WO2010124535A1 - 高强度大盘长海底光缆用单模光纤的制备方法 - Google Patents

高强度大盘长海底光缆用单模光纤的制备方法 Download PDF

Info

Publication number
WO2010124535A1
WO2010124535A1 PCT/CN2010/070573 CN2010070573W WO2010124535A1 WO 2010124535 A1 WO2010124535 A1 WO 2010124535A1 CN 2010070573 W CN2010070573 W CN 2010070573W WO 2010124535 A1 WO2010124535 A1 WO 2010124535A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
preform
optical fiber
graphite
coating
Prior art date
Application number
PCT/CN2010/070573
Other languages
English (en)
French (fr)
Inventor
薛济萍
薛驰
沈一春
朱兆章
薛群山
庄卫星
曹珊珊
陈娅丽
刘明
Original Assignee
中天科技光纤有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技光纤有限公司 filed Critical 中天科技光纤有限公司
Publication of WO2010124535A1 publication Critical patent/WO2010124535A1/zh
Priority to US12/983,255 priority Critical patent/US8297080B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/63Ohmic resistance heaters, e.g. carbon or graphite resistance heaters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture

Definitions

  • the invention relates to a method for preparing a single-mode optical fiber for a high-strength large-capacity long-haul cable, and relates to a method for preparing a single-mode optical fiber for a fiber-optic submarine cable, in particular to a method for preparing a high-strength large-disc long single-mode optical fiber.
  • the optical characteristics, geometric parameters, and environmental properties of the single-mode fiber meet the common single-mode fiber standard, especially with excellent high-strength performance and long disk length. Background technique
  • optical fiber which is the main transmission medium for communication, has its own special requirements compared to optical fiber for ordinary optical cable. In the process of laying, using, salvaging and receiving unexpected external forces of the submarine cable, the optical fiber is protected by the external structure of the cable, but it still has to bear certain strain and residual stress.
  • the common optical fiber standard disk length is about 25km, and the fiber strength control screening strain is 1%. Therefore, in order to prevent the destructive influence of laying, maintenance and accidental tension on the optical fiber unit, the optical fiber for submarine optical cable must have higher optical fiber than ordinary optical cable. Strength; while the large length is to reduce the number of joints in the relay distance, try to make the cable length and the relay distance of the system consistent. Submarine cable plays an important role in the field of communications, especially in international communications, due to its large capacity, high reliability, and excellent transmission quality. Therefore, the large-length high-strength single-mode fiber used in submarine cables has a good market prospect because it reduces the number of joints in the relay distance and has the strength suitable for submarine cables. Summary of the invention
  • the object of the present invention is to provide a method for preparing a single-mode optical fiber for a high-strength large-capacity long-haul cable, and the method can be used to produce a stronger intensity than a conventional non-dispersion-shifted single-mode fiber G 652 fiber (TUT International Standard). It is a single-mode fiber with a strain of up to 2°, which is more than twice (high-strength) of ordinary G 652 fiber and has a disk length of more than 100km (large disk length), and the fiber can satisfy all optical characteristics.
  • the single-mode optical fiber structure for the high-strength large-capacity long sea-bottom optical cable includes a core, an inner cladding layer, and two ultraviolet-curable coating layers.
  • the outer core of the core is wrapped with an inner cladding layer and an outer cladding layer.
  • the outer layer has two layers of UV-curable coating on the outside, and the outer layer is coated twice, using a UV-curable coating. UV-cured coatings feature low modulus and low refractive index.
  • the optical fiber has a zero-dispersion wavelength of 1300 - 1324 nm, a zero dispersion slope of not more than 0. 092 ps / (nrr2 km), a cable cut-off wavelength of not more than 1260 nm.
  • the attenuation of the 4 ⁇ m fiber at 1310 nm is not more than 0. 35dB ⁇ km
  • the attenuation at 1550nm is not more than 0. 21 dB ⁇ km
  • the fiber index can meet the general G 652 standard of the national telecommunications industry.
  • the national telecommunications industry common G 652 standard: attenuation at 1310nm is not greater than 0.
  • the dispersion wavelength range is 1300 - 1324nm.
  • the zero dispersion slope is not greater than 0. 093 ps / ( ⁇ 2 ⁇ km), which is (8. 6 ⁇ 9. 5) ⁇ 0. 7um cable cutoff wavelength is not greater than 1260nm.
  • the special properties of the fiber can be described as follows :
  • the high-strength large-capacity long-haul cable has a 2° screening tension, which is called high-strength.
  • the single-disc length is more than 100km, which is called the long-length.
  • the present invention provides a manufacturing method for performing process control in the preform pretreatment stage, process adjustment in the production process, strict control during fiber selection, and equipment modification. Measures to produce fiber optic products that are compatible with submarine cables
  • the pre-formed preform is subjected to two pretreatments.
  • the surface of the preform is first cleaned.
  • the surface of the preform is cleaned by a mixed solution of hydrofluoric acid and nitric acid.
  • the weight ratio of nitric acid to hydrofluoric acid is 1: 2 ⁇ 8, the mixed acid concentration of nitric acid and hydrofluoric acid is maintained at 30 ° / ⁇ 80%
  • the preform is flame-polished, and the rich hydrogen and silica in the oxyhydrogen flame react at high temperature to produce easily evaporated silicon monoxide and water, which are then carried away by the high-speed oxyhydrogen gas stream. Contaminants on the surface of the preform are carried away. Since the io ⁇ iooum3 ⁇ 4 silica is actually thrown off the surface of the preform by the oxyhydrogen flame during the polishing process, the microcracks on the surface of the preform are healed, and the surface impurities are completely treated.
  • the portion of the drawing furnace is used as a place where the preform is melted into an optical fiber, and is composed of a graphite heating member and a stainless steel furnace member. Among them, the amount of volatiles and surface roughness of the graphite parts are strictly regulated: graphite parts ash 20ppm graphite parts surface roughness FK6.3. And the secondary protective gas before entering the drawing furnace is subjected to secondary filtration to ensure the cleanliness of the gas.
  • the flow rate in the drawing furnace is controlled by a flow rate of 10-50L7 nfi n, and the upper, middle and lower intake pipes are installed on the graphite heating part, so that the gas is strictly moved in a laminar flow manner to generate the graphite pieces.
  • the particles are taken out of the furnace or attached to the inner wall of the lower part of the drawing furnace under the purging of the airflow, and the airflow is directly blown to the melting zone and the fiber forming zone of the glass.
  • RVD polarization mode dispersion
  • the drawing speed fluctuation is guaranteed to be less than 20n?i nfi n.
  • the UV-cured coating is used for primary and secondary coating, and after each coating, it is cured by an ultraviolet curing device.
  • the coating environment is strictly controlled, and an air-efficient high-efficiency filter is used to ensure the cleanliness.
  • the number of particles is measured periodically to achieve a hundred-level purification effect in the air.
  • the fiber adopts a sinusoidal torsion wheel to sinusoidal pulsation of the fiber. After the twitching, the fiber is taken up by the double take-up system and enters the next process.
  • the produced optical fiber is selected, and an optical fiber produced in the middle of the preform is selected, and the drawing speed is relatively stable, and the speed fluctuation is less than 20kn?i nfi n.
  • Change the screening process adjust the original 1° emperor strain to 2° screening strain (I TUT national standard 1° emperor strain is equivalent to 0.66 (5 screening stress), to prevent fiber weak points from entering the post-construction Order, resulting in unnecessary losses.
  • the optical fiber obtained by the preparation method of the present invention is tested by the PK series instrument (PK2400, ⁇ 2200, CJTOR PK2800) of the optical fiber performance test instrument.
  • the zero dispersion wavelength of the optical fiber is between 1300 and 1324 nm, and the zero dispersion slope is not more than zero. 092 ps / ( nrfkm) , the cable cut-off wavelength is not more than 1260nm
  • the mode field diameter of the fiber ( ⁇ ) is 9. 2 ⁇ 0. 4 ⁇ fiber attenuation at 1310nm is not greater than 0. 35cB km attenuation at 1550nm is not greater than 0. 21 6B km
  • the fiber's specifications meet the national G 652 standard for the telecommunications industry.
  • the fiber has the speciality of large disk length, and the dynamic range of the instrument test is small, the lOOkrril scoop fiber cannot be completely opened, so the fiber can not measure the data.
  • the invention adopts the segmentation test averaging method, which is accurate. The test data of the fiber is out.
  • the attenuation of the fiber at 1310nm is not greater than 0. 35cB km, the attenuation at 1550nm is not greater than 0. 21 6 km, the zero dispersion slope is not greater than 0. 092ps / nr ⁇ -km cable cut-off wavelength is not greater than 1260nm For the regular G 652 indicator.
  • the preparation method of the single-mode optical fiber for the high-strength large-capacity long sea-bottom optical cable of the invention has the advantages of excellent strength performance and screening strain of 2% due to the use of two-stage pretreatment method to optimize the airflow mode in the graphite furnace and control the graphite component specification component.
  • the length of the disc can reach 100knr3 ⁇ 4, and other performances can meet the fiber for submarine cable, which reduces the preparation cost and risk to the most. Low.
  • the R&D and production costs are low, the preparation method is operability, the parameters are controllable, the performance is superior, and the subsequent processes are saved, which is especially suitable for the service requirements of the submarine cable.
  • Figure 1 is a process flow diagram of the preparation process of the present invention.
  • FIG. 2 is a structural view of an optical fiber produced by the preparation method of the present invention.
  • the single-mode optical fiber structure for a high-strength large-capacity long-haul cable includes a core 1, an inner cladding 2, an outer cladding 3, a primary ultraviolet curing coating 4, and a secondary ultraviolet curing coating 5.
  • the outer core 2 is covered with an inner cladding layer 2 and an outer cladding layer 3.
  • the outer layer of the outer cladding layer 3 has two layers of ultraviolet curing coating layer, respectively, a primary ultraviolet curing coating 4 and a secondary ultraviolet curing coating layer 5, and the outer cladding layer is twice coated. Covered with UV curable coating. UV-cured coatings have low modulus and low refractive index.
  • the index of the fiber is basically equivalent to the conventional G 652 index: the zero-dispersion wavelength of the fiber is between 1300 and 1324 nm, and the zero dispersion slope is not greater than 092 ps / ( nr ⁇ km) , and the cable cut-off wavelength is not greater than 1260 nm.
  • Field diameter ( ⁇ ) The attenuation of the fiber is 13.2 ⁇ 0.
  • National telecommunications industry common G 652 standard 1310 ⁇ attenuation is not greater than 0. 36 6 km, attenuation at 1550nm is not greater than 0. 22cB km, zero dispersion wavelength range 1300 - 1324nm zero dispersion slope is not greater than 0.
  • the invention provides a novel preform pretreatment method, which can adjust the equipment and correct the process parameter setting in the fiber drawing process to achieve the purpose of producing the optical fiber, which can greatly improve the operability and reduce the development cost.
  • the pre-formed preform is subjected to two pretreatments.
  • the surface of the preform is first cleaned.
  • the surface of the preform is cleaned by a mixed solution of hydrofluoric acid and nitric acid.
  • the weight ratio of nitric acid to hydrofluoric acid is 1: 2 ⁇ 8, the mixed acid concentration of nitric acid and hydrofluoric acid is maintained at 30 ° / ⁇ 80%
  • the preform is flame-polished, and the rich hydrogen and silica in the oxyhydrogen flame react at high temperature to produce easily evaporated silicon monoxide and water, which are then carried away by the high-speed oxyhydrogen gas stream. Contaminants on the surface of the preform are carried away. Because the io ⁇ iooum3 ⁇ 4 silica is actually thrown off the surface of the preform by the oxyhydrogen flame during the polishing process, the microcracks on the surface of the preform are healed, and the impurities on the surface are completely processed. 2, drawing
  • the drawing furnace part is used as a place where the preform is melted into an optical fiber, and is composed of a graphite heating part and a stainless steel furnace part.
  • the amount of volatile matter and the surface roughness of the graphite part are strictly regulated: the graphite part ash is 20 ppm, the graphite part surface Roughness FK6. 3.
  • the secondary protective gas before entering the drawing furnace is subjected to secondary filtration to ensure the cleanliness of the gas.
  • the flow rate in the drawing furnace is controlled by a flow rate of 10-50L7 nfi n, and the upper, middle and lower intake pipes are installed on the graphite heating part, so that the gas is strictly moved in a laminar flow manner to generate the graphite pieces.
  • the particles are taken out of the furnace or attached to the inner wall of the lower part of the drawing furnace under the purging of the airflow, and the airflow is directly blown to the melting zone and the fiber forming zone of the glass. Improves the stability and uniformity of the bare fiber, and provides a good foundation for reducing the polarization mode dispersion (RVD) value for subsequent process control.
  • the secondary filtration uses a commercially available gas filter to perform a second filtration of the inert protective gas, and the inert protective gas has been subjected to the first filtration at the time of shipment.
  • the inert shielding gas may be a mixture of argon or argon and helium.
  • the drawing speed fluctuation is guaranteed to be less than 20n?i nfi n.
  • the UV-cured coating is used for primary and secondary coating, and after each coating, it is cured by an ultraviolet curing device. Strictly control the coating environment and use an air-efficient filter to ensure cleanliness. The number of particles is measured periodically to achieve a hundred-level purification effect in the air.
  • the fiber adopts a sinusoidal torsion wheel in the sinusoidal fiber twisting device to sinusoidal pulsation of the fiber, and after the pulsation, the fiber is taken up by the double take-up system, and the knot is terminated. After the bundle, go to the next process.
  • the produced optical fiber is selected, and an optical fiber produced in the middle of the preform is selected, and the drawing speed is relatively stable.
  • Change the screening process adjust the original 1% screening strain to 2 ° / screening strain (I TUT national standard 1 ° / screening strain equivalent to 0.66 (3), to prevent the weak point of the fiber into the subsequent process, resulting in unnecessary Loss.
  • the optical fiber obtained by the preparation method of the invention adopts the imported optical fiber performance test instrument PK series instrument (P 2400, ⁇ 2200, C5TOR ⁇ 2800) for performance test, the zero dispersion wavelength of the optical fiber is between 1300 and 1324 nm, and the zero dispersion slope is not greater than 0. 092 ps / ( nrfkm) , the cable cut-off wavelength is not greater than 1260nm
  • the mode field diameter of the fiber ( ⁇ ) is 9. 2 ⁇ 0. 4 ⁇
  • the attenuation of the fiber at 1310nm is not greater than 0. 35cB km attenuation at 1550nm is not greater than 0. 21 6 Wm
  • the fiber index is superior to the conventional G 652 indicator and can meet the national G 652 standard for the telecommunications industry.
  • the fiber has the speciality of large disk length. Because the dynamic range of the instrument test is small, the fiber of the OOkrril spoon cannot be completely opened, so the fiber cannot measure the data. According to the test principle, the invention adopts the segmentation test averaging method, which is accurate. The test data of the fiber is out.
  • the attenuation of the fiber at 1310nm is not greater than 0. 35cB km attenuation at 1550nm is not greater than 0. 21 c km zero dispersion slope is not greater than 0. 092ps / nr ⁇ -km cable cut-off wavelength is not greater than 1260nm For the regular G 652 indicator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

高强度大盘长海底光缆用单模光纤的制备方法 技术领域
本发明高强度大盘长海缆用单模光纤的制备方法涉及一种光纤 海底光缆用单模光纤的制备,尤其涉及高强度大盘长单模光纤的制备 方法。 该单模光纤的光学特性、 几何参数、 环境性能等满足通用的单 模光纤标准, 尤其具有优异的高强度性能、 且盘长较长。 背景技术
自 1985年世界上第一条海底光缆问世以来, 海底光缆的建设在 全世界得到了蓬勃的发展。海底光缆以其大容量、 高可靠性、 优异的 传输质量等优势, 在通信领域, 尤其是国际通信中起到重要的作用。 由于海底光缆特殊的使用环境, 施工和维护的成本非常高, 所以海底 光通信系统的稳定性一直是该领域内的研究重点之一。其中作为通讯 的主要传输媒质——光纤, 也相对于普通光缆用光纤, 有着自己特殊 的要求。在海底光缆的敷设、使用、打捞以及受到意外外力等过程中, 光纤虽然受到了光缆外部结构的保护,但是还是要承受一定的应变和 残余应力。 目前普通光纤标准盘长为 25km左右, 光纤强度控制筛选 应变为 1% 因此为了防止敷设、 维护以及意外张力对光纤单元的破 坏性影响, 海底光缆用光纤必须要有较普通光缆用光纤更高的强度; 而大盘长则是为了减少中继距离内的接头数目,尽量做到光缆盘长和 系统的中继距离一致。 海底光缆以其大容量、 高可靠性、 优异的传输质量等优势, 在通 信领域, 尤其是国际通信中起到重要的作用。 因此, 海底光缆用的大 长度高强度单模光纤因为减少了中继距离内的接头数目,且有着适合 海底光缆用的强度, 将有着及其良好的市场前景。 发明内容
本发明的目的是,提供一种高强度大盘长海底光缆用单模光纤的 制备方法,通过该法可制备出比常规非色散位移单模光纤 G 652光纤 (卜 TUT国际标准) 的强度更高, 筛选应变达 2° 上, 为普通 G 652 光纤的二倍以上 (高强度), 盘长达到 100km以上 (大盘长) 的单模 光纤, 且该光纤能够满足所有光学特性。
本发明的技术解决方案是:高强度大盘长海底光缆用单模光纤结 构包括纤芯、 内外包层、 两层紫外固化涂料层。 在纤芯外部包裹有内 包层、 外包层, 外包层外部有两层紫外固化涂料层, 外包层外部经过 两次涂覆, 采用紫外固化涂料。 紫外固化涂层具有低模量、 低折射率 的特点。
该光纤的零色散波长为 1300— 1324nm之间, 零色散斜率不大于 0. 092ps/ ( nrr2km) , 光缆截止波长不大于 1260nm 该光纤的模场直 径(M=D)是 9. 2± 0. 4 μ m光纤在 1310nm的衰减不大于 0. 35dB^ km 在 1550nm的衰减不大于 0. 21 dB^ km 该光纤的指标能够满足国家电 信行业通用 G 652标准。 国家电信行业通用 G 652标准: 1310nm处 衰减不大于 0. 36 6 km 在 1550nm的衰减不大于 0. 22cB km 零色 散波长范围 1300- 1324nm 零色散斜率不大于 0. 093 ps/ ( ηπ2· km), 为 (8. 6〜9. 5) ±0. 7um 光缆截止波长不大于 1260nm 该光纤 的特殊性能可以描述如下: 高强度大盘长海底光缆用 2° 筛选张力, 称为高强度, 单盘盘长达到 100km以上, 称为大盘长。
针对目前海底光缆用光纤强度的高要求,本发明提供了一种制作 方法,通过在预制棒预处理阶段进行工艺控制,生产过程中工艺调整, 选纤时进行严格把关, 设备进行改造等一系列措施, 生产出符合海底 光缆用的光纤产品
高强度大盘长海底光缆用单模光纤的制备方法:
1、 预制棒表面预处理
将待处理预制棒进行两歩预处理,首先将预制棒表面进行清洁处 理, 清洗法采用氢氟酸与硝酸混合溶液对预制棒表面进行清洗, 硝酸 与氢氟酸重量配比在 1 : 2〜8, 硝酸与氢氟酸的混合酸液浓度保持在 30°/^80%
清洗结束后, 再将预制棒进行火焰抛光处理, 高温下氢氧焰中富 裕的氢气和二氧化硅反应产生易蒸发的一氧化硅和水,继而被高速的 氢氧焰气流带走, 同时将预制棒表面的污染物带走。 因为在抛光的过 程中实际上是利用氢氧焰将预制棒表面抛去了 io〜iooum¾二氧化 硅, 将预制棒表面的微裂纹愈合, 同时将表面的杂质处理完全。
2、 拉丝
将预制棒装在拉丝炉上, 设定参数开始拉丝, 温度控制在 2000 °C〜2300°C。 拉丝炉部分作为预制棒熔缩为光纤的场所,由石墨加热部件和不 锈钢炉体部件组成。其中对石墨件的挥发物数量以及表面粗糙度都进 行了严格的规定:石墨件灰分 20ppm 石墨件表面粗糙度 FK6. 3。 并且对进到拉丝炉前的惰性保护气体进行了二次过滤,保证了气体的 洁净度。 同时对拉丝炉中的气流进行了流量控制 10- 50L7 nfi n, 在石 墨加热部件上安装有上、 中、 下三路进气管道, 使气体严格的按照层 流方式运动, 以使石墨件产生的颗粒在气流的吹扫下, 以不与熔融玻 璃和光纤相接触的轨迹被带出炉外或者附着在拉丝炉下部的内壁;同 时避免气流直接吹到玻璃的熔融区及光纤形成区,极大的提高了裸纤 的稳定性和均匀性, 为后续工序控制减小偏振模色散 (RVD) 值起到 良好的基础保证。
拉丝过程中, 保证拉丝速度波动小于 20n?i nfi n。 裸光纤出炉后, 经过冷却装置后, 采用紫外固化涂料, 进行一次、 二次涂覆, 每次涂 覆后经过紫外光固化装置固化。对于涂覆环境进行严格控制, 采用空 气高效过滤装置, 保证其洁净状况。 定期测量粒子数, 使空气中粒子 含量达到百级净化效果。固化后光纤采用正弦扭转搓动轮对光纤进行 正弦搓动, 经搓动后, 光纤经双收线系统收线, 进入下一道工序。
3、 光纤选择
经过拉丝工序后, 生产出来的光纤要进行选择, 选取一根预制棒 中间生产的光纤, 拉丝速度比较稳定, 速度波动小于 20kn?i nfi n。 改变 筛选工艺, 将原来的 1°帝选应变调整到 2° 筛选应变(I TUT国家标准 1°帝选应变相当于 0. 69(5 的筛选应力),防止光纤薄弱点进入后道工 序, 从而产生不必要的损失。
4、 光纤性能检测确认
经过本发明制备方法制得的光纤, 采用光纤性能测试仪表 PK系 列仪器(PK2400、 ΡΚ2200, CJTOR PK2800)进行性能测试, 该光纤的 零色散波长为 1300— 1324nm之间, 零色散斜率不大于 0. 092 ps/ ( nrfkm) , 光缆截止波长不大于 1260nm 该光纤的模场直径 (Μ ) 是 9. 2± 0. 4 μ 光纤在 1310nm的衰减不大于 0. 35cB km在 1550nm 的衰减不大于 0. 21 6B km 该光纤的指标能够满足国家电信行业通 用 G 652标准。 国家电信行业通用 G 652标准: 1310nm处衰减不大于 0. 36 cB km 在 1550nm的衰减不大于 0. 22cB km 零色散波长范围 1300- 1324nm零色散斜率不大于 0. 093 ps/ ( ηπ2· km) , 为(8. 6〜 9. 5) ± 0. 7um 光缆截止波长不大于 1260nm
由于该种光纤具有大盘长的特殊性, 而仪表测试的动态范围较 小, lOOkrril勺光纤不能完全打通, 所以光纤不能测出数据, 根据测试 原理, 本发明采用分段测试求平均法, 准确得出了光纤的测试数据。
经检测: 该光纤在 1310nm的衰减不大于 0. 35cB km 在 1550nm 的衰减不大于 0. 21 6 km 零色散斜率不大于 0. 092ps/ nr^-km 光缆 截止波长不大于 1260nm 该光纤的指标优于常规 G 652指标。
本发明高强度大盘长海底光缆用单模光纤的制备方法,由于采用 两歩预处理法, 优化石墨炉炉内气流方式, 控制石墨件规格成分, 可 制备出强度性能优异, 筛选应变达到 2% 盘长可达 100knr¾上, 同时 其它性能均能满足海底光缆用的光纤, 将制备成本和风险都降到最 低。 研发和生产成本较低, 制备方法可操作性强, 参数可控性强, 性 能优越, 节省后道工序, 尤其适合于海底光缆使用的服务要求。 附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发 明的范围。 其中,
图 1是本发明制备方法的工艺流程图。
图 2为本发明制备方法生产出的光纤的结构图。
图中: 1. 纤芯, 2.内包层, 3.外包层, 4.一次紫外固化涂层, 5.二次紫外固化涂层。 具体实施方式
为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对 照附图说明本发明的具体实施方式。
参照附图 1〜图 2所示,高强度大盘长海底光缆用单模光纤结构包 括纤芯 1、 内包层 2、 外包层 3、 一次紫外固化涂层 4、 二次紫外固化涂 层 5。 在纤芯 1外部包裹有内包层 2、 外包层 3, 外包层 3外部有两层紫 外固化涂料层分别为一次紫外固化涂层 4、二次紫外固化涂层 5, 外包 层外部经过两次涂覆,采用紫外固化涂料。紫外固化涂层具有低模量、 低折射率的特点。 该光纤的指标基本等同于常规 G 652指标: 该光纤 的零色散波长为 1300— 1324nm^间, 零色散斜率不大于 0. 092ps/ ( nr^km) , 光缆截止波长不大于 1260nm 该光纤的模场直径 (Μ ) 是 9. 2± 0. 4 μ ηη 光纤在 1310nnr¾勺衰减不大于 0. 35cB km 在 1550nm 的衰减不大于 0. 21 dB^ km 该光纤的指标能够满足国家电信行业通用 G 652标准。 国家电信行业通用 G 652标准: 1310ηη 衰减不大于 0. 36 6 km, 在 1550nm的衰减不大于 0. 22cB km, 零色散波长范围 1300- 1324nm零色散斜率不大于 0. 093 ps/ ( ηπ2· km), IVFD¾ ( 8. 6〜 9. 5) ± 0. 7um 光缆截止波长不大于 1260nm)。 该光纤的特殊性能可 以描述如下: 高强度大盘长海底光缆用 2° 筛选张力, 单盘盘长达到 100knr¾上。
本发明提供了一种新型的预制棒预处理方法, 在光纤拉制过程 中, 调整设备, 修正工艺参数设定, 来达到生产该光纤的目的, 可以 大大提高可操作性, 降低研制成本。
高强度大盘长海底光缆用单模光纤的制备方法:
1、 预制棒表面预处理
将待处理预制棒进行两歩预处理,首先将预制棒表面进行清洁处 理, 清洗法采用氢氟酸与硝酸混合溶液对预制棒表面进行清洗, 硝酸 与氢氟酸重量配比在 1 : 2〜8, 硝酸与氢氟酸的混合酸液浓度保持在 30°/^80%
清洗结束后, 再将预制棒进行火焰抛光处理, 高温下氢氧焰中富 裕的氢气和二氧化硅反应产生易蒸发的一氧化硅和水,继而被高速的 氢氧焰气流带走, 同时将预制棒表面的污染物带走。 因为在抛光的过 程中实际上是利用氢氧焰将预制棒表面抛去了 io〜iooum¾二氧化 硅, 将预制棒表面的微裂纹愈合, 同时将表面的杂质处理完全。 2、 拉丝
将预制棒装在拉丝炉上, 设定参数开始拉丝, 温度控制在 2000 °C〜2300°C。
拉丝炉部分作为预制棒熔缩为光纤的场所,由石墨加热部件和不 锈钢炉体部件组成,其中对石墨件的挥发物数量以及表面粗糙度都进 行了严格的规定:石墨件灰分 20ppm 石墨件表面粗糙度 FK6. 3。 并且对进到拉丝炉前的惰性保护气体进行了二次过滤,保证了气体的 洁净度。 同时对拉丝炉中的气流进行了流量控制 10- 50L7 nfi n, 在石 墨加热部件上安装有上、 中、 下三路进气管道, 使气体严格的按照层 流方式运动, 以使石墨件产生的颗粒在气流的吹扫下, 以不与熔融玻 璃和光纤相接触的轨迹被带出炉外或者附着在拉丝炉下部的内壁;同 时避免气流直接吹到玻璃的熔融区及光纤形成区,极大的提高了裸纤 的稳定性和均匀性, 为后续工序控制减小偏振模色散 (RVD) 值起到 良好的基础保证。所述的二次过滤是采用市售气体过滤器对惰性保护 气体进行第二次过滤, 惰性保护气体在出厂时已进行第一次过滤。所 述的惰性保护气体可以采用氩气或氩气与氦混合气体。
拉丝过程中, 保证拉丝速度波动小于 20n?i nfi n。 裸光纤出炉后, 经过冷却装置后, 采用紫外固化涂料, 进行一次、 二次涂覆, 每次涂 覆后经过紫外光固化装置固化。对于涂覆环境进行严格控制, 采用空 气高效过滤装置, 保证其洁净状况。 定期测量粒子数, 使空气中粒子 含量达到百级净化效果。固化后光纤采用正弦光纤扭转装置中的正弦 扭转搓动轮对光纤进行正弦搓动, 搓动后光纤经双收线系统收线, 结 束后进入下一道工序。
3、 光纤选择
经过拉丝工序后, 生产出来的光纤要进行选择, 选取一根预制棒 中间生产的光纤, 拉丝速度比较稳定。 改变筛选工艺, 将原来的 1 % 筛选应变调整到 2°/ 筛选应变 (I TUT国家标准 1°/筛选应变相当于 0. 69(3 ), 防止光纤薄弱点进入后道工序, 从而产生不必要的损失。
4、 光纤性能检测确认
经过本发明制备方法制得的光纤, 采用进口光纤性能测试仪表 PK系列仪器 (P 2400、 ΡΚ2200, C5TOR ΡΚ2800) 进行性能测试, 该 光纤的零色散波长为 1300— 1324nm之间, 零色散斜率不大于 0. 092 ps/ ( nrfkm) ,光缆截止波长不大于 1260nm该光纤的模场直径(Μ ) 是 9. 2± 0. 4 μ 光纤在 1310nm的衰减不大于 0. 35cB km在 1550nm 的衰减不大于 0. 21 6 Wm 该光纤的指标优于常规 G 652指标, 能 够满足国家电信行业通用 G 652标准。
该种光纤具有大盘长的特殊性, 由于仪表测试的动态范围较小, l OOkrril勺光纤不能完全打通, 所以光纤不能测出数据, 根据测试原理, 本发明采用分段测试求平均法, 准确得出了光纤的测试数据。
经检测: 该光纤在 1310nm的衰减不大于 0. 35cB km 在 1550nm的衰 减不大于 0. 21 c km 零色散斜率不大于 0. 092ps/ nr^-km 光缆截止 波长不大于 1260nm 该光纤的指标优于常规 G 652指标。

Claims

权 利 要 求 书
1、 高强度大盘长海底光缆用单模光纤的制备方法, 其特征在于:
( 1 ) 预制棒表面预处理
将待处理预制棒进行两歩预处理, 首先将预制棒表面进行清洁处理, 清洗法采用氢氟酸与硝酸混合溶液对预制棒表面进行清洗, 硝酸与氢氟酸 重量配比在 1 : 2〜8, 硝酸与氢氟酸的混合酸液浓度保持在 30°/^80%
清洗结束后, 再将预制棒进行火焰抛光处理, 高温下氢氧焰中富裕的 氢气和二氧化硅反应产生易蒸发的一氧化硅和水, 继而被高速的氢氧焰气 流带走, 同时将预制棒表面的污染物带走, 因为在抛光的过程中实际上是 利用氢氧焰将预制棒表面抛去了 10〜100unr^二氧化硅, 将预制棒表面的微 裂纹愈合, 同时将表面的杂质处理完全;
(2) 拉丝
将预制棒装在拉丝炉上,设定参数开始拉丝,温度控制在 2000°C〜2300
°C ;
拉丝炉部分作为预制棒熔缩为光纤的场所, 由石墨加热部件和不锈钢 炉体部件组成, 其中对石墨件的挥发物数量以及表面粗糙度都进行了严格 的规定:石墨件灰分 20ppm 石墨件表面粗糙度 FK6. 3, 并且对进到拉丝 炉前的惰性保护气体进行了二次过滤, 保证了气体的洁净度, 同时对拉丝 炉中的气流进行了流量控制 10- 50L7 nfi n, 在石墨加热部件上安装有上、 中、 下三路进气管道, 使气体严格的按照层流方式运动, 以使石墨件产生的颗 粒在气流的吹扫下, 以不与熔融玻璃和光纤相接触的轨迹被带出炉外或者 附着在拉丝炉下部的内壁; 同时避免气流直接吹到玻璃的熔融区及光纤形 成区, 极大的提高了裸纤的稳定性和均匀性, 为后续工序控制减小偏振模 色散值起到良好的基础保证;
拉丝过程中, 保证拉丝速度波动小于 20r^ rri n, 裸光纤出炉后, 经过冷 却装置后, 采用紫外固化涂料, 进行一次、 二次涂覆, 每次涂覆后经过紫 外光固化装置固化, 对于涂覆环境进行严格控制, 采用空气高效过滤装置, 保证其洁净状况, 定期测量粒子数, 使空气中粒子含量达到百级净化效果; 固化后光纤采用正弦扭转搓动轮对光纤进行正弦搓动, 经搓动后, 光纤经 双收线系统收线, 进入下一道工序;
(3) 光纤选择
经过拉丝工序后, 生产出来的光纤要进行选择, 选取一根预制棒中间 生产的光纤, 拉丝速度比较稳定, 速度波动小于 20kn?i nfi n, 改变筛选工艺, 将原来的 选应变调整到 2° 1勺筛选应变, 防止光纤薄弱点进入后道工序;
(4) 光纤性能检测确认
经过本发明制备方法制得的光纤, 采用光纤性能测试仪表 ΡΚ系列仪器进行 性能测试, 该光纤的零色散波长为 1300— 1324nm之间, 零色散斜率不大于 0. 092 ps/ ( nr^km) ,光缆截止波长不大于 1260nm该光纤的模场直径(Μ ) 是 9. 2± 0. 4 μ m 光纤在 1310nm的衰减不大于 0. 35cB km 在 1550nm的 衰减不大于 0. 21 6B Wm 该光纤的指标优于常规 G 652指标, 能够满足国 家电信行业通用 G 652标准。
2、 根据权利要求 1 所述的高强度大盘长海底光缆用单模光纤的制备方 法, 其特征在于所述高强度大盘长海底光缆用 2° !勺筛选张力, 单盘盘长达 到 100km以上。
PCT/CN2010/070573 2009-04-27 2010-02-09 高强度大盘长海底光缆用单模光纤的制备方法 WO2010124535A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/983,255 US8297080B2 (en) 2009-04-27 2010-12-31 Method for producing high strength and long coiling length single-mode fiber for submarine cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910031143.8 2009-04-27
CN200910031143.8A CN101533122B (zh) 2009-04-27 2009-04-27 高强度大盘长海底光缆用单模光纤的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/983,255 Continuation US8297080B2 (en) 2009-04-27 2010-12-31 Method for producing high strength and long coiling length single-mode fiber for submarine cable

Publications (1)

Publication Number Publication Date
WO2010124535A1 true WO2010124535A1 (zh) 2010-11-04

Family

ID=41103834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070573 WO2010124535A1 (zh) 2009-04-27 2010-02-09 高强度大盘长海底光缆用单模光纤的制备方法

Country Status (3)

Country Link
US (1) US8297080B2 (zh)
CN (1) CN101533122B (zh)
WO (1) WO2010124535A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533122B (zh) * 2009-04-27 2010-08-04 中天科技光纤有限公司 高强度大盘长海底光缆用单模光纤的制备方法
US9116253B2 (en) * 2011-01-11 2015-08-25 Pgs Geophysical As System and method for using biocide coating to prevent marine growth on geophysical equipment
CN102898018B (zh) * 2012-10-09 2015-01-21 中天科技精密材料有限公司 一种玻璃棒的抛光设备及其抛光方法
CN104176928A (zh) * 2014-08-18 2014-12-03 苏州新协力环保科技有限公司 一种新型光纤制造方法
US10222547B2 (en) 2015-11-30 2019-03-05 Corning Incorporated Flame-retardant optical fiber coating
CN106045336B (zh) * 2016-08-18 2018-10-30 富通光纤光缆(成都)有限公司 一种光纤涂覆装置
US10773990B2 (en) * 2016-10-21 2020-09-15 Corning Incorporated Purge device for an optical fiber draw system
US10167396B2 (en) 2017-05-03 2019-01-01 Corning Incorporated Low smoke fire-resistant optical ribbon
CN108046582B (zh) * 2017-12-29 2024-01-16 通鼎互联信息股份有限公司 一种连续制备光纤预制棒并拉丝的装置及方法
CN109320063A (zh) * 2018-12-03 2019-02-12 江苏斯德雷特通光光纤有限公司 一种光纤预制棒的制作方法
CN109336378A (zh) * 2018-12-26 2019-02-15 南京华信藤仓光通信有限公司 一种高强度光纤的连续生产工艺
CN112499961A (zh) * 2020-12-07 2021-03-16 中天科技光纤有限公司 光纤及其制备方法
CN113031180A (zh) * 2021-03-24 2021-06-25 武汉宏绅耀贸易有限公司 一种耐高温阻燃光纤光缆制造定型加工工艺
CN115353287B (zh) * 2022-09-09 2023-07-14 中国建筑材料科学研究总院有限公司 一种Φ40mm大尺寸光纤倒像器及其表面加工方法、应用
CN115368009A (zh) * 2022-09-15 2022-11-22 江苏欧联智能科技有限公司 光纤质量管理系统及管理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130528A1 (en) * 2004-12-22 2006-06-22 Nelson Brian K Method of making a hole assisted fiber device and fiber preform
US20080117518A1 (en) * 2006-11-21 2008-05-22 Mark Wang Microarray line scanning method and system
CN101241213A (zh) * 2008-02-13 2008-08-13 中天科技海缆有限公司 深海光缆及其制作方法
CN101255006A (zh) * 2008-04-10 2008-09-03 中天科技光纤有限公司 高带宽多模光纤生产方法
CN101255005A (zh) * 2008-04-10 2008-09-03 中天科技光纤有限公司 超低偏振模色散单模光纤生产方法
CN101328013A (zh) * 2007-06-22 2008-12-24 江苏亨通光纤科技有限公司 大尺寸光纤预制棒拉制光纤的方法
CN101533122A (zh) * 2009-04-27 2009-09-16 中天科技光纤有限公司 高强度大盘长海底光缆用单模光纤的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933453A (en) * 1974-05-06 1976-01-20 Corning Glass Works Flame hydrolysis mandrel and method of using
US4390357A (en) * 1981-10-29 1983-06-28 Western Electric Company, Inc. Methods of and system for clean air delivery to lightguide fiber drawing apparatus
JP3557070B2 (ja) * 1997-03-06 2004-08-25 古河電気工業株式会社 光ファイバ用多孔質ガラス母材製造装置
US6532776B1 (en) * 1997-06-27 2003-03-18 Shin-Etsu Chemical Co., Ltd. Method and apparatus for fusing an optical fiber preform
EP1346959A4 (en) * 2000-12-22 2005-04-06 Sumitomo Electric Industries COATED OPTICAL FIBER AND ITS MANUFACTURING METHOD
US20030140657A1 (en) * 2001-10-30 2003-07-31 Monika Oswald Method of producing glass of optical quality
KR100545814B1 (ko) * 2002-08-31 2006-01-24 엘에스전선 주식회사 광섬유 인선 용해로 및 이를 이용한 광섬유 인선방법
JP4463605B2 (ja) * 2003-05-09 2010-05-19 株式会社フジクラ 光ファイバ母材およびその製造方法
CN101251619A (zh) * 2008-04-09 2008-08-27 中天科技光纤有限公司 弯曲不敏感低水峰单模光纤及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130528A1 (en) * 2004-12-22 2006-06-22 Nelson Brian K Method of making a hole assisted fiber device and fiber preform
US20080117518A1 (en) * 2006-11-21 2008-05-22 Mark Wang Microarray line scanning method and system
CN101328013A (zh) * 2007-06-22 2008-12-24 江苏亨通光纤科技有限公司 大尺寸光纤预制棒拉制光纤的方法
CN101241213A (zh) * 2008-02-13 2008-08-13 中天科技海缆有限公司 深海光缆及其制作方法
CN101255006A (zh) * 2008-04-10 2008-09-03 中天科技光纤有限公司 高带宽多模光纤生产方法
CN101255005A (zh) * 2008-04-10 2008-09-03 中天科技光纤有限公司 超低偏振模色散单模光纤生产方法
CN101533122A (zh) * 2009-04-27 2009-09-16 中天科技光纤有限公司 高强度大盘长海底光缆用单模光纤的制备方法

Also Published As

Publication number Publication date
US8297080B2 (en) 2012-10-30
US20110094268A1 (en) 2011-04-28
CN101533122B (zh) 2010-08-04
CN101533122A (zh) 2009-09-16

Similar Documents

Publication Publication Date Title
WO2010124535A1 (zh) 高强度大盘长海底光缆用单模光纤的制备方法
US8687936B2 (en) Optical fiber, optical transmission system, and method of making optical fiber
WO2013104243A1 (zh) 弯曲不敏感单模光纤
US7773847B2 (en) Multimode optical fiber
CN106125192B (zh) 一种超低损耗大有效面积光纤及其制备工艺
CN103323908B (zh) 一种单模光纤及其制造方法
CN107632338B (zh) 抗弯曲单模光纤及其制作方法
CN101255005B (zh) 超低偏振模色散单模光纤生产方法
CN106007358B (zh) 一种用于光纤陀螺的超细径保偏光纤及其制造方法
CN108609844A (zh) 一种损耗较小的光纤制造工艺
JPH01301531A (ja) 大きな引張り力で延伸することによって機械抵抗の大きい光ファイバを製造する方法
JP2013056787A (ja) 光ファイバ母材の製造方法
KR101868152B1 (ko) 실리카 유리의 처리 방법 및 광섬유
US20150040616A1 (en) Optical fiber glass base material manufacturing method and optical fiber glass base material
YOSHIDA et al. Optical fiber drawing and its influence on fiber loss
CN114035266B (zh) 细径光纤及其制备方法
CN102122025A (zh) 稀土离子掺杂的氧氟化物微晶玻璃光纤
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
WO2022134668A1 (zh) 光纤结构、光纤结构的生产方法及光缆结构
JP4890767B2 (ja) 光ファイバ用プリフォームロッドの製造方法
JP2898705B2 (ja) 光ファイバ母材の製造方法
CN117534345A (zh) 光纤制备方法、系统及光纤
CN116908978A (zh) 芯线及其制备方法、线缆
CN116639868A (zh) 基于ovd工艺的大模场直径弯曲不敏感光纤的制造方法
Shen et al. Application of single-mode fiber with low polarization mode-dispersion (PMD) in 40-Gb/s high-speed communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769224

Country of ref document: EP

Kind code of ref document: A1