018-10-19 2019-01-25 青岛科技大学 一种轮胎磨耗试验机及其检测方法
CN109269928B (zh) * 2018-10-19 2024-05-14 青岛科技大学 一种轮胎磨耗试验机及其检测方法
CN110201846A (zh) * 2019-07-04 2019-09-06 十堰科威机电装备股份有限公司 一种轮胎装配膏自动润滑机
CN110201846B (zh) * 2019-07-04 2024-05-03 湖北科威机电装备股份有限公司 一种轮胎装配膏自动润滑机

Also Published As

Publication number Publication date
CN101876300A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
WO2010124649A1 (zh) 机动车颠簸动能再生利用系统、减震系统及机动车
US8733476B2 (en) Motor vehicle
CN201484192U (zh) 机动车颠簸动能再生利用系统、减震系统及机动车
US8490738B2 (en) Compressed air engine and motor vehicle
JP6252823B2 (ja) 加圧空気又は他の圧縮性ガスにより駆動される高効率エンジン
CN201513202U (zh) 压缩气体发动机及机动车
WO2010124659A1 (zh) 风电机动车
CN201517429U (zh) 减压储气装置、喷气系统、机动车制冷系统、压缩气体发动机及机动车
CN201461257U (zh) 压缩气体发动机及机动车
CN201461001U (zh) 压缩气体供气系统及压缩气体机动车制冷系统
CN110411050A (zh) 一种基于涡流管的制冷制热装置
CN111555530B (zh) 一种适用于电动汽车的电机
CN201460992U (zh) 喷气嘴、喷气系统及机动车
CN101876388A (zh) 减压阀、压缩气体供气系统及制冷系统
CN101875031A (zh) 喷气嘴、喷气系统及机动车
CN201511808U (zh) 机动车
CN201461002U (zh) 减压阀、压缩气体供气系统及制冷系统
WO2010124658A1 (zh) 减压储气装置、喷气系统及机动车
TW201139887A (en) Motor vehicle bumping kinetic energy recycling system, damping system and motor vehicle
CN101875300B (zh) 压缩气体供气系统及压缩气体机动车制冷系统
WO2008138221A1 (fr) Turbine de refroidissement à air de type à chaleur d'absorption en équipression
CN219121172U (zh) 一种水源热泵用的废气余热回用装置
SU1742118A1 (ru) Система охлаждени наддувочного воздуха двигател тепловоза
CN2443868Y (zh) 机动车采暖装置
TW201132529A (en) Air injector, air injecting system and motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769338

Country of ref document: EP

Kind code of ref document: A1