WO2010122668A1 - 内燃機関の過給機システム - Google Patents

内燃機関の過給機システム Download PDF

Info

Publication number
WO2010122668A1
WO2010122668A1 PCT/JP2009/058203 JP2009058203W WO2010122668A1 WO 2010122668 A1 WO2010122668 A1 WO 2010122668A1 JP 2009058203 W JP2009058203 W JP 2009058203W WO 2010122668 A1 WO2010122668 A1 WO 2010122668A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
compressor
turbine
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2009/058203
Other languages
English (en)
French (fr)
Inventor
棚田 雅之
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to EP09843666.0A priority Critical patent/EP2423485B1/en
Priority to JP2011510137A priority patent/JP5045848B2/ja
Priority to PCT/JP2009/058203 priority patent/WO2010122668A1/ja
Publication of WO2010122668A1 publication Critical patent/WO2010122668A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/143Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path the shiftable member being a wall, or part thereof of a radial diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a supercharger system for an internal combustion engine including a first supercharger and a second supercharger.
  • Patent Document 1 Conventionally, as a supercharger system of this type of internal combustion engine, for example, there is one described in Patent Document 1.
  • Conventional general turbocharger systems including those described in Patent Document 1 include a low-pressure supercharger and a high-pressure supercharger. Specifically, a low-pressure compressor wheel and a small-sized high-pressure compressor wheel are provided in the intake passage of the internal combustion engine sequentially from the intake upstream side. Further, in the exhaust passage of the internal combustion engine, a high-pressure turbine wheel that is larger than the high-pressure turbine wheel and the high-pressure turbine wheel is provided in order from the exhaust upstream side.
  • the low pressure compressor wheel and the high pressure compressor wheel are surrounded by a low pressure compressor housing and a high pressure compressor housing, respectively.
  • the low pressure turbine wheel and the high pressure turbine wheel are surrounded by a low pressure turbine housing and a high pressure turbine housing, respectively.
  • the exhaust passage of the internal combustion engine is provided with an exhaust bypass passage that connects the upstream side and the downstream side of the high pressure turbine wheel to bypass the high pressure turbine wheel, and the opening degree of the exhaust bypass valve provided in the bypass passage Some exhaust flows into the high-pressure turbine wheel through control.
  • a supercharger system for an internal combustion engine comprises a first supercharger and a second supercharger, and the first supercharger is provided in an intake passage of the internal combustion engine.
  • a first compressor wheel provided in an exhaust passage of the internal combustion engine and connected to the first compressor wheel by a first shaft, a first compressor housing surrounding the first compressor wheel, and the first compressor wheel
  • a first turbine housing surrounding one turbine wheel wherein the second supercharger is provided in a second compressor wheel provided in the intake passage, and provided in the exhaust passage by a second shaft on the second compressor wheel.
  • the first and the second compressor housings are arranged in a space formed between the first compressor housing and the first turbine housing such that at least one of the second compressor housing and the second turbine housing is located.
  • a second compressor housing and first and second turbine housings are configured.
  • the supercharging in the direction perpendicular to the axial direction of the first shaft is greater than the structure in which both the second compressor housing and the second turbine housing are not located in the space.
  • the physique as a whole machine system can be made small. Therefore, the physique as a whole supercharger system can be made small exactly.
  • first and second compressor housings and the first and second turbine housings are configured such that both the part of the second compressor housing and the part of the second turbine housing are located in the space. Embodiments are preferred.
  • the turbocharger system as a whole in the axial direction of the first shaft is compared with a structure in which either one of the second compressor housing or the second turbine housing is located in the space.
  • the physique can be made small. Therefore, the physique as the whole supercharger system can be reduced more accurately.
  • the first compressor wheel has a larger size in the radial direction than the second compressor wheel
  • the first turbine wheel has a larger size in the radial direction than the second turbine wheel.
  • the first compressor wheel in the radial direction is larger than the second compressor wheel
  • the first turbine wheel in the radial direction is larger than the second turbine wheel.
  • the opposite aspect that is, the physique in the radial direction of the first compressor wheel is made smaller than that of the second compressor wheel
  • the physique in the radial direction of the first turbine wheel is made smaller than that of the second turbine wheel.
  • the space formed between the first compressor housing and the first turbine housing can be made larger than when the aspect is adopted. Therefore, in order to position at least one of the part of the second compressor housing and the part of the second turbine housing in the space, the space can be ensured accurately.
  • the second bearing that supports the second shaft is a ball bearing.
  • an exhaust-driven supercharger includes a full float bearing that receives a radial load and a thrust bearing that receives a thrust load as bearings that support a shaft.
  • the second bearing is a ball bearing that receives both a radial load and a thrust load
  • the second bearing is compared with a configuration that includes a full float bearing and a thrust bearing.
  • the length of the second shaft can be shortened. Therefore, it is possible to easily realize a configuration in which both a part of the second compressor housing and a part of the second turbine housing are located in a space formed between the first compressor housing and the first turbine housing. It becomes like this.
  • a mode in which a flow rate variable mechanism is provided inside the second turbine housing to vary the flow rate of the exhaust acting on the second turbine wheel can be made variable through the opening degree control of the flow rate variable valve.
  • the supercharging characteristic of the second supercharger can be accurately changed according to the engine operating state.
  • the second turbine housing itself can function as a bypass path that bypasses the second turbine wheel.
  • the physique of the entire turbocharger system is more accurately reduced as compared to a configuration in which a bypass path that bypasses the second turbine wheel by connecting the upstream side and the downstream side of the second turbine housing is provided separately. Will be able to.
  • variable flow rate mechanism includes a cylindrical valve that is displaced along the axial direction of the second shaft.
  • variable flow valve that makes the flow rate of the exhaust acting on the second turbine wheel variable is displaced along the axial direction of the second shaft, that is, in the direction perpendicular to the flow direction of the exhaust. Therefore, the force required to drive the valve can be kept small. For this reason, the physique of the actuator of a flow variable valve can be made small, and the physique as the whole supercharger system can be made still smaller appropriately.
  • the first and second compressor housings and the first and second turbine housings are configured such that both the part of the second compressor housing and the part of the second turbine housing are located in the space.
  • the first supercharger includes a first bearing that supports the first shaft and a first bearing housing that surrounds the first bearing
  • the second supercharger includes a first bearing that supports the second shaft. It is preferable that the first bearing housing and the second bearing housing are integrally formed with two bearings and a second bearing housing surrounding the second bearing.
  • the shaft of the first shaft The distance between the first bearing housing and the second bearing housing in the direction perpendicular to the direction can be made small. For this reason, if an aspect in which the first bearing housing and the second bearing housing are integrally formed as described above is adopted, the number of parts can be reduced by integrating these bearing housings. With the integration of the bearing housing, it is possible to accurately suppress an increase in the size of the entire bearing housing.
  • the first compressor wheel is provided on the upstream side of the intake passage with respect to the second compressor wheel, and the first and second compressor housings and the second compressor housing are disposed in the space.
  • the first and second turbine housings may be configured, and the first compressor housing and the second compressor housing may be formed in one body.
  • the number of parts can be reduced by integrating the compressor housing.
  • the first compressor wheel is provided upstream of the second compressor wheel in the intake passage, and a part of the second compressor housing is located in a space formed between the first compressor housing and the first turbine housing. Therefore, the distance between the first compressor housing and the second compressor housing in the axial direction of the first shaft can be made small, and as the compressor housing is integrated, the overall size of the compressor housing is increased. It is possible to accurately suppress the increase.
  • the first compressor wheel has a larger physique in the radial direction than the second compressor wheel, and an intake bypass passage that bypasses the second compressor wheel serves as the first compressor housing and the second compressor.
  • An embodiment in which it is formed integrally with the housing is preferable.
  • the number of parts can be reduced by integrating the first compressor housing, the second compressor housing, and the intake bypass passage.
  • the first compressor housing and the second compressor housing can be embodied in such a manner that they are formed separately.
  • first compressor housing and the second compressor housing can be embodied in such a manner that they are connected by a connecting portion made of an elastic member.
  • the compressor housing can be easily assembled.
  • first turbine wheel is provided on the downstream side of the exhaust passage with respect to the second turbine wheel, and the first and second compressor housings and the second turbine housing are positioned in the space.
  • the first and second turbine housings may be configured, and the first turbine housing and the second turbine housing may be integrally formed.
  • the number of parts can be reduced by integrating the turbine housing.
  • the first turbine wheel is provided downstream of the second turbine wheel in the exhaust passage, and a part of the second turbine housing is located in a space formed between the first compressor housing and the first turbine housing. Therefore, the distance between the first turbine housing and the second turbine housing in the axial direction of the first shaft can be reduced, and as the turbine housing is integrated, the overall size of the turbine housing is improved. It is possible to accurately suppress the increase.
  • the first turbine wheel is larger in the radial direction than the second turbine wheel, and an exhaust bypass passage that bypasses the first turbine wheel is integrated with the first turbine housing and the second turbine housing. It is preferable that the film is formed.
  • the number of parts can be reduced by integrating the first turbine housing, the second turbine housing, and the exhaust bypass passage.
  • the first turbine housing and the second turbine housing can be embodied in such a manner that they are formed separately.
  • first turbine housing and the second turbine housing are connected by a connecting portion made of an elastic member. According to this aspect, even when at least one of the first turbine housing and the second turbine housing has manufacturing variations or assembly variations, the variations are absorbed through elastic deformation of the connecting portion. Can do. Therefore, the turbine housing can be easily assembled.
  • the thermal expansion of a 1st turbine housing or a 2nd turbine housing can be absorbed through the elastic deformation of a connection part. Therefore, it is possible to accurately suppress the occurrence of cracks and the like due to the thermal expansion of these turbine housings.
  • the connecting portion can be embodied in such a manner that it has a bellows structure.
  • FIG. 1 is a block diagram showing a schematic configuration of a supercharger system for an internal combustion engine according to a first embodiment of the present invention.
  • Sectional drawing of the supercharger system of FIG. FIG. 5 is a partial cross-sectional view centering on a flow rate variable mechanism in the supercharger system of FIG. 4.
  • (A) is sectional drawing which shows centering on a lubricating oil supply / discharge mechanism about the bearing housing in the supercharger system of FIG. 3,
  • (b) is sectional drawing centering on a cooling water supply / discharge mechanism about the bearing housing.
  • (A) is the side view which looked at the supercharger system which concerns on 2nd Embodiment of this invention from the low pressure turbine housing side
  • (b) is the side view which looked at the supercharger system from the low pressure compressor housing side.
  • FIG. 1 shows a schematic configuration of an internal combustion engine 1 according to the present embodiment. As shown in the figure, an intake passage 20 for supplying intake air to the engine body 10 and an exhaust passage 30 for discharging exhaust gas from the engine body 10 are connected to the engine body 10 of the internal combustion engine 1. .
  • an air cleaner 21, a centrifugal low-pressure compressor LC, a centrifugal high-pressure compressor HC, and an intake manifold 22 are provided in this order from the upstream side.
  • the intake bypass passage 23 connects the portion of the intake passage 20 between the low-pressure compressor LC and the high-pressure compressor HC and the portion of the intake passage 20 downstream of the high-pressure compressor HC so that the high-pressure compressor HC is bypassed. is doing.
  • An intake bypass valve 24 is provided in the intake bypass passage 23.
  • the intake air flow rate flowing into the high pressure compressor HC is controlled through the opening degree control of the intake air bypass valve 24.
  • the low pressure compressor LC includes a low pressure compressor wheel 54 and a low pressure compressor housing portion 51 surrounding the low pressure compressor wheel 54.
  • the high-pressure compressor HC includes a high-pressure compressor wheel 55 and a high-pressure compressor housing portion 52 that surrounds the high-pressure compressor wheel 55.
  • the exhaust passage 30 is provided with an exhaust manifold 32, a radial flow type high pressure turbine HT, a radial flow type low pressure turbine LT, and a catalyst device 31 in order from the upstream side. Further, the exhaust bypass passage 33 connects the portion of the exhaust passage 30 between the high pressure turbine HT and the low pressure turbine LT and the portion of the exhaust passage 30 downstream of the low pressure turbine LT so that the low pressure turbine LT is bypassed. is doing.
  • An exhaust bypass valve 34 is provided in the exhaust bypass passage 33. The exhaust flow rate flowing into the low pressure turbine LT is controlled through the opening degree control of the exhaust bypass valve 34.
  • the low pressure turbine LT includes a low pressure turbine wheel 64 and a low pressure turbine housing portion 61 surrounding the low pressure turbine wheel 64.
  • the high-pressure turbine HT includes a high-pressure turbine wheel 65 and a high-pressure turbine housing portion 62 that surrounds the high-pressure turbine wheel 65.
  • a supercharger system for an internal combustion engine it is usually provided in a bypass passage that connects the upstream side of the high-pressure turbine HT and a portion of the exhaust passage 30 between the high-pressure turbine HT and the low-pressure turbine LT, and the same passage.
  • a control valve that controls the flow rate of the exhaust gas flowing into the high-pressure turbine HT is provided (the chain double-dashed line in FIG. 1).
  • the configuration of the bypass passage is omitted by providing a cylindrical valve 91, which will be described in detail later, inside the high-pressure turbine housing portion 62.
  • the low-pressure compressor wheel 54 and the low-pressure turbine wheel 64 are connected by a low-pressure shaft LS, and the low-pressure compressor LC, the low-pressure turbine LT, and the low-pressure shaft LS constitute an exhaust-driven low-pressure supercharger LTC.
  • the high-pressure compressor HC and the high-pressure turbine HT are connected by a high-pressure shaft HS, and the high-pressure compressor HC, the high-pressure turbine HT, and the high-pressure shaft HS constitute an exhaust drive type high-pressure supercharger HTC.
  • the compressor housing portions 51 and 52 and the turbine housing portions 61 and 62 are configured as follows, so that the physique of the entire turbocharger system is appropriately reduced.
  • a space S is formed between the low-pressure compressor housing LCH and the low-pressure turbine housing LTH, but this is a dead space in the conventional turbocharger system.
  • both a part of the high-pressure compressor housing part 52 and a part of the high-pressure turbine housing part 62 are located in the space S formed between the low-pressure compressor housing part 51 and the low-pressure turbine housing part 61.
  • the compressor housing parts 51 and 52 and the turbine housing parts 61 and 62 are configured.
  • FIG. 3 is a plan view showing a planar structure of the supercharger in the present embodiment.
  • the low-pressure supercharger LTC and the high-pressure supercharger HTC are provided such that their shafts LS and HS are parallel to each other.
  • the compressor housing 50 includes a low-pressure compressor housing portion 51, a high-pressure compressor housing portion 52, a compressor connection portion 53 that connects the compressor housing portions 51 and 52, and an intake bypass portion 57, which are integrally formed. Yes.
  • An intake bypass passage 23 is formed inside the intake bypass portion 57.
  • the compressor connecting portion 53 is positioned on the inner side (right side in FIG. 3) than the outer end portion (left side end portion in FIG. 3) of the low pressure compressor housing portion 51 in the axial direction of the low pressure shaft LS.
  • the intake detour portion 57 is positioned so as to be located on the inner side (right side in FIG. 3) of the outer side end portion (left side end portion in FIG. 3) of the compressor connection portion 53 in the axial direction of the high pressure shaft HS.
  • the compressor housing 50 is formed by casting and machining.
  • the turbine housing 60 includes a low-pressure turbine housing portion 61, a high-pressure turbine housing portion 62, a turbine connection portion 63 that connects the turbine housing portions 61 and 62, and an exhaust bypass portion 67, which are integrally formed. Yes.
  • An exhaust bypass passage 33 is formed inside the exhaust bypass portion 67.
  • the turbine connecting portion 63 is positioned on the inner side (left side in FIG. 3) than the outer end portion (right side end portion in FIG. 3) of the low pressure turbine housing portion 61 in the axial direction of the low pressure shaft LS.
  • the exhaust bypass portion 67 is positioned on the inner side (left side in FIG. 3) of the low pressure turbine housing 61 in the axial direction of the low pressure turbine housing 61 than the outer end portion (right side end portion in FIG. 3).
  • the outer end portion (upper end portion in FIG. 3) of the turbine connection portion 63 and the outer end portion of the low-pressure turbine housing portion 61 is provided so as to be located on the inner side (lower side in FIG. 3) than the lower end portion.
  • the turbine housing 60 is formed by casting and machining.
  • the low pressure shaft LS of the low pressure supercharger LTC is supported by a low pressure bearing LB.
  • the low pressure bearing includes a full float bearing that receives a radial load of the low pressure shaft LS and a thrust bearing that receives a thrust load of the low pressure shaft LS.
  • the low pressure bearing LB is surrounded by the low pressure bearing housing portion 41.
  • the high pressure shaft HS of the high pressure supercharger HTC is supported by a high pressure bearing HB.
  • the high-pressure bearing HB is a ball bearing that receives both a radial load and a thrust load of the high-pressure shaft HS.
  • the high pressure bearing is surrounded by a high pressure bearing housing portion 42.
  • the low-pressure bearing housing part 41 and the high-pressure bearing housing part 42 are integrally formed, and the whole is referred to as a bearing housing 40.
  • the bearing housing 40 is provided with a lubricating oil supply / discharge mechanism 70 for supplying and discharging lubricating oil for lubricating both the low pressure bearing LB and the high pressure bearing HB. Both the lubricating oil introduction passage 71 and the lubricating oil discharge passage 72 of the lubricating oil supply / discharge mechanism 70 are connected to the low pressure bearing housing portion 41.
  • the bearing housing 40 is provided with a cooling water supply / discharge mechanism 80 for supplying and discharging cooling water for cooling both the low pressure bearing LB and the high pressure bearing HB.
  • a cooling water introduction passage 81 of a cooling water supply / discharge mechanism 80 is connected to the low pressure bearing housing portion 41, and a cooling water discharge passage 82 of the cooling water supply / discharge mechanism 80 is connected to the high pressure bearing housing portion 42.
  • FIG. 4 is a partial cross-sectional view showing a partial cross-sectional structure of the supercharger.
  • the intake bypass section 57 and the exhaust bypass section 67 are not shown.
  • the low-pressure compressor wheel 54 has a larger physique in the radial direction than the high-pressure compressor wheel 55.
  • the low-pressure compressor housing portion 51 has a larger physique in the radial direction than the high-pressure compressor housing portion 52.
  • the low-pressure turbine wheel 64 is larger in the radial direction than the high-pressure turbine wheel 65.
  • the low-pressure turbine housing part 61 has a larger physique in the radial direction than the high-pressure turbine housing part 62.
  • variable flow rate mechanism 90 that makes the flow rate of exhaust gas acting on the high-pressure turbine wheel 65 variable.
  • the flow variable mechanism 90 includes a cylindrical valve 91 that is displaced along the axial direction of the high-pressure shaft HS, and an actuator 92 that drives the cylindrical valve 91.
  • fixed blades 66 for restricting the flow direction of exhaust gas acting on the high pressure turbine wheel 65 are provided inside the high pressure turbine housing portion 62. The fixed blades 66 are provided in a manner that surrounds the base end side (left side in FIG. 4) of the high-pressure turbine wheel 65.
  • the cylindrical valve 91 includes a cylindrical portion 91A having a cylindrical shape, a tip portion 91B connected to an end portion on the high pressure turbine wheel 65 side in the cylindrical portion 91A, and a high pressure turbine wheel 65 in the cylindrical portion 91A.
  • the distal end portion 91B has an annular shape, and is provided in a manner extending from the end portion on the high pressure turbine wheel 65 side in the cylindrical portion 91A in a direction perpendicular to the axial direction of the high pressure shaft HS.
  • the base end portion 91C includes a portion that has a shape that is gradually reduced in diameter toward the side opposite to the high-pressure turbine wheel 65 in the cylindrical portion 91A, and an axial portion that extends from the base end (right end in FIG. 5). Have.
  • the base end portion 91C is formed with a discharge hole 91E for discharging the exhaust inside the cylindrical valve 91 to the outside.
  • the output shaft of the actuator 92 is connected to the shaft-like portion of the base end portion 91C.
  • a seal groove 91D is formed over the entire circumference at a position facing the inner circumference of the high-pressure turbine wheel 65 on the outer circumferential surface of the cylindrical portion 91A, and an annular seal member 68 is attached to the seal groove 91D. ing.
  • the cylindrical valve 91 can be displaced in the axial direction of the high-pressure shaft HS in the range from the fully open position P1 to the fully closed position P2 shown in the drawing.
  • the cylindrical valve 91 in a state where the cylindrical valve 91 is in the fully open position P1, most of the exhaust gas flowing into the high pressure turbine housing portion 62 acts on the high pressure turbine wheel 65 without passing through the fixed blade 66. Instead, the high pressure turbine housing part 62 flows out.
  • the cylindrical valve 91 in a state where the cylindrical valve 91 is in the fully closed position P ⁇ b> 2
  • most of the exhaust gas flowing into the high pressure turbine housing portion 62 passes through the fixed blade 66.
  • the inside of the high-pressure turbine housing portion 62 is formed. Therefore, the flow rate of the exhaust gas acting on the high pressure turbine wheel 65 can be controlled by changing the position of the cylindrical valve 91 in the axial direction of the high pressure shaft HS.
  • FIG. 6A and 6B are cross-sectional views at different positions in the axial direction of the low pressure shaft LS (the axial direction of the high pressure shaft HS).
  • FIG. 6A shows the lubricating oil supply / discharge mechanism 70.
  • FIG. 6B schematically shows a cross-sectional structure of the bearing housing 40 centering on the cooling water supply / discharge mechanism 80.
  • the bearing housing 40 is formed with a main supply passage 73 having an opening in the lower end surface in the vertical direction and extending upward in the vertical direction. Further, the bearing housing 40 extends in the horizontal direction from the middle of the main supply passage 73 in a horizontal direction from a low pressure side supply passage 74 that supplies lubricating oil to the low pressure shaft LS and a vertical upper end portion of the main supply passage 73. A high-pressure side supply passage 75 that supplies lubricating oil to the high-pressure shaft HS is formed.
  • the bearing housing 40 has an opening in the lower end surface in the vertical direction and a low pressure side space that is a space including the low pressure shaft LS.
  • the bearing housing 40 is formed with a high-pressure side space that is a space including the high-pressure shaft HS.
  • the low pressure side space 76 and the high pressure side space 77 are communicated with each other via a connecting passage 78 extending in the vertical direction.
  • the lubricating oil introduced into the bearing housing 40 from the lubricating oil introduction passage 71 through the main supply passage 73 is supplied to the low pressure shaft LS and the low pressure bearing LB through the low pressure side supply passage 74 and also supplied to the high pressure side. It is supplied to the high pressure shaft HS and the high pressure bearing HB through the passage 75. Further, the lubricating oil that has been used for lubrication in the low-pressure shaft LS and the low-pressure bearing LB is discharged to the outside of the bearing housing 40 through the low-pressure side space 76 and the lubricating oil discharge passage 72.
  • the lubricating oil after being lubricated in the high-pressure shaft HS and the high-pressure bearing HB is a bearing housing through the high-pressure side space 77, the connecting passage 78, the low-pressure side space 76, the lubricating oil discharge passage 72, and the lubricating oil discharge passage 72. 40 is discharged to the outside.
  • the bearing housing 40 is formed with a supply passage 83 having an opening in the lower end surface in the vertical direction and extending upward in the vertical direction.
  • the bearing housing 40 is extended from the middle of the supply passage 83 in the horizontal direction to supply cooling water above the low pressure shaft LS and the low pressure bearing LB, and from the upper end in the vertical direction of the supply passage 83 to the high pressure.
  • a high-pressure side passage 85 that extends toward the shaft HS and the high-pressure bearing HB and supplies cooling water is formed above the high-pressure shaft HS and the high-pressure bearing HB.
  • the high pressure side passage 85 is formed in a substantially arched cross section so as to surround the high pressure shaft HS and the high pressure bearing HB.
  • a discharge passage 86 having an opening on the upper end surface in the vertical direction of the bearing housing 40 is formed above the high-pressure shaft HS and the high-pressure bearing HB in the vertical direction.
  • the cooling water introduced into the bearing housing 40 from the cooling water introduction passage 81 through the supply passage 83 flows into the low pressure side passage 84 to cool the low pressure shaft LS and the low pressure bearing LB, and at the high pressure side.
  • the passage 85 By flowing into the passage 85, the high pressure shaft HS and the high pressure bearing HB are cooled. Then, the cooling water subjected to cooling is discharged to the outside of the bearing housing 40 through the discharge passage 86 and the cooling water discharge passage 82.
  • the internal combustion engine 1 includes a low pressure turbocharger LTC having a low pressure compressor wheel 54 provided in the intake passage 20 and a low pressure turbine wheel 64 provided in the exhaust passage 30 and connected to the low pressure compressor wheel 54 by a low pressure shaft LS.
  • the high pressure compressor housing portion 52 surrounding the high pressure compressor wheel 55 is formed in a space S formed between the low pressure compressor housing portion 51 surrounding the low pressure compressor wheel 54 and the low pressure turbine housing portion 61 surrounding the low pressure turbine wheel 64.
  • the compressor housing parts 51 and 52 and the turbine housing parts 61 and 62 are provided so that both a part of the high pressure turbine wheel part 65 and a part of the high pressure turbine housing part 62 surrounding the high pressure turbine wheel 65 are located.
  • the supercharging in the direction perpendicular to the axial direction of the low-pressure shaft LS is made as compared with the structure in which both the part of the high-pressure compressor housing part 52 and the part of the high-pressure turbine housing part 62 are not located in the space S.
  • the physique as a whole machine system can be made small.
  • the physique as the whole supercharger system in the axial direction of the low-pressure shaft LS is improved. Can be small. Therefore, the physique as the whole supercharger system can be made small exactly.
  • the low pressure compressor wheel 54 has a larger physique in the radial direction than the high pressure compressor wheel 55, and the low pressure turbine wheel 64 has a larger physique in the radial direction than the high pressure turbine wheel 65.
  • both a part of the high-pressure compressor housing part 52 and a part of the high-pressure turbine housing part 62 are positioned in the space S formed between the low-pressure compressor housing part 51 and the low-pressure turbine housing part 61. In the above, the space S can be ensured accurately.
  • the low pressure bearing housing portion 41 and the high pressure bearing housing portion 42 are formed integrally. For this reason, while reducing the number of parts by integrating the bearing housing portions 41 and 42, it is possible to accurately suppress an increase in the size of the bearing housing 40 as a whole due to the integration of the bearing housing portions 41 and 42. Can do.
  • the low-pressure compressor housing portion 51 and the high-pressure compressor housing portion 52 are formed integrally. Thereby, the number of parts can be reduced. Further, as described above, since the distance between the low pressure compressor housing portion 51 and the high pressure compressor housing portion 52 in the axial direction of the low pressure shaft LS can be reduced, the compressor housing portions 51 and 52 are integrated. It can suppress exactly that the physique as the compressor housing 50 whole increases.
  • the intake bypass passage 23 that bypasses the high-pressure compressor wheel 55 is formed integrally with the low-pressure compressor housing portion 51 and the high-pressure compressor housing portion 52. Thereby, the number of parts can be reduced.
  • the low-pressure turbine housing part 61 and the high-pressure turbine housing part 62 are integrally formed. As a result, the number of parts can be reduced. Further, as described above, since the distance between the low pressure turbine housing portion 61 and the high pressure turbine housing portion 62 in the axial direction of the low pressure shaft LS can be reduced, the turbine housing portions 61 and 62 are integrated with each other. It can suppress exactly that the physique as the whole turbine housing 60 increases.
  • the exhaust bypass passage 33 that bypasses the low-pressure turbine wheel 64 is formed integrally with the low-pressure turbine housing portion 61 and the high-pressure turbine housing portion 62. Thereby, the number of parts can be reduced.
  • the high-pressure bearing HB that supports the high-pressure shaft HS is a ball bearing.
  • the length of the high-pressure shaft HS can be shortened as compared with the case where the high-pressure bearing HB is constituted by a full float bearing and a thrust bearing.
  • these compressors are arranged such that both a part of the high-pressure compressor housing part 52 and a part of the high-pressure turbine housing part 62 are located in the space S formed between the low-pressure compressor housing part 51 and the low-pressure turbine housing part 61.
  • the housing parts 51 and 52 and the turbine housing parts 61 and 62 can be easily provided.
  • a flow rate variable mechanism 90 that makes the flow rate of exhaust gas acting on the high-pressure turbine wheel 65 variable is provided inside the high-pressure turbine housing portion 62.
  • the high-pressure turbine housing part 62 itself can function as a bypass path that bypasses the high-pressure turbine wheel 65.
  • the bypass passage can be omitted compared to a conventional general configuration in which a bypass passage that connects the upstream side and the downstream side of the high-pressure turbine housing and bypasses the high-pressure turbine wheel is provided separately.
  • the overall physique can be accurately reduced.
  • the flow rate variable mechanism 90 includes a cylindrical valve 91 that is displaced along the axial direction of the high-pressure shaft HS.
  • the cylindrical valve 91 is configured as a valve that is displaced along the axial direction of the high-pressure shaft HS, that is, in a direction perpendicular to the flow direction of the exhaust gas, it is necessary to drive the valve 91. Can be kept small. For this reason, the physique of the actuator 92 of the flow variable mechanism 90 can be made small, and the physique as the whole supercharger system can be made much smaller.
  • the low pressure compressor housing 151 and the high pressure compressor housing 152 are formed separately, and the low pressure turbine housing 161 and the high pressure turbine housing 162 are formed separately. Is different. Hereinafter, the difference from the first embodiment will be mainly described.
  • FIG. 7 shows a side structure of the supercharger in this embodiment.
  • 7A is a side view showing a side structure of the turbocharger from the low pressure turbine housing 161 side
  • FIG. 7B is a side view showing a side structure of the turbocharger from the low pressure compressor housing 151 side.
  • FIG. 7A is a side view showing a side structure of the turbocharger from the low pressure turbine housing 161 side
  • FIG. 7B is a side view showing a side structure of the turbocharger from the low pressure compressor housing 151 side.
  • the low-pressure turbine housing 161 and the high-pressure turbine housing 162 are formed separately, and a separate turbine is provided between the low-pressure turbine housing 161 and the high-pressure turbine housing 162.
  • a connection portion 163 is provided.
  • the turbine connection part 163 has a bellows structure and is made of metal.
  • the low-pressure turbine housing 161 and the turbine connection portion 163 are attached via these flanges 161A and 163B, and the high-pressure turbine housing 162 and the turbine connection portion 163 are attached via these flanges 162B and 163A.
  • a low-pressure turbine outlet port 161C and an exhaust bypass passage port 161D are formed in the downstream flange 161B of the low-pressure turbine housing 161, respectively.
  • the low-pressure compressor housing 151 and the high-pressure compressor housing 152 are formed separately, and the low-pressure compressor housing 151 and the high-pressure compressor housing 152 are separate compressor connections.
  • 153 is provided.
  • the compressor connection part 153 is made of rubber.
  • the low-pressure compressor housing 151 and the compressor connection portion 153 are attached via these flanges 151B and 163A, and the high-pressure compressor housing 152 and the compressor connection portion 153 are attached via these flanges (not shown).
  • the low-pressure compressor housing 151 and the high-pressure compressor housing 152 are formed separately. Further, the low pressure compressor housing 151 and the high pressure compressor housing 152 are connected by a compressor connecting portion 153 formed of rubber. Thus, even when at least one of the low-pressure compressor housing 151 and the high-pressure compressor housing 152 has manufacturing variations or assembly variations, these variations can be absorbed through elastic deformation of the compressor connection portion 153. it can. Therefore, the compressor housings 151 and 152 can be easily assembled.
  • the low-pressure turbine housing 161 and the high-pressure turbine housing 162 are formed separately. Further, the low pressure turbine housing 161 and the high pressure turbine housing 162 are connected by a metal turbine connection portion 163 having a bellows shape. Thus, even when at least one of the low-pressure turbine housing 161 and the high-pressure turbine housing 162 has manufacturing variations or assembly variations, these variations can be absorbed through elastic deformation of the turbine connection portion 163. it can. Therefore, the turbine housings 161 and 162 can be easily assembled.
  • thermal expansion of the low pressure turbine housing 161 and the high pressure turbine housing 162 can be absorbed through elastic deformation of the turbine connection portion 163. Therefore, it is possible to accurately suppress the occurrence of cracks and the like due to the thermal expansion of the turbine housings 161 and 162.
  • the supercharger system of the internal combustion engine according to the present invention is not limited to the configuration exemplified in the above embodiment, and can be implemented as, for example, the following form that is appropriately changed.
  • the first stage stationary blade 66 is provided in the axial direction of the high-pressure shaft HS inside the high-pressure turbine housing portion 62, but instead, as shown in FIG.
  • Two stages of fixed blades 266A and 266B may be provided in the axial direction of the high-pressure shaft HS. That is, in addition to the first fixed blade 266A surrounding the periphery of the base end portion (left end portion in FIG. 8) of the high pressure turbine wheel 265, the first surrounding portion surrounding the periphery of the distal end portion (right end portion in FIG. 8) of the high pressure turbine wheel 265 Two fixed wings 266B may be provided.
  • the high pressure turbine housing 262 includes a first wall portion 262A and a first wall portion 262A that extend from the inner peripheral surface between the first fixed blade 266A and the second fixed blade 266B to fix the fixed blade 266A, 266B. Is located on the opposite side (right side in FIG. 8) across the second fixed wing 366B, and the second wall 262B that forms a flow path of the exhaust gas flowing into the second fixed wing 266B together with the first wall 262A; Is provided.
  • the cylindrical valve 291 of the variable flow rate mechanism 290 can be displaced toward the high-pressure turbine wheel 265 until it abuts on the first wall 262A. In the fully closed position shown in FIG. 8, the cylindrical valve 291 passes through the second fixed blade 266B.
  • the provision of the fixed vanes 66 inside the high-pressure turbine housing portion 62 regulates the flow of exhaust gas acting on the high-pressure turbine wheel 65 and reduces the exhaust energy through the wheel 65. It is desirable to increase the recovery efficiency.
  • the configuration of the high-pressure turbine is not limited to this, and such fixed blades may not be provided.
  • the provision of the cylindrical valve 91 that displaces the variable flow rate mechanism 90 along the axial direction of the high-pressure shaft HS reduces the force required to drive the valve 91. It is desirable to suppress.
  • the configuration of the flow rate variable mechanism according to the present invention is not limited to this, as long as the flow rate of the exhaust gas that is provided inside the high pressure turbine housing and acts on the high pressure turbine wheel is variable. The configuration can be arbitrarily changed.
  • the high-pressure bearing HB is preferably a ball bearing in order to shorten the length of the high-pressure shaft HS.
  • the configuration of the high-pressure bearing HB is not limited to this, and it may be configured by a full float bearing and a thrust bearing, similarly to the low-pressure bearing LB.
  • the low pressure bearing LB may be a ball bearing.
  • connection part 163 which has a bellows structure
  • the structure of the connection part which connects the low pressure turbine housing 161 and the high pressure turbine housing 162 is not restricted to this, Other You may make it comprise a connection part with this elastic member.
  • the exhaust bypass portion 67 that forms the exhaust bypass passage 33 that bypasses the low pressure turbine wheel 64 is illustrated as being integrally formed with the low pressure turbine housing portion 61 and the high pressure turbine housing portion 62.
  • the exhaust bypass passage 33 may be formed separately from the turbine housing portions 61 and 62.
  • connection part 153 formed with rubber
  • the structure of the connection part which connects the low pressure compressor housing 151 and the high pressure compressor housing 152 is not restricted to this, In addition, for example, like the turbine connection part 163, it may have a bellows structure.
  • the intake bypass portion 57 that forms the intake bypass passage 23 that bypasses the high pressure compressor wheel 55 is illustrated as being integrally formed with the low pressure compressor housing portion 51 and the high pressure compressor housing portion 52.
  • the intake bypass passage 23 may be formed separately from the compressor housing portions 51 and 52.
  • the low-pressure compressor housing portion 51 and the high-pressure compressor housing portion 52 are integrally formed, and the low-pressure turbine housing portion 61 and the high-pressure turbine housing portion 62 are integrally formed.
  • the low-pressure compressor housing 151 and the high-pressure compressor housing 152 are formed separately, and the low-pressure turbine housing 161 and the high-pressure turbine housing 162 are formed separately.
  • the formation mode of the compressor housing and the turbine housing is not limited to this, and only the compressor housing may be formed separately, or only the turbine housing may be formed separately. Good.
  • the low-pressure bearing housing portion 41 and the high-pressure bearing housing portion 42 are integrally formed, so that the lubricating oil supply / discharge mechanism 70 and cooling of the shafts LS and HS and the bearings LB and HB are formed. It is desirable to make the water supply / discharge mechanism 80 common to the low pressure supercharger LTC and the high pressure supercharger HTC.
  • the bearing housing according to the present invention is not limited to this, and these bearing housings may be formed separately.
  • the compressor housing and the turbine housing are arranged such that both a part of the high pressure compressor housing and a part of the high pressure turbine housing are located in a space formed between the low pressure compressor housing and the high pressure turbine housing.
  • the supercharger system according to the present invention is not limited to this, and a space formed between the low pressure compressor housing 351 and the low pressure turbine housing portion 361 as shown in FIG.
  • the compressor housings 351 and 352 and the turbine housing portions 361 and 362 may be provided so that only a part of the high-pressure turbine housing portion 362 is located.
  • the low pressure bearing housing 341 and the high pressure bearing housing 342 may be formed separately.
  • the compressor housing and the turbine housing may be provided so that only a part of the high pressure compressor housing is located in a space formed between the low pressure compressor housing and the high pressure turbine housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)

Abstract

 内燃機関1は、吸気通路20に設けられる低圧コンプレッサホイール54及び排気通路30に設けられて同ホイール54に連結される低圧タービンホイール64を有する低圧過給機LTCと、吸気通路20に設けられる高圧コンプレッサホイール55及び排気通路30に設けられて同ホイール55に連結される高圧タービンホイール65を有する高圧過給機HTCとを備える。低圧コンプレッサホイール54を囲繞する低圧コンプレッサハウジング部51と低圧タービンホイール64を囲繞する低圧タービンハウジング部61との間に形成される空間には、高圧コンプレッサホイール55を囲繞する高圧コンプレッサハウジング部52の一部及び高圧タービンホイール65を囲繞する高圧タービンハウジング62の一部の双方が位置する。

Description

内燃機関の過給機システム
 本発明は、第1過給機と第2過給機とを備える、内燃機関の過給機システムに関するものである。
 従来、この種の内燃機関の過給機システムとしては、例えば特許文献1に記載のものがある。特許文献1に記載のものも含めて従来一般の過給機システムにおいては、低圧過給機と高圧過給機とを備えている。具体的には、内燃機関の吸気通路には吸気上流側から順に、低圧コンプレッサホイール及び同低圧コンプレッサホイールに比べて小型の高圧コンプレッサホイールが設けられている。また、内燃機関の排気通路には排気上流側から順に、高圧タービンホイール及び同高圧タービンホイールに比べて大型の高圧タービンホイールが設けられている。これら低圧コンプレッサホイール及び高圧コンプレッサホイールはそれぞれ低圧コンプレッサハウジング及び高圧コンプレッサハウジングにより囲繞されている。また、低圧タービンホイール及び高圧タービンホイールはそれぞれ低圧タービンハウジング及び高圧タービンハウジングにより囲繞されている。
 また、内燃機関の排気通路には、高圧タービンホイールの上流側と下流側とを接続して高圧タービンホイールを迂回する排気迂回通路が設けられ、同迂回通路に設けられた排気迂回弁の開度制御を通じて高圧タービンホイールへ流入する排気流量が制御されるようになっているものもある。
 ところで、こうした従来の過給機システムにあっては、内燃機関に加えて複数のコンプレッサハウジング、タービンハウジング及び排気迂回通路を備える必要があることから、例えば低圧過給機と高圧過給機とを所定の距離をおいて同軸状に設けるといった構成や、高圧過給機の鉛直方向下方に所定の距離をおいて低圧過給機を設けるといった構成が採用されている。しかしながらこれらの場合には、過給機システム全体、ひいては内燃機関の体格が大きなものとなり、その搭載スペースを確保することが困難となるといった問題が生じる。
特開2005―133651号公報
 本発明の目的は、過給機システム全体の体格を小さくすることのできる内燃機関の過給機システムを提供することにある。
 上記目的を達成するため、本発明に従う内燃機関の過給機システムは、第1過給機と第2過給機とを備え、前記第1過給機は、前記内燃機関の吸気通路に設けられる第1コンプレッサホイール、前記内燃機関の排気通路に設けられて同第1コンプレッサホイールに第1シャフトにより連結される第1タービンホイール、前記第1コンプレッサホイールを囲繞する第1コンプレッサハウジング、及び前記第1タービンホイールを囲繞する第1タービンハウジングを有し、前記第2過給機は、前記吸気通路に設けられる第2コンプレッサホイール、前記排気通路に設けられて同第2コンプレッサホイールに第2シャフトにより連結される第2タービンホイール、前記第2コンプレッサホイールを囲繞する第2コンプレッサハウジング、及び前記第2タービンホイールを囲繞する第2タービンハウジングを有する。前記第1コンプレッサハウジングと前記第1タービンハウジングとの間に形成される空間に、前記第2コンプレッサハウジングの一部及び前記第2タービンハウジングの一部の少なくとも一方が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成される。
 同構成によれば、上記空間に、第2コンプレッサハウジングの一部及び第2タービンハウジングの一部の双方が位置しない構造に比べて、第1シャフトの軸方向に対して垂直な方向における過給機システム全体としての体格を小さなものとすることができる。従って、過給機システム全体としての体格を的確に小さくすることができるようになる。
 また、前記空間に前記第2コンプレッサハウジングの一部及び前記第2タービンハウジングの一部の双方が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成されるといった態様が好ましい。
 同構成によれば、上記空間に、第2コンプレッサハウジングの一部及び第2タービンハウジングの一部のいずれか一方が位置する構造に比べて、第1シャフトの軸方向における過給機システム全体としての体格を小さなものとすることができる。従って、過給機システム全体としての体格を一層的確に小さくすることができるようになる。
 また、前記第1コンプレッサホイールは前記第2コンプレッサホイールに比べて径方向における体格が大きくされ、前記第1タービンホイールは前記第2タービンホイールに比べて径方向における体格が大きくされるといった態様が好ましい。
 上記構成によるように、第1コンプレッサホイールの径方向における体格を第2コンプレッサホイールに比べて大きくするとともに、第1タービンホイールの径方向における体格を第2タービンホイールに比べて大きくするといった態様を採用すれば、その逆の態様、すなわち第1コンプレッサホイールの径方向における体格を第2コンプレッサホイールに比べて小さくするとともに、第1タービンホイールの径方向における体格を第2タービンホイールに比べて小さくするといった態様を採用する場合に比べて、第1コンプレッサハウジングと第1タービンハウジングとの間に形成される空間を大きなものとすることができる。従って、その空間に、第2コンプレッサハウジングの一部及び第2タービンハウジングの一部の少なくとも一方が位置するようにする上で、上記空間を的確に確保することができるようになる。
 また、前記第2シャフトを支持する第2ベアリングはボールベアリングであるといった態様が好ましい。
 一般に、排気駆動式の過給機では、シャフトを支持するベアリングとして、ラジアル荷重を受けるフルフロートベアリングと、スラスト荷重を受けるスラストベアリングとを備えている。これに対して、上記構成によれば、第2ベアリングが、ラジアル荷重及びスラスト荷重の双方を受けるボールベアリングであることから、第2ベアリングがフルフロートベアリングとスラストベアリングとによって構成されるものに比べて、第2シャフトの長さを短くすることができる。従って、第1コンプレッサハウジングと第1タービンハウジングとの間に形成される空間に、第2コンプレッサハウジングの一部及び第2タービンハウジングの一部の双方が位置する構成を容易に実現することができるようになる。
 他方、前記第2タービンハウジングの内部には、前記第2タービンホイールに対して作用する排気の流量を可変とする流量可変機構が設けられているといった態様が好ましい。
 同態様によれば、流量可変弁の開度制御を通じて第2タービンホイールに対して作用する排気の流量を可変とすることができる。これにより、第2過給機の過給特性を機関運転状態に応じて的確に変更することができるようになる。
 また、流量可変弁の開度制御を通じて第2タービンホイールに対して排気が作用しない状態とすれば、第2タービンハウジング自体を、第2タービンホイールを迂回する迂回通路として機能させることができる。これにより、例えば第2タービンハウジングの上流側と下流側とを接続して第2タービンホイールを迂回する迂回通路を別途設ける構成に比べて、過給機システム全体としての体格を一層的確に小さくすることができるようになる。
 またこの場合には、前記流量可変機構は前記第2シャフトの軸方向に沿って変位する円筒弁を備えているといった態様が好ましい。
 同態様によれば、第2タービンホイールに対して作用する排気の流量を可変とする流量可変弁が、第2シャフトの軸方向に沿って、すなわち排気の流れ方向に対して垂直な方向に変位する円筒弁として構成されることから、同弁を駆動するために必要となる力を小さく抑えることができる。このため、流量可変弁のアクチュエータの体格を小さくすることができ、過給機システム全体としての体格を一層的確に小さくすることができるようになる。
 また、前記空間に前記第2コンプレッサハウジングの一部及び前記第2タービンハウジングの一部の双方が位置するようにこれら第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成され、前記第1過給機は、前記第1シャフトを支持する第1ベアリング、及び前記第1ベアリングを囲繞する第1ベアリングハウジングを有し、前記第2過給機は、前記第2シャフトを支持する第2ベアリング、及び前記第2ベアリングを囲繞する第2ベアリングハウジングを有し、前記第1ベアリングハウジングと前記第2ベアリングハウジングとは一体にて形成されるといった態様が好ましい。
 第1コンプレッサハウジングと第1タービンハウジングとの間に形成される空間に、第2コンプレッサハウジングの一部及び第2タービンハウジングの一部の双方が位置する構成にあっては、第1シャフトの軸方向に対して垂直な方向における第1ベアリングハウジングと第2ベアリングハウジングとの距離を小さなものとすることができる。このため、上記構成によるように、第1ベアリングハウジングと第2ベアリングハウジングとは一体にて形成されてなるといった態様を採用すれば、これらベアリングハウジングの一体化により部品点数の削減を図るとともに、これらベアリングハウジングの一体化にともないベアリングハウジング全体としての体格が増大することを的確に抑制することができるようになる。
 また、前記第1コンプレッサホイールは前記第2コンプレッサホイールよりも前記吸気通路の上流側に設けられ、前記空間に前記第2コンプレッサハウジングの一部が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成され、前記第1コンプレッサハウジングと前記第2コンプレッサハウジングとは一体にて形成されるといった態様をもって具体化することができる。
 同態様によれば、コンプレッサハウジングの一体化により部品点数の削減を図ることができるようになる。また、第1コンプレッサホイールは第2コンプレッサホイールよりも吸気通路の上流側に設けられるとともに、第1コンプレッサハウジングと第1タービンハウジングとの間に形成される空間に第2コンプレッサハウジングの一部が位置する構成であることから、第1シャフトの軸方向における第1コンプレッサハウジングと第2コンプレッサハウジングとの距離を小さなものとすることができ、これらコンプレッサハウジングの一体化にともないコンプレッサハウジング全体としての体格が増大することを的確に抑制することができるようになる。
 またこの場合には、前記第1コンプレッサホイールは前記第2コンプレッサホイールに比べて径方向における体格が大きくされ、前記第2コンプレッサホイールを迂回する吸気迂回通路が前記第1コンプレッサハウジング及び前記第2コンプレッサハウジングと一体にて形成されるといった態様が好ましい。
 同態様によれば、第1コンプレッサハウジング、第2コンプレッサハウジング、及び吸気迂回通路を一体化することにより部品点数を削減することができるようになる。
 或いは、前記第1コンプレッサハウジングと前記第2コンプレッサハウジングとは別体にて形成されるといった態様をもって具体化することができる。
 この場合には、前記第1コンプレッサハウジングと前記第2コンプレッサハウジングとは弾性部材からなる接続部により接続されるといった態様をもって具体化することができる。
 同態様によれば、第1コンプレッサハウジング及び第2コンプレッサハウジングの少なくとも一方に製造時におけるばらつきや組み付け時におけるばらつきが存在する場合であっても、それらのばらつきを接続部の弾性変形を通じて吸収することができる。従って、コンプレッサハウジングを容易に組み付けることができるようになる。
 一方、前記第1タービンホイールは前記第2タービンホイールよりも前記排気通路の下流側に設けられ、前記空間に前記第2タービンハウジングの一部が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成され、前記第1タービンハウジングと前記第2タービンハウジングとは一体にて形成されるといった態様をもって具体化することができる。
 同態様によれば、タービンハウジングの一体化により部品点数の削減を図ることができるようになる。また、第1タービンホイールは第2タービンホイールよりも排気通路の下流側に設けられるとともに、第1コンプレッサハウジングと第1タービンハウジングとの間に形成される空間に第2タービンハウジングの一部が位置する構成であることから、第1シャフトの軸方向における第1タービンハウジングと第2タービンハウジングとの距離を小さなものとすることができ、これらタービンハウジングの一体化にともないタービンハウジング全体としての体格が増大することを的確に抑制することができるようになる。
 また、前記第1タービンホイールは前記第2タービンホイールに比べて径方向における体格が大きくされ、前記第1タービンホイールを迂回する排気迂回通路が前記第1タービンハウジング及び前記第2タービンハウジングと一体にて形成されるといった態様が好ましい。
 同態様によれば、第1タービンハウジング、第2タービンハウジング、及び排気迂回通路を一体化することにより部品点数を削減することができるようになる。
 或いは、前記第1タービンハウジングと前記第2タービンハウジングとは別体にて形成されるといった態様をもって具体化することができる。
 またこの場合には、前記第1タービンハウジングと前記第2タービンハウジングとは弾性部材からなる接続部により接続されるといった態様が好ましい。
 同態様によれば、第1タービンハウジング及び第2タービンハウジングの少なくとも一方に製造時におけるばらつきや組み付け時におけるばらつきが存在する場合であっても、それらのばらつきを接続部の弾性変形を通じて吸収することができる。従って、タービンハウジングを容易に組み付けることができるようになる。
 また、上記態様によれば、第1タービンハウジングや第2タービンハウジングの熱膨張を、接続部の弾性変形を通じて吸収することができる。従って、これらタービンハウジングの熱膨張に起因してクラック等が生じることを的確に抑制することができるようになる。
 またこの場合には、前記接続部は蛇腹構造を有しているといった態様をもって具体化することができる。
本発明の第1実施形態に係る内燃機関の過給機システムの概略構成を示すブロック図。 図1の過給機システムについて、低圧コンプレッサハウジングと低圧タービンハウジングとの間に形成される空間Sを説明するための平面図。 図1の過給機システムの平面図。 図3の過給機システムの断面図。 図4の過給機システムについて、流量可変機構を中心として示す部分断面図。 (a)は図3の過給機システムにおけるベアリングハウジングについて、潤滑油給排機構を中心として示す断面図、(b)はそのベアリングハウジングについて、冷却水給排機構を中心として示す断面図。 (a)は本発明の第2実施形態に係る過給機システムを低圧タービンハウジング側から見た側面図、(b)はその過給機システムを低圧コンプレッサハウジング側から見た側面図。 高圧タービンの変形例の部分断面図。 本発明の変更例に係る過給機システムの平面図。
<第1実施形態>
 以下、図1~図6を参照して、本発明に係る内燃機関の過給機システムを車載内燃機関の過給機システムとして具体化した第1実施形態について説明する。
 図1に、本実施形態に係る内燃機関1の概略構成を示す。
 同図に示すように、内燃機関1の機関本体10には、機関本体10に吸気を供給するための吸気通路20及び機関本体10から排気を排出するための排気通路30がそれぞれ接続されている。
 吸気通路20には、上流側から順に、エアクリーナ21、遠心式の低圧コンプレッサLC、遠心式の高圧コンプレッサHC、及び吸気マニホルド22が設けられている。また、吸気迂回通路23が、高圧コンプレッサHCを迂回するように、低圧コンプレッサLCと高圧コンプレッサHCとの間の吸気通路20の部分と、高圧コンプレッサHCの下流側の吸気通路20の部分とを接続している。吸気迂回通路23には吸気迂回弁24が設けられている。吸気迂回弁24の開度制御を通じて高圧コンプレッサHCへ流入する吸気流量が制御されるようになっている。低圧コンプレッサLCは、低圧コンプレッサホイール54とこれを囲繞する低圧コンプレッサハウジング部51とを備えている。また、高圧コンプレッサHCは、高圧コンプレッサホイール55とこれを囲繞する高圧コンプレッサハウジング部52とを備えている。
 排気通路30には、上流側から順に、排気マニホルド32、半径流式の高圧タービンHT、半径流式の低圧タービンLT、及び触媒装置31が設けられている。また、排気迂回通路33が、低圧タービンLTを迂回するように、高圧タービンHTと低圧タービンLTとの間の排気通路30の部分と、低圧タービンLTの下流側の排気通路30の部分とを接続している。排気迂回通路33には排気迂回弁34が設けられている。排気迂回弁34の開度制御を通じて低圧タービンLTへ流入する排気流量が制御されるようになっている。低圧タービンLTは、低圧タービンホイール64とこれを囲繞する低圧タービンハウジング部61とを備えている。また、高圧タービンHTは、高圧タービンホイール65とこれを囲繞する高圧タービンハウジング部62とを備えている。内燃機関の過給機システムにおいては、通常、高圧タービンHTの上流側と、高圧タービンHTと低圧タービンLTとの間の排気通路30の部分とを接続する迂回通路、及び同通路に設けられて高圧タービンHTへ流入する排気流量を制御する制御弁を備えている(図1中、二点鎖線)。これに対して、本実施形態においては、高圧タービンハウジング部62の内部に、後に詳述する円筒弁91を設けることにより上記迂回通路の構成を割愛している。 低圧コンプレッサホイール54と低圧タービンホイール64とは低圧シャフトLSにより連結されており、低圧コンプレッサLC、低圧タービンLT、及び低圧シャフトLSにより排気駆動式の低圧過給機LTCが構成される。また、高圧コンプレッサHCと高圧タービンHTとは高圧シャフトHSにより連結されており、高圧コンプレッサHC、高圧タービンHT、及び高圧シャフトHSにより排気駆動式の高圧過給機HTCが構成される。
 ところで、従来の内燃機関の過給機システムにあっては、複数のコンプレッサ及びタービンや排気迂回通路を備えていることから、過給機システム全体、ひいては内燃機関の体格が大きなものとなる。そのため、車両における搭載スペースを確保することが困難となるといった問題が生じる。
 そこで、本実施形態では、コンプレッサハウジング部51,52及びタービンハウジング部61,62を以下のように構成することにより、過給機システム全体としての体格を的確に小さくするようにしている。
 図2に示すように、低圧コンプレッサハウジングLCHと低圧タービンハウジングLTHとの間には空間Sが形成されることとなるが、従来の過給機システムにあってはこれがデッドスペースとなっている。
 そこで、本実施形態では、低圧コンプレッサハウジング部51と低圧タービンハウジング部61との間に形成される空間Sに、高圧コンプレッサハウジング部52の一部及び高圧タービンハウジング部62の一部の双方が位置するように、これらコンプレッサハウジング部51,52及びタービンハウジング部61,62を構成することとした。
 次に、図3~図6を参照して、本実施形態における過給機の構成について説明する。
 図3は、本実施形態における過給機の平面構造を示した平面図である。
 同図に示すように、低圧過給機LTC及び高圧過給機HTCはそれらのシャフトLS,HSが平行となるように設けられている。
 コンプレッサハウジング50は、低圧コンプレッサハウジング部51、高圧コンプレッサハウジング部52、これらコンプレッサハウジング部51,52を接続するコンプレッサ接続部53、及び吸気迂回部57を備えており、これらが一体にて形成されている。吸気迂回部57の内部には、吸気迂回通路23が形成されている。ここで、コンプレッサ接続部53は、低圧シャフトLSの軸方向において低圧コンプレッサハウジング部51の外側端部(図3中、左側端部)よりも内側(図3中、右側)に位置するように、且つ高圧シャフトHSの軸方向に垂直をなす方向(図3中、上下方向)おいて高圧コンプレッサハウジング部52の外側端部(図3中、上側端部)よりも内側(図3中、下側)に位置するように設けられている。また、吸気迂回部57は、高圧シャフトHSの軸方向においてコンプレッサ接続部53の外側端部(図3中、左側端部)よりも内側(図3中、右側)に位置するように、且つ高圧シャフトHSの軸方向に垂直をなす方向(図3中、上下方向)おいて高圧コンプレッサハウジング部52の外側端部(図3中、上側端部)よりも内側(図中、下側)に位置するように設けられている。尚、本実施形態では、コンプレッサハウジング50を、鋳造及び機械加工により形成するようにしている。
 タービンハウジング60は、低圧タービンハウジング部61、高圧タービンハウジング部62、これらタービンハウジング部61,62を接続するタービン接続部63、及び排気迂回部67を備えており、これらが一体にて形成されている。排気迂回部67の内部には、排気迂回通路33が形成されている。ここで、タービン接続部63は、低圧シャフトLSの軸方向において低圧タービンハウジング部61の外側端部(図3中、右側端部)よりも内側(図3中、左側)に位置するように、且つ高圧シャフトHSの軸方向に垂直をなす方向(図3中、上下方向)おいて高圧コンプレッサハウジング部62の外側端部(図3中、上側端部)よりも内側(図3中、下側)に位置するように設けられている。また、排気迂回部67は、低圧シャフトLSの軸方向において低圧タービンハウジング部61の外側端部(図3中、右側端部)よりも内側(図3中、左側)に位置するように、且つ高圧シャフトHSの軸方向に垂直をなす方向(図3中、上下方向)おいてタービン接続部63の外側端部(図3中、上側端部)及び低圧タービンハウジング部61の外側端部(図3中、下側端部)よりも内側(図3中、中央寄り)に位置するように設けられている。尚、本実施形態では、タービンハウジング60を、鋳造及び機械加工により形成するようにしている。
 低圧過給機LTCの低圧シャフトLSは低圧ベアリングLBにより軸支されている。ここで、低圧ベアリングは、低圧シャフトLSのラジアル荷重を受けるフルフロートベアリングと、低圧シャフトLSのスラスト荷重を受けるスラストベアリングとを備えている。低圧ベアリングLBは低圧ベアリングハウジング部41により囲繞されている。高圧過給機HTCの高圧シャフトHSは高圧ベアリングHBにより軸支されている。ここで、高圧ベアリングHBは、高圧シャフトHSのラジアル荷重及びスラスト荷重の双方を受けるボールベアリングである。高圧ベアリングは高圧ベアリングハウジング部42により囲繞されている。これら低圧ベアリングハウジング部41と高圧ベアリングハウジング部42とは一体にて形成されており、これら全体をベアリングハウジング40と称する。
 ベアリングハウジング40には、低圧ベアリングLB及び高圧ベアリングHBの双方を潤滑するための潤滑油を供給及び排出するための潤滑油給排機構70が設けられている。低圧ベアリングハウジング部41には、潤滑油給排機構70の潤滑油導入通路71及び潤滑油排出通路72の双方が接続されている。
 ベアリングハウジング40には、低圧ベアリングLB及び高圧ベアリングHBの双方を冷却するための冷却水を供給及び排出するための冷却水給排機構80が設けられている。低圧ベアリングハウジング部41には、冷却水給排機構80の冷却水導入通路81が接続され、高圧ベアリングハウジング部42には、冷却水給排機構80の冷却水排出通路82が接続されている。
 図4は、過給機の部分断面構造を示した部分断面図である。尚、同図では、吸気迂回部57及び排気迂回部67については図示を割愛している。
 同図に示すように、低圧コンプレッサホイール54は、高圧コンプレッサホイール55に比べて径方向における体格が大きなものとなっている。これにともない、低圧コンプレッサハウジング部51は高圧コンプレッサハウジング部52に比べて径方向における体格が大きなものとなっている。また、低圧タービンホイール64は、高圧タービンホイール65に比べて径方向における体格が大きなものとなっている。これにともない、低圧タービンハウジング部61は高圧タービンハウジング部62に比べて径方向における体格が大きなものとなっている。
 高圧タービンハウジング部62の内部には、高圧タービンホイール65に対して作用する排気の流量を可変とする流量可変機構90が設けられている。流量可変機構90は高圧シャフトHSの軸方向に沿って変位する円筒弁91と、円筒弁91を駆動するアクチュエータ92とを備えている。また、高圧タービンハウジング部62の内部には、高圧タービンホイール65に作用する排気の流れ方向を規制するための固定翼66が設けられている。固定翼66は、高圧タービンホイール65の基端部側(図4中、左側)の周囲を取り囲む態様にて設けられている。
 次に、図5を参照して、流量可変機構90の構成について詳細に説明する。
 同図に示すように、円筒弁91は、円筒形状をなす円筒部91A、円筒部91Aにおいて高圧タービンホイール65側の端部に接続される先端部91B、及び円筒部91Aにおいて高圧タービンホイール65とは反対側の端部に接続される基端部91Cを有している。先端部91Bは円環状をなすものであり、円筒部91Aにおいて高圧タービンホイール65側の端部から高圧シャフトHSの軸方向に垂直をなす方向に伸びる態様にて設けられている。基端部91Cは、円筒部91Aにおいて高圧タービンホイール65とは反対側に向けて徐々に縮径される形状をなす部分とその基端(図5中、右端)から伸びる軸状の部分とを有している。また、基端部91Cには、円筒弁91の内部の排気を外部へと排出するための排出孔91Eが形成されている。尚、基端部91Cにおける軸状の部分にアクチュエータ92の出力軸が連結されている。また、円筒部91Aの外周面において高圧タービンホイール65の内周面に対向する位置には全周にわたってシール溝91Dが形成されており、このシール溝91Dには円環状のシール部材68が取り付けられている。
 円筒弁91は、図中に示す全開位置P1から全閉位置P2までの範囲で高圧シャフトHSの軸方向に変位可能となっている。ここで、円筒弁91が全開位置P1とされている状態においては、高圧タービンハウジング部62に流入する排気の大部分が固定翼66を通過することなく、且つ高圧タービンホイール65に対して作用することなく、高圧タービンハウジング部62から流出するようになっている。一方、円筒弁91が全閉位置P2とされている状態においては、高圧タービンハウジング部62に流入する排気の大部分が固定翼66を通過するようになっている。また、こうした円筒弁91の変位を可能とするために、高圧タービンハウジング部62の内部が形成されている。従って、高圧シャフトHSの軸方向における円筒弁91の位置を変更することにより、高圧タービンホイール65に対して作用する排気の流量を制御することができる。
 次に、図6を参照して、ベアリングハウジング40の構成について詳細に説明する。尚、図6(a)及び図6(b)は低圧シャフトLSの軸方向(高圧シャフトHSの軸方向)において異なる位置における断面図であって、図6(a)に潤滑油給排機構70を中心としたベアリングハウジング40の断面構造を、図6(b)に、冷却水給排機構80を中心としたベアリングハウジング40の断面構造を模式的にそれぞれ示す。
 まずは、図6(a)に示すように、ベアリングハウジング40には、鉛直方向下側端面に開口部を有するとともに、鉛直方向上方に伸びる主供給通路73が形成されている。また、ベアリングハウジング40には、主供給通路73の途中から水平方向に伸びて低圧シャフトLSに潤滑油を供給する低圧側供給通路74、及び主供給通路73の鉛直方向上端部から水平方向に伸びて高圧シャフトHSに潤滑油を供給する高圧側供給通路75が形成されている。また、ベアリングハウジング40には、鉛直方向下側端面に開口部を有するとともに低圧シャフトLSを含む空間である低圧側空間が形成されている。また、ベアリングハウジング40には、高圧シャフトHSを含む空間である高圧側空間が形成されている。これら低圧側空間76と高圧側空間77とは、鉛直方向に伸びる連結通路78を介して連通されている。
 こうした構成において、潤滑油導入通路71から主供給通路73を通じてベアリングハウジング40の内部に導入される潤滑油は、低圧側供給通路74を通じて低圧シャフトLS及び低圧ベアリングLBに供給されるとともに、高圧側供給通路75を通じて高圧シャフトHS及び高圧ベアリングHBに供給される。また、低圧シャフトLS及び低圧ベアリングLBにおいて潤滑に供された後の潤滑油は、低圧側空間76及び潤滑油排出通路72を通じてベアリングハウジング40の外部に排出される。また、高圧シャフトHS及び高圧ベアリングHBにおいて潤滑に供された後の潤滑油は、高圧側空間77、連結通路78、低圧側空間76、潤滑油排出通路72、及び潤滑油排出通路72を通じてベアリングハウジング40の外部に排出される。
 次に、図6(b)に示すように、ベアリングハウジング40には、鉛直方向下側端面に開口部を有するとともに、鉛直方向上方に伸びる供給通路83が形成されている。また、ベアリングハウジング40には、供給通路83の途中から水平方向に伸びて低圧シャフトLS及び低圧ベアリングLBの上方に冷却水を供給する低圧側通路84、及び供給通路83の鉛直方向上端部から高圧シャフトHS及び高圧ベアリングHB側に伸びて高圧シャフトHS及び高圧ベアリングHBの上方に冷却水を供給する高圧側通路85が形成されている。ここで、高圧側通路85は、高圧シャフトHS及び高圧ベアリングHBを囲むように断面略アーチ状に形成されている。また、高圧側通路85において高圧シャフトHS及び高圧ベアリングHBの鉛直方向上方には、ベアリングハウジング40の鉛直方向上側端面に開口部を有する排出通路86が形成されている。
 こうした構成において、冷却水導入通路81から供給通路83を通じてベアリングハウジング40の内部に導入される冷却水は、低圧側通路84に流入することにより低圧シャフトLS及び低圧ベアリングLBを冷却するとともに、高圧側通路85に流入することにより高圧シャフトHS及び高圧ベアリングHBを冷却する。そして、冷却に供された後の冷却水は排出通路86、冷却水排出通路82を通じてベアリングハウジング40の外部に排出される。
 以上説明した本実施形態に係る過給機システムによれば、以下に示す作用効果が得られるようになる。
 (1)内燃機関1は、吸気通路20に設けられる低圧コンプレッサホイール54及び排気通路30に設けられて低圧コンプレッサホイール54に低圧シャフトLSにより連結される低圧タービンホイール64を有する低圧過給機LTCと、吸気通路20に設けられる高圧コンプレッサホイール55及び高圧コンプレッサホイール55に高圧シャフトHSにより連結される高圧タービンホイール65を有する高圧過給機HTCとを備える。また、低圧コンプレッサホイール54を囲繞する低圧コンプレッサハウジング部51と低圧タービンホイール64を囲繞する低圧タービンハウジング部61との間に形成される空間Sに、高圧コンプレッサホイール55を囲繞する高圧コンプレッサハウジング部52の一部及び高圧タービンホイール65を囲繞する高圧タービンハウジング部62の一部の双方が位置するように、これらコンプレッサハウジング部51,52及びタービンハウジング部61,62が設けられるものとした。これにより、上記空間Sに、高圧コンプレッサハウジング部52の一部及び高圧タービンハウジング部62の一部の双方が位置しない構造に比べて、低圧シャフトLSの軸方向に対して垂直な方向における過給機システム全体としての体格を小さなものとすることができる。また、上記空間Sに、高圧コンプレッサハウジング部の一部及び高圧タービンハウジング部の一部のいずれか一方が位置する構造に比べて、低圧シャフトLSの軸方向における過給機システム全体としての体格を小さなものとすることができる。従って、過給機システム全体としての体格を的確に小さくすることができる。
 また、コンプレッサ接続部53及びタービン接続部63の流路長をそれぞれ短くすることができることから、過給機システム全体としての圧縮効率を高めることができるようにもなる。
 (2)低圧コンプレッサホイール54は高圧コンプレッサホイール55に比べて径方向における体格が大きくされるとともに、低圧タービンホイール64は高圧タービンホイール65に比べて径方向における体格が大きくされるものとした。これにより、低圧コンプレッサハウジング部51と低圧タービンハウジング部61との間に形成される空間Sに、高圧コンプレッサハウジング部52の一部及び高圧タービンハウジング部62の一部の双方が位置するようにする上で、上記空間Sを的確に確保することができる。
 (3)低圧ベアリングハウジング部41と、高圧ベアリングハウジング部42とは一体にて形成されるものとした。このため、ベアリングハウジング部41,42の一体化により部品点数の削減を図るとともに、これらベアリングハウジング部41,42の一体化にともないベアリングハウジング40全体としての体格が増大することを的確に抑制することができる。
 (4)低圧コンプレッサハウジング部51と高圧コンプレッサハウジング部52とは一体にて形成されるものとした。これにより、部品点数の削減を図ることができる。また、上述したように、低圧シャフトLSの軸方向における低圧コンプレッサハウジング部51と高圧コンプレッサハウジング部52との距離を小さなものとすることができることから、これらコンプレッサハウジング部51,52の一体化にともないコンプレッサハウジング50全体としての体格が増大することを的確に抑制することができる。
 (5)高圧コンプレッサホイール55を迂回する吸気迂回通路23が低圧コンプレッサハウジング部51及び高圧コンプレッサハウジング部52と一体にて形成されるものとした。これにより、部品点数を削減することができるようになる。
 (6)低圧タービンハウジング部61と高圧タービンハウジング部62とは一体にて形成されるものとした。これにより、部品点数の削減を図ることができるようになる。また、上述したように、低圧シャフトLSの軸方向における低圧タービンハウジング部61と高圧タービンハウジング部62との距離を小さなものとすることができることから、これらタービンハウジング部61,62の一体化にともないタービンハウジング60全体としての体格が増大することを的確に抑制することができる。
 (7)低圧タービンホイール64を迂回する排気迂回通路33が低圧タービンハウジング部61及び高圧タービンハウジング部62と一体にて形成されるものとした。これにより、部品点数を削減することができるようになる。
 (8)高圧シャフトHSを軸支する高圧ベアリングHBをボールベアリングとした。これにより、高圧ベアリングHBがフルフロートベアリングとスラストベアリングとによって構成されるものに比べて、高圧シャフトHSの長さを短くすることができる。従って、低圧コンプレッサハウジング部51と低圧タービンハウジング部61との間に形成される空間Sに、高圧コンプレッサハウジング部52の一部及び高圧タービンハウジング部62の一部の双方が位置するようにこれらコンプレッサハウジング部51,52及びタービンハウジング部61,62を容易に設けることができる。
 (9)高圧タービンハウジング部62の内部には、高圧タービンホイール65に対して作用する排気の流量を可変とする流量可変機構90が設けられるものとした。これにより、高圧過給機HTCの過給特性を機関運転状態に応じて的確に変更することができるようになる。また、流量可変機構90による流量制御を通じて高圧タービンホイール65に対して排気が作用しない状態とすれば、高圧タービンハウジング部62自体を、高圧タービンホイール65を迂回する迂回通路として機能させることができる。これにより、例えば高圧タービンハウジングの上流側と下流側とを接続して高圧タービンホイールを迂回する迂回通路を別途設ける従来一般の構成に比べて、迂回通路を割愛することができ、過給機システム全体としての体格を的確に小さくすることができる。
 (10)流量可変機構90は高圧シャフトHSの軸方向に沿って変位する円筒弁91を備えてなるものとした。このように、円筒弁91が高圧シャフトHSの軸方向に沿って、すなわち排気の流れ方向に対して垂直な方向に変位する弁として構成されることから、同弁91を駆動するために必要となる力を小さく抑えることができる。このため、流量可変機構90のアクチュエータ92の体格を小さくすることができ、過給機システム全体としての体格を一層的確に小さくすることができる。
<第2実施形態>
 以下、図7を参照して本発明に係る内燃機関の過給機システムの第2実施形態について説明する。本実施形態では、低圧コンプレッサハウジング151と高圧コンプレッサハウジング152とが別体にて形成されるとともに、低圧タービンハウジング161と高圧タービンハウジング162とが別体にて形成される点が、第1実施形態と相違している。以下、第1実施形態との相違点を中心に説明する。
 図7に、本実施形態における過給機の側面構造を示す。尚、図7(a)は低圧タービンハウジング161側からの過給機の側面構造を示す側面図であり、図7(b)は低圧コンプレッサハウジング151側からの過給機の側面構造を示す側面図である。
 まずは、図7(a)に示すように、低圧タービンハウジング161と高圧タービンハウジング162とは別体にて形成されており、低圧タービンハウジング161と高圧タービンハウジング162との間には別体のタービン接続部163が設けられている。タービン接続部163は蛇腹構造を有するものであり、金属により形成されている。低圧タービンハウジング161とタービン接続部163とはこれらのフランジ161A,163Bを介して取り付けられるとともに、高圧タービンハウジング162とタービン接続部163とはこれらのフランジ162B,163Aを介して取り付けられている。尚、低圧タービンハウジング161の下流側フランジ161Bには、低圧タービン出口ポート161Cと排気迂回通路ポート161Dがそれぞれ形成されている。
 次に、図7(b)に示すように、低圧コンプレッサハウジング151と高圧コンプレッサハウジング152とは別体にて形成されており、低圧コンプレッサハウジング151と高圧コンプレッサハウジング152とは別体のコンプレッサ接続部153が設けられている。コンプレッサ接続部153はゴムにより形成されている。低圧コンプレッサハウジング151とコンプレッサ接続部153とはこれらのフランジ151B,163Aを介して取り付けられるとともに、高圧コンプレッサハウジング152とコンプレッサ接続部153とはこれらのフランジ(図示略)を介して取り付けられている。
 以上説明した本実施形態に係る過給機システムによれば、以下に示す作用効果が得られるようになる。
 (1)低圧コンプレッサハウジング151と高圧コンプレッサハウジング152とは別体に形成されるものとした。また、低圧コンプレッサハウジング151と高圧コンプレッサハウジング152とはゴムにより形成されるコンプレッサ接続部153により接続されるものとした。これにより、低圧コンプレッサハウジング151及び高圧コンプレッサハウジング152の少なくとも一方に製造時におけるばらつきや組み付け時におけるばらつきが存在する場合であっても、それらのばらつきをコンプレッサ接続部153の弾性変形を通じて吸収することができる。従って、コンプレッサハウジング151,152を容易に組み付けることができる。
 (2)低圧タービンハウジング161と高圧タービンハウジング162とは別体にて形成されるものとした。また、低圧タービンハウジング161と高圧タービンハウジング162とは蛇腹形状を有する金属製のタービン接続部163により接続されるものとした。これにより、低圧タービンハウジング161及び高圧タービンハウジング162の少なくとも一方に製造時におけるばらつきや組み付け時におけるばらつきが存在する場合であっても、それらのばらつきをタービン接続部163の弾性変形を通じて吸収することができる。従って、タービンハウジング161,162を容易に組み付けることができるようになる。
 また、低圧タービンハウジング161や高圧タービンハウジング162の熱膨張についてもこれをタービン接続部163の弾性変形を通じて吸収することができる。従って、これらタービンハウジング161,162の熱膨張に起因してクラック等が生じることを的確に抑制することができる。
 尚、本発明にかかる内燃機関の過給機システムは、上記実施形態にて例示した構成に限定されるものではなく、これを適宜変更した例えば次のような形態として実施することもできる。
 ・上記第1実施形態では、高圧タービンハウジング部62の内部に、高圧シャフトHSの軸方向において1段の固定翼66を設けるようにしているが、これに代えて、図8に示すように、高圧シャフトHSの軸方向において2段の固定翼266A,266Bを設けるようにしてもよい。すなわち、高圧タービンホイール265の基端部(図8中、左端部)の周囲を取り囲む第1固定翼266Aに加え、高圧タービンホイール265の先端部(図8中、右端部)の周囲を取り囲む第2固定翼266Bを備えるようにしてもよい。高圧タービンハウジング262には、その内周面から第1固定翼266Aと第2固定翼266Bとの間に伸びてこれら固定翼266A,266Bを固定する第1壁部262Aと、第1壁部262Aとは第2固定翼366Bを挟んで反対側(図8中、右側)に位置して第1壁部262Aと共に第2固定翼266Bに流入する排気の流路を形成する第2壁部262Bとが設けられている。また、流量可変機構290の円筒弁291は、第1壁部262Aに当接するまで高圧タービンホイール265側に変位可能となっており、図8に示す全閉位置においては、第2固定翼266Bを通じて高圧コンプレッサホイール265に排気が作用することが禁止されるようになっている。また、円筒弁291の全開位置においては、高圧タービンハウジング部262に流入する排気の大部分が第2壁部262Bとこれに対向する高圧タービンハウジング部262の内周面との間を通過することにより、高圧タービンハウジング部262から外部に流出するようになっている。
 ・上記各実施形態によるように、高圧タービンハウジング部62の内部に固定翼66を設けるようにすることが、高圧タービンホイール65に作用する排気の流れを規制して同ホイール65を通じての排気エネルギの回収効率を高める上では望ましい。しかしながら、高圧タービンの構成はこれに限られるものではなく、こうした固定翼を設けないようにすることもできる。
 ・上記各実施形態によるように、流量可変機構90を高圧シャフトHSの軸方向に沿って変位する円筒弁91を備えるものとすることが、同弁91を駆動するために必要となる力を小さく抑える上では望ましい。しかしながら、本発明に係る流量可変機構の構成はこれに限られるものではなく、高圧タービンハウジングの内部に設けられて、高圧タービンホイールに対して作用する排気の流量を可変とするものであれば、その構成を任意に変更することができる。
 ・上記各実施形態によるように、高圧ベアリングHBをボールベアリングとすることが、高圧シャフトHSの長さを短くする上では望ましい。しかしながら、高圧ベアリングHBの構成はこれに限られるものではなく、低圧ベアリングLBと同様に、フルフロートベアリングとスラストベアリングとによって構成するようにしてもよい。また、低圧ベアリングLBをボールベアリングとしてもよい。
 ・上記第2実施形態では、蛇腹構造を有するタービン接続部163について例示しているが、低圧タービンハウジング161と高圧タービンハウジング162とを接続する接続部の構成はこれに限られるものではなく、その他の弾性部材によって接続部を構成するようにしてもよい。
 ・上記第1実施形態では、低圧タービンホイール64を迂回する排気迂回通路33を形成する排気迂回部67が低圧タービンハウジング部61及び高圧タービンハウジング部62と一体に形成されるものについて例示したが、排気迂回通路33をこれらタービンハウジング部61,62と別体にて形成するようにしてもよい。
 ・上記第2実施形態では、ゴムにより形成されるコンプレッサ接続部153について例示しているが、低圧コンプレッサハウジング151と高圧コンプレッサハウジング152とを接続する接続部の構成はこれに限られるものではなく、他に例えばタービン接続部163と同様に、蛇腹構造を有するものとしてもよい。
 ・上記第1実施形態では、高圧コンプレッサホイール55を迂回する吸気迂回通路23を形成する吸気迂回部57が低圧コンプレッサハウジング部51及び高圧コンプレッサハウジング部52と一体に形成されるものについて例示したが、吸気迂回通路23をこれらコンプレッサハウジング部51,52と別体にて形成するようにしてもよい。
 ・上記第1実施形態では、低圧コンプレッサハウジング部51と高圧コンプレッサハウジング部52とを一体に形成するとともに、低圧タービンハウジング部61と高圧タービンハウジング部62とを一体に形成するようにしている。また、上記第2実施形態では、低圧コンプレッサハウジング151と高圧コンプレッサハウジング152とを別体にて形成するとともに、低圧タービンハウジング161と高圧タービンハウジング162とを別体にて形成するようにしている。しかしながら、コンプレッサハウジング及びタービンハウジングの形成態様はこれに限られるものではなく、コンプレッサハウジングのみを別体にて形成するようにしてもよいし、タービンハウジングのみを別体にて形成するようにしてもよい。
 ・上記各実施形態によるように、低圧ベアリングハウジング部41と高圧ベアリングハウジング部42とを一体にて形成することが、各シャフトLS,HS及び各ベアリングLB,HBの潤滑油給排機構70や冷却水給排機構80を低圧過給機LTC及び高圧過給機HTCにおいて共通なものとする上では望ましい。しかしながら、本発明にかかるベアリングハウジングはこれに限られるものではなく、これらベアリングハウジングを別体にて形成するようにしてもよい。
 ・上記各実施形態では、低圧コンプレッサハウジングと高圧タービンハウジングとの間に形成される空間に、高圧コンプレッサハウジングの一部及び高圧タービンハウジングの一部の双方が位置するようにこれらコンプレッサハウジング及びタービンハウジングを設けるようにしているが、本発明に係る過給機システムはこれに限られるものではなく、図9に示すように、低圧コンプレッサハウジング351と低圧タービンハウジング部361との間に形成される空間に、高圧タービンハウジング部362の一部のみが位置するようにこれらコンプレッサハウジング351,352及びタービンハウジング部361,362を設けるようにしてもよい。またこの場合には、低圧ベアリングハウジング341と高圧ベアリングハウジング342とを別体にて形成するようにすればよい。またこれに代えて、低圧コンプレッサハウジングと高圧タービンハウジングとの間に形成される空間に、高圧コンプレッサハウジングの一部のみが位置するようにこれらコンプレッサハウジング及びタービンハウジングを設けるようにしてもよい。
 要するに、第1コンプレッサホイールを囲繞する第1コンプレッサハウジングと第1タービンホイールを囲繞する第1タービンハウジングとの間に形成される空間に、第2コンプレッサホイールを囲繞する第2コンプレッサハウジングの一部及び第2タービンホイールを囲繞する第2タービンハウジングの一部の少なくとも一方が位置するようにこれらコンプレッサハウジング及びタービンハウジングが設けられるものであればよい。

Claims (16)

  1.  第1過給機と第2過給機とを備える、内燃機関の過給機システムにおいて、
     前記第1過給機は、前記内燃機関の吸気通路に設けられる第1コンプレッサホイール、前記内燃機関の排気通路に設けられて同第1コンプレッサホイールに第1シャフトにより連結される第1タービンホイール、前記第1コンプレッサホイールを囲繞する第1コンプレッサハウジング、及び前記第1タービンホイールを囲繞する第1タービンハウジングを有し、
     前記第2過給機は、前記吸気通路に設けられる第2コンプレッサホイール、前記排気通路に設けられて同第2コンプレッサホイールに第2シャフトにより連結される第2タービンホイール、前記第2コンプレッサホイールを囲繞する第2コンプレッサハウジング、及び前記第2タービンホイールを囲繞する第2タービンハウジングを有し、
     前記第1コンプレッサハウジングと前記第1タービンハウジングとの間に形成される空間に、前記第2コンプレッサハウジングの一部及び前記第2タービンハウジングの一部の少なくとも一方が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成される
     ことを特徴とする内燃機関の過給機システム。
  2.  請求項1に記載の内燃機関の過給機システムにおいて、
     前記空間に前記第2コンプレッサハウジングの一部及び前記第2タービンハウジングの一部の双方が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成される
     ことを特徴とする内燃機関の過給機システム。
  3.  請求項1又は請求項2に記載の内燃機関の過給機システムにおいて、
     前記第1コンプレッサホイールは前記第2コンプレッサホイールに比べて径方向における体格が大きくされるとともに、前記第1タービンホイールは前記第2タービンホイールに比べて径方向における体格が大きくされる
     ことを特徴とする内燃機関の過給機システム。
  4.  請求項3に記載の内燃機関の過給機システムにおいて、
     前記第2シャフトを支持する第2ベアリングはボールベアリングである
     ことを特徴とする内燃機関の過給機システム。
  5.  請求項3又は請求項4に記載の内燃機関の過給機システムにおいて、
     前記第2タービンハウジングの内部には、前記第2タービンホイールに対して作用する排気の流量を可変とする流量可変機構が設けられている
     ことを特徴とする内燃機関の過給機システム。
  6.  請求項5に記載の内燃機関の過給機システムにおいて
     前記流量可変機構は前記第2シャフトの軸方向に沿って変位する円筒弁を備えている
     ことを特徴とする内燃機関の過給機システム。
  7.  請求項1~請求項6のいずれか一項に記載の内燃機関の過給機システムにおいて、
     前記空間に前記第2コンプレッサハウジングの一部及び前記第2タービンハウジングの一部の双方が位置するようにこれら第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成され、
     前記第1過給機は、前記第1シャフトを支持する第1ベアリング、及び前記第1ベアリングを囲繞する第1ベアリングハウジングを有し、
     前記第2過給機は、前記第2シャフトを支持する第2ベアリング、及び前記第2ベアリングを囲繞する第2ベアリングハウジングを有し、
     前記第1ベアリングハウジングと前記第2ベアリングハウジングとは一体にて形成される
     ことを特徴とする内燃機関の過給機システム。
  8.  請求項1~請求項7のいずれか一項に記載の内燃機関の過給機システムにおいて、
     前記第1コンプレッサホイールは前記第2コンプレッサホイールよりも前記吸気通路の上流側に設けられ、
     前記空間に前記第2コンプレッサハウジングの一部が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成され、
     前記第1コンプレッサハウジングと前記第2コンプレッサハウジングとは一体にて形成される
     ことを特徴とする内燃機関の過給機システム。
  9.  請求項8に記載の内燃機関の過給機システムにおいて、
     前記第1コンプレッサホイールは前記第2コンプレッサホイールに比べて径方向における体格が大きくされ、
     前記第2コンプレッサホイールを迂回する吸気迂回通路が前記第1コンプレッサハウジング及び前記第2コンプレッサハウジングと一体にて形成される
     ことを特徴とする内燃機関の過給機システム。
  10.  請求項1~請求項7のいずれか一項に記載の内燃機関の過給機システムにおいて、
     前記第1コンプレッサハウジングと前記第2コンプレッサハウジングとは別体にて形成される
     ことを特徴とする内燃機関の過給機システム。
  11.  請求項10に記載の内燃機関の過給機システムにおいて、
     前記第1コンプレッサハウジングと前記第2コンプレッサハウジングとは弾性部材からなる接続部により接続される
     ことを特徴とする内燃機関の過給機システム。
  12.  請求項1~請求項11のいずれか一項に記載の内燃機関の過給機システムにおいて、
     前記第1タービンホイールは前記第2タービンホイールよりも前記排気通路の下流側に設けられ、
     前記空間に前記第2タービンハウジングの一部が位置するように、第1及び第2コンプレッサハウジング並びに第1及び第2タービンハウジングが構成され、
     前記第1タービンハウジングと前記第2タービンハウジングとは一体にて形成される
     ことを特徴とする内燃機関の過給機システム。
  13.  請求項12に記載の内燃機関の過給機システムにおいて、
     前記第1タービンホイールは前記第2タービンホイールに比べて径方向における体格が大きくされ、
     前記第1タービンホイールを迂回する排気迂回通路が前記第1タービンハウジング及び前記第2タービンハウジングと一体にて形成される
     ことを特徴とする内燃機関の過給機システム。
  14.  請求項1~請求項11のいずれか一項に記載の内燃機関の過給機システムにおいて、
     前記第1タービンハウジングと前記第2タービンハウジングとは別体にて形成される
     ことを特徴とする内燃機関の過給機システム。
  15.  請求項14に記載の内燃機関の過給機システムにおいて、
     前記第1タービンハウジングと前記第2タービンハウジングとは弾性部材からなる接続部により接続される
     ことを特徴とする内燃機関の過給機システム。
  16.  請求項15に記載の内燃機関の過給機システムにおいて、
     前記接続部は蛇腹構造を有している
     ことを特徴とする内燃機関の過給機システム。
PCT/JP2009/058203 2009-04-24 2009-04-24 内燃機関の過給機システム WO2010122668A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09843666.0A EP2423485B1 (en) 2009-04-24 2009-04-24 Supercharger system for internal combustion engines
JP2011510137A JP5045848B2 (ja) 2009-04-24 2009-04-24 内燃機関の過給機システム
PCT/JP2009/058203 WO2010122668A1 (ja) 2009-04-24 2009-04-24 内燃機関の過給機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058203 WO2010122668A1 (ja) 2009-04-24 2009-04-24 内燃機関の過給機システム

Publications (1)

Publication Number Publication Date
WO2010122668A1 true WO2010122668A1 (ja) 2010-10-28

Family

ID=43010803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058203 WO2010122668A1 (ja) 2009-04-24 2009-04-24 内燃機関の過給機システム

Country Status (3)

Country Link
EP (1) EP2423485B1 (ja)
JP (1) JP5045848B2 (ja)
WO (1) WO2010122668A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230108A1 (ja) * 2017-06-13 2018-12-20 株式会社Ihi 多段過給機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963761A (zh) * 2015-07-24 2015-10-07 安徽天利动力股份有限公司 一种双压气机叶轮增压器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117176U (ja) * 1984-07-05 1986-01-31 ダイハツ工業株式会社 内燃機関における吸気装置
JPH07507122A (ja) * 1992-06-02 1995-08-03 エムテーウー・モートレン−ウント・ツルビネン−ウニオン・フリードリッヒスハーフェン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 内燃機関に装着可能な排ガスターボ過給機用支持ケーシング
JP2002534626A (ja) * 1998-04-15 2002-10-15 ダイムラークライスラー・アクチェンゲゼルシャフト 排気ガスターボチャージャタービン
JP2003531996A (ja) * 2000-04-20 2003-10-28 ボーグワーナー・インコーポレーテッド 内燃機関用ターボチャージャ装置
JP2008157236A (ja) * 2006-12-20 2008-07-10 Internatl Engine Intellectual Property Co Llc モデルに基づくターボチャージャ制御

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233970C2 (de) * 1972-07-11 1975-03-13 Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg Zweistufig aufgeladene hubkolbenbrennkraftmaschinen
DE19811782A1 (de) * 1998-03-18 1999-09-30 Daimler Chrysler Ag Brennkraftmaschine mit zwei Abgasturboladern
GB2349427A (en) * 1999-04-21 2000-11-01 Alstom Gas Turbines Ltd Multi-stage turbocharger having coaxial shafts
DE19924228C2 (de) * 1999-05-27 2002-01-10 3K Warner Turbosystems Gmbh Mehrflutiger, regelbarer Abgasturbolader
US6652224B2 (en) * 2002-04-08 2003-11-25 Holset Engineering Company Ltd. Variable geometry turbine
DE50213429D1 (de) * 2002-08-30 2009-05-20 Borgwarner Inc Aufladesystem für eine Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117176U (ja) * 1984-07-05 1986-01-31 ダイハツ工業株式会社 内燃機関における吸気装置
JPH07507122A (ja) * 1992-06-02 1995-08-03 エムテーウー・モートレン−ウント・ツルビネン−ウニオン・フリードリッヒスハーフェン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 内燃機関に装着可能な排ガスターボ過給機用支持ケーシング
JP2002534626A (ja) * 1998-04-15 2002-10-15 ダイムラークライスラー・アクチェンゲゼルシャフト 排気ガスターボチャージャタービン
JP2003531996A (ja) * 2000-04-20 2003-10-28 ボーグワーナー・インコーポレーテッド 内燃機関用ターボチャージャ装置
JP2008157236A (ja) * 2006-12-20 2008-07-10 Internatl Engine Intellectual Property Co Llc モデルに基づくターボチャージャ制御

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230108A1 (ja) * 2017-06-13 2018-12-20 株式会社Ihi 多段過給機
JPWO2018230108A1 (ja) * 2017-06-13 2020-03-19 株式会社Ihi 多段過給機
US11078830B2 (en) 2017-06-13 2021-08-03 Ihi Corporation Multi-stage turbocharger

Also Published As

Publication number Publication date
EP2423485B1 (en) 2016-12-14
JP5045848B2 (ja) 2012-10-10
EP2423485A1 (en) 2012-02-29
EP2423485A4 (en) 2015-05-27
JPWO2010122668A1 (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
US7360362B2 (en) Two-stage turbocharger system with integrated exhaust manifold and bypass assembly
US8984880B2 (en) Turbine wastegate
JP5052651B2 (ja) 排気アセンブリ
US9010109B2 (en) Turbine wastegate
US9695780B2 (en) Internal combustion engine
EP2921671B1 (en) Turbine wastegate
US10227916B2 (en) Turbocharger turbine wastegate assembly
KR20120099618A (ko) 다단 터보차저 장치
JP2009534569A (ja) 調節可能なタービン形状と羽根保持リングの圧力補償開口部を有するターボチャージャ
CN106050332B (zh) 涡轮增压器轴承组件
US9638099B2 (en) Turbocharger turbine wastegate mechanism
US9890699B2 (en) Turbocharger turbine wastegate mechanism
EP3477071B1 (en) Turbocharger turbine wastegate assembly
JP5045848B2 (ja) 内燃機関の過給機システム
CN106894888A (zh) 多级涡轮增压器的排放物旁通阀
US20190309648A1 (en) Internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843666

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011510137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009843666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009843666

Country of ref document: EP