WO2010122753A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2010122753A1
WO2010122753A1 PCT/JP2010/002787 JP2010002787W WO2010122753A1 WO 2010122753 A1 WO2010122753 A1 WO 2010122753A1 JP 2010002787 W JP2010002787 W JP 2010002787W WO 2010122753 A1 WO2010122753 A1 WO 2010122753A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
liquid crystal
intermediate value
potential
signal potential
Prior art date
Application number
PCT/JP2010/002787
Other languages
English (en)
French (fr)
Inventor
入江健太郎
川端雅江
下敷領文一
鈴木弘人
津幡俊英
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to BRPI1016181A priority Critical patent/BRPI1016181A2/pt
Priority to CN201080017638.6A priority patent/CN102405435B/zh
Priority to US13/266,061 priority patent/US8704742B2/en
Priority to EP10766815A priority patent/EP2423735A4/en
Priority to RU2011147220/07A priority patent/RU2494426C2/ru
Priority to JP2011510186A priority patent/JP5231636B2/ja
Publication of WO2010122753A1 publication Critical patent/WO2010122753A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0204Compensation of DC component across the pixels in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0219Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/046Dealing with screen burn-in prevention or compensation of the effects thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a liquid crystal display device having a multi-gap structure.
  • pixels corresponding to R (red), G (green), and B (blue) are provided.
  • a liquid crystal display device having a monogap structure with a uniform liquid crystal layer thickness Due to the wavelength dependence of retardation, coloring occurs particularly at an oblique viewing angle during black display (for example, bluish black).
  • gradation-luminance characteristics gamma curves
  • the parasitic capacitance Cgd between the drain electrode of the transistor (and the pixel electrode electrically connected thereto) and the scanning signal line, and the drain electrode of the transistor ( And a pixel electrode electrically connected thereto and a source electrode of the transistor (and a data signal line electrically connected thereto) are generated, and a parasitic capacitance Csd is generated due to the parasitic capacitance.
  • a phenomenon is known in which the potential of a pixel (pixel electrode) is lowered when is turned off (a scanning signal is deactivated).
  • This potential decrease amount is called a pull-in voltage ( ⁇ Q), and S ⁇ Q is an effective potential applied to the pixel when the signal potential supplied to the pixel is S (hereinafter, the common electrode potential Vcom is used as a reference).
  • the intermediate value SMRX of the signal potential supplied to the R pixel the intermediate value SMGX of the signal potential supplied to the G pixel, and the B pixel
  • the intermediate value SMBX of the signal potential supplied to the signal line is aligned.
  • the inventors of the present application set the signal potentials (SHRX, SLRX, SHGX, SLGX, SHBX, SLBX) supplied to the R pixel, G pixel, and B pixel in the multi-gap structure liquid crystal display device as in FIG. It has been found that defects such as pixel burn-in occur.
  • An object of the present invention is to improve the display quality of a liquid crystal display device having a multi-gap structure.
  • the liquid crystal display device of the present invention includes a plurality of scanning signal lines, a plurality of data signal lines, a first pixel including a first liquid crystal layer, and a second pixel including a second liquid crystal layer thinner than the first liquid crystal layer. And a third pixel including a third liquid crystal layer that is thinner than the second liquid crystal layer, and the potential of the scanning signal line decreases when one scanning signal line is deselected from the selected state When the same gradation is continuously displayed for a predetermined period in each of the first to third pixels, the first positive signal potential and the first negative signal potential are alternately supplied to the first pixel.
  • the second positive polarity signal potential and the second negative polarity signal potential are alternately supplied to the second pixel, and the third positive polarity signal potential and the third negative polarity potential are alternately supplied to the third pixel.
  • a first intermediate value that is an intermediate value (amplitude center) between the first positive signal potential and the first negative signal potential is the second positive signal potential.
  • a second intermediate value that is an intermediate value (amplitude center) between the negative signal potential and the second negative signal potential is intermediate between the third positive signal potential and the third negative signal potential. It is characterized by being set higher than the third intermediate value which is a value (amplitude center).
  • the liquid crystal capacity of the third pixel> the liquid crystal capacity of the second pixel> the liquid crystal of the first pixel Therefore, even when the same gradation is displayed on the first to third pixels, the pull-in voltage at the first pixel> the pull-in voltage at the second pixel> the pull-in voltage at the third pixel. Therefore, as described above, if the first intermediate value> the second intermediate value> the third intermediate value, the difference in the pull-in voltage between the pixels can be compensated, and the problems such as pixel burn-in can be improved. it can.
  • the present invention it is possible to easily compensate for a difference in pull-in voltage between pixels in a liquid crystal display device having a multi-gap structure, and it is possible to improve problems such as pixel burn-in.
  • It is a schematic diagram which shows the gradation dependence (an example) of the signal potential intermediate value of this liquid crystal display device. It is a schematic diagram which shows the other example of a setting of the signal potential in this liquid crystal display device (at the time of 1023 gradation white gradation display). It is a table
  • FIG. 6 is a circuit diagram illustrating a liquid crystal capacitor, a storage capacitor, and a parasitic capacitor of a liquid crystal display device. It is sectional drawing of the other liquid crystal panel concerning this Embodiment.
  • FIG. 20 is a schematic diagram illustrating a setting example of a signal potential (at the time of T gradation display) when the liquid crystal panel of FIG. 19 is used. It is a schematic diagram showing a method of setting the signal potential intermediate value of R, G, B pixels in a non-multi gap structure.
  • FIG. 2 is a block diagram showing the configuration of the present liquid crystal display device.
  • the present liquid crystal display device includes a display unit (VA mode liquid crystal panel having a negative type liquid crystal layer) 60, a display control circuit 70, a gate driver 80, and a source driver 90. ing.
  • the display unit (liquid crystal panel) 60 includes a data signal line (15R / 15G / 15B), a scanning signal line 16, a red pixel (hereinafter R pixel) PR, a green pixel (hereinafter G pixel) PR, and a blue pixel ( A B pixel) PB and a storage capacitor wiring (Cs wiring, not shown) are provided.
  • the data signal line 15R is connected to the R pixel
  • the data signal line 15G is connected to the G pixel
  • the data signal line 15B is connected to the B pixel.
  • the display control circuit 70 receives a digital video signal Dv, a horizontal synchronization signal HSY, a vertical synchronization signal VSY, and a control signal Dc for controlling a display operation from an external signal source (for example, a tuner). Based on the received signals (Dv, HSY, VSY, and Dc), the display control circuit 70 generates a source start pulse signal SSP, a source clock signal SCK, a source polarity signal POL, an image data signal DAT (digital signal), and a gate start pulse.
  • SSP source start pulse signal
  • SCK source clock signal
  • POL source polarity signal
  • DAT digital signal
  • a signal GSP, a gate clock signal GCK, and a gate driver output control signal GOE are generated, and a source start pulse signal SSP, a source clock signal SCK, a source polarity signal POL, and an image data signal DAT are output to the source driver 90, and a gate start is performed.
  • the pulse signal GSP, the gate clock signal GCK, and the gate driver output control signal GOE are output to the gate driver 80.
  • the gate driver 80 drives the scanning signal line 16 based on the gate start pulse signal GSP, the gate clock signal GCK, and the gate driver output control signal GOE, and the source driver 90 includes the source start pulse signal SSP, the source clock signal Data signal lines (15R, 15G, and 15B) are driven based on SCK and the image data signal DAT. Specifically, an analog signal potential corresponding to the image data signal DAT is applied to the data signal lines (15R, 15G, and 15B) at a timing defined by the source start pulse signal SSP, the source clock signal SCK, and the source polarity signal POL. Supply.
  • FIG. 3 shows a partial cross section of the liquid crystal panel 60 of FIG.
  • the liquid crystal panel 60 includes an active matrix substrate 3, a color filter substrate 30, and a liquid crystal layer 40 filled between these substrates.
  • the active matrix substrate 3 includes a data signal line, a scanning signal line, various insulating films, a transistor, a storage capacitor line (not shown), pixel electrodes 17R, 17G, and 17B, and an alignment film that covers these pixel electrodes. 9 are formed. Further, color filters 13R, 13G, and 13B corresponding to the pixel electrodes 17R, 17G, and 17B, a counter electrode 28 that covers these color filters, and an alignment film 19 that covers the counter electrode 28 are formed on the color filter substrate. Yes.
  • the R pixel PR is configured to include the pixel electrode 17R, the counter electrode 28, and the liquid crystal layer LR sandwiched between them, and includes the pixel electrode 17G, the counter electrode 28, and the liquid crystal layer LG sandwiched therebetween.
  • the G pixel PG is configured, and the B pixel PB is configured to include the pixel electrode 17B, the counter electrode 28, and the liquid crystal layer LB sandwiched therebetween.
  • the present liquid crystal panel has a multi-gap structure in which the thickness of the liquid crystal layer LR> the thickness of the liquid crystal layer LG> the thickness of the liquid crystal layer LB.
  • the advantage of the multi-gap structure is that the wavelength dependence of retardation can be compensated in general by changing the thickness of the liquid crystal layer for each of the R, G, and B pixels. That is, the deviation between the VT curve (effective voltage-transmittance curve) of the R pixel, the VT curve of the G pixel, and the VT curve of the B pixel is a monogap structure (the liquid crystal layer thickness of the R, G, B pixels is uniform. ) Liquid crystal display device.
  • the transmissivity is B pixel> G pixel> R pixel in halftone display, so that blue coloring occurs.
  • the multi-gap structure such coloring is suppressed. Display quality can be improved.
  • the multi-gap liquid crystal display device has such advantages, but the thickness of the liquid crystal layer of the R pixel> the thickness of the liquid crystal layer of the G pixel> the thickness of the liquid crystal layer of the B pixel, that is, the liquid crystal capacitance (Clc) of the B pixel. Since the liquid crystal capacitance of the G pixel (Clc)> the liquid crystal capacitance of the R pixel (Clc), even when the same gradation is displayed in each of the R pixel, the G pixel, and the B pixel, the pull-in voltage of the R pixel> G The pull-in voltage of the pixel> the pull-in voltage of the B pixel.
  • the intermediate value SMRX of the signal potential supplied to the R pixel> G pixel By setting the intermediate value SMGX of the signal potential to be supplied to the intermediate value SMBX of the signal potential supplied to the B pixel, the difference in the pull-in voltage between the R pixel, the G pixel, and the B pixel is compensated.
  • FIG. when displaying the 1023 gradation which is the highest gradation (white gradation), considering that the pull-in voltage ⁇ QR1023 of the R pixel> the pull-in voltage ⁇ QG1023 of the G pixel> the pull-in voltage ⁇ QB1023 of the B pixel, FIG. As shown, the positive signal potential SHR1023 supplied to the R pixel, the negative signal potential SLR1023 supplied to the R pixel, the intermediate value SMR1023 between the SHR1023 and SLR1023, the positive signal potential SHG1023 supplied to the G pixel, and the G pixel are supplied.
  • Negative signal potential SLG1023, intermediate value SMG1023 between SHG1023 and SLG1023, positive signal potential SHB1023 supplied to B pixel, negative signal potential SLB1023 supplied to B pixel, and intermediate value SMB1023 between SHB1023 and SLB1023 EHR1023 and ELR1023 are effective potentials suitable for R pixel 1023 gradation display based on the multi-gap structure of FIG. 1, and EHG1023 is the optimum effective potential for G pixel 1023 gradation display based on the multi-gap structure.
  • ELG1023, and the effective potential most suitable for the B pixel 1023 gradation display premised on the multi-gap structure is EHB1023 and ELB1023).
  • the intermediate value of the potential (EHG1023 + ELG1023) / 2
  • the intermediate value of the potential (EHB1023 + ELB1023) / 2
  • SMR1023 Vcom + ⁇ QR1023>
  • SMG1023 Vcom + ⁇ QG1023>
  • SMB1023 Vcom + ⁇ QB1023.
  • the signal potential SLG512, the intermediate value SMG512 between SHG512 and SLG512, the positive signal potential SHB512 supplied to the B pixel, the negative signal potential SLB512 supplied to the B pixel, and the intermediate value SMB512 between SHB512 and SLB512 are set (note that R based on the multi-gap structure of FIG. EHR512 and ELR512 are effective potentials that are optimal for elementary 512 gradation display, EHG512 and ELG512 are optimal potentials for G pixel 512 gradation display that is based on the multigap structure, and B pixel 512 that is based on the multigap structure. (EHB 512 and ELB 512 are optimum effective potentials for gradation display).
  • the positive signal potential SHR512 positive effective potential EHR512 + the pull-in voltage ⁇ QR512
  • the negative signal potential SLR512 the negative effective potential ELR512 + the pull-in voltage ⁇ QR512
  • the positive signal potential SHG512 positive effective potential EHG512 + the pull-in voltage ⁇ QG512
  • the negative signal potential SLG512 the negative effective potential ELG512 + the pull-in voltage ⁇ QG512
  • positive signal potential SHB512 positive effective potential EHB512 + leading voltage ⁇ QB512
  • negative signal potential SLB512 negative effective potential ELB512 + leading voltage ⁇ QB512
  • SMR512 Vcom + ⁇ QR512>
  • SMG512 Vcom + ⁇ QG512>
  • SMB512 Vcom + ⁇ QB512.
  • ⁇ QR1023 ⁇ QR512, ⁇ QG1023 ⁇ QG512, and ⁇ QB1023 ⁇ QB512 that is, the pull-in voltage is higher in the 512 gradation display than in the 1023 gradation display. This is because in a VA mode (normally black) liquid crystal panel having a layer, the liquid crystal capacitance Clc decreases as the display gradation decreases (the effective voltage applied to the liquid crystal layer decreases).
  • the signal potential SLG0, the intermediate value SMG0 between SHG0 and SLG0, the positive signal potential SHB0 supplied to the B pixel, the negative signal potential SLB0 supplied to the B pixel, and the intermediate value SMB0 between SHB0 and SLB0 are set (note that EHR0 and ELR0 are effective potentials suitable for R pixel 0 gradation display based on the multigap structure shown in FIG.
  • EHR0 and ELR0 are effective potentials suitable for R pixel 0 gradation display based on the multigap structure shown in FIG.
  • the positive signal potential SHR0 positive positive effective potential EHR0 + the pull-in voltage ⁇ QRO
  • the negative signal potential SLR0 the negative effective potential ELR0 + the pull-in voltage ⁇ QR0
  • the positive signal potential SHG0 positive effective potential EHG0 + the pull-in voltage ⁇ QG0
  • the negative signal potential SLG0 the negative effective potential ELG0 + the pull-in voltage ⁇ QG0
  • the counter electrode (common electrode) potential Vcom positive / negative effective
  • the intermediate value of the potential (EHG0 + ELG0) / 2
  • the positive signal potential SHB0 positive effective potential EHB0 + the pull-in voltage ⁇ QB0
  • the negative signal potential SLB0 the negative effective potential ELB0 + the pull-in voltage ⁇ QB0
  • the counter electrode (common electrode) potential Vcom positive / negative effective
  • the intermediate value of the potential (EHB0 + ELB0) / 2
  • SMR0 Vcom + ⁇ QR0>
  • SMG0 Vcom + ⁇ QG0>
  • SMB0 Vcom + ⁇ QB0.
  • ⁇ QR512 ⁇ QR0, ⁇ QG512 ⁇ QG0, and ⁇ QB512 ⁇ QB0 are such that, as described above, in the VA mode (normally black) liquid crystal panel having the negative liquid crystal layer, the display gradation is lowered (liquid crystal layer). This is because the liquid crystal capacitance Clc is reduced as the effective voltage applied to the output voltage decreases.
  • FIG. 6 shows the pull-in voltage ⁇ QG0, the positive signal potential SHG0, the negative signal potential SLG0 supplied to the G pixel, and the intermediate value SMG0 between the SHG0 and SLG0 when displaying 0, 512, and 1023 gradations on the R pixel.
  • Pull-in voltage ⁇ QG512, positive signal potential SHG512, negative signal potential SLG512 supplied to the G pixel, intermediate value SMG512 between SHG512 and SLG512, pull-in voltage ⁇ QG1023, positive signal potential SHG1023, negative signal potential SLG1023 supplied to the G pixel This is an example of setting an intermediate value SMG1023 between SHG1023 and SLG1023.
  • the positive effective potential (EHR1023, EHG1023, EHB1023) applied to the R, G, B pixels is set to EHR1023> EHG1023> EHB1023, and the negative effective potential (ELR1023, ELG1023, ELB1023) applied to the R, G, B pixels.
  • EHR1023, EHG1023, ELB1023 applied to the R, G, B pixels.
  • EHR1023, ELG1023, ELB1023 also satisfies EHB1023> EHG1023> EHR1023. This is not easy in the actual process to compensate for the difference in retardation of the R, G, B pixels only by setting the thickness of the liquid crystal layer (matching the three VT curves corresponding to the R, G, B pixels).
  • the gamma curve (grayscale) for each of the R, G, and B pixels is used as a close adjustment while making the three VT (effective voltage-transmittance) curves corresponding to the R, G, and B pixels substantially coincide with each other by the multi-gap structure. This is because the setting of (luminance characteristics) (so-called RGB independent gamma setting) is performed.
  • the RGB independent gamma setting is not essential and may be appropriately set according to the actual process. In other words, if it is possible in the process to compensate for the difference in retardation of the R, G, and B pixels only by setting the thickness of the liquid crystal layer (matching the three VT curves corresponding to the R, G, and B pixels) ( RGB independent gamma setting need not be performed (including cost).
  • RGB independent gamma setting need not be performed (including cost).
  • an effective potential applied to R EHR0 ⁇ ELR0
  • an effective potential applied to G EHG0 ⁇ ELG0
  • the effective potential applied to B (EHB0 ⁇ ELB0) is aligned.
  • FIG. 8 is a table showing a setting example of an LUT (Look Up Table) included in the display control circuit 70.
  • the display control circuit 70 uses the digital video signal Dv and the LUT to generate a combination of the source polarity signal POL (“H” or “L”) and the image data signal DAT (10 bits).
  • the input of the LUT is the gradation indicated by the digital video signal Dv.
  • the input of the LUT is the gradation indicated by the digital signal obtained by performing predetermined processing on the digital video signal Dv. Good.
  • Dv indicating 0 gradation of B blue
  • DAT of POL “H” and B indicating 0 gradation
  • Dv indicating 512 gradations of R red
  • a combination of R DAT indicating POL “H” and 612 gradations
  • the source driver 90 Since the source driver 90 outputs an analog voltage corresponding to each gradation, the gradation data corrected by the LUT is converted into an analog voltage.
  • FIG. 9 is a schematic diagram illustrating a configuration example of a part of the source driver 90.
  • the source driver 90 includes DAC 100 and DAC 101 connected to the data signal line 15R (red signal line), DAC 100 and DAC 101 connected to the data signal line 15G (green signal line), and data A DAC 100 and a DAC 101 connected to the signal line 15B (blue signal line) are provided.
  • FIG. 10 is a table showing input / output (part) of the DAC 100 and the DAC 101 of FIG.
  • the DAC 100 outputs an analog positive signal potential SHR0 (see FIG. 5) when the digital image data signal DAT15 is input, and the positive polarity when the image data signal DAT612 is input.
  • SHR512 see FIG. 4
  • SHG0 see FIG. 5
  • SHG512 see FIG. 4
  • the positive signal potential SHG1023 When the image data signal DAT1015 is input, the positive signal potential SHG1023 ( When the image data signal DAT0 is input, the positive signal potential SHB0 (see FIG. 5) is output. And, when the image data signal DAT364 is inputted, it outputs a positive polarity signal potential SHB512 (see FIG. 4), and outputs the image data signal DAT1012 is input, the positive polarity signal potential SHB1023 (see Figure 1).
  • the DAC 101 outputs an analog negative signal potential SLR0 (see FIG. 5) when the digital image data signal DAT0 is input, and the negative signal potential SLR512 (see FIG. 5) when the image data signal DAT402 is input. 4), and when the image data signal DAT1015 is input, the negative signal potential SLR1023 (see FIG. 1) is output.
  • the negative signal potential SLG0 see FIG. 5
  • the negative signal potential SLG512 see FIG. 4
  • the negative signal potential SLB0 (see FIG. 5) is output and the image data signal DAT9 is input.
  • the signal DAT625 is input, and outputs a negative polarity signal potential SLB512 (see FIG. 4), and outputs the image data signal DAT1023 is input, a negative signal potential SLB1023 (see Figure 1).
  • R DAT indicating gradation is input to the DAC 101 connected to the data signal line 15R (see FIG. 9), and the negative signal potential SLR1023 (see FIGS. 1 and 10) is output to the data signal line 15R.
  • the B DAT indicating the gradation is input to the DAC 101 connected to the data signal line 15B (see FIG. 9), and the negative signal potential SLB1023 (see FIGS. 1 and 10) is output to the data signal line 15B.
  • the DAC provided in the source driver 90 as shown in FIG. 9 can be of two types (101 and 101). . Since a general source driver has a configuration as shown in FIG. 9, the display control circuit 70 is newly provided with an LUT as shown in FIG. 8, or if the display control circuit has an LUT, the contents of the LUT are shown. FIG. 1 and FIG. 4 simply by changing to 8 or adding a correction LUT (the output of the correction LUT is as shown in FIG. 8) if the display control circuit has an LUT. Signal potential can be set in consideration of the pull-in voltage of the multi-gap structure as shown in .about.7.
  • the present embodiment is not limited to the one in which the display control circuit 70 performs gradation conversion as described above.
  • the DAC configuration of the source driver 90 may be changed.
  • FIG. 11 there are six types of DACs provided in the source driver 90 (two types for each of R, G, and B pixels). That is, DACs 10R and 11R are provided corresponding to the data signal lines 15R, DACs 12G and 13G are provided corresponding to the data signal lines 15G, and DACs 14B and 16B are provided corresponding to the data signal lines 15B.
  • the display control circuit 70 generates a combination of the source polarity signal POL (“H” or “L”) and the image data signal DAT (10 bits) based on the input digital video signal Dv.
  • FIG. 12 is a table showing input / output (part) of the DACs 10R, 11R, 12G, 13G, 14B, and 16B in FIG.
  • the DAC 10R outputs an analog positive signal potential SHR0 (see FIG. 5) when the digital image data signal DAT0 is input, and the positive polarity when the image data signal DAT512 is input.
  • the signal potential SHR512 see FIG. 4
  • the positive signal potential SHR1023 see FIG. 1
  • the DAC 11R outputs a positive signal potential SLR0 (see FIG. 5) when the digital image data signal DAT0 is input, and the positive signal potential SLR512 (see FIG. 4) when the image data signal DAT512 is input.
  • the positive signal potential SLR1023 see FIG. 1 is output.
  • the DAC 12G outputs the positive signal potential SHG0 (see FIG. 5) when the digital image data signal DAT0 is input, and the positive signal potential SHG512 (see FIG. 4) when the image data signal DAT512 is input. ) And the image data signal DAT1023 is input, the positive signal potential SHG1023 (see FIG. 1) is output. Further, the DAC 13G outputs the positive signal potential SLG0 (see FIG. 5) when the digital image data signal DAT0 is input, and the positive signal potential SLG512 (see FIG. 4) when the image data signal DAT512 is input. ) And the image data signal DAT1023 is input, the positive signal potential SLG1023 (see FIG. 1) is output.
  • the DAC 14B outputs the positive signal potential SHB0 (see FIG. 5) when the digital image data signal DAT0 is input, and the positive signal potential SHB512 (see FIG. 4) when the image data signal DAT512 is input. ) And the image data signal DAT1023 is input, the positive signal potential SHB1023 (see FIG. 1) is output. Further, the DAC 16G outputs the positive signal potential SLB0 (see FIG. 5) when the digital image data signal DAT0 is input, and the positive signal potential SLB512 (see FIG. 4) when the image data signal DAT512 is input. ) And the image data signal DAT1023 is input, the positive signal potential SLB1023 (see FIG. 1) is output.
  • R DAT indicating gradation is input to the DAC 11R connected to the data signal line 15R (see FIG. 11), and the negative signal potential SLR1023 (see FIGS. 1 and 12) is output to the data signal line 15R.
  • a tuner unit 600 When displaying an image based on television broadcasting on the liquid crystal display device 800, as shown in FIG. 13, a tuner unit 600 is connected to the liquid crystal display device 800, thereby configuring the television receiver 701. .
  • the tuner unit 600 extracts a signal of a channel to be received from a received wave (high-frequency signal) received by an antenna (not shown), converts the signal to an intermediate frequency signal, and detects the intermediate frequency signal to detect television.
  • a composite color video signal Scv as a signal is taken out.
  • the composite color video signal Scv is input to the liquid crystal display device 800, and the digital video signal Dv obtained from the composite color video signal Scv is input to the display control circuit 70 (see FIG. 2).
  • FIG. 6 illustrates the case where the pull-in voltage of the same pixel has gradation dependency.
  • the display gradation is related.
  • the intermediate value of the positive / negative signal potential supplied to the R pixel is Vcom + ⁇ QR
  • the intermediate value of the positive / negative signal potential supplied to the G pixel is Vcom + ⁇ QG
  • the intermediate value of the positive / negative signal potential supplied to the B pixel is assumed to be Vcom + ⁇ QB.
  • SHR0 positive signal potential supplied to R pixel at 0 gradation display
  • SHG0 0.199 [V]
  • SHG0 ⁇ SHB0 positive signal potential supplied to B pixel at 0 gradation display
  • SHR0 and SHB0 are set to be 0.242 [V].
  • SHR512 positive signal potential supplied to R pixel during 512 gradation display
  • SHG-SHB512 positive signal potential supplied to B pixel during 512 gradation display
  • SHR512 and SHB512 are set to be 0.242 [V].
  • SHR1023 positive signal potential supplied to R pixel during 1023 gradation display
  • SHG1023 0.199 [V]
  • SHG1023-SHB1023 positive signal potential supplied to B pixel during 1023 gradation display
  • SHB1023 SHR1023 and SHB1023 are set to be 0.242 [V].
  • SLR0 negative polarity signal potential supplied to R pixel at 0 gradation display
  • SLG0 ⁇ SLB0 negative polarity signal potential supplied to B pixel at 0 gradation display
  • SLR512 negative polarity signal potential supplied to the R pixel during 512 gradation display
  • SLGSL512 0.199 [V]
  • SLGSL512 negative polarity signal potential supplied to the B pixel during 512 gradation display
  • SLR 512 and SLB 512 are set to be 242 [V].
  • SLR1023 negative polarity signal potential supplied to R pixel during 1023 gradation display
  • SLG1023-SLB1023 negative polarity signal potential supplied to B pixel during 1023 gradation display
  • the SLR 1023 and the SLB 1023 are set to be 0.242 [V].
  • the difference between the intermediate value SMR0 of SHR0 and SLR0 and the intermediate value SMG0 of SHG0 and SLG0 is 0.242 [V]
  • the difference between the intermediate value SMB0 of SMG0, SHB0 and SLB0 is 0.199 [V]. It becomes.
  • the difference between the intermediate value SMR512 of SHR512 and SLR512 and the intermediate value SMG512 of SHG512 and SLG512 is 0.242 [V]
  • the difference between the intermediate value SMB512 of SMG512, SHB512 and SLB512 is 0.199 [V]. .
  • the difference between the intermediate value SMR1023 of SHR1023 and SLR1023 and the intermediate value SMG1023 of SHG1023 and SLG1023 is 0.242 [V]
  • the difference between the intermediate value SMB1023 of SMG1023, SHB1023 and SLB1023 is 0.199 [V]. .
  • processing for example, gradation conversion using an LUT
  • the DAC configuration of the source driver 90 may be changed, or the source driver may be changed.
  • a voltage correction circuit may be provided in 90.
  • the luminance decrease of the G pixel increases.
  • RP liquid crystal layer thickness LR G pixel GP liquid crystal layer thickness LG> B pixel BP liquid crystal layer thickness LB (only the B pixel liquid crystal layer is thinned), and R pixel, G pixel, and B pixel respectively
  • the intermediate value of the positive / negative polarity signal potential supplied to the R pixel the intermediate value of the positive / negative polarity signal potential supplied to the G pixel> the positive value supplied to the B pixel.
  • the signal potential supplied to each pixel can be set so as to be an intermediate value of the negative signal potential.
  • the R pixel pull-in voltage ⁇ QRT the G pixel pull-in voltage ⁇ QGT> the B pixel pull-in voltage ⁇ QBT.
  • positive signal potential SHBT positive effective potential EHBT + intake voltage ⁇ QBT
  • negative signal potential SLBT negative effective potential ELBT + intake voltage ⁇ QBT
  • counter electrode (common electrode) potential Vcom positive / negative effective
  • An intermediate value of potential (EHBT + ELBT) / 2
  • the pixel colors are not limited to the three types of R, G, and B. Four types of R, G, B, and Y (yellow) may be used.
  • the positive and negative signal potentials supplied to the R pixel are Intermediate value> Intermediate value of positive / negative signal potential supplied to Y pixel> Intermediate value of positive / negative signal potential supplied to G pixel> Intermediate value of positive / negative signal potential supplied to B pixel
  • the signal potential supplied to each pixel is set.
  • the intermediate value of the positive / negative polarity signal potential supplied to the R pixel the positive / negative supplied to the Y pixel.
  • the positive signal potential SHYT positive positive effective potential EHYT + the pull-in voltage ⁇ QYT
  • the negative signal potential SLYT negative negative effective potential ELYT + the pull-in voltage ⁇ QYT
  • the counter electrode (common electrode) potential Vcom positive / negative effective
  • the intermediate value of the potential (EHYT + ELYT) / 2
  • positive signal potential SHBT positive effective potential EHBT + intake voltage ⁇ QBT
  • negative signal potential SLBT negative effective potential ELBT + intake voltage ⁇ QBT
  • counter electrode (common electrode) potential Vcom positive / negative effective
  • An intermediate value of potential (EHBT + ELBT) / 2
  • R, G, B, Y (yellow), and C (cyan) may be used.
  • the liquid crystal layer of the R pixel since R wavelength> Y wavelength> G wavelength> C wavelength> B wavelength, for example, the liquid crystal layer of the R pixel
  • the R pixel, Y pixel, G pixel, C pixel, and B When the same gradation is continuously displayed on each pixel for a predetermined period, the intermediate value of the positive / negative signal potential supplied to the R pixel> the intermediate value of the positive / negative signal potential supplied to the Y pixel> G pixel Supplied to each pixel so that the intermediate value of the positive / negative polarity signal potential supplied> the intermediate value of the positive / negative polarity signal potential supplied to C pixel>
  • a liquid crystal display device in which the potential of the scanning signal line decreases (the scanning signal is “High” active) when the scanning signal line is deselected from the selected state A liquid crystal display device in which the potential of the scanning signal line rises when the scanning signal line is deselected from the selected state (the scanning signal is “Low” active) may be used.
  • the scanning signal is “High” active
  • the scanning signal is “Low” active”
  • the transistor is turned off (the scanning signal is deactivated)
  • the potential of the pixel (pixel electrode) rises (a push-up voltage is generated).
  • the intermediate value of the negative polarity signal potential ⁇ the intermediate value of the positive / negative polarity signal potential supplied to the second pixel ⁇ the intermediate value of the positive / negative polarity signal potential supplied to the third pixel.
  • the signal potential is set.
  • the image data signal input to the source driver is described as 10-bit data, but other bit numbers may be used.
  • the liquid crystal display device of the present invention includes a plurality of scanning signal lines, a plurality of data signal lines, a first pixel including a first liquid crystal layer, and a second pixel including a second liquid crystal layer having a thickness equal to or less than the first liquid crystal layer. And a third pixel including a third liquid crystal layer having a thickness smaller than that of the second liquid crystal layer, and the potential of the scanning signal line is lowered when one scanning signal line is deselected from the selected state.
  • the liquid crystal display device when the same gradation is continuously displayed on each of the first to third pixels for a predetermined period, the first positive signal potential and the first negative signal potential are alternately displayed on the first pixel.
  • the second positive signal potential and the second negative signal potential are alternately supplied to the second pixel, and the third positive signal potential and the third negative potential are alternately supplied to the third pixel.
  • the first intermediate value which is the intermediate value (amplitude center) between the first positive signal potential and the first negative signal potential
  • the second positive signal potential and the second negative signal potential are set to be equal to or higher than a second intermediate value that is an intermediate value (amplitude center), and the second intermediate value is the third positive signal potential and the third negative signal potential. It is characterized by being set higher than the third intermediate value which is an intermediate value (amplitude center) of the sex signal potential.
  • the liquid crystal capacity of the third pixel> the liquid crystal capacity of the second pixel ⁇ the liquid crystal of the first pixel Therefore, even when the same gradation is displayed on the first to third pixels, the pull-in voltage at the first pixel ⁇ the pull-in voltage at the second pixel> the pull-in voltage at the third pixel. Therefore, as described above, if the first intermediate value ⁇ the second intermediate value> the third intermediate value, it is possible to compensate for the difference in the pull-in voltage between the pixels, and to improve problems such as pixel burn-in. it can.
  • the first liquid crystal layer is disposed between the pixel electrode included in the first pixel and the common electrode
  • the second liquid crystal layer is disposed between the pixel electrode included in the second pixel and the common electrode.
  • the third liquid crystal layer is disposed between the pixel electrode included in the third pixel and the common electrode, and each of the first to third intermediate values is set higher than the potential of the common electrode. It can also be configured.
  • the first intermediate value is obtained by adding the pull-in voltage at the first pixel when displaying the gradation to the potential of the common electrode, and the second intermediate value is the common electrode.
  • the third intermediate value is the third pixel when the gradation is displayed at the potential of the common electrode. It is also possible to adopt a configuration in which a pull-in voltage at is added.
  • the wavelength of the color corresponding to the first pixel is longer than the wavelength of the color corresponding to the second pixel, and the wavelength of the color corresponding to the second pixel is longer than the wavelength of the color corresponding to the third pixel.
  • a long configuration can also be used.
  • the first pixel may be red
  • the second pixel may be green
  • the third pixel may be blue.
  • the first to third intermediate values may be determined according to the gradation.
  • the first to third liquid crystal layers may be in a VA mode.
  • the liquid crystal display device further includes a fourth pixel including a fourth liquid crystal layer having a thickness equal to or smaller than the first liquid crystal layer and equal to or greater than the second liquid crystal layer, and the fourth pixel also has the same gradation as the first to third pixels. Is continuously displayed for a predetermined period, the fourth positive signal potential and the fourth negative potential are alternately supplied to the fourth pixel, and the first intermediate value is the fourth positive signal potential and the fourth negative signal potential. It is also possible to adopt a configuration in which the second intermediate value is set to be equal to or lower than the fourth intermediate value that is an intermediate value of the four negative signal potentials.
  • the first pixel may be red
  • the second pixel may be green
  • the third pixel may be blue
  • the fourth pixel may be yellow.
  • a configuration in which the intermediate value> the third intermediate value is also set.
  • the driving circuit of the present liquid crystal display device includes a plurality of scanning signal lines, a plurality of data signal lines, a first pixel including a first liquid crystal layer, and a second liquid crystal layer having a thickness equal to or smaller than the first liquid crystal layer.
  • the first positive polarity is displayed on the first pixel.
  • the signal potential and the first negative signal potential are alternately supplied, the second positive signal potential and the second negative signal potential are alternately supplied to the second pixel, and the third positive signal potential is supplied to the third pixel.
  • the third negative polarity potential are alternately supplied, and the first positive polarity signal potential and the first negative polarity signal potential are
  • a first intermediate value that is an intermediate value is set to be equal to or greater than a second intermediate value that is an intermediate value between the second positive signal potential and the second negative signal potential, and the second intermediate value is set to the third positive polarity. It is characterized by being set higher than a third intermediate value which is an intermediate value between the signal potential and the third negative signal potential.
  • the driving method of the liquid crystal display device includes a plurality of scanning signal lines, a plurality of data signal lines, a first pixel including a first liquid crystal layer, and a second liquid crystal layer having a thickness equal to or less than the first liquid crystal layer.
  • a method of driving a liquid crystal display device for driving the liquid crystal display device wherein when the same gradation is continuously displayed on each of the first to third pixels for a predetermined period, the first positive polarity is displayed on the first pixel.
  • the signal potential and the first negative signal potential are alternately supplied, the second positive signal potential and the second negative signal potential are alternately supplied to the second pixel, and the third positive signal potential is supplied to the third pixel.
  • the third negative potential are alternately supplied,
  • the first intermediate value which is the intermediate value between the first positive signal potential and the first negative signal potential, is greater than or equal to the second intermediate value, which is the intermediate value between the second positive signal potential and the second negative signal potential.
  • the second intermediate value is set to be higher than a third intermediate value that is an intermediate value between the third positive signal potential and the third negative signal potential.
  • the television receiver includes the liquid crystal display device and a tuner unit that receives a television broadcast.
  • the present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on known techniques and common general knowledge and those obtained by combining them are also embodiments of the present invention. included.
  • the operational effects described in the embodiment are merely examples.
  • the liquid crystal display device and its drive circuit of the present invention are suitable for liquid crystal televisions and liquid crystal monitors, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 液晶層の厚みがR画素>G画素>B画素である液晶表示装置において、R,G,B画素それぞれに同一の階調(1023階調)を連続して表示するときには、R画素に正極性信号電位(SHR1023)と負極性信号電位(SLR1023)とを交互に供給し、G画素に正極性信号電位(SHG1023)と負極性信号電位(SLG1023)とを交互に供給し、B画素に正極性信号電位(SHB1023)と負極性信号電位(SLB1023)とを交互に供給する。 SHR1023およびSLR1023の中間値である第1中間値(SMR1023)は、SHG1023およびSLG1023の中間値である第2中間値(SMG1023)よりも高く設定され、第2中間値(SMG1023)は、SHB1023およびSLB1023の中間値である第3中間値(SMB1023)よりも高く設定される。 本発明によると、R,G,B画素の引き込み電圧の相異を補償することができ、画素の焼き付きの問題が改善される。

Description

[規則37.2に基づきISAが決定した発明の名称] 液晶表示装置
 本発明は、マルチギャップ構造の液晶表示装置に関する。
 液晶表示装置には、例えばR(赤)・G(緑)・B(青)それぞれに対応する画素が設けられるが、液晶層の厚みが均一なモノギャップ構造の液晶表示装置では、液晶層のリタデーションの波長依存性に起因して、特に黒表示時の斜め視野角で色付きが生じる(例えば、青味がかった黒)になる。この色付きが低減するように、R・G・B画素ごとに階調-輝度特性(ガンマ曲線)を設定することもなされているが、こうすると正面視での黒の輝度が変化してコントラストが低下するという問題がある。そこで、このような色付きを低減させながらコントラストも維持するための手法として、R・G・B画素ごとに液晶層の厚みを変えてリタデーションの波長依存性を補償するマルチギャップ構造が提案されている(例えば、特許文献1参照)。
 ところで、液晶表示装置には、図16に示すように、トランジスタのドレイン電極(およびこれに電気的に接続された画素電極)と走査信号線との間の寄生容量Cgd、並びにトランジスタのドレイン電極(およびこれに電気的に接続された画素電極)とトランジスタのソース電極(およびこれに電気的に接続されたデータ信号線)との間の寄生容量Csdが生じ、これら寄生容量に起因して、トランジスタがOFF(走査信号が非アクティブ化)したときに、画素(画素電極)の電位が低下する現象が知られている。この電位低下量(絶対値)を引き込み電圧(ΔQ)といい、画素に供給する信号電位をSとすると、S-ΔQが画素にかかる実効電位となる(以下では、共通電極の電位Vcomを基準とした実効電位の絶対値を実効電圧と称する)。なお、走査信号線に供給される走査信号のアクティブ電位をVH、非アクティブ電位をVL、液晶容量をClc、保持(補助)容量Ccsとすれば、引き込み電圧ΔQ=Cgd×(VH-VL)/(Ccs+Csd+Cgd+Clc)となる。
 したがって図21に示すように、R画素に階調Xを連続表示するときには、信号電位SHRX(正極性駆動時)と信号電位SLRX(負極性駆動時)とを交互に該R画素に供給し、信号電位SHRX=正極性駆動時の実効電位EHRX+ΔQx、信号電位SLRX=負極性駆動時の実効電位ELRX+ΔQxと設定する。なお、正極性駆動時の実効電位EHRXと負極性駆動時の実効電位ELRXとの中間値=(EHRX+ELRX)/2={(SLRX+SHRX)/2}-ΔQx=Vcom(共通電極の電位)であるから、信号電位SHRXと信号電位SLRXとの中間値SMRX=(SHRX+SLRX)/2=Vcom+ΔQxとしている。
 また、図21に示すように、G画素に階調Xを連続表示するときには、信号電位SHGX(正極性駆動時)と信号電位SLGX(負極性駆動時)とを交互に該G画素に供給し、信号電位SHGX=正極性駆動時の実効電位EHGX+ΔQx、信号電位SLGX=負極性駆動時の実効電位ELGX+ΔQxと設定する。なお、正極性駆動時の実効電位EHGXと負極性駆動時の実効電位ELGXとの中間値=(EHGX+ELGX)/2={(SLGX+SHGX)/2}-ΔQx=Vcom(共通電極の電位)であるから、信号電位SHGXと信号電位SLGXとの中間値SMGX=(SHGX+SLGX)/2=Vcom+ΔQxとしている。
 また、図21に示すように、B画素に階調Xを連続表示するときには、信号電位SHBX(正極性駆動時)と信号電位SLBX(負極性駆動時)とを交互に該B画素に供給し、信号電位SHBX=正極性駆動時の実効電位EHBX+ΔQx、信号電位SLBX=負極性駆動時の実効電位ELBX+ΔQxと設定する。なお、正極性駆動時の実効電位EHBXと負極性駆動時の実効電位ELBXとの中間値=(EHBX+ELBX)/2={(SLBX+SHBX)/2}-ΔQx=Vcom(共通電極の電位)であるから、信号電位SHBXと信号電位SLBXとの中間値SMBX=(SHBX+SLBX)/2=Vcom+ΔQxとしている。
 このように、R画素・G画素・B画素それぞれに同一階調Xを表示するときには、R画素に供給する信号電位の中間値SMRX、G画素に供給する信号電位の中間値SMGX、およびB画素に供給する信号電位の中間値SMBXが揃うことになる。
日本国公開特許公報「特開2007-233336号公報(2007年9月13日公開)」
 本願発明者らは、上記マルチギャップ構造の液晶表示装置において、図21と同様にR画素・G画素・B画素に供給する信号電位(SHRX・SLRX・SHGX・SLGX・SHBX・SLBX)を設定すると、画素の焼き付き等の不具合が生じることを見出した。
 本発明は、マルチギャップ構造の液晶表示装置の表示品位を高めることを目的とする。
 本発明の液晶表示装置は、複数の走査信号線と、複数のデータ信号線と、第1液晶層を含む第1画素と、第1液晶層よりも薄い第2液晶層を含む第2画素と、第2液晶層よりも薄い第3液晶層を含む第3画素とを備え、1本の走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する液晶表示装置であって、第1~第3画素それぞれに同一の階調が所定期間連続して表示されるときには、第1画素に第1正極性信号電位と第1負極性信号電位とが交互に供給され、第2画素に第2正極性信号電位と第2負極性信号電位とが交互に供給され、第3画素に第3正極性信号電位と第3負極性電位とが交互に供給され、上記第1正極性信号電位および第1負極性信号電位の中間値(振幅中心)である第1中間値は、上記第2正極性信号電位および第2負極性信号電位の中間値(振幅中心)である第2中間値よりも高く、該第2中間値は、上記第3正極性信号電位および第3負極性信号電位の中間値(振幅中心)である第3中間値よりも高く設定されていることを特徴とする。
 第1液晶層の厚み>第2液晶層の厚み>第3液晶層の厚みとなるマルチギャップ構造の液晶表示装置では、第3画素の液晶容量>第2画素の液晶容量>第1画素の液晶容量となるため、第1~第3画素に同一階調を表示するときでも、第1画素での引き込み電圧>第2画素での引き込み電圧>第3画素での引き込み電圧となる。そこで上記のように、第1中間値>第2中間値>第3中間値とすれば、画素間の引き込み電圧の相異を補償することができ、画素の焼き付き等の問題を改善することができる。
 本発明によれば、マルチギャップ構造の液晶表示装置における画素間の引き込み電圧の相異を容易に補償することができ、画素の焼き付き等の問題を改善することができる。
本液晶表示装置での信号電位の設定例(1023階調=白階調表示時)を示す模式図である。 本液晶表示装置の構成を示すブロック図である。 本液晶表示装置の液晶パネルの断面(マルチギャップ構造)を示す断面図である。 本液晶表示装置での信号電位の設定例(512階調表示時)を示す模式図である。 本液晶表示装置での信号電位の設定例(0階調=黒階調表示時)を示す模式図である。 本液晶表示装置の信号電位中間値の階調依存性(一例)を示す模式図である。 本液晶表示装置での信号電位の他の設定例(1023階調=白階調表示時)を示す模式図である。 本液晶表示装置の表示制御回路に格納されるLUTの内容を示す表である。 本液晶表示装置に設けられるソースドライバの構成(一部)を示す模式図である。 本液晶表示装置に設けられるDAC回路の入出力を示す表である。 本液晶表示装置に設けられるソースドライバの他の構成(一部)を示す模式図である。 本液晶表示装置に設けられるソースドライバの入出力を示す表である。 本テレビジョン受像機の構成を示すブロック図である。 本液晶表示装置の信号電位中間値の階調依存性(他の例)を示す模式図である。 マルチギャップ構造の液晶表示装置でR・G・B画素の信号電位中間値を揃えたときの不具合(対向電位ずれ)を説明する模式図である。 液晶表示装置の液晶容量、保持容量、および寄生容量を説明する回路図である。 本実施の形態にかかる他の液晶パネルの断面図である。 図17の液晶パネルを用いた場合の信号電位の設定例(T階調表示時)を示す模式図である。 本実施の形態にかかるさらに他の液晶パネルの断面図である。 図19の液晶パネルを用いた場合の信号電位の設定例(T階調表示時)を示す模式図である。 ノンマルチギャップ構造でのR・G・B画素の信号電位中間値の設定方法を示す模式図である。
 本実施の形態を、図1~20を用いて説明すれば、以下のとおりである。図2は、本液晶表示装置の構成を示すブロック図である。同図に示されるように、本液晶表示装置は、表示部(ネガ型の液晶層を有するVAモードの液晶パネル)60と、表示制御回路70と、ゲートドライバ80と、ソースドライバ90とを備えている。表示部(液晶パネル)60には、データ信号線(15R・15G・15B)、走査信号線16、赤の画素(以下R画素)PR、緑の画素(以下G画素)PR、青の画素(以下B画素)PB、および保持容量配線(Cs配線 図示せず)が設けられる。なお、データ信号線15RはR画素に接続され、データ信号線15GはG画素に接続され、データ信号線15BはB画素に接続されている。
 表示制御回路70は、外部の信号源(例えばチューナ)から、デジタルビデオ信号Dv、水平同期信号HSY、垂直同期信号VSY、および表示動作を制御するための制御信号Dcとを受け取る。表示制御回路70は、受け取った各信号(Dv・HSY・VSY・Dc)に基づき、ソーススタートパルス信号SSP、ソースクロック信号SCK、ソース極性信号POL、画像データ信号DAT(デジタル信号)、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、およびゲートドライバ出力制御信号GOEを生成し、ソーススタートパルス信号SSP、ソースクロック信号SCK、ソース極性信号POL、および画像データ信号DATをソースドライバ90に出力し、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、およびゲートドライバ出力制御信号GOEをゲートドライバ80に出力する。
 また、ゲートドライバ80は、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、およびゲートドライバ出力制御信号GOEに基づいて走査信号線16を駆動し、ソースドライバ90は、ソーススタートパルス信号SSP、ソースクロック信号SCK、および画像データ信号DATに基づいてデータ信号線(15R・15G・15B)を駆動する。具体的には、ソーススタートパルス信号SSP、ソースクロック信号SCKおよびソース極性信号POLにより規定されるタイミングで、画像データ信号DATに対応するアナログの信号電位をデータ信号線(15R・15G・15B)に供給する。
 図3に、図2の液晶パネル60の一部断面を示す。同図に示すように、液晶パネル60は、アクティブマトリクス基板3と、カラーフィルタ基板30と、これら基板間に充填された液晶層40とを備える。アクティブマトリクス基板3には、データ信号線、走査信号線、各種絶縁膜、トランジスタ、および保持容量配線(これらは図示せず)と、画素電極17R・17G・17Bと、これら画素電極を覆う配向膜9とが形成されている。また、カラーフィルタ基板には、画素電極17R・17G・17Bに対応するカラーフィルタ13R・13G・13Bと、これらカラーフィルタを覆う対向電極28と、対向電極28を覆う配向膜19とが形成されている。そして、画素電極17Rと対向電極28とこれらに挟まれた液晶層LRとを含むようにR画素PRが構成され、画素電極17Gと対向電極28とこれらに挟まれた液晶層LGとを含むようにG画素PGが構成され、画素電極17Bと対向電極28とこれらに挟まれた液晶層LBとを含むようにB画素PBが構成される。
 ここで、本液晶パネルは、液晶層LRの厚み>液晶層LGの厚み>液晶層LBの厚みとなるマルチギャップ構造を有する。
 マルチギャップ構造の利点は、R・G・B画素ごとに液晶層の厚みを変えることでリタデーションの波長依存性を概ね補償することができる点である。すなわち、R画素のVT曲線(実効電圧-透過率曲線)、G画素のVT曲線、およびB画素のVT曲線間のずれを、モノギャップ構造(R・G・B画素の液晶層の厚みが均一)の液晶表示装置よりも小さくすることができる。一般的にモノギャップ構造のVAモードの液晶表示装置では中間調表示では透過率がB画素>G画素>R画素となるため、青の色付きが生じるが、マルチギャップ構造ではこのような色付きが抑えられ、表示品位を向上させることができる。
 マルチギャップの液晶表示装置にはこのようなメリットがあるが、R画素の液晶層の厚み>G画素の液晶層の厚み>B画素の液晶層の厚み、すなわち、B画素の液晶容量(Clc)>G画素の液晶容量(Clc)>R画素の液晶容量(Clc)となることから、R画素・G画素・B画素それぞれに同一階調を表示する場合でも、R画素の引き込み込み電圧>G画素の引き込み込み電圧>B画素の引き込み込み電圧となる。これは、引き込み電圧ΔQ=Cgd×(VH-VL)/(Ccs+Csd+Cgd+Clc)で表されるからである。このため、R画素・G画素・B画素それぞれに同一階調Xを表示するときに、従来のようにR画素に供給する信号電位の中間値SMRX、G画素に供給する信号電位の中間値SMGX、およびB画素に供給する信号電位の中間値SMBXを揃えると、図15に示すようにR画素とB画素とで対向電位ずれが発生し、画素の焼き付き等が発生する。
 そこで、本実施の形態では、マルチギャップの液晶表示装置でR画素・G画素・B画素それぞれに同一階調Xを表示するときに、R画素に供給する信号電位の中間値SMRX>G画素に供給する信号電位の中間値SMGX>B画素に供給する信号電位の中間値SMBXと設定することで、上記のR画素・G画素・B画素での引き込み電圧の相異を補償している。
 例えば、最高階調(白階調)である1023階調を表示させるときには、R画素の引き込み電圧ΔQR1023>G画素の引き込み電圧ΔQG1023>B画素の引き込み電圧ΔQB1023となることを考慮して、図1のように、R画素に供給する正極性信号電位SHR1023、R画素に供給する負極性信号電位SLR1023、SHR1023とSLR1023の中間値SMR1023、G画素に供給する正極性信号電位SHG1023、G画素に供給する負極性信号電位SLG1023、SHG1023とSLG1023の中間値SMG1023、B画素に供給する正極性信号電位SHB1023、B画素に供給する負極性信号電位SLB1023、およびSHB1023とSLB1023の中間値SMB1023を設定している(なお、図1のマルチギャップ構造を前提にしたR画素1023階調表示に最適な実効電位をEHR1023およびELR1023、上記マルチギャップ構造を前提にしたG画素1023階調表示に最適な実効電位をEHG1023およびELG1023、上記マルチギャップ構造を前提にしたB画素1023階調表示に最適な実効電位をEHB1023およびELB1023とする)。
 具体的には、R画素について、正極性信号電位SHR1023=正極性実効電位EHR1023+引き込み電圧ΔQR1023、負極性信号電位SLR1023=負極性実効電位ELR1023+引き込み電圧ΔQR1023、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHR1023+ELR1023)/2、正・負極性信号電位の中間値SMR1023=(SHR1023+SLR1023)/2=Vcom+ΔQR1023としている。また、G画素について、正極性信号電位SHG1023=正極性実効電位EHG1023+引き込み電圧ΔQG1023、負極性信号電位SLG1023=負極性実効電位ELG1023+引き込み電圧ΔQG1023、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHG1023+ELG1023)/2、正・負極性信号電位の中間値SMG1023=(SHG1023+SLG1023)/2=Vcom+ΔQG1023としている。また、B画素について、正極性信号電位SHB1023=正極性実効電位EHB1023+引き込み電圧ΔQB1023、負極性信号電位SLB1023=負極性実効電位ELB1023+引き込み電圧ΔQB1023、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHB1023+ELB1023)/2、正・負極性信号電位の中間値SMB1023=(SHB1023+SLB1023)/2=Vcom+ΔQB1023としている。
 したがって、図1に示すように、SMR1023=Vcom+ΔQR1023>SMG1023=Vcom+ΔQG1023>SMB1023=Vcom+ΔQB1023となる。
 また、中間階調の1つである512階調を表示させるときには、R画素の引き込み電圧ΔQR512>G画素の引き込み電圧ΔQG512>B画素の引き込み電圧ΔQB512となることを考慮して、図4のように、R画素に供給する正極性信号電位SHR512、R画素に供給する負極性信号電位SLR512、SHR512とSLR512の中間値SMR512、G画素に供給する正極性信号電位SHG512、G画素に供給する負極性信号電位SLG512、SHG512とSLG512の中間値SMG512、B画素に供給する正極性信号電位SHB512、B画素に供給する負極性信号電位SLB512、およびSHB512とSLB512の中間値SMB512を設定している(なお、図4のマルチギャップ構造を前提にしたR画素512階調表示に最適な実効電位をEHR512およびELR512、上記マルチギャップ構造を前提にしたG画素512階調表示に最適な実効電位をEHG512およびELG512、上記マルチギャップ構造を前提にしたB画素512階調表示に最適な実効電位をEHB512およびELB512とする)。
 具体的には、R画素について、正極性信号電位SHR512=正極性実効電位EHR512+引き込み電圧ΔQR512、負極性信号電位SLR512=負極性実効電位ELR512+引き込み電圧ΔQR512、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHR512+ELR512)/2、正・負極性信号電位の中間値SMR512=(SHR512+SLR512)/2=Vcom+ΔQR512としている。また、G画素について、正極性信号電位SHG512=正極性実効電位EHG512+引き込み電圧ΔQG512、負極性信号電位SLG512=負極性実効電位ELG512+引き込み電圧ΔQG512、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHG512+ELG512)/2、正・負極性信号電位の中間値SMG512=(SHG512+SLG512)/2=Vcom+ΔQG512としている。また、B画素について、正極性信号電位SHB512=正極性実効電位EHB512+引き込み電圧ΔQB512、負極性信号電位SLB512=負極性実効電位ELB512+引き込み電圧ΔQB512、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHB512+ELB512)/2、正・負極性信号電位の中間値SMB512=(SHB512+SLB512)/2=Vcom+ΔQB512としている。
 したがって、図4に示すように、SMR512=Vcom+ΔQR512>SMG512=Vcom+ΔQG512>SMB512=Vcom+ΔQB512となる。なお、ΔQR1023<ΔQR512、ΔQG1023<ΔQG512、ΔQB1023<ΔQB512となっている(すなわち、1023階調表示時よりも512階調表示時の方が引き込み電圧が大きくなっている)のは、ネガ型の液晶層を有するVAモード(ノーマリブラック)の液晶パネルでは、表示階調が下がる(液晶層にかかる実効電圧が小さくなる)にしたがって液晶容量Clcが小さくなるためである。
 最低階調(黒階調)である0階調を表示させるときには、R画素の引き込み電圧ΔQR0>G画素の引き込み電圧ΔQG0>B画素の引き込み電圧ΔQB0となることを考慮して、図5のように、R画素に供給する正極性信号電位SHR0、R画素に供給する負極性信号電位SLR0、SHR0とSLR0の中間値SMR0、G画素に供給する正極性信号電位SHG0、G画素に供給する負極性信号電位SLG0、SHG0とSLG0の中間値SMG0、B画素に供給する正極性信号電位SHB0、B画素に供給する負極性信号電位SLB0、およびSHB0とSLB0の中間値SMB0を設定している(なお、図5のマルチギャップ構造を前提にしたR画素0階調表示に最適な実効電位をEHR0およびELR0、上記マルチギャップ構造を前提にしたG画素0階調表示に最適な実効電位をEHG0およびELG0、上記マルチギャップ構造を前提にしたB画素0階調表示に最適な実効電位をEHB0およびELB0とする)。
 具体的には、R画素について、正極性信号電位SHR0=正極性実効電位EHR0+引き込み電圧ΔQR0、負極性信号電位SLR0=負極性実効電位ELR0+引き込み電圧ΔQR0、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHR0+ELR0)/2、正・負極性信号電位の中間値SMR0=(SHR0+SLR0)/2=Vcom+ΔQR0としている。また、G画素について、正極性信号電位SHG0=正極性実効電位EHG0+引き込み電圧ΔQG0、負極性信号電位SLG0=負極性実効電位ELG0+引き込み電圧ΔQG0、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHG0+ELG0)/2、正・負極性信号電位の中間値SMG0=(SHG0+SLG0)/2=Vcom+ΔQG0としている。また、B画素について、正極性信号電位SHB0=正極性実効電位EHB0+引き込み電圧ΔQB0、負極性信号電位SLB0=負極性実効電位ELB0+引き込み電圧ΔQB0、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHB0+ELB0)/2、正・負極性信号電位の中間値SMB0=(SHB0+SLB0)/2=Vcom+ΔQB0としている。
 したがって、図5に示すように、SMR0=Vcom+ΔQR0>SMG0=Vcom+ΔQG0>SMB0=Vcom+ΔQB0となる。なお、ΔQR512<ΔQR0、ΔQG512<ΔQG0、ΔQB512<ΔQB0となっているのは、上記のとおりネガ型の液晶層を有するVAモード(ノーマリブラック)の液晶パネルでは、表示階調が下がる(液晶層にかかる実効電圧が小さくなる)にしたがって液晶容量Clcが小さくなるためである。
 図6は、R画素に、0、512、および1023階調表示させるときの、引き込み電圧ΔQG0、正極性信号電位SHG0、G画素に供給する負極性信号電位SLG0、SHG0とSLG0の中間値SMG0、引き込み電圧ΔQG512、正極性信号電位SHG512、G画素に供給する負極性信号電位SLG512、SHG512とSLG512の中間値SMG512、引き込み電圧ΔQG1023、正極性信号電位SHG1023、G画素に供給する負極性信号電位SLG1023、SHG1023とSLG1023の中間値SMG1023の設定例である。同図に示されるように、表示階調が上がる(液晶層にかかる実効電圧が大きくなる)にしたがって、引き込み電圧は小さくなり、また、正・負極性信号電位の中間値が低くなる。これは、ネガ型の液晶層を有するVAモード(ノーマリブラック)の液晶パネルでは、表示階調が上がる(液晶層にかかる実効電圧が大きくなる)にしたがって液晶容量Clcが大きくなるからである。
 図1では、R・G・B画素にかける正極性実効電位(EHR1023・EHG1023・EHB1023)を、EHR1023>EHG1023>EHB1023とし、R・G・B画素にかける負極性実効電位(ELR1023・ELG1023・ELB1023)も、EHB1023>EHG1023>EHR1023としている。これは、R・G・B画素のリタデーションの差異を液晶層の厚みの設定だけで補償する(R・G・B画素に対応する3つのVT曲線を一致させる)ことが実際のプロセス上容易でないため、マルチギャップ構造によってR・G・B画素に対応する3つのVT(実効電圧-透過率)曲線を概ね一致させながら、詰めの調整として、R・G・B画素ごとにガンマ曲線(階調-輝度特性)の設定(いわゆるRGB独立ガンマ設定)を行っているからである。
 もっとも、RGB独立ガンマ設定は必須ではなく、実際のプロセスに応じて適宜行えばよい。すなわち、R・G・B画素のリタデーションの差異を液晶層の厚みの設定だけで補償する(R・G・B画素に対応する3つのVT曲線を一致させる)ことがプロセス上可能であれば(コスト面も含めて)、RGB独立ガンマ設定を行わなくてよい。この場合には、例えば黒階調である0階調を表示させるときには、図7に示すように、Rにかける実効電位(EHR0・ELR0)と、Gにかける実効電位(EHG0・ELG0)と、Bにかける実効電位(EHB0・ELB0)とが揃うことになる。
 図8は、表示制御回路70に含まれるLUT(ルックアップテーブル)の設定例を示す表である。表示制御回路70は、デジタルビデオ信号Dvと上記LUTとを用いて、ソース極性信号POL(「H」または「L」)および画像データ信号DAT(10ビット)の組み合わせを生成する。以下ではLUTの入力がデジタルビデオ信号Dvの示す階調である場合を説明するが、LUTの入力は、デジタルビデオ信号Dvに所定の処理を行って得られるデジタル信号が示す階調であってもよい。
 例えば、R(赤)の0階調を示すDvに基づいて、POL=「H」および15階調を示すRのDATの組み合わせと、POL=「L」および0階調を示すRのDATの組み合わせとを生成する。また、G(緑)の0階調を示すDvに基づいて、POL=「H」および13階調を示すGのDATの組み合わせと、POL=「L」および6階調を示すGのDATの組み合わせとを生成する。また、B(青)の0階調を示すDvに基づいて、POL=「H」および0階調を示すBのDATの組み合わせと、POL=「L」および9階調を示すBのDATの組み合わせとを生成する。また、R(赤)の512階調を示すDvに基づいて、POL=「H」および612階調を示すRのDATの組み合わせと、POL=「L」および402階調を示すRのDATの組み合わせとを生成する。また、G(緑)の512階調を示すDvに基づいて、POL=「H」および512階調を示すGのDATの組み合わせと、POL=「L」および512階調を示すGのDATの組み合わせとを生成する。また、B(青)の512階調を示すDvに基づいて、POL=「H」および364階調を示すBのDATの組み合わせと、POL=「L」および625階調を示すBのDATの組み合わせとを生成する。また、R(赤)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すRのDATの組み合わせと、POL=「L」および1015階調を示すRのDATの組み合わせとを生成する。また、G(緑)の1023階調を示すDvに基づいて、POL=「H」および1015階調を示すGのDATの組み合わせと、POL=「L」および1016階調を示すGのDATの組み合わせとを生成する。また、B(青)の1023階調を示すDvに基づいて、POL=「H」および1012階調を示すBのDATの組み合わせと、POL=「L」および1023階調を示すBのDATの組み合わせとを生成する。
 ソースドライバ90では各階調に該当するアナログ電圧を出力するため、上記LUTで補正後の階調データからアナログ電圧に変換される。
 例えば、POL=「H」、15階調の設定がソースドライバへ入力されると、ソースドライバからアナログの正極性信号電位SHR0(図5参照)を出力し、 POL=「L」、0階調の設定がソースドライバへ入力されると、ソースドライバからアナログの正極性信号電位SHL0(図5参照)を出力する。
図9は、ソースドライバ90の一部の構成例を示す模式図である。図9に示すように、ソースドライバ90には、データ信号線15R(赤の信号線)に接続するDAC100およびDAC101と、データ信号線15G(緑の信号線)に接続するDAC100およびDAC101と、データ信号線15B(青の信号線)に接続するDAC100およびDAC101とが設けられる。
 そして、データ信号線15Rに接続されるDAC100には、POL=「H」のRのDATが入力され、データ信号線15Rに接続されるDAC101には、POL=「L」のRのDATが入力され、データ信号線15Gに接続されるDAC100には、POL=「H」のGのDATが入力され、データ信号線15Gに接続されるDAC101には、POL=「L」のGのDATが入力され、データ信号線15Bに接続されるDAC100には、POL=「H」のBのDATが入力され、データ信号線15Bに接続されるDAC101には、POL=「L」のBのDATが入力される。
 図10は図9のDAC100およびDAC101の入出力(一部)を示す表である。同図に示すように、DAC100は、デジタルの画像データ信号DAT15が入力されると、アナログの正極性信号電位SHR0(図5参照)を出力し、画像データ信号DAT612が入力されると、正極性信号電位SHR512(図4参照)を出力し、画像データ信号DAT1023が入力されると、正極性信号電位SHR1023(図1参照)を出力し、画像データ信号DAT13が入力されると、正極性信号電位SHG0(図5参照)を出力し、画像データ信号DAT512が入力されると、正極性信号電位SHG512(図4参照)を出力し、画像データ信号DAT1015が入力されると、正極性信号電位SHG1023(図1参照)を出力し、画像データ信号DAT0が入力されると、正極性信号電位SHB0(図5参照)を出力し、画像データ信号DAT364が入力されると、正極性信号電位SHB512(図4参照)を出力し、画像データ信号DAT1012が入力されると、正極性信号電位SHB1023(図1参照)を出力する。
 一方、DAC101は、デジタルの画像データ信号DAT0が入力されると、アナログの負極性信号電位SLR0(図5参照)を出力し、画像データ信号DAT402が入力されると、負極性信号電位SLR512(図4参照)を出力し、画像データ信号DAT1015が入力されると、負極性信号電位SLR1023(図1参照)を出力し、画像データ信号DAT6が入力されると、負極性信号電位SLG0(図5参照)を出力し、画像データ信号DAT512が入力されると、負極性信号電位SLG512(図4参照)を出力し、画像データ信号DAT1016が入力されると、負極性信号電位SLG1023(図1参照)を出力し、画像データ信号DAT9が入力されると、負極性信号電位SLB0(図5参照)を出力し、画像データ信号DAT625が入力されると、負極性信号電位SLB512(図4参照)を出力し、画像データ信号DAT1023が入力されると、負極性信号電位SLB1023(図1参照)を出力する。
 以上から、例えばR画素に白階調(1023階調)を2フレーム連続して表示するときには以下のようになる。まず、表示制御回路70が、R(赤)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すRのDATの組み合わせを生成し(図8参照)、この1023階調を示すRのDATが、データ信号線15Rに接続するDAC100に入力され(図9参照)、該データ信号線15Rに正極性信号電位SHR1023が出力される(図1・10参照)。ついで、表示制御回路70が、R(赤)の1023階調を示すDvに基づいて、POL=「L」および1015階調を示すRのDATの組み合わせを生成し(図8参照)、この1015階調を示すRのDATが、データ信号線15Rに接続するDAC101に入力され(図9参照)、該データ信号線15Rに負極性信号電位SLR1023(図1・10参照)が出力される。
 また、G画素に白階調(1023階調)を2フレーム連続して表示するときには以下のようになる。まず、表示制御回路70が、G(緑)の1023階調を示すDvに基づいて、POL=「H」および1015階調を示すGのDATの組み合わせを生成し(図8参照)、この1015階調を示すGのDATが、データ信号線15Gに接続するDAC100に入力され(図9参照)、該データ信号線15Gに正極性信号電位SHG1023が出力される(図1・10参照)。ついで、表示制御回路70が、G(緑)の1023階調を示すDvに基づいて、POL=「L」および1016階調を示すGのDATの組み合わせを生成し(図8参照)、この1016階調を示すGのDATが、データ信号線15Gに接続するDAC101に入力され(図9参照)、該データ信号線15Gに負極性信号電位SLG1023(図1・10参照)が出力される。
 また、B画素に白階調(1023階調)を2フレーム連続して表示するときには以下のようになる。まず、表示制御回路70が、B(青)の1023階調を示すDvに基づいて、POL=「H」および1012階調を示すBのDATの組み合わせを生成し(図8参照)、この1012階調を示すBのDATが、データ信号線15Bに接続するDAC100に入力され(図9参照)、該データ信号線15Bに正極性信号電位SHB1023が出力される(図1・10参照)。ついで、表示制御回路70が、B(青)の1023階調を示すDvに基づいて、POL=「L」および1023階調を示すBのDATの組み合わせを生成し(図8参照)、この1023階調を示すBのDATが、データ信号線15Bに接続するDAC101に入力され(図9参照)、該データ信号線15Bに負極性信号電位SLB1023(図1・10参照)が出力される。
 このように、表示制御回路70に図8のようなLUTを持たせて階調変換させることで、図9のようにソースドライバ90に設けるDACを2種類(101・101)とすることができる。一般的なソースドライバは図9のような構成であることから、表示制御回路70に図8のようなLUTを新たに持たせたり、LUTをもつ表示制御回路であれば該LUTの内容を図8のように変更したり、LUTをもつ表示制御回路であればさらに補正用LUT(該補正用LUTの出力が図8のようになるもの)を追加したりするだけで、図1・図4~7に示すようなマルチギャップ構造の引き込み電圧を考慮した信号電位設定を行うことができる。
 なお、本実施の形態は、上記のように表示制御回路70で階調変換を行うものに限定されない。ソースドライバ90のDAC構成を変更してもよい。例えば図11に示すように、ソースドライバ90に設けるDACを6種類(R・G・B画素それぞれに2種類ずつ)とする。すなわち、データ信号線15Rに対応してDAC10R・11Rを設け、データ信号線15Gに対応してDAC12G・13Gを設け、データ信号線15Bに対応してDAC14B・16Bを設ける。
 表示制御回路70は、入力されるデジタルビデオ信号Dvに基づいてソース極性信号POL(「H」または「L」)および画像データ信号DAT(10ビット)の組み合わせを生成する。
 例えば、R(赤)の0階調を示すDvに基づいて、POL=「H」および0階調を示すRのDATの組み合わせと、POL=「L」および0階調を示すRのDATの組み合わせとを生成する。また、G(緑)の0階調を示すDvに基づいて、POL=「H」および10階調を示すGのDATの組み合わせと、POL=「L」および0階調を示すGのDATの組み合わせとを生成する。また、B(青)の0階調を示すDvに基づいて、POL=「H」および0階調を示すBのDATの組み合わせと、POL=「L」および0階調を示すBのDATの組み合わせとを生成する。また、R(赤)の512階調を示すDvに基づいて、POL=「H」および512階調を示すRのDATの組み合わせと、POL=「L」および512階調を示すRのDATの組み合わせとを生成する。また、G(緑)の512階調を示すDvに基づいて、POL=「H」および512階調を示すGのDATの組み合わせと、POL=「L」および512階調を示すGのDATの組み合わせとを生成する。また、B(青)の512階調を示すDvに基づいて、POL=「H」および512階調を示すBのDATの組み合わせと、POL=「L」および512階調を示すBのDATの組み合わせとを生成する。また、R(赤)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すRのDATの組み合わせと、POL=「L」および1023階調を示すRのDATの組み合わせとを生成する。また、G(緑)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すGのDATの組み合わせと、POL=「L」および1023階調を示すGのDATの組み合わせとを生成する。また、B(青)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すBのDATの組み合わせと、POL=「L」および1023階調を示すBのDATの組み合わせとを生成する。
 そして、データ信号線15Rに接続されるDAC10Rには、POL=「H」のRのDATが入力され、データ信号線15Rに接続されるDAC11Rには、POL=「L」のRのDATが入力され、データ信号線15Gに接続されるDAC12Gには、POL=「H」のGのDATが入力され、データ信号線15Gに接続されるDAC13Gには、POL=「L」のGのDATが入力され、データ信号線15Bに接続されるDAC14Bには、POL=「H」のBのDATが入力され、データ信号線15Bに接続されるDAC16Bには、POL=「L」のBのDATが入力される。
 図12は図11のDAC10R・11R・12G・13G・14B・16Bの入出力(一部)を示す表である。図12に示すように、DAC10Rは、デジタルの画像データ信号DAT0が入力されると、アナログの正極性信号電位SHR0(図5参照)を出力し、画像データ信号DAT512が入力されると、正極性信号電位SHR512(図4参照)を出力し、画像データ信号DAT1023が入力されると、正極性信号電位SHR1023(図1参照)を出力する。また、DAC11Rは、デジタルの画像データ信号DAT0が入力されると、正極性信号電位SLR0(図5参照)を出力し、画像データ信号DAT512が入力されると、正極性信号電位SLR512(図4参照)を出力し、画像データ信号DAT1023が入力されると、正極性信号電位SLR1023(図1参照)を出力する。
 また、DAC12Gは、デジタルの画像データ信号DAT0が入力されると、正極性信号電位SHG0(図5参照)を出力し、画像データ信号DAT512が入力されると、正極性信号電位SHG512(図4参照)を出力し、画像データ信号DAT1023が入力されると、正極性信号電位SHG1023(図1参照)を出力する。また、DAC13Gは、デジタルの画像データ信号DAT0が入力されると、正極性信号電位SLG0(図5参照)を出力し、画像データ信号DAT512が入力されると、正極性信号電位SLG512(図4参照)を出力し、画像データ信号DAT1023が入力されると、正極性信号電位SLG1023(図1参照)を出力する。
 また、DAC14Bは、デジタルの画像データ信号DAT0が入力されると、正極性信号電位SHB0(図5参照)を出力し、画像データ信号DAT512が入力されると、正極性信号電位SHB512(図4参照)を出力し、画像データ信号DAT1023が入力されると、正極性信号電位SHB1023(図1参照)を出力する。また、DAC16Gは、デジタルの画像データ信号DAT0が入力されると、正極性信号電位SLB0(図5参照)を出力し、画像データ信号DAT512が入力されると、正極性信号電位SLB512(図4参照)を出力し、画像データ信号DAT1023が入力されると、正極性信号電位SLB1023(図1参照)を出力する。
 以上から、例えばR画素に白階調(1023階調)を2フレーム連続して表示するときには以下のようになる。まず、表示制御回路70が、R(赤)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すRのDATの組み合わせを生成し、この1023階調を示すRのDATが、データ信号線15Rに接続するDAC10Rに入力され(図11参照)、該データ信号線15Rに正極性信号電位SHR1023が出力される(図1・12参照)。ついで、表示制御回路70が、R(赤)の1023階調を示すDvに基づいて、POL=「L」および1023階調を示すRのDATの組み合わせを生成し(図8参照)、この1023階調を示すRのDATが、データ信号線15Rに接続するDAC11Rに入力され(図11参照)、該データ信号線15Rに負極性信号電位SLR1023(図1・12参照)が出力される。
 また、G画素に白階調(1023階調)を2フレーム連続して表示するときには以下のようになる。まず、表示制御回路70が、G(緑)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すGのDATの組み合わせを生成し、この1023階調を示すGのDATが、データ信号線15Gに接続するDAC12Gに入力され(図11参照)、該データ信号線15Gに正極性信号電位SHG1023が出力される(図1・12参照)。ついで、表示制御回路70が、G(緑)の1023階調を示すDvに基づいて、POL=「L」および1023階調を示すGのDATの組み合わせを生成し、この1023階調を示すGのDATが、データ信号線15Gに接続するDAC13Gに入力され(図11参照)、該データ信号線15Gに負極性信号電位SLG1023(図1・12参照)が出力される。
 また、B画素に白階調(1023階調)を2フレーム連続して表示するときには以下のようになる。まず、表示制御回路70が、B(青)の1023階調を示すDvに基づいて、POL=「H」および1023階調を示すBのDATの組み合わせを生成し、この1023階調を示すBのDATが、データ信号線15Bに接続するDAC14Bに入力され(図11参照)、該データ信号線15Bに正極性信号電位SHB1023が出力される(図1・12参照)。ついで、表示制御回路70が、B(青)の1023階調を示すDvに基づいて、POL=「L」および1023階調を示すBのDATの組み合わせを生成し、この1023階調を示すBのDATが、データ信号線15Bに接続するDAC16Bに入力され(図11参照)、該データ信号線15Bに負極性信号電位SLB1023(図1・12参照)が出力される。
 液晶表示装置800でテレビジョン放送に基づく画像を表示する場合には、図13に示すように、本液晶表示装置800にチューナ部600が接続され、これによって本テレビジョン受像機701が構成される。このチューナ部600は、アンテナ(不図示)で受信した受信波(高周波信号)の中から受信すべきチャンネルの信号を抜き出して中間周波信号に変換し、この中間周波数信号を検波することによってテレビジョン信号としての複合カラー映像信号Scvを取り出す。この複合カラー映像信号Scvは本液晶表示装置800に入力され、複合カラー映像信号Scvから得られるデジタルビデオ信号Dvが表示制御回路70(図2参照)に入力される。
 なお、図6では同一画素の引き込み電圧に階調依存性がある場合を説明したが、引き込み電圧に階調依存性がない場合や階調依存性を無視できる場合には、表示階調に関わらず、R画素に供給する正・負極性信号電位の中間値はVcom+ΔQR、G画素に供給する正・負極性信号電位の中間値はVcom+ΔQG、B画素に供給する正・負極性信号電位の中間値SMBXはVcom+ΔQBとする。なお、ΔQR>ΔQG>ΔQBであるため、R画素に供給する正・負極性信号電位の中間値>G画素に供給する正・負極性信号電位の中間値>B画素に供給する正・負極性信号電位の中間値となる。
 図14は、G画素に、0、512、および1023階調表示させるときの信号電位の設定例であり、SMG0=SMG512=SMG1023となっている。この場合、例えば、SHR0(0階調表示時にR画素に供給する正極性信号電位)-SHG0=0.199〔V〕、SHG0-SHB0(0階調表示時にB画素に供給する正極性信号電位)=0.242〔V〕となるようにSHR0およびSHB0を設定する。同様に、SHR512(512階調表示時にR画素に供給する正極性信号電位)-SHG512=0.199〔V〕、SHG-SHB512(512階調表示時にB画素に供給する正極性信号電位)=0.242〔V〕となるようにSHR512およびSHB512を設定する。同様に、SHR1023(1023階調表示時にR画素に供給する正極性信号電位)-SHG1023=0.199〔V〕、SHG1023-SHB1023(1023階調表示時にB画素に供給する正極性信号電位)=0.242〔V〕となるようにSHR1023およびSHB1023を設定する。
 また、SLR0(0階調表示時にR画素に供給する負極性信号電位)-SLG0=0.199〔V〕、SLG0-SLB0(0階調表示時にB画素に供給する負極性信号電位)=0.242〔V〕となるようにSLR0およびSLB0を設定する。同様に、SLR512(512階調表示時にR画素に供給する負極性信号電位)-SLG512=0.199〔V〕、SLGSLB512(512階調表示時にB画素に供給する負極性信号電位)=0.242〔V〕となるようにSLR512およびSLB512を設定する。同様に、SLR1023(1023階調表示時にR画素に供給する負極性信号電位)-SLG1023=0.199〔V〕、SLG1023-SLB1023(1023階調表示時にB画素に供給する負極性信号電位)=0.242〔V〕となるようにSLR1023およびSLB1023を設定する。
 さらにこの場合、SHR0およびSLR0の中間値SMR0とSHG0およびSLG0の中間値SMG0との差は0.242〔V〕となり、SMG0とSHB0およびSLB0の中間値SMB0との差は0.199〔V〕となる。また、SHR512およびSLR512の中間値SMR512とSHG512およびSLG512の中間値SMG512との差は0.242〔V〕となり、SMG512とSHB512およびSLB512の中間値SMB512との差は0.199〔V〕となる。また、SHR1023およびSLR1023の中間値SMR1023とSHG1023およびSLG1023の中間値SMG1023との差は0.242〔V〕となり、SMG1023とSHB1023およびSLB1023の中間値SMB1023との差は0.199〔V〕となる。
 なお、図14のように設定する場合においても、表示制御回路70内で処理(例えば、LUTを用いて階調変換)してもよいし、ソースドライバ90のDAC構成を変更したり、ソースドライバ90内に電圧補正回路を設けたりしてもよい。
 図3のように、G画素の液晶層の厚みLGをR画素の液晶層の厚みLRよりも小さくするとG画素の輝度低下が大きくなるような場合には、図17に示すように、R画素RPの液晶層の厚みLR=G画素GPの液晶層の厚みLG>B画素BPの液晶層の厚みLBとし(B画素の液晶層のみ薄くする)、R画素、G画素、およびB画素それぞれに同一階調が所定期間連続して表示されるときには、R画素に供給する正・負極性信号電位の中間値=G画素に供給する正・負極性信号電位の中間値>B画素に供給する正・負極性信号電位の中間値となるように、各画素に供給する信号電位を設定することもできる。
 具体的には図18に示すように、階調Tを表示させるときには、R画素の引き込み電圧ΔQRT=G画素の引き込み電圧ΔQGT>B画素の引き込み電圧ΔQBTとなることを考慮して、R画素に供給する正極性信号電位SHRT、R画素に供給する負極性信号電位SLRT、SHRTとSLRTの中間値SMRT、G画素に供給する正極性信号電位SHGT、G画素に供給する負極性信号電位SLGT、SHGTとSLGTの中間値SMGT、B画素に供給する正極性信号電位SHBT、B画素に供給する負極性信号電位SLBT、SHBTとSLBTの中間値SMBTを設定している。
 すなわち、R画素について、正極性信号電位SHRT=正極性実効電位EHRT+引き込み電圧ΔQRT、負極性信号電位SLRT=負極性実効電位ELRT+引き込み電圧ΔQRT、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHRT+ELRT)/2、正・負極性信号電位の中間値SMRT=(SHRT+SLRT)/2=Vcom+ΔQRTとしている。また、G画素について、正極性信号電位SHGT=正極性実効電位EHGT+引き込み電圧ΔQGT、負極性信号電位SLGT=負極性実効電位ELGT+引き込み電圧ΔQGT、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHGT+ELGT)/2、正・負極性信号電位の中間値SMGT=(SHGT+SLGT)/2=Vcom+ΔQGTとしている。また、B画素について、正極性信号電位SHBT=正極性実効電位EHBT+引き込み電圧ΔQBT、負極性信号電位SLBT=負極性実効電位ELBT+引き込み電圧ΔQBT、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHBT+ELBT)/2、正・負極性信号電位の中間値SMBT=(SHBT+SLBT)/2=Vcom+ΔQBTとしている。したがって、図18に示すように、SMRT=Vcom+ΔQRT=SMGT=Vcom+ΔQGT>SMBT=Vcom+ΔQBTとなる。
 本実施の形態では、画素の色も、R・G・Bの3種類に限定されない。R・G・B・Y(黄色)の4種類でもよい。
 この場合、Rの波長>Yの波長>Gの波長>Bの波長であるから、例えば、R画素の液晶層の厚み>Y画素の液晶層の厚み>G画素の液晶層の厚み>B画素の液晶層の厚みとし、R画素、Y画素、G画素、C画素、およびB画素それぞれに同一階調が所定期間連続して表示されるときには、R画素に供給する正・負極性信号電位の中間値>Y画素に供給する正・負極性信号電位の中間値>G画素に供給する正・負極性信号電位の中間値>B画素に供給する正・負極性信号電位の中間値となるように、各画素に供給する信号電位を設定する。
 また、図19に示すように、R画素RPの液晶層の厚みLR=Y画素YPの液晶層の厚みLY=G画素GPの液晶層の厚みLG>B画素BPの液晶層の厚みLBとし、R画素、Y画素、G画素、およびB画素それぞれに同一階調が所定期間連続して表示されるときには、R画素に供給する正・負極性信号電位の中間値=Y画素に供給する正・負極性信号電位の中間値=G画素に供給する正・負極性信号電位の中間値>B画素に供給する正・負極性信号電位の中間値となるように、各画素に供給する信号電位を設定することもできる。
 具体的には図20に示すように、階調Tを表示させるときには、R画素の引き込み電圧ΔQRT=Y画素の引き込み電圧ΔQYT=G画素の引き込み電圧ΔQGT>B画素の引き込み電圧ΔQBTとなることを考慮して、R画素に供給する正極性信号電位SHRT、R画素に供給する負極性信号電位SLRT、SHRTとSLRTの中間値SMRT、G画素に供給する正極性信号電位SHGT、Y画素に供給する負極性信号電位SLYT、SHYTとSLYTの中間値SMYT、G画素に供給する負極性信号電位SLGT、SHGTとSLGTの中間値SMGT、B画素に供給する正極性信号電位SHBT、B画素に供給する負極性信号電位SLBT、SHBTとSLBTの中間値SMBTを設定している。
 すなわち、R画素について、正極性信号電位SHRT=正極性実効電位EHRT+引き込み電圧ΔQRT、負極性信号電位SLRT=負極性実効電位ELRT+引き込み電圧ΔQRT、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHRT+ELRT)/2、正・負極性信号電位の中間値SMRT=(SHRT+SLRT)/2=Vcom+ΔQRTとしている。また、Y画素について、正極性信号電位SHYT=正極性実効電位EHYT+引き込み電圧ΔQYT、負極性信号電位SLYT=負極性実効電位ELYT+引き込み電圧ΔQYT、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHYT+ELYT)/2、正・負極性信号電位の中間値SMYT=(SHYT+SLYT)/2=Vcom+ΔQYTとしている。また、G画素について、正極性信号電位SHGT=正極性実効電位EHGT+引き込み電圧ΔQGT、負極性信号電位SLGT=負極性実効電位ELGT+引き込み電圧ΔQGT、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHGT+ELGT)/2、正・負極性信号電位の中間値SMGT=(SHGT+SLGT)/2=Vcom+ΔQGTとしている。また、B画素について、正極性信号電位SHBT=正極性実効電位EHBT+引き込み電圧ΔQBT、負極性信号電位SLBT=負極性実効電位ELBT+引き込み電圧ΔQBT、対向電極(共通電極)電位Vcom=正・負極性実効電位の中間値=(EHBT+ELBT)/2、正・負極性信号電位の中間値SMBT=(SHBT+SLBT)/2=Vcom+ΔQBTとしている。したがって、図20に示すように、SMRT=Vcom+ΔQRT=SMYT=Vcom+ΔQYT=SMGT=Vcom+ΔQGT>SMBT=Vcom+ΔQBTとなる。
 また、R・G・B・Y(黄色)・C(シアン)の5種類でもよい。R・G・B・Y・Cの5種類の画素を設ける場合には、Rの波長>Yの波長>Gの波長>Cの波長>Bの波長であるから、例えば、R画素の液晶層の厚み>Y画素の液晶層の厚み>G画素の液晶層の厚み>C画素の液晶層の厚み>B画素の液晶層の厚みとし、R画素、Y画素、G画素、C画素、およびB画素それぞれに同一階調が所定期間連続して表示されるときには、R画素に供給する正・負極性信号電位の中間値>Y画素に供給する正・負極性信号電位の中間値>G画素に供給する正・負極性信号電位の中間値>C画素に供給する正・負極性信号電位の中間値>B画素に供給する正・負極性信号電位の中間値となるように、各画素に供給する信号電位を設定する。
 また、上記の説明は、走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する(走査信号が「High」アクティブである)液晶表示装置についてのものであるが、走査信号線が選択状態から非選択化されるときに該走査信号線の電位が上昇する(走査信号が「Low」アクティブである)液晶表示装置でも構わない。ただこのような液晶表示装置では、トランジスタがOFF(走査信号が非アクティブ化)したときに、画素(画素電極)の電位が上昇する(突き上げ電圧が発生する)ため、第1画素の液晶層の厚み>第2画素の液晶層の厚み>第3画素の液晶層の厚みとして、第1~第3画素それぞれに同一階調が所定期間連続して表示されるときには、第1画素に供給する正・負極性信号電位の中間値<第2画素に供給する正・負極性信号電位の中間値<第3画素に供給する正・負極性信号電位の中間値となるように、各画素に供給する信号電位を設定することになる。
 上記の説明ではソースドライバに入力される画像データ信号を10ビットデータとして説明いるが、もちろん他のビット数でもよい。
 本発明の液晶表示装置は、複数の走査信号線と、複数のデータ信号線と、第1液晶層を含む第1画素と、第1液晶層以下の厚みの第2液晶層を含む第2画素と、第2液晶層よりも小さな厚みの第3液晶層を含む第3画素とを備え、1本の走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する液晶表示装置であって、第1~第3画素それぞれに同一の階調が所定期間連続して表示されるときには、第1画素に第1正極性信号電位と第1負極性信号電位とが交互に供給され、第2画素に第2正極性信号電位と第2負極性信号電位とが交互に供給され、第3画素に第3正極性信号電位と第3負極性電位とが交互に供給され、上記第1正極性信号電位および第1負極性信号電位の中間値(振幅中心)である第1中間値は、上記第2正極性信号電位および第2負極性信号電位の中間値(振幅中心)である第2中間値以上に設定され、該第2中間値は、上記第3正極性信号電位および第3負極性信号電位の中間値(振幅中心)である第3中間値よりも高く設定されていることを特徴とする。
 第1液晶層の厚み≧第2液晶層の厚み>第3液晶層の厚みとなるマルチギャップ構造の液晶表示装置では、第3画素の液晶容量>第2画素の液晶容量≧第1画素の液晶容量となるため、第1~第3画素に同一階調を表示するときでも、第1画素での引き込み電圧≧第2画素での引き込み電圧>第3画素での引き込み電圧となる。そこで上記のように、第1中間値≧第2中間値>第3中間値とすれば、画素間の引き込み電圧の相異を補償することができ、画素の焼き付き等の問題を改善することができる。
 本液晶表示装置では、第1液晶層は第1画素に含まれる画素電極と共通電極との間に配され、第2液晶層は第2画素に含まれる画素電極と上記共通電極との間に配され、第3液晶層は第3画素に含まれる画素電極と上記共通電極との間に配され、上記第1~第3中間値それぞれが、上記共通電極の電位よりも高く設定されている構成とすることもできる。
 本液晶表示装置では、第1中間値は、上記共通電極の電位に、上記階調を表示するときの第1画素での引き込み電圧を加えたものであり、第2中間値は、上記共通電極の電位に、上記階調を表示するときの第2画素での引き込み電圧を加えたものであり、第3中間値は、上記共通電極の電位に、上記階調を表示するときの第3画素での引き込み電圧を加えたものである構成とすることもできる。
 本液晶表示装置では、第1画素に対応する色の波長は第2画素に対応する色の波長よりも長く、第2画素に対応する色の波長は第3画素に対応する色の波長よりも長い構成とすることもできる。
 本液晶表示装置では、第1画素が赤、第2画素が緑、第3画素が青に対応している構成とすることもできる。
 本液晶表示装置では、第1液晶層の厚み=第2液晶層の厚み>第3液晶層の厚みであり、上記第1中間値=第2中間値>第3中間値に設定されている構成とすることもできる。
 本液晶表示装置では、上記第1~第3中間値が、上記階調に応じて決定されている構成とすることもできる。
 本液晶表示装置では、第1~第3液晶層はVAモードである構成とすることもできる。
 本液晶表示装置では、第1液晶層以下で第2液晶層以上の厚みの第4液晶層を含む第4画素をさらに備え、上記第4画素にも第1~第3画素と同一の階調が所定期間連続して表示されるときには、第4画素に第4正極性信号電位と第4負極性電位とが交互に供給され、上記第1中間値は、上記第4正極性信号電位および第4負極性信号電位の中間値である第4中間値以上に設定され、上記第2中間値は、第4中間値以下に設定されている構成とすることもできる。
 本液晶表示装置では、第1画素が赤、第2画素が緑、第3画素が青、第4画素が黄に対応している構成とすることもできる。
 本液晶表示装置では、上記第1液晶層の厚み=第2液晶層の厚み=第4液晶層の厚み>第3液晶層の厚みであり、上記第1中間値=第2中間値=第4中間値>第3中間値に設定されている構成とすることもできる。
  本液晶表示装置の駆動回路は、複数の走査信号線と、複数のデータ信号線と、第1液晶層を含む第1画素と、第1液晶層以下の厚みの第2液晶層を含む第2画素と、第2液晶層よりも小さな厚みの第3液晶層を含む第3画素とを備え、1本の走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する液晶表示装置を駆動するための、液晶表示装置の駆動回路であって、第1~第3画素それぞれに同一の階調を所定期間連続して表示するときには、第1画素に第1正極性信号電位と第1負極性信号電位とを交互に供給し、第2画素に第2正極性信号電位と第2負極性信号電位とを交互に供給し、第3画素に第3正極性信号電位と第3負極性電位とを交互に供給し、上記第1正極性信号電位および第1負極性信号電位の中間値である第1中間値を、上記第2正極性信号電位および第2負極性信号電位の中間値である第2中間値以上に設定し、該第2中間値を、上記第3正極性信号電位および第3負極性信号電位の中間値である第3中間値よりも高く設定していることを特徴とする。
 本液晶表示装置の駆動方法は、複数の走査信号線と、複数のデータ信号線と、第1液晶層を含む第1画素と、第1液晶層以下の厚みの第2液晶層を含む第2画素と、第2液晶層よりも小さな厚みの第3液晶層を含む第3画素とを備え、1本の走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する液晶表示装置を駆動するための、液晶表示装置の駆動方法であって、第1~第3画素それぞれに同一の階調を所定期間連続して表示するときには、第1画素に第1正極性信号電位と第1負極性信号電位とを交互に供給し、第2画素に第2正極性信号電位と第2負極性信号電位とを交互に供給し、第3画素に第3正極性信号電位と第3負極性電位とを交互に供給し、
 上記第1正極性信号電位および第1負極性信号電位の中間値である第1中間値を、上記第2正極性信号電位および第2負極性信号電位の中間値である第2中間値以上に設定し、該第2中間値を、上記第3正極性信号電位および第3負極性信号電位の中間値である第3中間値よりも高く設定していることを特徴とする。
 本テレビジョン受像機は、上記液晶表示装置と、テレビジョン放送を受信するチューナ部とを備えることを特徴とする。
 本発明は上記の実施の形態に限定されるものではなく、上記の実施の形態を公知技術や技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施の形態に含まれる。また、実施の形態で記載した作用効果等もほんの例示に過ぎない。
 本発明の液晶表示装置およびその駆動回路は、例えば液晶テレビ、液晶モニターに好適である。
 SHR1023 正極性信号電位(R1023階調表示)
 SLR1023 負極性信号電位(R1023階調表示)
 SMR1023 信号電位中間値(R1023階調表示)
 EHR1023 正極性実効電位(R1023階調表示)
 ELR1023 負極性実効電位(R1023階調表示)
 ΔQR1023 引き込み電圧(R1023階調表示時)
 SHG1023 正極性信号電位(G1023階調表示)
 SLG1023 負極性信号電位(G1023階調表示)
 SMG1023 信号電位中間値(G1023階調表示)
 EHG1023 正極性実効電位(G1023階調表示)
 ELG1023 負極性実効電位(G1023階調表示)
 ΔQG1023 引き込み電圧(G1023階調表示)
 SHB1023 正極性信号電位(B1023階調表示)
 SLB1023 負極性信号電位(B1023階調表示)
 SMB1023 信号電位中間値(B1023階調表示)
 EHB1023 正極性実効電位(B1023階調表示)
 ELB1023 負極性実効電位(B1023階調表示)
 ΔQB1023 引き込み電圧(B1023階調表示)
 Vcom 共通電極電位
 60 液晶パネル(VA ノーマリブラック)
 70 表示制御回路
 80 ゲートドライバ
 90 ソースドライバ

Claims (14)

  1.  複数の走査信号線と、複数のデータ信号線と、第1液晶層を含む第1画素と、第1液晶層以下の厚みの第2液晶層を含む第2画素と、第2液晶層よりも小さな厚みの第3液晶層を含む第3画素とを備え、1本の走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する液晶表示装置であって、
     第1~第3画素それぞれに同一の階調が所定期間連続して表示されるときには、第1画素に第1正極性信号電位と第1負極性信号電位とが交互に供給され、第2画素に第2正極性信号電位と第2負極性信号電位とが交互に供給され、第3画素に第3正極性信号電位と第3負極性電位とが交互に供給され、
     上記第1正極性信号電位および第1負極性信号電位の中間値である第1中間値は、上記第2正極性信号電位および第2負極性信号電位の中間値である第2中間値以上に設定され、該第2中間値は、上記第3正極性信号電位および第3負極性信号電位の中間値である第3中間値よりも高く設定されていることを特徴とする液晶表示装置。
  2.  第1液晶層は第1画素に含まれる画素電極と共通電極との間に配され、第2液晶層は第2画素に含まれる画素電極と上記共通電極との間に配され、第3液晶層は第3画素に含まれる画素電極と上記共通電極との間に配され、
     上記第1~第3中間値それぞれが、上記共通電極の電位よりも高く設定されていることを特徴とする請求項1記載の液晶表示装置。
  3.  第1中間値は、上記共通電極の電位に、上記階調を表示するときの第1画素での引き込み電圧を加えたものであり、第2中間値は、上記共通電極の電位に、上記階調を表示するときの第2画素での引き込み電圧を加えたものであり、第3中間値は、上記共通電極の電位に、上記階調を表示するときの第3画素での引き込み電圧を加えたものであることを特徴とする請求項2記載の液晶表示装置。
  4.  第1画素に対応する色の波長は第2画素に対応する色の波長よりも長く、第2画素に対応する色の波長は第3画素に対応する色の波長よりも長いことを特徴とする請求項1~3のいずれか1項に記載の液晶表示装置。
  5.  第1画素が赤、第2画素が緑、第3画素が青に対応していることを特徴とする請求項4記載の液晶表示装置。
  6.  第1液晶層の厚み=第2液晶層の厚み>第3液晶層の厚みであり、上記第1中間値=第2中間値>第3中間値に設定されていることを特徴とする請求項5に記載の液晶表示装置。
  7.  上記第1~第3中間値が、上記階調に応じて決定されていることを特徴とする請求項1~5のいずれか1項に記載の液晶表示装置。
  8.  第1~第3液晶層はVAモードであることを特徴とする請求項1~7のいずれか1項に記載の液晶表示装置。
  9.  第1液晶層以下で第2液晶層以上の厚みの第4液晶層を含む第4画素をさらに備え、
     上記第4画素にも第1~第3画素と同一の階調が所定期間連続して表示されるときには、第4画素に第4正極性信号電位と第4負極性電位とが交互に供給され、
     上記第1中間値は、上記第4正極性信号電位および第4負極性信号電位の中間値である第4中間値以上に設定され、上記第2中間値は、第4中間値以下に設定されていることを特徴とする請求項1記載の液晶表示装置。
  10.  第1画素が赤、第2画素が緑、第3画素が青、第4画素が黄に対応していることを特徴とする請求項9記載の液晶表示装置。
  11.  上記第1液晶層の厚み=第2液晶層の厚み=第4液晶層の厚み>第3液晶層の厚みであり、上記第1中間値=第2中間値=第4中間値>第3中間値に設定されていることを特徴とする請求項10に記載の液晶表示装置。
  12.  複数の走査信号線と、複数のデータ信号線と、第1液晶層を含む第1画素と、第1液晶層以下の厚みの第2液晶層を含む第2画素と、第2液晶層よりも小さな厚みの第3液晶層を含む第3画素とを備え、1本の走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する液晶表示装置を駆動するための、液晶表示装置の駆動回路であって、
     第1~第3画素それぞれに同一の階調を所定期間連続して表示するときには、第1画素に第1正極性信号電位と第1負極性信号電位とを交互に供給し、第2画素に第2正極性信号電位と第2負極性信号電位とを交互に供給し、第3画素に第3正極性信号電位と第3負極性電位とを交互に供給し、
     上記第1正極性信号電位および第1負極性信号電位の中間値である第1中間値を、上記第2正極性信号電位および第2負極性信号電位の中間値である第2中間値以上に設定し、該第2中間値を、上記第3正極性信号電位および第3負極性信号電位の中間値である第3中間値よりも高く設定していることを特徴とする液晶表示装置の駆動回路。
  13.  複数の走査信号線と、複数のデータ信号線と、第1液晶層を含む第1画素と、第1液晶層以下の厚みの第2液晶層を含む第2画素と、第2液晶層よりも小さな厚みの第3液晶層を含む第3画素とを備え、1本の走査信号線が選択状態から非選択化されるときに該走査信号線の電位が低下する液晶表示装置を駆動するための、液晶表示装置の駆動方法であって、
     第1~第3画素それぞれに同一の階調を所定期間連続して表示するときには、第1画素に第1正極性信号電位と第1負極性信号電位とを交互に供給し、第2画素に第2正極性信号電位と第2負極性信号電位とを交互に供給し、第3画素に第3正極性信号電位と第3負極性電位とを交互に供給し、
     上記第1正極性信号電位および第1負極性信号電位の中間値である第1中間値を、上記第2正極性信号電位および第2負極性信号電位の中間値である第2中間値以上に設定し、該第2中間値を、上記第3正極性信号電位および第3負極性信号電位の中間値である第3中間値よりも高く設定していることを特徴とする液晶表示装置の駆動方法。
  14.  請求項1~11のいずれか1項に記載の液晶表示装置と、テレビジョン放送を受信するチューナ部とを備えることを特徴とするテレビジョン受像機。
PCT/JP2010/002787 2009-04-24 2010-04-16 液晶表示装置 WO2010122753A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI1016181A BRPI1016181A2 (pt) 2009-04-24 2010-04-16 dispositivo de exibição de cristal líquido
CN201080017638.6A CN102405435B (zh) 2009-04-24 2010-04-16 液晶显示装置
US13/266,061 US8704742B2 (en) 2009-04-24 2010-04-16 Liquid crystal display device
EP10766815A EP2423735A4 (en) 2009-04-24 2010-04-16 LIQUID CRYSTAL DISPLAY DEVICE
RU2011147220/07A RU2494426C2 (ru) 2009-04-24 2010-04-16 Жидкокристаллическое устройство отображения
JP2011510186A JP5231636B2 (ja) 2009-04-24 2010-04-16 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-106782 2009-04-24
JP2009106782 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010122753A1 true WO2010122753A1 (ja) 2010-10-28

Family

ID=43010880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002787 WO2010122753A1 (ja) 2009-04-24 2010-04-16 液晶表示装置

Country Status (7)

Country Link
US (1) US8704742B2 (ja)
EP (1) EP2423735A4 (ja)
JP (1) JP5231636B2 (ja)
CN (1) CN102405435B (ja)
BR (1) BRPI1016181A2 (ja)
RU (1) RU2494426C2 (ja)
WO (1) WO2010122753A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101773419B1 (ko) * 2010-11-22 2017-09-01 삼성디스플레이 주식회사 데이터 보상 방법 및 이를 수행하는 표시 장치
JP2015018066A (ja) * 2013-07-10 2015-01-29 株式会社ジャパンディスプレイ 表示装置
CN112002288A (zh) * 2020-08-28 2020-11-27 深圳市华星光电半导体显示技术有限公司 一种色度调节方法、色度调节装置及显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160731A (ja) * 1997-11-28 1999-06-18 Nec Corp アクティブマトリクス型液晶表示装置
JP2003091017A (ja) * 2001-09-19 2003-03-28 Casio Comput Co Ltd カラー液晶表示装置
JP2007233336A (ja) 2006-01-31 2007-09-13 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147975A (ja) * 1987-12-04 1989-06-09 Stanley Electric Co Ltd 液晶テレビジョン
KR100343513B1 (ko) 1993-07-29 2003-05-27 히다찌디바이스엔지니어링 가부시기가이샤 액정구동방법과액정표시장치
RU2249858C2 (ru) * 1999-03-30 2005-04-10 Эвикс Инк. Система полноцветного светодиодного дисплея
NL1015202C2 (nl) * 1999-05-20 2002-03-26 Nec Corp Actieve matrixvormige vloeiend-kristal displayinrichting.
JP3558934B2 (ja) * 1999-10-14 2004-08-25 アルプス電気株式会社 アクティブマトリクス型液晶表示装置
US7573551B2 (en) * 2004-05-21 2009-08-11 Sanyo Electric Co., Ltd. Transflective liquid crystal display device and color liquid crystal display device
JP4666397B2 (ja) * 2005-04-05 2011-04-06 シャープ株式会社 反射透過両用型の表示装置
CN101542580B (zh) * 2006-11-29 2012-05-09 夏普株式会社 液晶显示装置、液晶显示装置驱动方法、液晶显示装置源极驱动器、以及液晶显示装置控制器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160731A (ja) * 1997-11-28 1999-06-18 Nec Corp アクティブマトリクス型液晶表示装置
JP2003091017A (ja) * 2001-09-19 2003-03-28 Casio Comput Co Ltd カラー液晶表示装置
JP2007233336A (ja) 2006-01-31 2007-09-13 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Also Published As

Publication number Publication date
US20120044427A1 (en) 2012-02-23
RU2494426C2 (ru) 2013-09-27
BRPI1016181A2 (pt) 2016-04-19
US8704742B2 (en) 2014-04-22
JPWO2010122753A1 (ja) 2012-10-25
EP2423735A4 (en) 2012-09-26
CN102405435A (zh) 2012-04-04
RU2011147220A (ru) 2013-05-27
EP2423735A1 (en) 2012-02-29
JP5231636B2 (ja) 2013-07-10
CN102405435B (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
US8305316B2 (en) Color liquid crystal display device and gamma correction method for the same
US7916106B2 (en) LCD driving device
US8199090B2 (en) Gamma correction apparatus and a method of the same
US7522127B2 (en) Driving method for driving a display device including display pixels, each of which includes a switching element and a pixel electrode, display device, and medium
JP6951578B2 (ja) 画像における高周波成分を検出する方法及び装置
US9384689B2 (en) Viewing angle characteristic improving method in liquid crystal display device, and liquid crystal display device
US8704860B2 (en) Liquid crystal display apparatus, liquid crystal display apparatus driving method, and television receiver
US8896588B2 (en) Liquid crystal display device
TW201423706A (zh) 顯示面板之串音補償方法及其顯示裝置
US20060125749A1 (en) Display device and driving method thereof
US20090102767A1 (en) Liquid Crystal Display Apparatus
TWI757813B (zh) 抑制顯示面板閃爍之驅動方法及其驅動電路
JP5231636B2 (ja) 液晶表示装置
US6570549B2 (en) Method of driving a liquid crystal display
KR102122521B1 (ko) 표시장치의 색역 축소 보상 방법
CN109658884B (zh) 一种显示面板的驱动方法、驱动系统和显示装置
KR20080045387A (ko) 액정 표시장치
US20070132688A1 (en) Liquid crystal display device and driving method of the same
WO2007108150A1 (ja) 表示装置およびその駆動方法
WO2007052421A1 (ja) 表示装置、データ信号線駆動回路、および表示装置の駆動方法
JP2008058443A (ja) 液晶表示装置およびその駆動方法
KR100495775B1 (ko) 액정표시장치의 구동시스템
KR20050054239A (ko) 액정 표시 장치 및 그 구동 방법
JP2007199127A (ja) 液晶表示装置及びその駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017638.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13266061

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010766815

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8112/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011147220

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1016181

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1016181

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111021