WO2010121498A1 - 洗手间器具远程监控系统及其远程监控方法 - Google Patents

洗手间器具远程监控系统及其远程监控方法 Download PDF

Info

Publication number
WO2010121498A1
WO2010121498A1 PCT/CN2010/000566 CN2010000566W WO2010121498A1 WO 2010121498 A1 WO2010121498 A1 WO 2010121498A1 CN 2010000566 W CN2010000566 W CN 2010000566W WO 2010121498 A1 WO2010121498 A1 WO 2010121498A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
appliance
database system
remote monitoring
restroom
Prior art date
Application number
PCT/CN2010/000566
Other languages
English (en)
French (fr)
Inventor
邓树培
Original Assignee
Deng Shupei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deng Shupei filed Critical Deng Shupei
Publication of WO2010121498A1 publication Critical patent/WO2010121498A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0264Control of logging system, e.g. decision on which data to store; time-stamping measurements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2223/00Indexing scheme associated with group G05B23/00
    • G05B2223/06Remote monitoring

Definitions

  • the invention relates to a toilet appliance, in particular to an appliance for installing an induction faucet, a sensory urinal flusher, an induction stool flusher, a induction water tank, an induction soap dispenser, an induction aerosol dispenser, a hand dryer, an induction exhaust fan, and the like in a restroom.
  • a toilet appliance remote monitoring system and its remote monitoring method To provide the above-mentioned toilet appliance remote monitoring system and its remote monitoring method.
  • toilets for toilets induction faucets, induction urinal flushers, induction stool flushers, induction water tanks, induction soap dispensers, induction aerosol dispensers, induction hand dryers, induction exhaust fans, etc., although hygienic, Easy to use, but due to the complexity of the structure, it is generally maintained by the supplier (or professional maintenance service company).
  • Figure 1 is a flow chart of the existing maintenance operation.
  • the thick solid arrows in the figure indicate the development of the fault.
  • the arrow touches the maintenance personnel box, it indicates that the fault has occurred and the maintenance personnel receive the fault information.
  • the above conventional maintenance methods have the following disadvantages: (1) The larger the number of product installations, the greater the number of products that fail at the same time.
  • the object of the present invention is to solve the deficiencies of the prior art, to provide a pre-failure for the failure of the restroom appliance, to balance the maintenance work, to reduce the maintenance cost, and to avoid the hygiene of the user's restroom due to the failure to timely eliminate the appliance failure. Troubled in the toilet remote monitoring system.
  • Another object of the present invention is to provide a toilet appliance which can realize the intervention before the malfunction of the restroom appliance, balance the maintenance work, thereby reducing the maintenance cost, and avoiding the hygienic troubles caused by the failure of the appliance to promptly eliminate the malfunction of the user's restroom.
  • Remote monitoring method The object of the invention is achieved in this way: a remote monitoring system for a toilet appliance, characterized in that: an appliance operation data acquisition module, a database system and an output module are provided, wherein the data acquisition module is disposed on the appliance, and at least collects operation data including the number of appliance movements and/or the battery voltage. And transmitting the operational data to the database system; the database system stores and processes the appliance operation data; and the output module outputs a data processing result of the database system.
  • the data collection module is provided with a counting unit, a storage unit and a remote data transmission unit, wherein the counting unit is electrically connected to a power input end of the operating component; and the storage unit stores the collected by the counting unit.
  • Appliance operation data; the remote data transmission unit transmits data in the storage unit to a database system.
  • a data transfer module is further disposed, the data acquisition module transmits the collected appliance operation data to the data relay module, the data relay module stores the operation data, and transmits the operation data to the database system. .
  • the data transfer module and the data acquisition module transmit the instrument operation data through the RF wireless data transmission unit, and determine the data acquisition module and the data acquisition module and the data acquisition module according to the transmission distance of the RF wireless data transmission unit.
  • the appliances having the adjacent relationship form a queue of appliances.
  • the data relay module is a handheld device or a fixing device disposed on at least one appliance in the appliance queue.
  • the data collection module is provided with a counting unit, a storage unit and an RF wireless data transmission unit, wherein the counting unit is electrically connected to the power input end of the action unit; and the storage unit stores the counting unit to collect Appliance operating data;
  • the RF wireless data transmission unit outputs data in the storage unit; the data relay module is provided with an RF wireless data transmission unit, a memory, and a remote data transmission unit, and the RF wireless data transmission unit receives the output of the data acquisition module. Appliance operating data, said memory
  • the remote data transfer unit transmitting data in the memory to a database system.
  • the remote data transmission unit is an Internet access device or a mobile phone short message transceiver, and the Internet access device transmits the appliance operation data to the database system by accessing the Internet; the mobile phone short message transceiver device
  • the operational data is transmitted to the database system in the form of a mobile phone text message.
  • the data processing of the database system includes predicting the life of a target component associated with appliance operating data. Further, the data processing process of the database system further includes generating an appliance maintenance sequence queue by sorting the appliances according to the length of the target component.
  • the data processing process of the database system further includes setting a plurality of lifetimes according to the length of life of the target component of the appliance. Interval; classify the appliance into the corresponding life span.
  • the data processing process of the database system further includes setting a sudden faulty appliance, and the sudden faulty appliance is assigned to a life span having a short life span.
  • the data processing process of the database system further includes: acquiring GPS coordinates of an appliance queue in which at least one member is in a short life span, setting a priority processing area with the GPS coordinates as an origin, and finding that the Priority is given to appliances in the area.
  • the method further includes
  • the generated maintenance work order is divided by the rated quantity.
  • the data processing process of the database system further includes inputting an installation address of the appliance into the database system, establishing a pairing relationship between the appliance, the installation address, and the operation data.
  • the output module is a display and/or a printer/or a handheld device that can output readable information.
  • Another object of the invention is achieved in this way:
  • a remote monitoring method for a toilet appliance characterized in that it comprises the following steps:
  • Step 1 The appliance collects at least operational data including the number of appliance actions and/or the battery load voltage;
  • Step 2 The appliance transmits the operational data to the database system
  • Step 3 The database system storage has running data, processes the data, and outputs the processing result.
  • the appliance transmits the operational data to the data node;
  • the data node stores the data, and transmits the data to the database system;
  • the appliance of the relationship constitutes a queue of appliances.
  • the data node is a handheld device or a fixture disposed on at least one appliance in the appliance queue.
  • the appliance sets a plurality of alarm flag values, and the appliance compares the collected operation data with the alarm flag value, and marks the collected operation data as normal data or alarm data according to the comparison result;
  • the operational data collected by the appliance is alarm data, it is immediately transmitted to the database system or the data node; if the collected operational data is normal data, it is stored in the storage unit of the appliance or updates the data in the storage unit.
  • the appliance sets a plurality of incremental flag values, compares the currently collected normal state data with the previously transmitted normal state data, and if the incremental flag value is reached, transmits the currently collected normal state data to the database system or Data node.
  • the data node transmits the alarm data to the database system immediately after receiving the alarm data of the appliance.
  • the data node transmits the appliance operation data to the database system via the Internet or a mobile phone short message.
  • the data node determines whether the total data capacity of the received appliance operation data matches the data capacity of a mobile phone short message, and if matched, the data node transmits the appliance operation data to the database system; if not, waits The new appliance operation data is stored until the total data capacity matches the data volume of a mobile phone text message, and the appliance operation data is transmitted to the database system.
  • the process of the database system processing the data includes predicting the lifetime of the target component associated with the operational data.
  • process of processing the data by the database system further comprises generating the appliance to maintain the prior order queue according to the length of the life of the target component.
  • the process of processing the data by the database system further includes setting a plurality of life intervals according to the length of the life of the target component of the appliance; and classifying the appliance into the corresponding life span.
  • the process of processing data by the database system further includes setting a short burst faulty appliance, and the sudden faulty appliance is classified into a short life span.
  • the process of processing data by the database system further includes: acquiring GPS coordinates of the appliance queue in which at least one member is in a short life span, setting a priority processing area with the GPS coordinates as an origin, and finding the priority processing area Inside the appliance.
  • the process of processing data by the database system further includes setting a basic priority corresponding to the life interval, and assigning a corresponding basic priority weight to the appliances in different life intervals;
  • the method further includes
  • the generated maintenance work order is divided by the rated quantity.
  • the process of processing data by the database system further includes inputting an installation address of the appliance into the database system to establish a pairing relationship between the appliance, the installation address, and the operational data.
  • the remote monitoring system of the toilet appliance of the present invention and the remote monitoring method thereof by collecting the operating data of the appliance, using the data node to transmit the operating parameters of the remote appliance to the database system, and the database system processes the data set, for example, predicting the remote appliance The type of failure and the time of occurrence will be output, and the processing result will be output, so as to realize pre-fault intervention, balance maintenance workload, save manpower, reduce maintenance cost, facilitate the promotion and application of induction appliances, and improve the public environmental sanitation level;
  • FIG. 2 is a schematic view of a first embodiment of a remote monitoring system for a restroom appliance.
  • Figure 3 is a schematic view of a second embodiment of a remote monitoring system for a restroom appliance.
  • FIG. 4 is a schematic diagram of a data acquisition module and a data relay module of the second embodiment.
  • Figure 5 is a flow chart of the database system processing data.
  • Figure 6 is a flow chart for predicting the life of the components of the restroom appliance.
  • Figure 7 is a flow chart for predicting the battery life of the restroom appliance.
  • Figure 8 is a schematic diagram of the weight distribution of the additional priority. ' ⁇
  • Figure 9 is a schematic diagram 2 of the weight distribution of the additional priority.
  • Figure 10 is a flow chart showing the maintenance operation after applying the remote monitoring system/method of the restroom appliance.
  • Figure 11 is a flow chart of the remote monitoring method of the toilet appliance.
  • Figure 12 is a flow chart of the appliance transfer data.
  • Figure 13 is a flow chart of data node transfer data.
  • a first embodiment of the present invention provides a remote monitoring system for a restroom appliance, see Fig. 2.
  • the toilet appliance remote monitoring system is provided with an appliance operation data acquisition module 10, a database system 20 and an output module 30.
  • the present embodiment will be described below with a specific restroom.
  • a toilet has 4 sets of induction faucets, 2 sets of induction urinal flushers, 6 sets of induction stool flushers and 2 sets of thousand mobile phones.
  • the data acquisition module 10 is disposed on the 14 sets of appliances, and is provided with a counting unit 100, a storage unit 101 and a remote data transmission unit 102.
  • the counting unit 100 is electrically connected to a power input end of the operating component.
  • the pulse signal of the power input end of the action component is collected, and the pulse signal is counted to count the action of the appliance.
  • the storage unit 101 stores appliance operation data collected by the counting unit 100; the remote data transmission unit 102 transmits the data in the storage unit 101 to the database system 20.
  • the remote data transmission unit 102 may be a mobile phone short message receiving and transmitting device, and the data in the storage unit 101 is transmitted to the database system in the form of a mobile phone short message.
  • the database system 20 stores and processes the appliance operating data; for example, the database system 20 uses the appliance to operate the data predictor to determine the type of fault to occur and the time at which the fault occurred, and output the predicted result.
  • the output module 30 can be a display and/or printer and/or a handheld device that can output readable information, outputting data processing results of the database system 20.
  • the remote data transmission unit 102 is provided for each appliance, the cost is high, and the power consumption of the remote data transmission unit 102 is also large, requiring high-capacity battery support, and the entire system operating cost is high.
  • the present invention also provides an improved solution. Referring to Figures 3 and 4, a second embodiment of the present invention provides a remote monitoring system for a restroom appliance.
  • the system is provided with an appliance operation data acquisition module 10B, a data relay module 40, a database system 20 and an output module 30.
  • the data acquisition module 10B transmits the collected appliance operation data to the data relay module 40, and the data relay module 40 stores the operation data and transmits the operation data to the database system 20.
  • the data transfer module 40 and the data acquisition module 10B transfer the appliance operation data through the RF wireless data transmission unit.
  • the present embodiment will be described below with a specific restroom.
  • a toilet has 4 sets of induction faucets, 2 sets of induction urinal flushers, 6 sets of induction stool flushers and 2 hand dryers.
  • There are 14 sets of restroom appliances of which the induction sanitary ware is battery powered and the moving parts are Solenoid valve, the dry handpiece uses AC power, and the moving parts are motors.
  • the data collection modules 10B are respectively disposed on each of the sets of appliances, and are provided with a counting unit 100, a storage unit 101, and an RF wireless data transmitting unit 103.
  • the RF wireless data transmitting unit 103 outputs the data in the storage unit 101.
  • the data relay module 40 is provided with an RF wireless data transmission unit 400, a memory 401, and a remote data transmission unit.
  • the RF wireless data transmission unit 400 receives the data output by the data acquisition module 10B, and stores the data in the memory 401 ⁇ .
  • the remote data transmission unit 402 transmits the appliance operation data stored in the memory 401 to the database system 20.
  • the remote data transmission unit 402 may be a mobile phone short message transceiver, and the data in the memory 401 is transmitted to the database system in the form of a mobile phone short message.
  • the data relay module 40 has a large power consumption due to the need to transmit data remotely, and is preferably disposed on one of the hand dryers.
  • the transmission distance of the RF wireless data transmission unit completely satisfies the need for the number of devices in the restroom, and then it is determined that the appliances in the restroom have a neighboring relationship, and the appliances are grouped into an appliance queue, that is, the The toilet only needs one number
  • the transfer module 40 the data remote transmission needs of all the appliances in the restroom can be met, on the one hand, the hardware cost is saved, and on the other hand, the relationship between the data acquisition module 10B and the data transfer module 40 is established, and the database system is Operational data for deep processing provides the basis.
  • the data relay module 40 may also be a handheld device, for example, an RF wireless data transmission unit 400 is installed on one Internet access device, and the operating data of the appliance is received by the RF wireless data transmission unit 400, and the The data is stored in the memory of the internet access device, and the data is transferred to the database system 20 by accessing the internet.
  • the data relay module 40 can also output the received data to a networked computer without using a remote transmission device, and transmit data to the database system 20 through the computer to access the Internet.
  • the handheld data transfer module reads data through maintenance personnel, so that a module can read several operating parameters of even the adjacent toilet fixtures. In actual operation, it mainly involves the time interval of reading the operating data of the appliance. This time interval is related to factors such as the frequency of use of the appliance, the number of people who read the operating data of the appliance, and the like. For example, for the above-mentioned restroom, it can be read once a week after the initial installation, for example, 2 months, and the obtained data can be used.
  • the extraction interval can be extended by 1.5 to 2 weeks. So what about handheld devices? In the case of data lag, but for appliances that calculate the service life in years, even if the life expectancy data lags for 1 to 2 weeks, there is still a positive reference.
  • the above embodiments also relate to the identification of data (J question, for example, how the database system determines which data acquisition module or data relay module the received data is from.
  • J question for example, how the database system determines which data acquisition module or data relay module the received data is from.
  • the data acquisition module or the data transfer module is encoded, that is, the data acquisition module or the data transfer module has an identification code.
  • the identification code is synthesized into the data to be transmitted, so that the data
  • the receiving end can determine which data acquisition module or data relay module the data belongs to by the identification code. It is obvious that the data identification problem involved in the present invention belongs to the well-known technical field, and can be solved by directly applying the prior art, and the present embodiment will not be described in detail.
  • the database system also records the installation address of the appliance, and establishes the pairing relationship between the appliance, the installation address, and the S result at the data.
  • the installation address is known and the type of appliance is also known.
  • a typical example is shown in Table 1 (excerpt).
  • the database system predicts the life of the target component of the appliance based on the number of appliance actions. As described above, the number of appliance actions and the battery load voltage value are collected, and the target components associated with the two data are the action component and the battery, so that the data can be processed by, for example, predicting the life of the action component and the battery. Lifetime, that is, the time at which the appliance's moving parts and the battery may fail can be predicted.
  • the unit time period for example, 30 days, establish the corresponding number of actions and the unit time period.
  • the appliance usage frequency information is obtained, thereby more reasonably estimating the time when the appliance action component may malfunction.
  • the action component action count is performed.
  • counting the pulse signal of the driving solenoid valve can realize the action counting of the sensing component of the induction faucet.
  • the cumulative number of action parts is 5000 times, and the number of increments is 5,000 times; in the second unit time period, the cumulative number of action parts is 20,000 times, and the number of increments is 15,00p times; In the third unit time period, the cumulative number of moving parts is 60,000, and the number of increments is 40,000.
  • the sensor faucet is used for a total of 3 unit time periods. That is, 90 days, the cumulative number of movements of the action parts reached 60,000, and the average number of movements per unit time period was 20,000.
  • the predicted motion component life will be closer to the actual situation.
  • the interval is 233.5 days, that is, the action component can be used for 233.5 days. Further, the life of the battery can also be predicted using the number of actions. Referring to FIG.
  • predicting the life of the battery includes the following steps: First, setting battery parameters and appliance operating component power parameters; wherein, the number of batteries, for example, the battery discharge capacity, can be obtained from a battery manufacturer, for example, a typical battery parameter is expressed as: Nominal electricity.
  • the voltage is DC6.0V and the nominal capacity is 2,000mah (mAh).
  • a correction percentage parameter is usually set to 'calculate the battery discharge capacity, for example 80%, which means that the battery discharge capacity is calculated at 80% of the nominal capacity.
  • Battery discharge capacity: 2,000mahx80% 1, 600maho
  • the power parameters can be obtained from the appliance manufacturer. Taking the induction faucet as an example, the moving parts are solenoid valves.
  • the unit time period is set; in this embodiment, the time period is 30 days.
  • the power consumption of the appliance action component calculates the power consumption of the appliance action component; first calculate the power consumption of the motion component.
  • the battery discharge capacity is reduced by the appliance action.
  • the data in Table 1 is used. Induction head, the total time of use is 3 unit time periods.
  • the unit time period with high frequency is set to a higher weight.
  • the predicted remaining life will be closer to the actual situation.
  • the parameters related to the power consumption of the appliance are the static power of the appliance.
  • the static power parameter of the appliance specifically refers to the power consumption of the appliance, for example, the induction faucet in the standby state, and is also available from the manufacturer.
  • the database system realizes the life prediction of the appliance operating part and the battery by the number of times of the action component.
  • the load voltage data of the battery is also collected in the embodiment.
  • the battery load voltage is mainly used to supplement the battery life prediction.
  • the battery life calculation method can be used for a battery with a relatively slow discharge curve, such as a lithium battery, but there is still an error. Therefore, the battery life can be estimated by the battery parameters provided by the battery manufacturer. For example, the battery is rated at 6V and its power is 90% released between 6V and 5.6V. Therefore, when the battery load voltage is 5.6V, even if the predicted battery life can be used for 1 week, an alarm message will be issued, requesting replacement of the battery.
  • This embodiment is based on an 80% of the rated capacity of the battery, with an additional 10% safety margin, in order to counteract the error, i.e., assuming accurate life prediction, simplifying the explanation of the present invention. Therefore, this embodiment only schematically exemplifies the battery load data table, and the data in the table is not used for the subsequent data in this embodiment.
  • the data node is a handheld device and the database system performs predictive life calculations, it also involves the time interval of reading the instrument operational data.
  • This time interval is related to factors such as the frequency of use of the appliance, the number of people who read the operating data of the appliance, and the like. For example, in the first few unit periods used by the sensing faucet, it can be read once a week. After obtaining the frequency information of the sensing faucet, the interval can be extended by 1.5 to 2 weeks. For another example, when the load voltage of the battery is 5.7V, the interval time can be adjusted to 0.5 to 1 week. Therefore, there is usually a phenomenon of data lag in the use of handheld devices, but for appliances that have an annual service life, even if the predicted life data lags by about one week, there is still a positive reference.
  • Step 502 Generate an appliance target component life data table.
  • the generation of the maintenance response time of the promise such as 1 day or 2 days. This example assumes a response time of 1
  • An example of an appliance failure with a response time of 2 days is 3 ⁇ 4".
  • This embodiment also assumes that the old and new states of the battery and appliance operating parts are different. For example, the appliance has been replaced with a new battery, but the operating component does not reach the rated number of actions, so there is no replacement, so the life of the operating component and the battery Life expectancy is seen as independent of each other.
  • Table 4 is the appliance target component life data sheet
  • the appliances of serial numbers 1 to 10 are predicted by the database system, the appliance of serial number 11 is a sudden faulty appliance, the maintenance response time is 1 day, and the appliance of serial number 12 is also a sudden faulty appliance, and the maintenance response time is 2 days.
  • Table 4 can be processed in a common order, for example, by the number of days of life.
  • the front end of the queue is a one-day life appliance that needs to be prioritized.
  • Step 503 Determine whether the appliance is in the 1-day life span. If yes, go to step 504; if no, go to step 505. As shown in Table 4. The life of the moving parts and battery is as short as 1 day, and the longest is 6 days. Set the life span according to the length of the target component, for example, set two life intervals.
  • step 504 the appliance is assigned to the 1-day life span, as shown in Table 4, numbered 2-1, 5-1, 8-1.
  • the 11-1 appliance is placed in the 1-day life span.
  • a priority processing area is generated.
  • the GPS coordinates of the appliance queue can be obtained by using a handheld GPS navigator (generally the GPS coordinates of the restroom where the appliance queue is located), All instruments in the queue are based on the GPS coordinates.
  • Step 506 Determine whether the appliance not assigned to the 1-day life span is in the priority processing area. If yes, go to step 507; if no, go to step 512.
  • the irregular graph 60 in the figure represents the domain range of XX ⁇ .
  • a circle containing a number is used to indicate the location of the appliance.
  • the numerical number in the circle for example, 2-1 indicates the appliance in Table 4 whose serial number is 2 and the life is 1 day, wherein the life of the operating component of the appliance is 1 day, the battery life Lv is 4 days, and the small value is used as the life of the appliance. .
  • the dotted circle indicates the range of the priority processing area.
  • the priority processing area number of the appliance is indicated by the number of the priority processing area originating device, for example, 2-1.
  • the priority processing area is set with the GPS coordinates of the appliance in the 1-day life span as the origin, and the appliance in the priority processing zone 3 ⁇ 4 is found.
  • a reference radius d for example, 6 kilometers.
  • the range of the priority processing area numbered 2-1 is the range of the radius of 6 kilometers centering on the GPS coordinates of the appliance numbered 2-1 in Table 4.
  • the distance between the appliances is calculated from the GPS coordinates to determine which appliances are within the stated range.
  • the reference radius d Q mainly refers to the installation density of the appliance, the traffic condition, and the workload of the maintenance personnel. In the actual maintenance service, you can flexibly set the size of the priority processing area. For example, in the central city of a provincial capital, the installed density of appliances is very large.
  • d 0 can set a smaller value such as 5 kilometers. If the traffic conditions are not good, such as frequent traffic jams, refer to radius d. Smaller values such as 4 kilometers can be set; for example, in suburban areas, the installation density of appliances is low, traffic conditions are good, and the reference radius d Q can be increased to ⁇ , such as 7 kilometers.
  • the reference radius d can be further modified according to the characteristics of the maintenance business.
  • the reference radius is d.
  • the priority processing area of the appliance numbered 5-1 is indicated by a solid circle, and the priority processing area number is represented by 5-1*, in which the numbers 5-1, 11-1, 3-4, and 12-2 are included. There are 4 appliances in total, and the appliance numbered 4-2 is next to 5-1*.
  • the priority processing area 11-1 of the appliance with reference radius d 0 number 11-1 * contains 4 instruments numbered 11-1, 5-1, 3-4, and 2, and the appliance numbered 12-2 is 11- Next to 1*. Therefore, if you increase the radius value of 5-1* or 11- ⁇ , you can include all 5 appliances. In this example, the radius value of 5-1* is increased to d 2 , and the priority processing area is represented by 5-1 ⁇ .
  • priority processing area 5-1 includes numbers 11-1, 5-1, 3-4, and 12-2. There are 5 instruments in total with '4-2.
  • the appliances numbered 7-5, 6-2, and 2-1 are in the priority processing area 2-1; the appliances numbered 10-3 and 8-1 are in the priority processing area 8-1.
  • Appliances 9-3 and 1-2 are not adjacent to any of the appliances in the 1-day life span.
  • the appliance is given a base priority and an additional priority.
  • the instrument is assigned a basic priority corresponding to the life interval, for example, the weight of the basic priority of the appliance in the life span is 1; the weight of the basic priority of the appliance in the life span of more than one day is calculated by the life, for example, 2
  • the weight of the appliance-based priority of the daily life is 2, and the weight of the appliance-based priority of the 3-day life is 3, and so on.
  • the additional priority corresponding to the priority processing area is set, the appliance in the priority processing area is given a lower weight, and the appliance outside the priority processing area is given a higher weight; for example, the additional priority of the appliance in the priority processing area
  • the weight of the weight is 0.5, and the weight of the additional priority of the appliance outside the priority processing area is 2; referring to Figure 8, the appliances 9-3 and 1-2 do not belong to any of the priority processing areas, with additional priority
  • the weight is 2, while the other appliances are in different priority processing areas, so the additional priority weight is 0.5.
  • the appliance base priority and additional priority are combined into a total weight. For example, the weight of the base priority is added to the weight of the additional priority, and the value is taken as the total weight.
  • Table 5 and Figure 8 summarize the table of equipment weight data in Table 5.
  • Table 5 is the appliance weight data sheet
  • Step 508 Determine whether the total weight of the appliance is less than the starting weight.
  • the startup maintenance service weight is set, and the total weight of the appliance is determined to be less than the startup weight. If yes, step 509 is performed. If not, step 512 is performed.
  • setting the appliance start maintenance weight condition is that the total weight is less than or equal to 3.5, that is, the base priority is less than or equal to 3, and the additional priority is 0.5, which means that the processing of a priority processing area has a life of not more than 3 days.
  • All appliances Referring to Table 5, the instruments that satisfy the conditions are 2-1, 4-2, 5-1, 6-2, 8-1, 10-3, 11-1, and 12-2.
  • Step 509 Determine whether the number of appliances is greater than the unit daily processing amount. If yes, execute 'Step 510; If not, perform steps
  • Priority Processing Area 5-1 although containing 5 sets of appliances, can be shortened in terms of geographical proximity, such as traffic time, so maintenance work of the priority processing area can be completed within one working day.
  • Step 510 dividing according to the unit daily processing amount.
  • this figure reflects the high installation density of the appliance.
  • the priority treatment area 5-1 there are 9 sets of appliances. It is therefore necessary to divide the appliances in the area.
  • 9-3, 12-2, 1-2, and 5-1 can be grouped together, and 11-1, 8-1, 3-4, 10-3, and 4-2 are grouped together.
  • Step 511 generating a maintenance work order.
  • the priority processing area 5-1 generates two maintenance job sheets, for example, 5-1A and 5-1.
  • the other priority processing area 2-1 generates a maintenance work order numbered 2-1. Therefore, the situation in Figure 9. also requires three maintenance personnel.
  • Step 512 updating the life data.
  • the database system processes the data in the early hours of April 1, 2009.
  • job sheets 5-1, 2-1, and 8-1 are generated.
  • the operation sheet 2-1 is taken as an example, and the appliances 2-1 and 6-2 are involved.
  • the maintenance service of appliance 2-1 is related to the operating components
  • the maintenance service of appliance 6-2 is related to the battery.
  • the system virtual service ticket 2-1 is executed, and the process of data update is as follows, the life of the operating component of the appliance 2-1 is set to the initial life, that is, equivalent to 300,000 times, for example, 200 days; the battery life of the appliance 6-2 Also set to the initial life, equivalent to 1,600mah, for example 100 days.
  • Table 6 is an update table of appliance life data. Serial number appliance number installation address La Lv Lt
  • FIG. 10 is a flow chart of the maintenance operation of the maintenance service using the monitoring system.
  • the thick solid arrow in the figure indicates the development process of the fault
  • the hollow up and down arrows between the maintenance personnel box and the thick solid arrow indicate the appliance.
  • the life of the target component the length of which represents the length of life of the target component, as predicted by the database system.
  • Maintenance personnel Only one line of the maintenance personnel box is connected to the maintenance line, indicating that only one is dispatched. Maintenance personnel. Pre-failure maintenance can balance maintenance operations. For example, if you receive a customer product report and need to go to the door within 24 hours, you can use the obstacle device to generate a priority processing area after receiving the obstacle message, so that the maintenance personnel can handle the priority process when they go to the maintenance. The equipment that is about to fail in the area will improve the efficiency of the current maintenance work and balance the maintenance work. For maintenance services that are not special faults, more efficient equalization can be performed.
  • the total number of induction faucets installed is 100,000 sets, and 1% will appear one day in 100 days.
  • the probability of failure rate is 100%, that is, the probability of failure of 100 induction faucets within one day within 100 days is 100%.
  • the failure rate date involves 100 sets of products, that is, the predicted life of the 100 sets of products is the closest. According to the assumption, the 1%. The failure rate occurred on the 50th day after April 1, 2009.
  • a maintenance person handles product failures at five different locations each day. With 2 maintenance personnel, 10 points of failure can be processed per day. If the two maintenance personnel prioritize these 100 points of failure from April 1, 2009 (including the day) to April 10, 2009 (including the same day), it will only take 10 days and 40 days remain. Therefore, there is sufficient time for equalization processing in the order of processing the 100 defective products. 2 people can balance the total number of fault points of 1 000 in 100 days. That is, with the method of the present invention, maintenance of 100,000 sets of induction faucets can be handled by at least two people.
  • the traditional mode can only be configured based on the condition that the probability of having 100 failure points per day is 100%.
  • the application of the remote monitoring system of the toilet can realize the pre-failure intervention, thereby balancing the maintenance workload, saving the manpower, reducing the maintenance cost, and facilitating the promotion and application of the induction appliance, thereby improving the public environmental sanitation level.
  • the present invention also provides a remote monitoring method for a restroom appliance.
  • the embodiment includes the following steps:
  • Step 201 The appliance collects operational data.
  • the appliance collects the operating data of the number of actions and the battery load voltage; during actual use, the failure of the operating parts of the restroom appliance is one of the common faults. Most of these failures are caused by aging of the operating parts of the bathroom appliance or wear and tear of the mechanism, so it is a gradual process.
  • the common moving parts of a bathroom appliance are solenoid valve motor components.
  • Such moving parts usually have a parameter provided by the manufacturer describing their service life, such as rating
  • the action is 300,000 times or 500,000 times, which means that the part can be used stably for 300,000 times or 500,000 times.
  • the reliability of the moving parts will be rapidly reduced. .
  • Under-electricity of the bathroom appliance is also one of the common faults.
  • Battery-powered toilet appliances have fewer installations and are more widely used because there is no safety hazard.
  • it since it is powered by a battery, it is inevitable that the battery needs to be replaced.
  • even toilet equipment installed in the same bathroom has a difference in frequency of use.
  • the frequency of the induction faucet or the sensor flusher near the door is much higher than the inner one.
  • the battery life of each bathroom fixture can vary widely, which can be a problem for battery replacement.
  • the reliability of the operation of all the restroom appliances is guaranteed, based on the battery life of the most frequently used products, when the battery of the most frequently used bathroom appliance is issued with a battery alarm, the batteries of all the restroom appliances are replaced uniformly. Lead to obvious waste. If the battery is replaced after the product has issued an under-power warning, the battery power is fully utilized, but it also causes another problem. Because the manufacturer of the toilet appliance usually can reliably shut off the water source in order to ensure that the toilet appliance is under power, usually in the owing 00566
  • Step 202 The appliance transmits the operational data to the data node.
  • the data node and the appliance transmit the appliance operation data through the RF wireless data transmission unit, and determine the proximity relationship between the data node and the appliance and between the appliance and the appliance according to the transmission distance of the RF wireless data transmission unit;
  • the adjacent devices constitute a queue of appliances.
  • a toilet has 4 sets of induction faucets, 2 sets of induction urinal flushers, 6 sets of induction stool flushers and 2 sensing thousands of mobile phones. If the transmission distance of the RF wireless data transmission unit according to this embodiment completely satisfies the data transmission needs of the restroom appliance, then it is determined that the appliances in the restroom have a neighboring relationship, and the appliances are grouped into an appliance queue.
  • the data node has a large power consumption due to the need to transmit data remotely, and is preferably disposed as a fixed device on one of the inductive hand dryers.
  • the process of collecting and transmitting data by the appliance is illustrated by taking the number of actions of the induction faucet and the battery load voltage as an example.
  • collect operating parameters The typical action component of the induction faucet is a solenoid valve.
  • the typical action component of the induction faucet is a solenoid valve.
  • it is a pulse signal that collects the input end of the solenoid valve power supply.
  • the pulse signal is counted to realize the action of the induction faucet.
  • the collected operational data is stored; a plurality of alarm flag values are set, and the currently collected operational data is processed.
  • the appliance is rated for 300,000 times, it can set an action alarm flag value corresponding to the number of times the appliance is operated, such as 280;000 times, indicating that the number of appliance movements is used as an alarm data after the cumulative number of movements of the appliance reaches 280,000 times.
  • the number of times of the collected appliance is 250,000 times, compared with the value of the action alarm flag, the number of actions is not up to 280,000 times, and the currently collected number of actions is stored as normal data in the appliance storage unit. Or update the data in the appliance storage unit.
  • the rated voltage of the battery is 6V, and its power is 90% released between 6V and 5.6V
  • you can set a voltage alarm flag value corresponding to the battery power such as 5.6V, indicating that when the battery voltage drops to 5.6V , the voltage data is processed as an alarm data.
  • the collected battery voltage is 5.8V, compared with the voltage alarm flag value, the voltage is higher than 5.6V, that is, the remaining battery capacity is above 10%, and the current collected battery voltage is stored as normal data in the appliance storage unit. Or update the data in the appliance storage unit.
  • the number of movements of the collected instruments is 281,000 times, compared with the value of the action alarm flag, the number of actions is more than 280,000 times, and the number of actions currently collected is used as alarm data, stored in the appliance storage unit or updated in the appliance storage unit.
  • the data is then transferred to the data node. If the collected battery voltage is 5.59V, compared with the power alarm flag value, the voltage is lower than 5.6V, that is, the remaining battery capacity is below 10%, and the current collected battery voltage is stored as alarm data in the appliance storage unit. Or update the data in the appliance storage unit and transfer it to the data node. Further, the normal data stored in the appliance storage unit is processed.
  • the increment flag value such as 1,000 times, indicates that the number of action increments is .1,000 times, and the number of actions currently acquired is transmitted to the data node.
  • the significance of setting the incremental flag value is to obtain the operating data of more appliances, and obtain the appliance usage frequency information through the incremental data statistics, thereby more reasonably evaluating the type of failure and the occurrence time of the appliance, and the specific process will be in step 204.
  • the data node may also be a handheld device, and the device is provided with an RF wireless data transmission unit.
  • Receiving operational data transmitted by the appliance In the case of using a handheld device as a data node, its relationship with the appliance queue is a one-to-many relationship. For example, in the above-mentioned restroom, there are 12 sets of appliances. Even if no fixed data node device is provided on any of the appliances, the appliances are still adjacent, that is, the appliance queue has not changed. If there are several such restrooms, the maintenance personnel can respectively reach the restrooms and use the handheld device to read the operating parameters of the respective restroom appliances.
  • Step 203 The data node transmits the data to the database system.
  • the data node is disposed on one of the inductive hand dryers, and the received appliance operation data is transmitted to the database system through the remote data transmission device.
  • the remote data transmission device may be a mobile phone short message transceiver.
  • the appliance operating parameters stored in the data node memory are transmitted to the database system by means of mobile phone text messages.
  • the data node runs as follows. First, the data node receives the running data transmitted by the appliance and stores it in the memory; the data node judges the received appliance running data, and if it is the alarm data, transmits the alarm data together with the already stored in the memory. The normal data is transmitted to the database system together; if it is normal data, the data node determines whether the total data capacity of the received appliance operation data matches the data capacity of a mobile phone short message, and if the data matches, the data node runs the appliance. The data is transferred to the database system; if it does not match, the new appliance operation data is stored, until the total data capacity matches the data amount of a mobile phone short message, and the appliance operation data is transmitted to the database system.
  • the matching in this embodiment means that the data capacity of the operating data of the received appliance and the data capacity of the auxiliary data related to the transmission of the mobile phone short message are not more than the data capacity of a mobile phone short message.
  • the data capacity of the mobile phone short message is fully utilized, and the utilization efficiency of the mobile phone short message is improved, and the operating parameters of the appliance can be timely transmitted to the database system.
  • the data node is a handheld device, in addition to the method of using a mobile phone short message, the data can be transmitted to the database system via the Internet.
  • the data node is connected to a handheld mobile Internet device to transmit appliance operating data to the database system in the form of a remote file or email.
  • Steps 202 and 203 above also involve the identification of data, such as how the database system determines which data node or appliance the received data came from.
  • data such as how the database system determines which data node or appliance the received data came from.
  • Step 204 The database system processes the data and outputs the processing result.
  • the database system In order to facilitate the application of the data processing results of the database system, the database system also records the installation address of the appliance, and establishes a pairing relationship between the appliance, the installation address, and the data processing result.
  • the installation address is known and the type of appliance is also known.
  • a typical example is shown in Table 1 (excerpt).
  • the traditional mode can only be configured according to the condition that the probability of having 100 fault points per day is 100%.
  • the application of the remote monitoring method of the toilet can realize the pre-failure intervention, thereby balancing the maintenance workload, saving the manpower, reducing the maintenance cost, and facilitating the promotion and application of the induction appliance, thereby improving the public environmental sanitation level.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

洗手间器具远程监控系统及其远程监控方法
技术领域
本发明涉及洗手间器具, 尤其是将感应水龙头、 感应小便冲水器、 感应大便冲水器、 感应水箱、 感应给皂器、 感应喷香机、 干手机、 感应排气扇等安装在洗手间的器具, 以提供上述洗手间器具远程 监控系统及其远程监控方法。
背景技术
现在, 用于洗手间的洗手间器具, 感应水龙头、 感应小便冲水器、 感应大便冲水器、 感应水箱、 感应给皂器、 感应喷香机、 感应干手机、 感应排气扇等, 虽然具备卫生、 使用方便特点, 但是由于结 构复杂, 一般都由供应商(或专业的维护服务公司)维护。
目前一个典型的维护过程如下, 产品出现故障一用户报障一供应商前往维护。 图 1是现有维 护作业流程图。 图中粗实线箭头表示故障的发展过程, 当箭头触及维护人员方框时, 表示故障已经出 现, 维护人员接到报障信息。如图, 有 3条标记为维护的带箭头的线分别触及报障的器具 1、器具 n、 器具 n+x, 表示派出 3名维护人员分别处理器具 1、 器具 n、 器具 n+x的故障。 上述传统的维护方法 存在以下不足之处, (1 ) 由于产品安装的数量越庞大, 在同一时刻出现故障的产品数量就越多。而且 目前产品故障的发生是不能预测的, 因此传统的维护业务相当于 "消防员救火", 具有极大的不确定性 和突发性。 再者, 为了在合理的时间内(如市内 24小上门, 郊区 48小时)上门, 供应商要维持一支 规模庞大的维护人员队伍, 其成本将直接转嫁到用户身上, 因此限制了产品的推广应用。 (2)传统的 维护作业流程还有一个弊端, 就是故障后维护。意味着用户在供应商排除产品故障前, 产品不能正常 使用, 这将对用户洗手间造成严重的卫生困扰。 . .
发明内容
本发明的目的是为了解决现有技术的不足, 提供一种可实现洗手间器具故障前千预, 使维护工作 得到均衡, 以降低维护成本, 而且可以避免因不能及时排除器具故障对用户洗手间造成卫生困扰的不 足的洗手间器具远程监控系统。
本发明的另一目的是在于提供一种可实现洗手间器具故障前干预, 使维护工作得到均衡, 以降低 维护成本,而且可以避免因不能及时排除器具故障对用户洗手间造成卫生困扰的不足的洗手间器具远 程监控方法。 本发明的目的是这样实现的: 洗手间器具远程监控系统, 其特征在于, 设有器具运行数据采集模块、 数据库系统和输出模块, 所述的数据采集模块设置在器具上,至少采集包括器具动作次数和 /或电池电压的运行数据,并将运行 数据传送到数据库系统; 所述的数据库系统存储和处理所述的器具运行数据; 所述的输出模块输出数 据库系统的数据处理结果。 进一步地, 所述的数据采集模块设有计数单元、存储单元及远程数传单元, 所述的计数单元与所 述动作部件的电源输入端电连接; 所述的存储单元存储计数单元采集到的器具运行数据; 所述的远程 数传单元将所述存储单元中的数据传送到数据库系统。 进一步地, 还设有数据中转模块, 所述的数据采集模块将采集到的器具运行数据传送到数据中转 模块, 数据中转模块存储所述的运行数据, 并将所述的运行数据传送到数据库系统。
进一步地, 所述的数据中转模块与数据采集模块之间通过 RF无线数传单元传送器具运行数据, 且依据 RF无线数传单元的传送距离确定 数据采集模块与数据采集模块之间和数据采集模块与数据中转模块之间的邻近关系,将具有邻近 关系的器具组成器具队列。 进一步地, 所述的数据中转模块为手持设备或设置在器具队列中的至少一个器具上的固定装置。 进一步地, 所述的数据采集模块设有计数单元、 存储单元及 RF无线数传单元, 所述的计数单元 与所述动作部 的电源输入端电连接; 所述的存储单元存储计数单元采集到的器具运行数据; 所述的
RF无线数传单元将存储单元中的数据输出; 所述的数据中转模块设有 RF无线数传单元、 存储器和远程数传单元, 所述的 RF无线数传单元 接收所述数据采集模块输出的器具运行数据, 所述的存储器
存储所述的运行数据, 所述的远程数传单元将所述存储器中的数据传送到数据库系统。
进一步地, 所述的远程数传单元为互联网接入装置或手机短信收发装置, 所述的互联网接入装置 通过接入互联网将器具运行数据传送到数据库系统;所述的手机短信收发装置将器具运行数据以手机 短信的形式传送到数据库系统。 进一步地, 所述的数据库系统的数据处理过程包括预测与器具运行数据关联的目标部件的寿 命。 进一步地,所述的数据库系统的数据处理过程还包括将器具按目标部件寿命的长短排序生成器具 维护先后次序队列。
进一步地,所述的数据库系统的数据处理过程还包括按器具目标部件寿命的长短设定若干个寿命 区间; 将器具划归相应的寿命区间。
进一步地, 所述的数据库系统的数据处理过程还包括设置突发故障器具, 所述的突发故障器具划 归寿命较短的寿命区间。
进一步地,所述的数据库系统的数据处理过程还包括获取至少一个成员处于寿命较短的寿命区间 中的器具队列的 GPS坐标, 以该 GPS坐标为原点设定优先处理区域,找出处于所述优先处理区域内 的器具。
进一步地, 设定对应于寿命区间的基础优先权, 赋予处于不同寿命区间中的器具相应的基础优先 权; · .
设定对应于优先处理区域的附加优先权,赋予优先处理区域内和优先处理区域外的器具相应的附 加优先权权值, 将器具基础优先权权值和附加优先权权值合成为总权值;
设置启动维护业务权值, 依据总权值与启动维护业务权值的对应关系, 生成维护作业单。
进一步地, 在生成维护作业单的过程中, 还包括
设定单个器具维护标准操作周期;
依据标准操作周期设定一名维护人员每天维护器具的额定数量;
将生成的维护作业单按额定数量进行分割。
进一步地, 所述的数据库系统的数据处理过程还包括将器具的安装地址输入数据库系统, 建立器 具、 安装地址和运行数据的配对关系。
进一步地, 所述的输出模块为显示器和 /或打印机 /或可以输出可读信息的手持设备。
本发明的另一目的是这样实现的:
一种洗手间器具的远程监控方法, 其特征是, 包括如下步骤:
步骤 1 : 器具至少采集包括器具动作次数和 /或电池负载电压的运行数据;
步骤 2: 器具将运行数据传送到数据库系统;
步骤 3: 数据库系统存储器具运行数据, 并对数据进行处理, 输出处理结果。
进一步地,还设有数据节点,所述的器具将运行数据传送到数据节点;所述的数据节点存储数据, 并将数据传送到数据库系统; . .
所述的数据节点与器具之间通过 RF无线数传单元传送器具运行数据, 且依据 RF无线数传单元 的传输距离确定数据节点与器具之间和器具与器具之间的邻近关系,将具有邻近关系的器具组成器具 队列。 述的数据节点为手持设备或设置在器具队列中的至少一个器具上的固定装置。
进一步地, 所述的器具设置若干个报警标志值, 器具将采集到的运行数据与报警标志值比较, 依 据比较结果将采集到的运行数据标记为常态数据或报警数据;
若器具采集到的运行数据为报警数据, 立即传送到数据库系统或数据节点; 若采集到的运行数据 为常态数据, 则存储在器具的存储单元中或更新存储单元中的数据。
进一步地, 所述的器具设置若干个增量标志值, 将当前采集到的常态数据与前一次传送的常态数 据比较, 若达到增量标志值, 则传送当前采集到的常态数据到数据库系统或数据节点。
所述的数据节点收到器具的报警数据后立即将所述的报警数据传送到数据库系统。
所述的数据节点通过互联网或手机短信的方式将器具运行数据传送到数据库系统。
进一步地,所述的数据节点判断接收到的器具运行数据的数据总容量是否与一条手机短信的数据 容量相匹配, 如果相匹配, 数据节点将器具运行数据传送到数据库系统; 如果不匹配则等待新的器具 运行数据存入,直到数据总容量与一条手机短信的数据量匹配,再将器具运行数据传送到数据库系统。
进一步地, 数据库系统处理数据的过程包括预测与所述运行数据关联的目标部件的寿命。
进一步地,数据库系统处理数据的过程还包括将器具按目标部件寿命的长短排序生成器具维护先 后次序队列。
进一步地, 数据库系统处理数据的过程还包括按器具目标部件寿命的长短设定若干个寿命区间; 将器具划归相应的寿命区间。
进一步地, 数据库系统处理数据的过程还包括设直突发故障器具, 所述的突发故障器具划归寿命 较短的寿命区间。
进一步地, 数据库系统处理数据的过程还包括获取至少一个成员处于寿命较短的寿命区间中的器 具队列的 GPS坐标,以该 GPS坐标为原点设定优先处理区域,找出处于所述优先处理区域内的器具。
进一步地, 数据库系统处理数据的过程还包括设定对应于寿命区间的基础优先权, 赋予处于不同 寿命区间的器具相应的基础优先权权值; ''
设定对应于优先处理区域的附加优先权, 赋予处于优先处理区域内和优先处理区域外的器具相应 的附加优先权权值,将器具基础优先权权值和附加优先权权值合成为总权值;设定启动维护业务权值, 依据总权值与启动维护业务权值的对应关系, 生成维护作业单。
进一步地, 在生成维护作业单的过程中, 还包括
设定单个器具维护标准操作周期; 依据标准操作周期设定一名维护人员每天维护器具的额定数量;
将生成的维护作业单按额定数量进行分割。
进一步地, 数据库系统处理数据的过程还包括将器具的安装地址输入数据库系统, 建立器具、 安 装地址和运行数据的配对关系。
本发明的有益效果如下:
( 1 )本发明的洗手间器具远程监控系统及其远程监控方法, 通过采集器具运行数据, 利用数据 节点将远程器具的运行参数传送到数据库系统, 数据库系统对数据集 '中处理, 例如预测远程器具将要 发生的故障类型和发生的时间, 输出处理结果, 从而实现故障前干预, 使维护工作负荷得到均衡, 节 省人手, 降低维护成本, 有利于感应器具推广应用, 提高公共环境卫生水平;
附图说明 - 图 1是现有维护作业流程图。
图 2是洗手间器具远程监控系统第一实施例示意图。
图 3洗手间器具远程监控系统第二实施例示意图。
图 4是第二实施例数据采集模块与数据中转模块示意图。
图 5是数据库系统处理数据流程图。
图 6是预测洗手间器具动作部件寿命流程图。
图 7是预测洗手间器具电池寿命流程图。
图 8是附加优先权的权值分布示意图 1。 ' ·
图 9是附加优先权的权值分布示意图 2。
图 10是应用洗手间器具远程监控系统 /方法后的维护作业流程图。
图 11是洗手间器具远程监控方法流程图。
图 12是器具传送数据流程图。
图 13是数据节点传送数据流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。 ' 本发明的第一实施例提供一种洗手间器具远程监控系统, 参阅图 2。 该洗手间器具远程监控系统 设有器具运行数据采集模块 10、 数据库系统 20和输出模块 30。 下面以 1个具体的洗手间说明本实 施例。 例如, 某个洗手间, 设有 4套感应水龙头、 2套感应小便冲水器、 6套感应大便冲水器和 2台 千手机, 共 14 套洗手间器具, 其中感应洁具采用电池供电, 动作部件为电磁阔, 干手机采用交流电, 动作部件为电 机。 . ' 所述的数据采集模块 10分别设置在所述的 14套器具上, 设有计数单元 100、 存储单元 101及 远程数传单元 102。所述的计数单元 100与所述动作部件的电源输入端电连接。采集动作部件电源输 入端的脉冲信号, 对脉冲信号进行计数, 实现对器具的动作计数。所述的存储单元 101存储计数单元 100采集到的器具运行数据;所述的远程数传单元 102.将所述的存储 元 101中的数据传送到数据库 系统 20。 其中, 所述的远程数传单元 102可以是手机短信收发装置, 将存储单元 101中的数据以手 机短信的形式传送到数据库系统。
所述的数据库系统 20存储和处理所述的器具运行数据;例如数据库系统 20利用器具运行数据预 测器具将要发生的故障类型和发生故障的时间, 将预测结果输出。 所述的输出模块 30可以是显示器 和 /或打印机和 /或可以输出可读信息的手持设备,输出数据库系统 20的数据处理结果。本实施例, 由 于每一个器具设置远程数传单元 102, 成本较高, 而且远程数传单元 102的功耗也较大, 需要高容量 的电池支持, 整个系统运行成本较高。 本发明还提供 1种改进的方案。 · 参阅图 3和图 4, 本发明的第二实施例提供一种洗手间器具远程监控系统。
该系统设有器具运行数据采集模块 10B、 数据中转模块 40、 数据库系统 20和输出模块 30。 所 述的数据采集模块 10B将采集到的器具运行数据传送到数据中转模块 40,数据中转模块 40存储所述 的运行数据,并将所述的运行数据传送到数据库系统 20。所述的数据中转模块 40与数据采集模块 10B 之间通过 RF无线数传单元传送器具运行数据。 下面以 1个具体的洗手间说明本实施例。 例如, 某个 洗手间, 设有 4套感应水龙头、 2套感应小便冲水器、 6套感应大便冲水器和 2台干手机, 共 14套 洗手间器具,其中感应洁具采用电池供电,动作部件为电磁阀,干手机采用交流电,动作部件为电机。
如图 5所示,数据采集模块 10B分别设置在所述的每一套器具上, 设有计数单元 100、存储单元 101、 RF无线数传单元 103。 所述的 RF无线数传单元 103将存储单元 101中的数据输出。
数据中转模块 40设有 RF无线数传单元 400、 存储器 401和远程数传单元
402, RF无线数传单元 400接收数据采集模块 10B输出的数据, 并将数据存储在存储器 401 Φ , 远程数传单元 402将存储在存储器 401中器具运行数据传送到数据库系统 20。 所述的远程数传单元 402可以是手机短信收发装置,将存储器 401中的数据以手机短信的形式传送到数据库系统。所述的 数据中转模块 40由于需要远程传送数据, 因此功耗较大, 优选地设置在其中 1台干手机上。
对于上述洗手间, 所述的 RF无线数传单元的传输距离完全满足所述洗手间内的器具数传需要, 那么就判定该洗手间内的器具具有邻近关系, 将所述的器具组成器具队列, 即该洗手间只需要一个数 据中转模块 40就可以满足洗手间内所有器具的数据远传需要, 一方面节约硬件成本, 另一方面还建 立数据采集模块 10B与数据中转模块 40之间多对一的关系, 为数据库系统对器具运行数据进行深加 工提供依据。
另外, 所述的数据中转模块 40也可以是手持设备, 例如在 1台互联网接入装置上安装 RF无线 数传单元 400, 通过 RF无线数传单元 400接收器具的运行数据, 并将所述的数据存储在所述互联网 接入装置的存储器中, 通过接入互联网将数据传送到数据库系统 20。'所述的数据中转模块 40也可以 不带远传装置, 将接收到的数据输出到联网的电脑, 通过电脑接入互联网传送数据到数据库系统 20。
这种手持的数据中转模块通过维护人员上门读取数据,因此一个模块可以读取若干个即使是不邻 近的洗手间器具的运行参数。在实际的操作中, 主要涉及读入器具运行数据的时间间隔问题。 该时间 间隔与器具的使用频度、上门读入器具运行数据的人手多寡等因素有关。例如, 对于上述提及的洗手 间, 可以在初装后的一段时间, 例如是 2个月, 可以每周读入一次, 利用获得的数据可
以评估出器具的使用频度资料, 就可以延长提取间隔时间为 1.5至 2周。 因此采用手持设备通常 Ϊ?在 数据滞后的现象,但对于以年计算使用寿命的器具, 即使预测寿命数据滞后 1至 2个星期依然有积极 的参考意义。
上述的实施例还涉及数据的识另 (J问题,例如是数据库系统如何判别接收到数据是来自哪个数据采 集模块或数据中转模块。 有多种公知的解决方法, 例如
是对数据采集模块或数据中转模块进行编码, 即数据采集模块或数据中转模块都有识别码, 在数据采 集模块或数据中转模块传送数据时, 将识别码合成到需要传送的数据中, 这样数据接收端就可以通过 识别码判别出所述数据是属于哪个数据采集模块或数据中转模块。显然本发明所涉及的数据识别问题 属于公知技术领域, 直接应用现有技术即可以解决, 本实施不做详述。
下面详细说明洗手间器具远程监控系统的数据库系统处理数据的过程。
为了方便数据库系统数据处理结果的应用, 数据库系统还记录器具的安装地址, 建立器具、 安装 地址和数据处 S结果的配对关系。安装地址是已知的, 器具的类型也是已知的。一个典型的例子如表 1 (节选)所示。
表 1器具数据处理结果输出表
Figure imgf000009_0001
参阅图 5, 数据库系统处理数据和输出处理结果的典型流程如下。 步骤 501, 数据库系统依据器具动作次数预测器具目标部件寿命。 如上所述, 采集的器具动作次 数和电池负载电压值, 与这两个数据关联的目标部件为动作部件和电池, 因此可以通过对动所述数据 进行处理, 例如是预测出动作部件寿命和电池寿命, 即可以预测出器具动作部件和电池可能出现故障 的时间。
数据库系统依据器具动作次数预测器具动作部件寿命的过程包括如下步骤, 参阅图 6,
首先设定动作部件额定动作次数; 该参数由生产商提供, 描述动作部件使用寿命, 例如动作 300,000次, 则将 300,000次设置为动作部件额定动作次数。
然后设置单位时间段, 例如是 30日, 建立动作次数与单位时间段的对应关
系。通过统计若干单位时间段内的动作次数, 获得器具使用频度信息, 进而更合理地评估器具动作部 件可能发生故障的时间。
然后进行动作部件动作计数。 以电磁阀为例, 对驱动电磁阀的脉冲信号进行计数, 即可实现感应 水龙头动作部件的动作计数。
参阅表 2, 假设上述的某个感应水龙头, 使用时间共计 3个单位时间段。 在
第一个单位时间段, 动作部件的累计次数为 5000次, 增量次数为 5,000次; 在第二个单位时间段, 动作部件的累计次数为 20,000次, 增量次数为 15,00p次; 在第三个单位时间段, 动作部件的累计次 数为 60,000次, 增量次数为 40,000次。
表 2动作部件动作次数记录表
Figure imgf000010_0001
表 2所示, 该感应水龙头, 使用时间共计 3个单位时间段。 即 90天, 动作部件累计动作次数达 到 60,000次,单位时间段平均动作次数为 20,000次。动作部件的寿命为剩余的动作次数除以单位时 间段平均动作次数, 即(300,000次 -60,000次) /20,000次 =12个单位时间段, 计 360天, 即所述的 动作部件还可以使用 360天。
如果就不同的单位时间段设置相应的权值, 例如使用频度较高的时间段设置较高的权值。应用加 权计算, 其预测的动作部件寿命将更为接近于实际 ί青况。 计算加权平均数: ( 5,000x1 +15,000x3+40,000x8 ) /(1+3+8)=30,833次 /单位时间段。 动作部件寿命为剩动作次数除以 加权单位时间段平均动作次数, 对于本实施例, (300,000次 -60,000次) /30,833次 =7.78个单位时 间段, 计 233.5天, 即所述的动作部件还可以使用 233.5天。 ' 进一步地, 还可以利用动作次数预测电池的寿命。 参阅图 7, 预测电池的寿命包括如下步骤: 首先设定电池参数和器具动作部件功率参数; 其中, 电池 数例如是电池放电容量可以从电池生 产商处获得, 例如一个典型的电池参数表述为: 标称电 .
压 DC6.0V, 标称容量 2,000mah (毫安时)。 在实际的应用过程中, 通常会设定一个修正百分比参数 '计算电池放电容量, 例如 80%, 即表示电池放电容量按标称容量的 80%计算。 电池放电容量: 2,000mahx80%=1 ,600maho至于器具动作部件功率参数可以从器具动作部件生产商处获得。 以感应 水龙头为例, 动作部件为电磁阀, 一个典型的电磁阀参数表述为: 额定电压 DC6.0V, 线圈电阻 16欧姆,开启脉冲宽度 35ms (毫秒),关闭脉冲宽度 35ms (毫秒)。其中 35ms (毫秒) =0.035s (秒) =0.00000972h (小时), 电流值为 6/16=0.375a (安培) =375ma (毫安)。
感应水龙头开关一次的功耗: 375max0.00000972hx2=0.0073mah (毫安时)。
然后设置单位时间段; 本实施例以 30日为单位时间段。
然后进行动作部件动作计数;
然后计算器具动作部件耗电量; 首先计算动作部件的功耗。依据表 1的数据, 动作部件累计动作 60,000次, 其功耗: 60,000x0.0073mah =438mah。 计算电池寿命。 将电池放电容量减去器具动作 部件耗电量即为该电池剩余放电容量, 即 1 ,600mah-438mah=1 ,162mah。 沿用表 1数据。 感应水龙 头, 使用时间共计 3个单位时间段。 单位时间段平均功耗: 438mah/3=146mah, 电池剩余放电容量 的使用时间为: 1 ,162mah/146mah=7.96单位时间段, 电池还可以用 7.96x30=238.8天。
如果就不同使用频度的单位时间段设置相应的权重值,例如使用频度高的单位时间段设置较高的 权。应用加权计算,其预测的剩余使用寿命将更为接近于实际情况。沿用表 2数据。计算加权平均数: ( 5,000x1 +15,000x3+40,000x8 ) /(1 +3+8)=30,833 次 /单位时间段。 加权单位时间段平均功耗: 30,833x0.0073mah =225.08mah
电池剩余放电容量的使用时间为: 1 ,162mah/225.08mah=5.16 单位时间段, 电池还可以用 5.16x30=154.8天。
另外, 与器具功耗有关的参数还有器具静态功率 数, 器具静态功率参数具体指器具例如是感应 水龙头在待机状态的功耗, 也是可以从生产商处获得。
—个典型的器具静态功率参数表述为: 静态电 ≤25ua (微安) =0.025ma (毫安)。 依据表 1数据, 单位时间段内器具静态功耗: 0.025ma (毫安) x24h/d (小时 /天) x30d (天) =18mah (毫安时)。 因此修正后的电池剩余放电容量为 1,600mah-438mah- 3 x 18mah =1 ,108mah。以加权单位时间段平 均功耗计算修正后电池剩余放电容量的使用时间。 1,108/(225.08+18)=4.56单位时间段, 电 池还可以用 4.56x30=136.8天。
至此, 数据库系统通过动作部件的动作次数实现对器具动作部件和电池的寿命预测。另外本实施 例还采集电池的负载电压数据, 采集电池负载电压主要是对电池寿命预测的补充, 上述电池寿命计算 方式可以用于放电曲线比较平缓的电池, 例如是锂电池, 但还是存在误差。 因此可以通过电池生产商 提供的电池参数评估电池的寿命,例如电池的额定电压为 6V,其电量 90%都在 6V至 5.6V之间释放。 因此当采集电池负载电压为 5.6V时, 即使预测的电池寿命还可以用 1周, 都要发出报警信息, 要求 更换电池。 本实施例是以电池额定容量的 80%计算, 额外增加 10%的安全裕度, 目的是要抵消所述 的误差, 即假定寿命预测准确, 简化本发明的解释。 因此, 本实施例仅示意性地列举电池负载电 数 据表, 而表中的数据并不用于本实施例后续的数据 ¾理。
表 3电池负载电压记录表
Figure imgf000012_0001
另外, 如果数据节点为手持设备, 数据库系统执行预测寿命计算时, 还涉及读入器具运行数据的 时间间隔问题。该时间间隔与器具的使用频度、上门读入器具运行数据的人手多寡等因素有关。例如, 在感应水龙头使用的前几个单位时间段,可以每周读入一次,在获取该感应水龙头的使用频度信息后, 就可以延长间隔时间为 1.5至 2周。 又例如, 当电池的负载电压为 5.7V时, 可以将间隔时间调整为 0.5至 1周。 因此采用手持设备通常存在数据滞后的现象, 但对于以年计算使用寿命的器具, 即使预 测寿命数据滞后一个星期左右依然有积极的参考意义。
步骤 502, 生成器具目标部件寿命数据表。
理论上器具动作部件和电池的寿命都可以预测计算, 但是在实际的使用过
程中, 还有一些突发因素导致器具动作部件或电池故障, 这些故障一般不可预测。通常, 对于供应商 来说, 对于故障器具都有维护响应时间的承诺, 如市内 24小上门, 郊区 48小时上门。因此如果出现 不同的响应时间的故障, 就自然形成处理突发故障器具先后次序, 相当于故障器具也有预测寿命, 只 是预测寿 ' '
命按承诺的维护响应时间的生成, 如 1天或 2天。 本实施例假设响应时间为 1
天和响应时间为 2天的器具故障 ¾ "发生一例。
一个简化的例子, 如表 4所示, 假设该表的生成日期是 2009年 4月 1 日凌晨。 其中 La表示动 作部件寿命、 Lv表示电池寿命, Lt表示故障响应时间, 单位都为天。 为了方便数据处理, 将非突发 故障器具的 Lt设为 0天, 将突发故障器具的 La、 Lv设为 0天。 表中, xxxx表示不同的器具都安装 在 XX市, 但具体地址不同, 且表中器具不属于同一^具队列。
本实施例还假设电池和器具动作部件的新旧状态不一样, 例如是, 器具己经更换新的电池, 但动 作部件并没有未达额定动作次数,因此未有更换,所以动作部件的寿命和电池的寿命看作彼此独立的。
表 4是器具目标部件寿命数据表
Figure imgf000013_0001
其中,序号 1至 10的器具是数据库系统预测出的,序号 11的器具是突发故障器具, 其维护响应 时间为 1天, 序号 12的器具也是突发故障器具, 其维护响应时间为 2天。 可以对表 4进行常见的排 序处理, 例如是按寿命天数的多少
升序排列, 那么在队列的前端就是 1天寿命的器具, 需要优先处理。
步骤 503, 判断器具是否在 1天寿命区间, 如果是, 执行步骤 504; 如果不是, 执行步骤 505。 如表 4所示。动作部件和电池的寿命为最短为 1天, 最长为 6天, 按目标部件寿命的长短设定若干寿 命区间, 例如设定 2个寿命区间,
分别是 1天寿命区间和 1天以上寿命区间。
步骤 504, 将器具划归 1天寿命区间, 如表 4所示, 编号为 2-1、 5-1、 8-1、
11-1的器具划归 1天寿命区间。
步骤 505,生成优先处理区域。 以 1天寿命区间中的器具的 GPS坐标为中心的一定范围的区域, 该区域内的其他器具与生成优先处理区域的器具地理上邻近。一般地, 在表 4中的器具安装时, 就可 以利用手持的 GPS导航仪获得该器具队列的 GPS坐标 (一般为器具队列所在的洗手间的 GPS坐标), 该队列内的所有器具都以该 GPS坐标为准。
步骤 506, 判断未划归 1天寿命区间的器具是否在优先处理区域内, 如果是, 执行步骤 507; 如 果不是, 执行步骤 512。
请参阅图 8, 若表 4器具的地理位置如图所示。 图中不规则图形 60表示 XX巿的她域范围。 内含 数字编号的圆圈表示器具所在地点。圆圈中的数字编号例如 2-1表示表 4中序号为 2寿命为 1天的器 具, 其中该器具的动作部件寿命 La为 1天, 电池寿命 Lv为 4天, 以小的值作为器具的寿命。其他类 推。 虚线圆表示优先处理区域的范围。用优先处理区域原点器具的编号例如 2-1表示该器具的优先处 理区域编号。
以 1天寿命区间中的器具的 GPS坐标为原点设定优先处理区域, 找出处于所述优先处理区 ¾内 的器具。 以编号 2-1的器具为例, 设定一个参考半径 d。, 例如是 6千米。那么编号为 2-1的优先处理 区域的范围是以表 4中编号为 2-1的器具 GPS坐标为中心,半径 6千米的范围。通过 GPS坐标计算 出器具之间的距离, 从而确定哪些器具在所述的范围内。如图, 在该区域里, 还包含编号为 7-5、 6-2 的器具, 共 3个器具。 所述的参考半径 dQ主要参考器具的安装密度.、 交通状况和维、护人员的工作负 荷。 在实际的维护业务中, 可以灵活设置优先处理区域的大小。 例如, 省会城市的中心城区, 器具的 安装密度很大' 参考半径
d0可以设置较小的值如 5千米。 如果交通状况不佳, 例如是经常堵车, 参考半径 d。可以设置更小的 值如 4千米; 又例如, 在城郊地区, 器具的安装密度较低, 交通状况较好, 参考半径 dQ可以增加至 ^, 如 7千米。
而事实上参考半径 d。的大小还可以进一步依据维护业务的特点进行修正。
如图 8所示 以参考半径为 d。编号 5-1的器具的优先处理区域用实线圆表示, 该优先处理区域 编号用 5-1*表示, 在该区域里, 包含编号 5-1、 11-1、 3-4和 12-2共 4个器具, 而编号 4-2的器具在 5-1*的旁边。 以参考半径为 d0编号 11-1的器具的优先处理区域 11-1 *包含编号 11-1、 5-1、 3-4和 2 共 4个器具, 而编号 12-2的器具在 11-1*的旁边。 因此如果增大 5-1*或 11-Γ的半径值就可以将 5个 器具都包含进去。 本例增加 5-1*的半径值至 d2, 优先处理区域用 5-1·表示, 如图, 优先处理区域 5-1 包含编号 11-1、 5-1、 3-4、 12-2和' 4-2共 5个器具。
如图 8所示, 编号 7-5、 6-2和 2-1的器具在优先处理区域 2-1中; 编号 10-3和 8-1的器具在优 先处理区域 8-1中。
器具 9-3和 1-2不与 1天寿命区间中任何一个器具邻近。
步骤 507, 赋予器具基础优先权和附加优先权。 赋予器具对应于寿命区间的基础优先权, 例如 1禾寿命区间中的器具的基础优先权的权值为 1 ; 一天以上寿命区间中的器具的基础优先权的权值按寿命计算, 例如, 2天寿命的器具基础优先权的权 值为 2, 3天寿命的器具基础优先权的权值为 3, 其他类推。
设定对应于优先处理区域的附加优先权, 优先处理区域内的器具赋予较低的权值, 优先处理区域 外的器具赋予较高的权值; 例如, 在优先处理区域内的器具的附加优先权的权值为 0.5, 在优先处理 区域外的器具的附加优先权的权值为 2;参阅图 8,不属于任何一个优先处理区域内的器具 9-3和 1-2, 其附加优先权的权值为 2,而其他器具都分别处于不同的优先处理区域内,因此附加优先权权值为 0.5。
将器具基础优先权和附加优先权合成为总权值。 例如将基础优先权的权值与附加优先权的权值相 加,和值作为总权值。编号为 9-3的器具的总权值为 3+2=5:编号为 2-1的器具的总权值为 1 +0.5=1.5; 其他类推。
由表 4和图 8综合得出表 5器具权值数据表。
表 5是器具权值数据表
Figure imgf000015_0001
步骤 508, 判断器具总权值否小于启动权值。 设定启动维护业务权值, 判断器具总权值是否小于 启动权值, 如果是, 执行步骤 509, 如果不是, 执行步骤 512。
例如设定器具启动维护权值条件为总权值小于等于 3.5, 即基础优先权小于等于 3, 附加优先权 为 0.5, 其意义是, 处理某个优先处理区域内, 寿命不多于 3天的所有器具。 参阅表 5, 满足条件的 器具为 2-1、 4-2、 5-1、 6-2、 8-1、 10-3、 11-1、 12-2。 步骤 509, 判断器具数量是否大于单位日处理量。 如果是, 执行'步骤 510; 如果不是, 执行步骤
511。
例如, 假设维护一个器具需时 60分钟, 而辅助时间例如是交通时间 60分钟,如果一个工作天按 8小时计算, 共 480分钟, 因此一个维护人员可以处理 4个不同地点器具的故障。 因此如果一个优先 处理区域内需要维护的器具数量多于 4套,就可能需要将该区域内内需要维护的器具分割。参阅图 8, 优先处理区域 5-1, 虽然包含 5套器具, 但是由于地理上比较接近, 可以缩短辅助时间例如是交通时 间, 因此在一个工作天内可以完成该优先处理区域的维护工作。
步骤 510, 按单位日处理量分割。 参阅图 9, 该图反映出器具安装密度较大的情况, 在优先处理 区域 5-1中, 含有 9套器具。因此需要对区域内的器具进行分割。如图, 可以将 9-3、 12-2、 1-2、 5-1 组成一组, 将 11-1、 8-1、 3-4、 10-3、 4-2组成一组, 这样需要派 2名维护人员。
步骤 511, 生成维护作业单。
参阅图 8, 共有 3个优先处理区域, 因此生成 3张维护作业单。 如以优先处理区域的编号作为维 护作业单编号, 则需要派 3名维护人员分别处 编号 5-1、 编号 2-1和编号 8-1的业务单。 其中作业 单 5-1涉及器具 5-1、 11-1、 4-2、 3-4、 12-2; 作业单 8-1涉及器具 8-1和 10-3; 作业单 2-1涉及器 具 2-1和 6-2;
参阅图 9, 虽然只有 2个优先处理区域, 但在优先处理区域 5-1需要两名维护人员处理, 因此优 先处理区域 5-1生成 2张维护作业单, 例如是 5-1A和 5-1 B, 另 1个优先处理区域 2-1生成编号 2-1 的维护作业单。 因此图 9.的情况同样需要 3名维护人员。
步骤 512, 更新寿命数据。
对于本实施例, 假设数据库系统在 2009年 4月 1日凌晨处理数据。 经过第一轮处理, 生成作业 单 5-1、 2-1和 8-1。 参阅图 8, 以作业单 2-1为例, 涉及器具 2-1、 6-2。 参阅表 4, 器具 2-1的维护 业务是涉及动作部件, 器具 6-2的维护业务是涉及电池。 系统虚拟业务单 2-1被执行, 数据更新的过 程如下, 将器具 2-1的动作部件的寿命设置为初始寿命, 即与 300,000次相当, 例如是 200天; 器具 6-2的电池的寿命也设置为初始寿命, 与 1 ,600mah相当, 例如是 100天。 同时器具 2-1的电池寿命 由 4天减少至 3天; 器具 6-2的动作部件的寿命由 5天减少到 4天。其他器具类推。 当完成数据更新 后, 表 4更新为表 6, 表 6是器具寿命数据一次更新表。 为了便于理解, 对表 6进行简化, 仅列出表 4中器具 2-1和 6-2的更新结果。 对比表 4和表 6, 器具的序号不变, 器具的 La和 Lv值改变, 器具 的编号也相应改变。
表 6是器具寿命数据一次更新表 . 序号 器具编号 安装地址 La Lv Lt
1 -
2 2-3 XXXX 200 3 0
3
4
5
6 6-4 XXXX 4 100 0
7
8
9
10
11
12
如果数据库系统重复执行步骤 502至步骤 512,就可以生成下一个工作日的维护作业单。因此可 以生成 3天或一周甚至是一个月的维护作业计划。 图 10是应用本监控系统开展维护业务的维护作业 流程图, 如图所示, 图中粗实线箭头表示故障的发展过程, 维护人员方框与粗实线箭头之间的空心上 下箭头表示器具目标部件寿命, 其长度表示目标部件寿命的长短, 由数据库系统预测得出。 如图有 3 条标记为维护的带箭头的线分别触及即将发生故障的器具 1、 器具 n、 器具 n+x, 维护人员方框只有 一条线与所述的维护线连接, 表示只派出 1名维护人员。实现故障前维护能使维护业务均衡化。 例如 是, 接到客户产品报障, 需要在 24小时内上门处理, 那么可以在接到报障信息后, 利用报障器具生 成优先处理区域, 这样维护人员前往维护时, 可以顺便处理该优先处理区域内即将出现故障的器具, 提高当次出行维护作业的效益, 使维护工作得到均衡。而对于非特发故障的维护业务, 则可进行更为 高效的均衡化处理。
下面设计一个简化模型, 假设本监控过程没有特;^故障。
假设:
1) 感应水龙头安装总量为 100,000套, 在 100日内有一天出现 1%。故障率的概率为 100% , 即 在 100日内出现一天内有 100个感应水龙头发生故障的概率为 100%。
2) 在 100日内出现故障的感应水龙头的总数为 1 ,000个。
3) 一个维护人员每天处理 5个不同地点的产品故障。
4) 承诺维护上门时间为 24小时
5) 所有产品都安装在 XX市市区内。
假设以 2009年 4月 1日凌晨为数据库系统处理数据的时间点, 假定通过本发明提供的监控系统 得出 50日后出现 1%。故障率日,涉及 100套产品, 即该 100套产品的预测寿命最为接近。根据假设, 该 1%。故障率出现在 2009年 4月 1 日之后的第 50日。
依据假设, 一个维护人员每天处理 5个不同地点的产品故障。 2位维护人员, 则每天可处理 10 个故障点。如果这 2位维护人员从 2009年 4月 1.日 (含当天)至 2009年 4月 10日(含当天)优先 处理这 100个故障点, 即只需要 10天时间, 还剩下 40天。 因此在处理所述 100个故障产品的先后 次序上有足够的时间进行均衡化处理。 2个人 100日内能均衡处理总数为 1 ,000的故障点。 即应用本 发明的方法, 最少 2个人即可处理 100,000套感应水龙头的维护工作。
参阅图 1, 传统模式只能依据出现一天有 100个故障点的概率为 100%这个条件配置人手。 为了 兑现为 24小时上门维护的承诺, 她需要配备的维护人员数量 =100/5=20人, 同样在 100 日内处理 1 ,000个故障, 但是应用消防员救火的方式运作, 工作负荷不均衡, 人员的效率低下。
结果: 应用洗手间器具远程监控系统后, 需要 2人;、传统方式, '需要 20人。 因此应用洗手间器 具远程监控系统能实现故障前干预, 从而使维护工作负荷得到均衡, 节省人手, 降低维护成本, 有利 于感应器具推广应用, 从而提高公共环境卫生水平。
本发明还提供一种洗手间器具远程监控方法, 参阅图 11, 该实施例包括如下步骤:
步骤 201 : 器具采集运行数据。 器具采集动作次数和电池负载电压的运行数据; 在实际的使用过 程中, 洗手间器具动作部件故障是常见的故障之一。这类故障大多数都是由于洗手间器具动作部件老 化或者机构磨损造成的, 因此是一个渐进的过程。例如, 常见的洗手间器具的动作部件为电磁阀 者 电机组件,
这类动作部件通常都有一个由生产商提供的描述其使用寿命的参数, 例如额定
动作 300,000次或 500,000次, 其意义是指该部件可以稳定地使用 300,000次或 500,000次, 当超过该次数后, 动作部件的可靠性将快速降低。 .
洗手间器具电池欠电也是常见故障之一。 应用电池供电的洗手间器具由于不存在触电的安全隐 患, 安装配套少, 使用越来越广泛。 但由于是电池供电, 免不了需要更换电池。 事实上, 即使是安装 在同一个洗手间的洗手间器具, 也存在使用频度差异。 例如, 靠近门口的感应水龙头或感应冲水器的 使用频度就大于靠里的。 因此, 每个洗手间器具的电池使用寿命可能差异很大, 这就给更换电池带来 困扰。例如, 如果保证所有洗手间器具运行的可靠性, 以使用频度最大的产品的电池寿命为依据, 当 使用频度最大的洗手间器具的电池发出电量报警, 就统一更换所有洗手间器具的电池, 这必然导致明 显的浪费。 如果等到产品发出欠电警告后才更换电池, 这样电池电能虽然利用充分, 但也引致另一个 问题。 因为洗手间器具的生产商通常为了保证洗手间器具发生欠电时能可靠关闭水源, 通常在发出欠 00566
17 电警告后就锁定产品, 洗手间器具不能使用, 直至换上新电池为止。所以用户要密切留意洗手间器具 运行状况。
本步骤采集器具动作次数和电池负载电压的运行数据, 为评估器具动作部件和电池提供依据。 步骤 202: 器具将运行数据传送到数据节点。 所述的数据节点与器具之间通过 RF无线数传单元 传送器具运行数据, 且依据 RF无线数传单元的传输距离确定数据节点与器具之间和器具与器具; ^间 的邻近关系, 将具有邻近关系的器具组成器具队列。
例如, 某个洗手间, 设有 4套感应水龙头、 2套感应小便冲水器、 6套感应大便冲水器和 2台感 应千手机。 若本实施例所述的 RF无线数传单元的传输距离完全满足所述洗手间器具的数传需要, 那 么就判定该洗手间内的器具具有邻近关系, 将所述的器具组成器具队列。所述的数据节点由于需要远 程传送数据, 因此功耗较大, 优选地作为一个固定装置设置在其中 1台感应干手机上。
参阅图 12, 以采集感应水龙头的动作次数和电池负载电压为例说明器具采集和传送数据的过程。 首先, 采集运行参数。感应水龙头典型的动作部件是电磁阀, 例如是采集电磁阀电源输入端的脉 冲信号, 对脉冲信号进行计数, 实现对感应水龙头动作
计数■>
然后存储采集到的运行数据; 设置若干个报警标志值, 对当前采集到的运行数据进行处理。 例如 器具额定动作次数为 300,000次, 可以设定一个对应于器具动作次数的动作报警标志值, 如 280;000 次, 表示当器具累计动作次数达到 280,000次后, 就将器具动作次数作为一个报警数据处理; 对于本 实施例, 若采集到的器具动作次数为 250,000次, 与动作报警标志值比较, 得出动作次数未达到 280,000次, 当前采集到的动作次数作为常态数据, 存储到器具存储单元中或更新器具存储单元中的 数据。若电池的额定电压为 6V, 其电量 90%都在 6V至 5.6V之间释放, 可以设定一个对应于电池电 量的电压报警标志值, 如 5.6V, 表示当电池的电压下降到 5.6V后, 就将该电压数据作为一个报警数 据处理。 若采集到的电池的电压为 5.8V, 与电压报警标志值比较, 电压高于 5.6V, 即电池剩余容量 在 10%以上,当前采集到的电池的电压作为常态数据,存储到器具存储单元中或更新器具存储单元中 的数据。若采集到的器具动作次数为 281 ,000次,与动作报警标志值比较,得出动作次数超过 280,000 次, 当前采集到的动作次数作为报警数据, 存储到器具存储单元中或更新器具存储单元中的数据, 然 后传送到数据节点。若采集到的电池的电压为 5.59V, 与电量报警标志值比较, 电压低于 5.6V, 即电 池剩余容量在 10%以下,当前采集到的电池的电压作为报警数据,存储到器具存储单元中或更新器具 存储单元中的数据, 然后传送到数据节点。 进一步地, 对存储在器具存储单元中的常态数据进行处理。例如设置一个对应于器具动作次数的 增量标志值,如 1 ,000次,表示动作增量次数达 .1 ,000次,将当前采集到的动作次数传送到数据节点。 设置增量标志值的意义在于获取更多器具的运行数据, 通过增量数据统计获得器具使用频度信息, 进 而更合理地评估器具可能发生的故障类型和发生时间, 具体过程将在步骤 204的中说明。
另外, 所述的数据节点也可以是手持设备, 该设备设有 RF无线数传单元,
接收器具传送来的运行数据。对于采用手持设备作为数据节点的情形, 其与器具队列的关系为一对多 的关系。 例如, 上述洗手间, 有 12套器具, 即使没有在任何一台器具上设置固定的数据节点装置, '所述的器具依然是邻近的, 即器具队列并没有改变。如果这样的洗手间有若干个, 维护人员可以分别 到达所述的洗手间, 利用手持设备读入各个洗手间器具的运行参数。
步骤 203: 数据节点将数据传送到数据库系统。 所述的数据节点设置在其中 1台感应干手机上, 将接收到的器具运行数据通过远程数传装置传送到数据库系统。所述的远程数传装置可以是手机短信 收发装置。 存储在数据节点存储器中的器具运行参数以手机短信的方式传 ¾到数据库系统。
参阅图 13。 数据节点运行过程如下, 首先数据节点接收器具传送来的运行数据, 并存储在存储 器中; 数据节点对接收到的器具运行数据进行判断, 如果是报警数据, 将报警数据传连同已经存储在 存储器中的常态数据一起传送到数据库系统; 如果是常态数据, 所述的数据节点判断接收到的器具运 行数据的数据总容量是否与一条手机短信的数据容量相匹配, 如果相匹配, 数据节点将器具运行数据 传送到数据库系统; 如果不匹配则等待新的器具运行数据存入, 直到数据总容量与一条手机短信的数 据量匹配, 再将器具运行数据传送到数据库系统。本实施例中的匹配是指己经接收到的器具的运行数 据的数据容量和与发送手机短信相关的辅助数据的数据容量总和不大于一条手机短信的数据容量。通 过对数据容量的匹配, 充分利用手机短信的数据容量, 提高手机短信的利用效率, 而且也保证了器具 运行参数能及时传送到数据库系统。 ' ·
另外, 若所述的数据节点为手持设备, 除了可以采用手机短信的方式外, 还可以通过互联网将数 据传送到数据库系统。例如, 将数据节点接入一台手持的移动上网装置, 以传送远程文件或电子邮件 的形式将器具运行数据传送至数据库系统。
上述的步骤 202和步骤 203还涉及数据的识别问题, 例如是数据库系统如何判别接收到数据是 来自哪个数据节点或器具。有多种公知的解决方法, 例如是对器具和数据节点进行编码, 即器具和数 据节点都有识别码, 在器具或数据节点传送数据时, 将识别码合成到需要传送的数据中, 这样数据接 收端就可以 ' 通过识别码判别出所述数据是属于哪个器具或数据节点。显然本发明所涉及的数据识别问题属于公知 技术领域, 直接应用现有技术即可以解决, 本实施不做 详述。
步骤 204: 数据库系统处理数据并输出处理结果。
为了方便数据库系统数据处理结果的应用, 数据库系统还记录器具的安装地址, 建立器具、 安装 地址和数据处理结果的配对关系。安装地址是已知的, 器具的类型也是己知的。 一个典型的例子如上 述表 1 (节选)所示。
同理,参阅图 1,传统模式只能依据出现一天有 100个故障点的概率为 100%这个条件配置人手。 为了兑现为 24小时上门维护的承诺, 她需要配备的维护人员数量 =100/5=20人, 同样在 100日内处 理 ι,οοο +故障, 但是应用消防员救火的方式运作, π作负荷不均衡, 人员的效率低下。
结果: 应用洗手间器具远程监控方法后, 需要 2人; 传统方式, 需要 20人。 因此应用洗手间器 具远程监控方法能实现故障前干预, 从而使维护工作负荷得到均衡, 节省人手, 降低维护成本, 有利 于感应器具推广应用, 从而提髙公共环境卫生水平。
以上所述的实施例, 所涉及的数据和计算方法仅作为示意性说明, 举凡依本发明申请专利范围所 做的等同设计, 均应为本发明的技术所涵盖。

Claims

1. 洗手间器具远程监控系统,其特征在于,设有器具运行数据采集模块、数据库系统和输出模块, 所述的数据采集模块设置在器具上,至少采集包括器具动作次数和 /或电池电压的运行数据,并将运行 数据传送到数据库系统; 所述的数据库系统存储和处理所述的器具运行数据; 所述的输出模块输出数 据库系统的数据处理结果。 ,
2. 根据权利要求 1 所述的洗手间器具远程监控系统, 其特征在于, 所述的数据采集模块设有计 数单元、存储单元及远程数传单元, 所述的计数单元与所述动作部件的电源输入端电连接; 所述的存 储单元存储计数单元采集到的器具运行数据;所述的远程数传单元将所述存储单元中的数据传送到数 据库系统。
3. 根据权利要求 1 所述的洗手间器具远程监控系统, 其特征在于, 还设有数据中转模块, 所述 的数据采集模块将采集到的器具运行数据传送到数据中转模块, 数据中转模块存储所述的运行数据, 并将所述的运行数据传送到数据库系统。
4. 根据权利要求 3所述的洗手间器具远程监控系统, 其特征在于, 所述的数据中转模块与数据 采集模块之间通过 RF无线数传单元传送器具运行数据, 且依据 RF无线数传单元的传送距离确定数 据采集模块与数据采集模块之间和数据采集模块与数据中转模块之间的邻近关系,将具有邻近关系的 器具组成器具队列。 .
- 5. 根据权利要求 4所述的洗手间器具远程监控系统, 其特征在于, 所述的数据中转模块为手持 设备或设置在器具队列中的至少一个器具上的固定装置。
6. 根据权利要求 5所述的洗手间器具远程监控系统, 其特征在于, 所述的数据采集模块设有计 数单元、 存储单元及 RF无线数传单元, 所述的计数单元与所述动作部件的电源输入端电连接; 所述 的存储单元存储计数单元采集到的器具运行数据;所述的 RF无线数传单元将存储单元中的数据输出; 所述的数据中转模块设有 RF无线数传单元、 存储器和远程数传单元, 所述
的 RF无线数传单元接收所述数据采集模块输出的器具运行数据,所述的存储器存储所述的运行数据, 所述的远程数传单元将所述存储器中的数据传送到数据
库系统。
7. 根据权利要求 6所述的洗手间器具远程监控系统, 其特征在于, 所述的远程数传单元为互联 网接入装置或手机短信收发装置,所述的互联网接入装置通过接入互联网将器具运行数据传送到数据 库系统; 所述的手机短信收发装置将器具运行数据以手机短信的形式传送到数据库系统。
8. 根据权利要求 7所述的洗手间器具远程监控系统, 其特征在于, 所述的数据库系统的数据处 理过程包括预测与器具运行数据关联的 _目 部件^]寿命。
9.根据权利要求 8所述的洗手间器具远程监控系统, 其特征在于, 所述的数据库系统的数据处理 过程还包括将器具按目标部件寿命的长短排序生成器具维护先后次序队列。 '
10.根据权利要求 8所述的洗手间器具远程监控系统, 其特征在于, 所述的数据库系统的数据处 理过程还包括按器具目标部件寿命的长短设定若干个寿命区间; 将器具划归相应的寿命区间。
11.根据权利要求 10所述的洗手间器具远程监控系统, 其特征在于, 所述的数据库系统的数据处 理过程还包括设置突发故障器具, 所述的突发故障器具划归寿命较短的寿命区间。
12.根据权利要求 11所述的洗手间器具远程监控系统, 其特征在于, 所述的数据库系统的数据处 理过程还包括获取至少一个成员处于寿命较短的寿命区间中的器具队列的 GPS坐标,以该 GPS坐标 为原点设定优先处理区域, 找出处于所述优先处理区域内的器具。
13.根据权利要求 12所述的洗手间器具远程监控系统, 其特征在于, 所述的数据库系统的数据处 理过程还包括设定对应于寿命区间的基础优先权,赋予处于不同寿命区间的器具相应的基础优先权权 值; ,
设定对应于优先处理区域的附加优先权, 赋予处于优先处理区域内和优先处
理区域外的器具相应的附加优先权权值, 将器具基础优先权权值和附加优先权权值合成为总权值; 设定启动维护业务权值, 依据总权值与启动维护业务权值的对应关系, 生成
维护作业单。 .
14.根据权利要求 13所述的洗手间器具远程监控系统,其特征在于,在生成维护作业单的过程中, 还包括
设定单个器具维护标准操作周期;
依据标准操作周期设定一名维护人员每天维护器具的额定数量;
将生成的维护作业单按额定数量进行分割。
15.根据权利要求 1或 2或 3或 4或 5或 7或 9或 10或 11或 13所述的洗手间器具远程监控系 统, 其特征在于, ' 还将器具的安装地址输入数据库系统, 建立器具、 安装地址和运行数据的配对关系。
16.根据权利要求 1或 2或 3或 4或 5或 7或 9或 10或 11或 13所述的洗手间器具远程监控系 统, 其特征在于, 所述的输出模块为显示器和 /或打印机和 /或可以输出可读信息的手持设备。
17. 一种如权利要求 1 所述洗手间器具远程监控系统的远程监控方法, 其特征是, 包括如 F步 骤:
步骤 1 : 器具至少采集包括器具动作次数和 /或电池负载电压的运行数据;
步骤 2: 器具将运行数据传送到数据库系统;
步骤 3: 数据库系统存储器具运行数据, 并对数据进行处理, 输出处理结果。
18. 根据权利要求 17所述的洗手间器具远程监控方法, 其特征在于, 还设有数据节点, 所述的 器具将运行数据传送到数据节点; 所述的数据节点存储数据, 并将数据传送到数据库系统。
19. 根据权利要求 17所述的洗手间器具远程监控方法, 其特征在于, 所述的数据节点与器具之 间通过 RF无线数传单元传送器具运行数据, 且依据 RF无线数传单元的传输距离确定数据节点与器 具之间和器具与器具之间的邻近关系, 将具有邻近关系的器具组成器具队列。
20. 根据权利要求 18所述的洗手间器具远程监控方法, 其特征在于, 所述的数据节点为手持设 备或设置在器具队列中的至少一个器具上的固定装置。 '
21.根据权利要求 17至 20之一所述的洗手间器具远程监控方法, 其特征在于, 所述的器具设置 若干个报警标志值, 器具将采集到的运行数据与报警标志值比较, 依据比较结果将采集到的运行数据 标记为常态数据或报警数据;
若器具采集到的运行数据为报警数据, 立即传送到数据库系统或数据节点; 若采集到的运行数据 为常态数据, 则存储在器具的存储单元中或更新存储单元中的数据。
22.根据权利要求 21所述的洗手间器具远程监控方法, 其特征在于, 所述的器具设置若干个增量 标志值, 将当前采集到的常态数据与前一次传送的常态数据比较, 若达到增量标志值, 则传送当前采 集到的常态数据到数据库系统或数据节点。
23.根据权利要求 21所述的洗手间器具远程监控方法, 其特征在于, 所述数据节点收到器具的报 警数据后立即将所述的报警数据传送到数据库系统。
24.根据权利要求 23所述的洗手间器具远程 控方法, 其特征在于, 所述的数据节点通过互联网 或手机短信的方式将器具运行数据传送到数据库系统。
25.根据权利要求 24所述的洗手间器具远程监控方法, 其特征在于, 所述的数据节点判断接收到 的器具运行数据的数据总容量是否与一条手机短信的数据容量相匹配, 如果相匹配, 数据节点将器具 运行数据传送到数据库系统; 如果不匹配则等待新的器具运行数据存入, 直到数据总容量与一条手机 短信的数据量匹配, 再将器具运行数据传送到数据库系统。
26. 根据权利要求 25所述的洗手间器具远程监控方法, 其特征在于, 所述数据库系统处理数据 的过程包括预测与所述运行数据关联的目标部件的寿命。
27.根据权利要求 26所述的洗手间器具远程监控方法, 其特征在于, 所述数据库系统处理数据的 过程还包括将器具按目标部件寿命的长短排序生成器具维护先后次序队列。
28.根据权利要求 26所述的洗手间器具远程监控古法, 其特征在于, '所述数据库系统处理数据的 过程还包括按器具目标部件寿命的长短设定若干个寿命区间; 将器具划归相应的寿命区间。
29.根据权利要求 28所述的洗手间器具远程监控方法, 其特征在于, 所述数
据库系统处理数据的过程还包括设置突发故障器具, 所述的突发故障器具划归寿命较短的寿命区间。
30.根据权利要求 29所述的洗手间器具远程监控方法, 其特征在于, 所述数据库系统处理数据的 过程还包括获取至少一个成员处于寿命较短的寿命区间中的器具队列的 GPS坐标,以该 GPS坐标为 原点设定优先处理区域, 找出处于所述优先处理区域内的器具。
31 . 根据权利要求 30所述的洗手间器具远程监控方法, 其特征在于, 所述数据库系统处理数据 的过程还包括设定对应于寿命区间的基础优先权,赋予处于不同寿命区间的器具相应的基础优先权权 值;
设定对应于优先处理区域的附加优先权, 赋予处于优先处理区域内和优先处理区域外的器具相应 的附加优先权权值, 将器具基础优先权权值和附加优先权权值合成为总权值;
设定启动维护业务权值, 依据总权值与启动维护业务权值的对应关系, 生成维护作业单。
32.根据权利要求 31所述的洗手间器具远程监控方法, 其特征在于,
在生成维护作业单的过程中, 还包括
设定单个器具维护标准操作周期;
依据标准操作周期设定一名维护人员每天维护器具的额定数量;
将生成的维护作业单按额定数量进行分割。 '
33.根据权利要求 32所述的洗手间器具远程监控方法, 其特征在于, 所述数据库系统处理数据的 过程还包括将器具的安装地址输入数据库系统, 建立器具、 安装地址和运行数据的配对关系。
PCT/CN2010/000566 2009-04-24 2010-04-23 洗手间器具远程监控系统及其远程监控方法 WO2010121498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910038955.5 2009-04-24
CN200910038955A CN101872179A (zh) 2009-04-24 2009-04-24 洗手间器具远程监控方法

Publications (1)

Publication Number Publication Date
WO2010121498A1 true WO2010121498A1 (zh) 2010-10-28

Family

ID=42997098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000566 WO2010121498A1 (zh) 2009-04-24 2010-04-23 洗手间器具远程监控系统及其远程监控方法

Country Status (2)

Country Link
CN (1) CN101872179A (zh)
WO (1) WO2010121498A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836401A (ja) * 1994-07-25 1996-02-06 Janome Sewing Mach Co Ltd 24時間風呂における安全装置
JPH10248759A (ja) * 1997-03-14 1998-09-22 Kimura Giken Kk 殺菌機構付き便室
CN2378742Y (zh) * 1999-05-10 2000-05-17 张明亮 远程监视监控监测供水设备装置
CN2513113Y (zh) * 2001-10-08 2002-09-25 深圳市朗金科技开发有限公司 电表数据远程监控器
CN1421577A (zh) * 2001-11-30 2003-06-04 斯洛文阀门公司 一种用于个人卫生或清洁器具的远程操作系统
CN201043685Y (zh) * 2007-03-16 2008-04-02 谢绍明 管道安全运行实时监控系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836401A (ja) * 1994-07-25 1996-02-06 Janome Sewing Mach Co Ltd 24時間風呂における安全装置
JPH10248759A (ja) * 1997-03-14 1998-09-22 Kimura Giken Kk 殺菌機構付き便室
CN2378742Y (zh) * 1999-05-10 2000-05-17 张明亮 远程监视监控监测供水设备装置
CN2513113Y (zh) * 2001-10-08 2002-09-25 深圳市朗金科技开发有限公司 电表数据远程监控器
CN1421577A (zh) * 2001-11-30 2003-06-04 斯洛文阀门公司 一种用于个人卫生或清洁器具的远程操作系统
CN201043685Y (zh) * 2007-03-16 2008-04-02 谢绍明 管道安全运行实时监控系统

Also Published As

Publication number Publication date
CN101872179A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
CN101911108B (zh) 洗手间便利中心
US20210157340A1 (en) Connected Sanitaryware Systems and Methods
US11108865B1 (en) Battery powered end point device for IoT applications
CN106886172A (zh) 智能设备故障检测方法、装置及系统
US11644378B2 (en) Building sensor network for monitoring environmental conditions
JP2005158020A (ja) エネルギー管理方法,装置及びプログラム
WO2020071998A1 (en) A system and method for toilet room management employing iot sensors
US11768473B2 (en) IoT network with BACnet communication for various sensors in a building management system (BMS) platform
JP6308465B2 (ja) 給電制御装置、給電制御システム、プログラム
US20160350880A1 (en) Apparatus and method for measuring water run time
Huang et al. Real-time data and energy management in microgrids
WO2010121498A1 (zh) 洗手间器具远程监控系统及其远程监控方法
WO2010121499A1 (zh) 输出运行数据的洗手间器具
CN111295120A (zh) 分配系统
CN101871998A (zh) 感应器具电池剩余寿命预测方法及系统
US11605247B2 (en) Generating people counts based on dispenser usage
JP2019139509A (ja) 住宅
KR20240018502A (ko) 연결된 수전 시스템
Cha Implementing a New SCADA System
Meier et al. Lessons Learned While Implementing a New SCADA System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766589

Country of ref document: EP

Kind code of ref document: A1