WO2010122638A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2010122638A1
WO2010122638A1 PCT/JP2009/057918 JP2009057918W WO2010122638A1 WO 2010122638 A1 WO2010122638 A1 WO 2010122638A1 JP 2009057918 W JP2009057918 W JP 2009057918W WO 2010122638 A1 WO2010122638 A1 WO 2010122638A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
reinforcing frame
cell panel
frame
solar
Prior art date
Application number
PCT/JP2009/057918
Other languages
English (en)
French (fr)
Inventor
鈴木 一生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011510115A priority Critical patent/JP5289560B2/ja
Priority to US13/263,209 priority patent/US9040810B2/en
Priority to CN200980158892.5A priority patent/CN102414834B/zh
Priority to EP09843638.9A priority patent/EP2423971A4/en
Priority to PCT/JP2009/057918 priority patent/WO2010122638A1/ja
Priority to EP12001836.1A priority patent/EP2469607B1/en
Publication of WO2010122638A1 publication Critical patent/WO2010122638A1/ja
Priority to US13/418,826 priority patent/US20120192929A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/376Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having projections, studs, serrations or the like on at least one surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/3737Planar, e.g. in sheet form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/073Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/10Protective covers or shrouds; Closure members, e.g. lids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/09Arrangements for reinforcement of solar collector elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module that is installed in a building such as a house or a building and generates power using sunlight.
  • a transparent substrate (glass) is arranged on the light receiving surface side, and a plurality of solar cells connected in series or in parallel are arranged on the back side of the transparent substrate, and the plurality of solar cells are sealed.
  • a solar cell panel is configured by sealing with a stop resin, and a frame is attached to the peripheral portion of the solar cell panel.
  • Solar cell modules are generally installed in buildings such as houses and buildings and exposed to wind and rain. Since the solar cell module is a product used in such a harsh environment, the strength against wind load and snow load is one of the indexes representing product quality. In recent years, solar cell modules have been increased in size for the purpose of reducing the price per unit output and shortening the time spent on construction work and the time spent on connection work. With this increase in size, the load bearing performance of the solar cell panel, particularly the transparent substrate, is reduced.
  • the solar cell module works by bending down the snow load caused by the snow accumulated on the surface so as to push it down vertically.
  • a reinforcing frame that is arranged so as to be bridged between the frames on the back surface of the solar cell panel and supports the solar cell panel from the back surface is provided. It is known. Such a structure can be expected to reduce the amount of deformation of the transparent substrate when a load is applied.
  • a buffer material is attached to the back surface of the panel in order to prevent backsheet wear and cell damage due to collision and friction between the back surface of the panel and the reinforcing frame. Is done.
  • the module back surface does not directly contact the reinforcing frame, so that damage or wear of the module back surface can be prevented (see, for example, Patent Document 1).
  • the cushioning material proposed in Patent Document 1 is an elastic body, when the load on the module increases, the reinforcing frame is buried in the cushioning material, and the cushioning material is not disposed. Since the module and the reinforcing frame may come into contact with each other, improvement has been demanded. Further, the elastic cushioning material has been required to be improved because there is concern about wear due to repeated friction with the reinforcing frame against vibration loads such as wind pressure.
  • the solar cell module proposed in Patent Document 2 includes a buffer material made of a hard material.
  • a shock absorber with a structure like a simple rectangular parallelepiped made of a hard material is inserted between the almost rigid solar cell panel and the reinforcing frame, local stress is concentrated at the end of the shock absorber. was there. If this concentration of local stress occurs, it may cause damage to the solar cell panel, especially the layer made of glass, which may cause a reduction in the load resistance of the module, and there has been a demand for improvement. .
  • the present invention has been made to solve the above-described problems, and alleviates the concentration of local stress generated at the end of the buffer material, and breaks the layer (transparent substrate) of the solar cell panel made of glass in particular. It is an object of the present invention to obtain a solar cell module that can suppress the decrease in load resistance of the module.
  • a first solar cell module of the present invention is disposed on a solar cell panel in which solar cells including a transparent substrate are arranged, and on the back surface of the solar cell panel.
  • the main surface is a curved surface having an arcuate cross section that curves in the longitudinal direction of the reinforcing frame and protrudes toward the reinforcing frame.
  • a second solar cell module includes a solar cell panel in which solar cells including a transparent substrate are arranged, a reinforcing frame disposed on the back surface of the solar cell panel, a solar cell panel and a reinforcing frame. And a cushioning material, the first major surface facing the solar cell panel is a flat surface, and the cushioning material extends in a direction perpendicular to the reinforcing frame on the second major surface facing the reinforcing frame.
  • a plurality of convex portions are formed, and the curved surface that smoothly connects the ridge lines of the plurality of convex portions is a curved surface having an arcuate cross section with the solar cell panel side convex.
  • the curved surface having a cross-sectional arc shape may be a curved surface having a substantially cross-sectional arc shape, and includes, for example, a surface in which a partially continuous flat surface is included in the middle of the curved surface.
  • the third solar cell module of the present invention comprises a solar cell panel in which solar cells including a transparent substrate are arranged, a reinforcing frame disposed on the back surface of the solar cell panel, a solar cell panel and a reinforcing frame.
  • a fourth solar cell module of the present invention includes a solar cell panel in which solar cells including a transparent substrate are arranged, a reinforcement frame disposed on the back surface of the solar cell panel, a solar cell panel and a reinforcement frame,
  • the cushioning material is characterized by having a bellows shape that expands and contracts in the longitudinal direction of the reinforcing frame and has elasticity in the thickness direction.
  • each buffer material has a characteristic shape, and alleviates the concentration of local stress generated between the solar cell panel and the buffer material. And the failure
  • FIG. 1 is a perspective view showing an initial process of assembling a solar cell module according to the present invention.
  • FIG. 2 is a perspective view showing a state in which the reinforcing frame is attached from the back surface to the intermediate assembly in which the frame-like frame is attached to the outer edge portion of the solar cell panel.
  • FIG. 3 is a perspective view showing a state where the attachment of the reinforcing frame to the intermediate assembly is completed.
  • FIG. 4 is a perspective view showing a state in which the cushioning material of the first embodiment of the solar cell module according to the present invention is sandwiched and arranged between the solar cell panel and the reinforcing frame.
  • FIG. 5 is a diagram illustrating a state in which the cushioning material according to the first embodiment is viewed from three directions.
  • FIG. 6 is a diagram for explanation, and shows a state in which the action point of the snow load and the action point of the reaction force of the reinforcing frame coincide with each other with the conventional cushioning material taken along line AA in FIG.
  • FIG. 7 is a schematic diagram showing a state in which the reaction force from the reinforcing frame side is dispersed by the cushioning material of the first embodiment.
  • FIG. 8 is a perspective view showing a state in which the cushioning material of the second embodiment of the solar cell module according to the present invention is sandwiched and arranged between the solar cell panel and the reinforcing frame.
  • FIG. 9 is a diagram illustrating a state in which the cushioning material according to the second embodiment is viewed from three directions.
  • FIG. 10 is a schematic diagram illustrating a state in which the reaction force from the reinforcing frame side is dispersed by the cushioning material of the second embodiment.
  • FIG. 11 is a perspective view of the buffer material of Embodiment 3 of the solar cell module concerning this invention.
  • FIG. 12 is a schematic diagram illustrating a state in which the reaction force from the reinforcing frame side is dispersed by the cushioning material of the third embodiment.
  • FIG. 13 is a perspective view of the shock absorbing material of Embodiment 4 of the solar cell module concerning this invention.
  • FIG. 14 is a diagram illustrating a state in which the cushioning material according to the fourth embodiment is viewed from three directions.
  • FIG. 1 is a perspective view showing an initial process of assembling a solar cell module according to the present invention.
  • FIG. 2 is a perspective view showing a state in which the reinforcing frame is attached from the back surface to the intermediate assembly in which the frame-like frame is attached to the outer edge portion of the solar cell panel.
  • FIG. 3 is a perspective view showing a state where the attachment of the reinforcing frame to the intermediate assembly is completed.
  • the solar cell module is a rectangular frame-shaped frame that surrounds the entire periphery of the solar cell panel 20 having a substantially rectangular flat plate shape, the buffer material 31 fixed to the back surface of the solar cell panel 20, and the outer edge of the solar cell panel 20. It has a frame 10 and a reinforcing frame 3 attached to the frame-like frame 10. The buffer material 31 is fixed to a position sandwiched between the solar cell panel 20 and the reinforcing frame 3.
  • the solar cell panel 20 is formed by arranging a plurality of solar cells 15 vertically and horizontally, and has a substantially rectangular flat plate shape.
  • the frame-like frame 10 is composed of a pair of opposed long side frames 1, 1 and a pair of short side frames 2, 2 connected between both ends of the long side frames 1, 1.
  • the pair of long side frames 1 and 1 and the pair of short side frames 2 and 2 are connected to each other to form a rectangular frame 10.
  • the buffer material 31 is made of a hard material such as aluminum or hard resin, has a substantially flat plate shape, and is fixed to the back surface of the solar cell panel 20.
  • a cutout for fitting the reinforcing frame 3 is provided at the center of the back surface of the long side frames 1, 1.
  • the reinforcing frame 3 is assembled to the long side frames 1 and 1 by dropping both ends into the fitting notch from the back side.
  • a terminal box 20a and a cable 20b extending from the terminal box 20a are provided on the back surface of the solar cell panel 20.
  • the reinforcing frame 3 is attached to the frame-shaped frame 10 by being laid over the opposed long side frames 1, 1 of the frame-shaped frame 10.
  • the reinforcing frame 3 is attached to a position where the buffer material 31 is sandwiched between the reinforcing frame 3 and the solar cell panel 20.
  • the buffer material 31 is disposed between the solar cell panel 20 and the reinforcing frame 3, but the buffer material 31 is fixed to the back surface of the solar cell panel 20, so that it moves or falls off. There is nothing to do.
  • FIG. 4 is a perspective view showing a state in which the cushioning material of the first embodiment of the solar cell module according to the present invention is sandwiched and arranged between the solar cell panel and the reinforcing frame.
  • FIG. 5 is a diagram illustrating a state in which the cushioning material according to the first embodiment is viewed from three directions. As shown in FIG.4 and FIG.5, the 1st main surface facing the solar cell panel 20 is the substantially flat flat surface 31a so that the solar cell panel 20 may be touched flat. On the other hand, the second main surface facing the reinforcing frame 3 is a curved surface 31b having an arcuate cross section.
  • the cross-section arcuate curved surface 31b is a cross-section arcuate curved surface that curves in the longitudinal direction of the reinforcement frame 3 and protrudes toward the reinforcement frame 3 side. That is, the cross-section arcuate curved surface 31 b is a curved surface constituted by a part of a cylindrical shape having a central axis orthogonal to the reinforcing frame 3. And the circular arc-shaped curved surface 31b is curved to a position connected to the flat surface 31a. That is, the cushioning material 31 of the present embodiment does not have an end face in the longitudinal direction of the reinforcing frame 3.
  • FIG. 6 is a diagram for explanation, and shows a state in which the action point of the snow load and the action point of the reaction force of the reinforcing frame coincide with each other with the conventional cushioning material taken along line AA in FIG. FIG.
  • a simple rectangular parallelepiped cushioning material 41 is disposed between the solar cell panel 20 and the reinforcing frame 3.
  • the solar cell panel 20 bends throughout.
  • the peripheral four sides of the solar cell panel 20 are supported by the frame-like frame 10 and the center part is supported by the buffer material 41 so that the position does not change, so that the other parts are deformed so that they sink. . Therefore, when the shock absorbing material 41 has a simple rectangular parallelepiped shape, local stress concentrates on the end surface portion of the shock absorbing material 41 and the like. Specifically, local stress concentrates on the side of the end surface 41a in the longitudinal direction of the cushioning material 41 on the solar cell panel 20 side (more specifically, the central portion of the side). Therefore, the layer made of glass, in particular, of the solar cell panel 20 may be damaged at the local stress concentration point P.
  • FIG. 7 is a schematic diagram showing a state in which the reaction force from the reinforcing frame 3 side is dispersed by the cushioning material 31 of the present embodiment.
  • the first main surface on the solar cell panel 20 side is the flat surface 31a
  • the second main surface on the reinforcing frame 3 side is the circular arc-shaped curved surface 31b. Therefore, the reaction force from the reinforcing frame 3 against the snow load F is dispersed along the arcuate curved surface 31b and does not concentrate on one point.
  • the concentration of local stress generated between the solar cell panel 20 and the buffer material 31 is reduced as described above. And the failure
  • the 1st main surface of the buffer material 31 should just be a substantially flat surface 31a, and should just be contact
  • the second main surface of the cushioning material 31 of the present embodiment is the circular arc-shaped curved surface 31b as described above, but is not limited to the circular arc, and is roughly a curved surface that smoothly draws an arc. Similar effects can be obtained.
  • the cross-sectional arc-shaped curved surface 31b may be a curved surface having a substantially cross-sectional arc shape. For example, even if the curved surface includes a partially continuous flat surface in the middle of the curved surface, substantially the same effect can be obtained.
  • FIG. FIG. 8 is a perspective view showing a state in which the cushioning material of the second embodiment of the solar cell module according to the present invention is sandwiched and arranged between the solar cell panel and the reinforcing frame.
  • FIG. 9 is a diagram illustrating a state in which the cushioning material according to the second embodiment is viewed from three directions.
  • the first main surface facing the solar cell panel 20 is a flat surface 32 a that is substantially flat so as to be in contact with the solar cell panel 20 in a flat manner. It has become.
  • a plurality of convex portions 32b extending in a direction orthogonal to the reinforcing frame 3 are formed on the second main surface facing the reinforcing frame 3, and a curved surface that smoothly connects the ridge lines (top surfaces) of the plurality of convex portions 32b.
  • it is a curved surface 32b having an arcuate cross section with the solar cell panel 20 side convex.
  • the interval between the convex portions 32b is an appropriate interval so that the solar cell panel 20 does not enter the groove and deform.
  • the convex part 32b provided in the most edge part is a cross-sectional outline triangle shape, and the book surface is connected with the flat surface 31a. That is, the cushioning material 32 of the present embodiment does not have an end face in the longitudinal direction of the reinforcing frame 3.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 10 is a schematic diagram showing a state in which the reaction force from the reinforcing frame 3 side is dispersed by the cushioning material 32 of the second embodiment.
  • the solar cell panel 20 comes into contact with the ridgeline (top surface) of the convex portion 32b of the cushioning material 32, and becomes a curved surface having an arcuate cross section that curves in the longitudinal direction of the reinforcing frame 3 and protrudes toward the reinforcing frame 3 side. Therefore, the reaction force R from the reinforcing frame 3 side is dispersed along this curved surface having an arcuate cross section. For this reason, the same effects as those of the first embodiment can be obtained.
  • the buffer material 32 of this Embodiment since the material for the part in which the groove
  • the curved surface formed by the solar cell panel 20 is not limited to a curved surface having an arcuate cross section, and a substantially similar effect can be obtained as long as the curved surface smoothly draws an arc.
  • FIG. FIG. 11 is a perspective view of the buffer material of Embodiment 3 of the solar cell module concerning this invention.
  • FIG. 12 is a schematic diagram showing a state in which the reaction force from the reinforcing frame side is dispersed by the cushioning material of the present embodiment.
  • the buffer material 33 of the present embodiment has a substantially rectangular parallelepiped plate shape, and the first main surface facing the solar cell panel 20 is a flat surface 33a.
  • the notch 33b is provided in the center part of the longitudinal direction both ends of the reinforcement frame 3 of the 2nd main surface facing the reinforcement frame 3, respectively.
  • the notch 33b is provided at the center of the side of the reinforcing frame 3 on both sides in the longitudinal direction on the reinforcing frame 3 side. That is, the notch 33b is provided in the center part of the side opposite to the side on the solar cell panel 20 side on both ends in the longitudinal direction of the reinforcing frame 3 where the local stress concentration point P (FIG. 6) is conventionally provided.
  • the notch 33b is provided in the central portion of the side opposite to the side where the local stress concentration point P has conventionally been. That is, there is no buffer material in that portion. Therefore, when the stress is applied, the end portion where the local stress concentration point P has conventionally been slightly escapes to the notch 33b side. Therefore, the reaction force from the side of the reinforcing frame 3 concentrated on the local stress concentration point is dispersed in the direction of both ends in the short side direction as shown in FIG. Thereby, damage to the solar cell panel 20 is suppressed.
  • the notches 33b are effective if provided at least in the center of the side of the reinforcing frame 3 on both sides in the longitudinal direction on the side of the reinforcing frame 3, and even if provided on the entire length of the side of the end surface on the solar cell panel 20 side. Similar effects can be obtained. However, if the notch 33b is excessively enlarged, the contact area between the buffer material 33 and the solar cell panel 20 is reduced, and only the effect of using a small buffer material can be obtained.
  • FIG. FIG. 13 is a perspective view of the shock absorbing material of Embodiment 4 of the solar cell module concerning this invention.
  • FIG. 14 is a diagram illustrating a state in which the cushioning material of the present embodiment is viewed from three directions.
  • the cushioning material 34 of the present embodiment has a bellows shape as a whole.
  • the cushioning material 33 of the present embodiment a plurality of extending in the short direction of the reinforcing frame 3 over the entire main surfaces of the first main surface facing the solar cell panel 20 and the second main surface facing the reinforcing frame 3.
  • the pleats 34a are formed so as to expand and contract in the longitudinal direction of the reinforcing frame 3 and to have elasticity in the thickness direction.
  • the buffer material 34 having such a structure extends in the longitudinal direction of the reinforcing frame 3 according to the magnitude of the force. At the same time, it shrinks in the thickness direction. Thereby, since the solar cell panel 20 curves gently and the stress concentration between the reinforcement frames 3 is eased, damage to the solar cell panel 20 can be reduced.
  • one buffer material 31 to 34 in the first to fourth embodiments is provided between the solar cell panel 20 and the reinforcing frame 3, but the buffer materials 31 to 34 are the length of the reinforcing frame 3.
  • a plurality may be arranged in the vertical direction.
  • the plurality of cushioning materials 31 to 34 are disposed in the length direction of the reinforcing frame 3 with a predetermined interval.
  • the solar cell module according to the present invention is useful for a solar cell module installed in a building such as a house or a building.
  • the solar cell module is installed in a region where there is a lot of snow or a region where severe wind and rain occur. Suitable for battery modules.

Abstract

 太陽電池モジュールは、透明基板を含む太陽電池セルを並べて成る太陽電池パネル(20)と、太陽電池パネル(20)の裏面に配設された補強フレーム(3)と、太陽電池パネル(20)と補強フレーム(3)との間に配置された緩衝材(31)とを備え、緩衝材(31)は、太陽電池パネル(20)と対向する第1主面が平坦面であり、補強フレーム(3)に対向する第2主面が、補強フレーム(3)の長手方向に湾曲し補強フレーム(3)側を凸とする断面弧状の曲面である。

Description

太陽電池モジュール
 本発明は、住宅やビルなどの建物に設置され太陽光にて発電を行う太陽電池モジュールに関するものである。
 太陽電池モジュールとして、受光面側に透明基板(ガラス)を配置し、この透明基板の裏面側に直列或いは並列に接続された複数の太陽電池セルを並べて配置し、これら複数の太陽電池セルを封止樹脂にて封止して太陽電池パネルを構成し、さらにこの太陽電池パネルの周縁部にフレームを取り付けた構造のものがある。
 太陽電池モジュールは、一般に住宅やビルなどの建物に設置されて風雨にさらされる。太陽電池モジュールは、このような厳しい環境で使用する製品であるため、風荷重や積雪荷重に対する強度が製品品質を表す指標の1つとされる。近年、単位出力当たりの価格低減や、施工作業に費やす時間及び結線作業に費やす時間を短縮する目的で太陽電池モジュールの大型化が進められている。この大型化により、太陽電池パネルの特に透明基板の耐荷重性能は低減している。
 太陽電池モジュールには、表面に堆積した積雪などによる積雪荷重が鉛直下方に押し下げるように働き下方に向けてたわむ。この対策として、太陽電池パネルの周囲4辺を取り囲むフレームに加えて、太陽電池パネルの裏面にてフレーム間に架け渡されるように配設されて、太陽電池パネルを裏面から支持する補強フレームを設けることが知られている。このような構造では荷重が加わった際の透明基板変形量の低減が期待できる。
 また、このようにパネルの裏面に上記補強フレームを備える太陽電池モジュールにおいて、さらにパネル裏面と補強フレームの衝突や摩擦による、バックシートの磨耗やセルの破損を防ぐため、パネル裏面に緩衝材を取付けることが行われる。このような構造とすることにより、モジュール裏面が直接補強フレームに接触することがなくなるので、モジュール裏面の破損や摩耗を防止することができる(例えば、特許文献1参照)。
特開2004-6625号公報 国際公開第2008/139609号
 しかしながら、特許文献1にて提案されている緩衝材は弾性体であるため、モジュールへの荷重が増加したときに、補強フレームが緩衝材に埋没して、緩衝材が配置されてない箇所にて、モジュールと補強フレームとが接触することがあるので改善が求められていた。また、弾性体の緩衝材は、風圧などの振動荷重に対して、補強フレームとの繰り返し摩擦により摩耗が懸念されるので改善が求められていた。
 上記問題を解決するために、特許文献2にて提案されている太陽電池モジュールにおいては、硬質材料で作製された緩衝材を備えている。しかしながら、ほぼ剛体の太陽電池パネルと補強フレームとの間に、硬質材料で作製された単純な直方体のような構造の緩衝材が挿入されることで、緩衝材端部に局所応力が集中する場合があった。この局所応力の集中が発生すると、太陽電池パネルの特にガラスを材料とする層の破損を引き起こす可能性があり、如いてはモジュールの耐荷重低下の原因となることがあり改善が求められていた。
 この発明は上述のような課題を解決するためになされたもので、緩衝材端部に発生する局所応力の集中を緩和し、太陽電池パネルの特にガラスを材料とする層(透明基板)の破損を抑制することができ、これによりモジュールの耐荷重低下を改善することができる太陽電池モジュールを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、この発明の第1の太陽電池モジュールは、透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、太陽電池パネルの裏面に配設された補強フレームと、太陽電池パネルと補強フレームとの間に配置された緩衝材とを備え、緩衝材は、太陽電池パネルと対向する第1主面が平坦面であり、補強フレームに対向する第2主面が、補強フレームの長手方向に湾曲し補強フレーム側を凸とする断面弧状の曲面であることを特徴とする。
 また、この発明の第2の太陽電池モジュールは、透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、太陽電池パネルの裏面に配設された補強フレームと、太陽電池パネルと補強フレームとの間に配置された緩衝材とを備え、緩衝材は、太陽電池パネルと対向する第1主面が平坦面であり、補強フレームに対向する第2主面に、補強フレームと直交する方向に延びる複数の凸部が形成され、複数の凸部の稜線を滑らかに結ぶ曲面が太陽電池パネル側を凸とする断面弧状の曲面であることを特徴とする。
 なお、ここで断面弧状の曲面とは、概略断面弧状の曲面であればよく、例えば曲面の途中に部分的になめらかに連続する平面が含まれるようなものも含むものである。
 さらに、この発明の第3の太陽電池モジュールは、透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、太陽電池パネルの裏面に配設された補強フレームと、太陽電池パネルと補強フレームとの間に配置された緩衝材とを備え、緩衝材は、太陽電池パネルと対向する第1主面が平坦面であり、補強フレームに対向する第2主面の補強フレームの長手方向両端部の少なくとも中央部に、それぞれ切り欠きが設けられていることを特徴とする。
 さらにまた、この発明の第4の太陽電池モジュールは、透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、太陽電池パネルの裏面に配設された補強フレームと、太陽電池パネルと補強フレームとの間に配置された緩衝材とを備え、緩衝材は、補強フレームの長手方向に伸縮するとともに、厚さ方向に弾性を有する蛇腹状になっていることを特徴とする。
 この発明の太陽電池モジュールによれば、緩衝材はそれぞれ特徴のある形状を有しており、太陽電池パネルと緩衝材との間で発生する局所応力の集中を緩和する。そして、太陽電池パネルの特にガラスを材料とする層の破損を抑制することができ、これによりモジュールの耐荷重低下を改善することができるという効果を奏する。
図1は、本発明にかかる太陽電池モジュールの組み立ての初期工程の様子を示す斜視図である。 図2は、太陽電池パネルの外縁部に枠状フレームを取り付けた中間組立体に裏面から補強フレームを取り付ける様子を示す斜視図である。 図3は、中間組立体への補強フレームの取り付けが完了した様子を示す斜視図である。 図4は、本発明にかかる太陽電池モジュールの実施の形態1の緩衝材が太陽電池パネルと補強フレームとの間に挟まれて配置される様子を示す斜視図である。 図5は、実施の形態1の緩衝材を3方向から見た様子を示す図である。 図6は、説明のために示す図であって従来の緩衝材を備えたものにおいて積雪荷重の作用点と補強フレームの反力の作用点とが一致した様子を示す図3のA-A線に沿う矢視断面に相当する図である。 図7は、実施の形態1の緩衝材により補強フレーム側からの反力が分散された様子を示す模式図である。 図8は、本発明にかかる太陽電池モジュールの実施の形態2の緩衝材が太陽電池パネルと補強フレームとの間に挟まれて配置される様子を示す斜視図である。 図9は、実施の形態2の緩衝材を3方向から見た様子を示す図である。 図10は、実施の形態2の緩衝材により補強フレーム側からの反力が分散された様子を示す模式図である。 図11は、本発明にかかる太陽電池モジュールの実施の形態3の緩衝材の斜視図である。 図12は、実施の形態3の緩衝材により補強フレーム側からの反力が分散された様子を示す模式図である。 図13は、本発明にかかる太陽電池モジュールの実施の形態4の緩衝材の斜視図である。 図14は、実施の形態4の緩衝材を3方向から見た様子を示す図である。
 以下に、本発明にかかる太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる太陽電池モジュールの組み立ての初期工程の様子を示す斜視図である。図2は、太陽電池パネルの外縁部に枠状フレームを取り付けた中間組立体に裏面から補強フレームを取り付ける様子を示す斜視図である。図3は、中間組立体への補強フレームの取り付けが完了した様子を示す斜視図である。
 太陽電池モジュールは、概略矩形平板状の太陽電池パネル20と、太陽電池パネル20の裏面に固着された緩衝材31と、太陽電池パネル20の外縁部を全周にわたって囲繞する矩形枠状の枠状フレーム10と、枠状フレーム10に取り付けられた補強フレーム3とを有している。緩衝材31は、太陽電池パネル20と補強フレーム3との間に挟まれる位置に固着されている。
 図1に示すように、太陽電池パネル20は、複数の太陽電池セル15が縦横に並べられて構成され概略矩形平板状を成している。枠状フレーム10は、対向する一対の長辺フレーム1,1と、この長辺フレーム1,1の両端部間に連結された一対の短辺フレーム2,2とから構成されている。一対の長辺フレーム1,1と一対の短辺フレーム2,2とは、相互に連結されて矩形枠状の枠状フレーム10とされている。
 図2に示すように、緩衝材31は、例えばアルミ或いは硬質樹脂などである硬質材料にて作製され概略平板状を成し太陽電池パネル20の裏面に固着されている。長辺フレーム1,1の裏面中央部に補強フレーム3嵌合用の切り欠きがそれぞれ設けられている。補強フレーム3は、両端部をこの嵌合切り欠きに、裏面側から落とし込まれて長辺フレーム1,1に組み付けられている。なお、太陽電池パネル20の裏面には、端子ボックス20aとこの端子ボックス20aから延びるケーブル20bが設けられている。
 図3に示すように、補強フレーム3は、枠状フレーム10の対向する長辺フレーム1,1に架け渡されて枠状フレーム10に取り付けられる。補強フレーム3は、太陽電池パネル20との間に緩衝材31を挟む位置に取り付けられる。このように緩衝材31は、太陽電池パネル20と補強フレーム3との間に挟まれて配置されるが、緩衝材31は、太陽電池パネル20の裏面に固着されているので移動したり、脱落したりすることがない。
 図4は、本発明にかかる太陽電池モジュールの実施の形態1の緩衝材が太陽電池パネルと補強フレームとの間に挟まれて配置される様子を示す斜視図である。図5は、実施の形態1の緩衝材を3方向から見た様子を示す図である。図4及び図5に示すように、太陽電池パネル20と対向する第1主面は、太陽電池パネル20とフラットに接するように概ね平らな平坦面31aとなっている。一方、補強フレーム3に対向する第2主面は、断面円弧状曲面31bとなっている。断面円弧状曲面31bは、補強フレーム3の長手方向に湾曲し補強フレーム3側を凸とする断面円弧状の曲面である。すなわち、断面円弧状曲面31bは、補強フレーム3に直交する中心軸を持つ円筒形の一部で構成されるような湾曲面である。そして、断面円弧状曲面31bは、平坦面31aにつながる位置まで湾曲している。つまり、本実施の形態の緩衝材31は補強フレーム3の長手方向に端面を有してない。
 図6は、説明のために示す図であって従来の緩衝材を備えたものにおいて積雪荷重の作用点と補強フレームの反力の作用点とが一致した様子を示す図3のA-A線に沿う矢視断面に相当する図である。図6において、従来の太陽電池モジュールにおいては、太陽電池パネル20と補強フレーム3との間に単純な直方体形状の緩衝材41が配設されている。   
 例えば、太陽電池パネル20の全面に雪が積もり、この雪が積雪荷重Fとして太陽電池パネル20に作用した場合、太陽電池パネル20は全体に渡ってたわむ。このとき、太陽電池パネル20の周囲4側辺は枠状フレーム10に支持されて、また中央部は緩衝材41に支持されてそれぞれ位置が変わらないので、その他の部分が沈み込むように変形する。そのため、緩衝材41が単純な直方体形状であった場合、緩衝材41の端面部等に局所応力が集中する。詳細には、緩衝材41の長手方向端面41aの太陽電池パネル20側の辺(さらに詳細には、その辺の中央部)に局所応力が集中する。そのため、この局所応力集中点Pの部分で、太陽電池パネル20の特にガラスを材料とする層が破損することがあった。
 図7は、本実施の形態の緩衝材31により補強フレーム3側からの反力が分散された様子を示す模式図である。図7において、本実施の形態の緩衝材31によれば、太陽電池パネル20側の第1主面が平坦面31aであり、補強フレーム3側の第2主面が断面円弧状曲面31bであるので、積雪荷重Fに対する補強フレーム3からの反力が断面円弧状曲面31bに沿って分散され1点に集中することがない。
 本実施の形態の太陽電池モジュールによれば、上記のようにして、太陽電池パネル20と緩衝材31との間で発生する局所応力の集中が緩和される。そして、太陽電池パネル20の特にガラスを材料とする層の破損を抑制することができ、これによりモジュールの耐荷重低下を改善することができる。
 なお、緩衝材31の第1主面は、概ね平坦面31aであればよく、太陽電池パネル20に広くフラットに当接するものであればよい。また、本実施の形態の緩衝材31の第2の主面は、上記のように断面円弧状曲面31bであるが、円弧に限定されるものではなく、滑らかに弧を描く曲面であれば概略同様の効果を得ることができる。さらに、断面円弧状曲面31bは、概略断面弧状の曲面であればよく、例えば曲面の途中に部分的になめらかに連続する平面が含まれるようなものでも、概略同様の効果を得ることができる。
実施の形態2.
 図8は、本発明にかかる太陽電池モジュールの実施の形態2の緩衝材が太陽電池パネルと補強フレームとの間に挟まれて配置される様子を示す斜視図である。図9は、実施の形態2の緩衝材を3方向から見た様子を示す図である。図8及び図9に示すように、本実施の形態の緩衝材32においては、太陽電池パネル20と対向する第1主面は、太陽電池パネル20とフラットに接するように概ね平らな平坦面32aとなっている。
 一方、補強フレーム3に対向する第2主面には、補強フレーム3と直交する方向に延びる複数の凸部32bが形成され、これら複数の凸部32bの稜線(頂面)を滑らかに結ぶ曲面が、太陽電池パネル20側を凸とする断面円弧状の曲面32bとなっている。各凸部32bの間隔は、溝内に太陽電池パネル20が入り込んで変形することがないように適度な間隔となっている。そして、最も端部に設けられた凸部32bは、断面概略三角形状でその帳面は平坦面31aにつながる。つまり、本実施の形態の緩衝材32は補強フレーム3の長手方向に端面を有してない。その他の構成は実施の形態1と同様である。
 図10は、実施の形態2の緩衝材32により補強フレーム3側からの反力が分散された様子を示す模式図である。太陽電池パネル20は、緩衝材32の凸部32bの稜線(頂面)に接触して、補強フレーム3の長手方向に湾曲し補強フレーム3側を凸とする断面円弧状の曲面となる。そのため、補強フレーム3側からの反力Rは、この断面円弧状の曲面に沿って分散される。そのため、実施の形態1のものと概略同様の効果が得られる。また、本実施の形態の緩衝材32によれば、溝が形成されている分の材料が減少するのでコストダウンを図ることができる。
 なお、太陽電池パネル20の形成する曲面は、断面円弧状の曲面に限定されるものではなく、滑らかに弧を描く曲面であれば概略同様の効果を得ることができる。
実施の形態3.
 図11は、本発明にかかる太陽電池モジュールの実施の形態3の緩衝材の斜視図である。図12は、本実施の形態の緩衝材により補強フレーム側からの反力が分散された様子を示す模式図である。本実施の形態の緩衝材33は、概略直方体の平板状を成し太陽電池パネル20と対向する第1主面は平坦面33aである。そして、補強フレーム3に対向する第2主面の補強フレーム3の長手方向両端部の中央部に、それぞれ切り欠き33bが設けられている。別な言い方をすれば、切り欠き33bは、補強フレーム3の長手方向両端面の補強フレーム3側の辺の中央部に設けられている。すなわち、切り欠き33bは、従来局所応力集中点P(図6)があった補強フレーム3の長手方向両端面の太陽電池パネル20側の辺に対向する辺の中央部に設けられている。
 このような構成の緩衝材33によれば、従来局所応力集中点Pがあった辺に対向する辺の中央部に切り欠き33bが設けられている。つまり、その部分に緩衝材が存在していない。そのため、応力が作用した際、従来局所応力集中点Pがあった端部は、若干切り欠き33b側に逃げる。そのため、局所応力集中点に集中していた補強フレーム3側からの反力が、図12に示すように短辺方向両端部方向に分散する。これにより、太陽電池パネル20の損傷が抑制される。
 なお、切り欠き33bは、補強フレーム3の長手方向両端面の補強フレーム3側の辺の少なくとも中央部に設けられれば効果があり、端面の太陽電池パネル20側の辺の全長にわたって設けても概略同様の効果を得ることができる。しかしながら、過剰に切り欠き33bを大きくすると、緩衝材33と太陽電池パネル20との接触面積が減り小さな緩衝材を用いた効果しか得られないものとなる。
実施の形態4.
 図13は、本発明にかかる太陽電池モジュールの実施の形態4の緩衝材の斜視図である。図14は、本実施の形態の緩衝材を3方向から見た様子を示す図である。本実施の形態の緩衝材34は全体的に蛇腹状になっている。本実施の形態の緩衝材33においては、太陽電池パネル20と対向する第1主面と補強フレーム3に対向する第2主面の両主面の全体に補強フレーム3の短手方向に延びる複数のひだ34aが形成されており、補強フレーム3の長手方向に伸縮するとともに、厚さ方向に弾性を有するようになっている。
 このような構造の緩衝材34は、太陽電池パネル20側から或いは補強フレーム3側から押圧力が加わるとその力の大きさに応じて補強フレーム3の長手方向に伸びる。そして、それと同時に厚さ方向に縮む。これにより、太陽電池パネル20は緩やかに湾曲し補強フレーム3との間での応力集中が緩和されるので、太陽電池パネル20の損傷を低減することができる。
 なお、上記実施の形態1~4の緩衝材31~34は、太陽電池パネル20と補強フレーム3との間に1個が設けられているが、緩衝材31~34は、補強フレーム3の長さ方向に複数個が配設されてもよい。一例として複数個の緩衝材31~34は、補強フレーム3の長さ方向に所定の間隔を空けながら配設される。これにより、太陽電池パネル20のゆがみをより小さくすることができ、太陽電池パネル20の補強フレーム3への接触を防止することができるので、太陽電池パネル20の損傷をより確実に防止することができる。
 以上のように、本発明にかかる太陽電池モジュールは、住宅やビルなどの建物に設置される太陽電池モジュールに有用であり、特に、積雪が多い地方や激しい風雨が発生する地方に設置される太陽電池モジュールに適している。
 1 長辺フレーム
 2 短辺フレーム
 3 補強フレーム
 10 矩形の枠状フレーム
 15 太陽電池セル
 20 太陽電池パネル
 20a 端子ボックス
 20b ケーブル
 31~34 緩衝材
 31a,32a,33a 平坦面
 31b 断面円弧状曲面
 32b 凸部
 33b 切り欠き
 34a ひだ
 41 従来の緩衝材
 41a 端面
 P 局所応力集中点

Claims (6)

  1.  透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、
     前記太陽電池パネルの裏面に配設された補強フレームと、
     前記太陽電池パネルと前記補強フレームとの間に配置された緩衝材とを備え、
     前記緩衝材は、前記太陽電池パネルと対向する第1主面が平坦面であり、前記補強フレームに対向する第2主面が、前記補強フレームの長手方向に湾曲し前記補強フレーム側を凸とする断面弧状の曲面である
     ことを特徴とする太陽電池モジュール。
  2.  透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、
     前記太陽電池パネルの裏面に配設された補強フレームと、
     前記太陽電池パネルと前記補強フレームとの間に配置された緩衝材とを備え、
     前記緩衝材は、前記太陽電池パネルと対向する第1主面が平坦面であり、前記補強フレームに対向する第2主面に、前記補強フレームと直交する方向に延びる複数の凸部が形成され、前記複数の凸部の稜線を滑らかに結ぶ曲面が前記太陽電池パネル側を凸とする断面弧状の曲面である
     ことを特徴とする太陽電池モジュール。
  3.  透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、
     前記太陽電池パネルの裏面に配設された補強フレームと、
     前記太陽電池パネルと前記補強フレームとの間に配置された緩衝材とを備え、
     前記緩衝材は、前記太陽電池パネルと対向する第1主面が平坦面であり、前記補強フレームに対向する第2主面の前記補強フレームの長手方向両端部の少なくとも中央部に、それぞれ切り欠きが設けられている
     ことを特徴とする太陽電池モジュール。
  4.  透明基板を含む太陽電池セルを並べて成る太陽電池パネルと、
     前記太陽電池パネルの裏面に配設された補強フレームと、
     前記太陽電池パネルと前記補強フレームとの間に配置された緩衝材とを備え、
     前記緩衝材は、前記補強フレームの長手方向に伸縮するとともに、厚さ方向に弾性を有する蛇腹状になっている
     ことを特徴とする太陽電池モジュール。
  5.  前記緩衝材は、前記太陽電池モジュールの裏面に固着されている
     ことを特徴とする請求項1から4のいずれか1項に記載の太陽電池モジュール。
  6.  緩衝材は、補強フレーム3長さ方向に複数個が配設されている
     ことを特徴とする請求項1から4のいずれか1項に記載の太陽電池モジュール。
PCT/JP2009/057918 2009-04-21 2009-04-21 太陽電池モジュール WO2010122638A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011510115A JP5289560B2 (ja) 2009-04-21 2009-04-21 太陽電池モジュール
US13/263,209 US9040810B2 (en) 2009-04-21 2009-04-21 Solar cell module
CN200980158892.5A CN102414834B (zh) 2009-04-21 2009-04-21 太阳能电池组件
EP09843638.9A EP2423971A4 (en) 2009-04-21 2009-04-21 SOLAR BATTERY MODULE
PCT/JP2009/057918 WO2010122638A1 (ja) 2009-04-21 2009-04-21 太陽電池モジュール
EP12001836.1A EP2469607B1 (en) 2009-04-21 2009-04-21 Solar cell module
US13/418,826 US20120192929A1 (en) 2009-04-21 2012-03-13 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057918 WO2010122638A1 (ja) 2009-04-21 2009-04-21 太陽電池モジュール

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/418,826 Continuation US20120192929A1 (en) 2009-04-21 2012-03-13 Solar cell module

Publications (1)

Publication Number Publication Date
WO2010122638A1 true WO2010122638A1 (ja) 2010-10-28

Family

ID=43010776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057918 WO2010122638A1 (ja) 2009-04-21 2009-04-21 太陽電池モジュール

Country Status (5)

Country Link
US (2) US9040810B2 (ja)
EP (2) EP2469607B1 (ja)
JP (1) JP5289560B2 (ja)
CN (1) CN102414834B (ja)
WO (1) WO2010122638A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046025A (ja) * 2011-08-26 2013-03-04 Kaneka Corp 太陽電池モジュール

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111393A1 (en) * 2010-07-29 2012-05-10 Joshua Conley Integrated cartridge for adhesive-mounted photovoltaic modules
CN102856410B (zh) * 2012-09-21 2015-03-11 张正泉 弧形太阳能板及加工工艺
DE102014105052A1 (de) * 2013-04-12 2014-10-16 Solarwatt Gmbh Glas-Glas-Solarmodul-Laminat mit Solarzellen
DE102014102729A1 (de) * 2014-02-28 2015-09-03 Josef Joachim Gmeiner Photovoltaik-Modul
DE102014107796A1 (de) * 2014-06-03 2015-12-03 Hanwha Q Cells Gmbh Solarmodul und Solarmodulherstellungsverfahren
CN104270076A (zh) * 2014-10-21 2015-01-07 常州亿晶光电科技有限公司 加强型太阳能组件铝边框
CN107666281A (zh) * 2016-07-27 2018-02-06 江苏绿扬光伏科技有限公司 一种新型太阳能电池及其组件
CA3203352A1 (en) 2020-12-23 2022-06-30 Benjamin C. DE FRESART Photovoltaic module deflection limiter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575070U (ja) * 1980-06-10 1982-01-11
JP2002223911A (ja) * 2001-02-05 2002-08-13 Aqua New Tech:Kk 密閉式額縁
JP2003105940A (ja) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd 太陽電池モジュールの設置構造
JP2004006625A (ja) 2002-03-27 2004-01-08 Kyocera Corp 太陽電池モジュールおよび太陽電池アレイ
JP2004146765A (ja) * 2002-08-30 2004-05-20 Kyocera Corp 太陽電池アレイ
WO2008136095A1 (ja) * 2007-04-24 2008-11-13 Mitsubishi Electric Corporation 太陽電池モジュール
WO2008139609A1 (ja) 2007-05-14 2008-11-20 Mitsubishi Electric Corporation 太陽電池モジュール装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE392530A (ja) * 1932-10-26
US2727407A (en) 1950-09-12 1955-12-20 Syntron Co Flexible elastomer
US4286006A (en) * 1977-01-26 1981-08-25 Boelter Industries, Inc. Corrugated material
US4167644A (en) * 1978-09-29 1979-09-11 Exxon Research & Engineering Co. Solar cell module
US4505974A (en) 1983-10-03 1985-03-19 Formica Corporation Decorative laminate having mar-resistant surface
US4974820A (en) * 1986-05-09 1990-12-04 Suzuki Sogyo Kabushiki Kaisha Bellows type shock absorber
US4832001A (en) * 1987-05-28 1989-05-23 Zomeworks Corporation Lightweight solar panel support
JPH0726851Y2 (ja) 1990-10-09 1995-06-14 シャープ株式会社 太陽電池
US5435087A (en) * 1993-12-15 1995-07-25 Karkar; Maurice N. Solar powered display device
JP3629718B2 (ja) 1994-03-30 2005-03-16 東洋紡績株式会社 樹脂製衝撃吸収ブロック
JP3089172B2 (ja) 1994-12-21 2000-09-18 シャープ株式会社 屋根設置型装置
SE504353C2 (sv) 1995-06-19 1997-01-20 Perstorp Ab Förfarande för framställning av ett dekorativt härdplastlaminat
JP3457783B2 (ja) * 1995-11-28 2003-10-20 シャープ株式会社 太陽電池モジュールおよびその架台取付構造
US5647915A (en) * 1996-06-13 1997-07-15 Zukerman; Charles Solar energy panel
JP3674234B2 (ja) * 1997-04-18 2005-07-20 株式会社カネカ 大型太陽電池モジュール
WO1998048992A1 (en) 1997-04-25 1998-11-05 International Paper Trademark Company Method and device for the moulding of wood fibre board
GB2340060B (en) 1998-07-29 2003-08-13 Mdf Inc Method of manufacturing a molded door skin from a flat wood composite, door skin produced therefrom and door manufactured therewith
US20050161074A1 (en) * 2003-12-16 2005-07-28 Paul Garvison Photovoltaic module mounting unit and system
JP4690666B2 (ja) 2004-06-25 2011-06-01 本田技研工業株式会社 車両用燃料タンクの防振支持構造
US7300032B2 (en) 2005-01-25 2007-11-27 Atire Terchnologies, Inc. Vibration and noise abatement pad
JP4810528B2 (ja) * 2005-03-18 2011-11-09 京セラ株式会社 太陽電池モジュール及び太陽電池アレイ
US7562494B2 (en) * 2005-04-28 2009-07-21 Platts Robert E Retrofitting apparatus and method for securing roof frames against winds
JP2007335622A (ja) * 2006-06-15 2007-12-27 Fujitsu Ltd 電子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575070U (ja) * 1980-06-10 1982-01-11
JP2002223911A (ja) * 2001-02-05 2002-08-13 Aqua New Tech:Kk 密閉式額縁
JP2003105940A (ja) * 2001-09-28 2003-04-09 Sekisui Chem Co Ltd 太陽電池モジュールの設置構造
JP2004006625A (ja) 2002-03-27 2004-01-08 Kyocera Corp 太陽電池モジュールおよび太陽電池アレイ
JP2004146765A (ja) * 2002-08-30 2004-05-20 Kyocera Corp 太陽電池アレイ
WO2008136095A1 (ja) * 2007-04-24 2008-11-13 Mitsubishi Electric Corporation 太陽電池モジュール
WO2008139609A1 (ja) 2007-05-14 2008-11-20 Mitsubishi Electric Corporation 太陽電池モジュール装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423971A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046025A (ja) * 2011-08-26 2013-03-04 Kaneka Corp 太陽電池モジュール

Also Published As

Publication number Publication date
EP2423971A4 (en) 2013-05-15
US20120192929A1 (en) 2012-08-02
US9040810B2 (en) 2015-05-26
US20120024354A1 (en) 2012-02-02
JPWO2010122638A1 (ja) 2012-10-22
EP2469607A2 (en) 2012-06-27
CN102414834B (zh) 2014-08-27
CN102414834A (zh) 2012-04-11
JP5289560B2 (ja) 2013-09-11
EP2469607B1 (en) 2016-04-20
EP2423971A1 (en) 2012-02-29
EP2469607A3 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5289560B2 (ja) 太陽電池モジュール
JP5159770B2 (ja) 太陽電池モジュール装置
US8347564B2 (en) Solar cell module
WO2013161757A1 (ja) 補強フレームおよび太陽電池モジュール
JP5442038B2 (ja) 太陽電池モジュール
CN205609590U (zh) 电池模组
WO2010007946A1 (ja) インターコネクタ
JP5174939B2 (ja) 太陽電池モジュール
JP5446829B2 (ja) 太陽電池モジュール
WO2018101193A1 (ja) 太陽電池装置
US10784390B2 (en) Solar cell module
WO2017104099A1 (ja) 太陽電池モジュール用補強部材及び太陽電池モジュール
JP2016111192A (ja) 太陽電池モジュール
WO2017138248A1 (ja) 太陽光発電装置
JP2011029454A (ja) 太陽電池モジュール
US20190207177A1 (en) Composite end plate and battery module
CN104426460A (zh) 光电面板组件
JP6363537B2 (ja) 太陽電池パネル
CN117713659A (zh) 一种光伏组件
CN214851087U (zh) 光伏装置
JP5709715B2 (ja) 太陽電池モジュールおよびそれを用いた太陽電池アレイ
CN102623525A (zh) 太阳能电池组件
CN213661546U (zh) 光伏发电系统
WO2014175222A1 (ja) 太陽電池モジュール
JP2013026515A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158892.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510115

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13263209

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009843638

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE