WO2010121499A1 - 输出运行数据的洗手间器具 - Google Patents

输出运行数据的洗手间器具 Download PDF

Info

Publication number
WO2010121499A1
WO2010121499A1 PCT/CN2010/000567 CN2010000567W WO2010121499A1 WO 2010121499 A1 WO2010121499 A1 WO 2010121499A1 CN 2010000567 W CN2010000567 W CN 2010000567W WO 2010121499 A1 WO2010121499 A1 WO 2010121499A1
Authority
WO
WIPO (PCT)
Prior art keywords
appliance
data
life
unit
maintenance
Prior art date
Application number
PCT/CN2010/000567
Other languages
English (en)
French (fr)
Inventor
邓树培
Original Assignee
Deng Shupei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deng Shupei filed Critical Deng Shupei
Publication of WO2010121499A1 publication Critical patent/WO2010121499A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0264Control of logging system, e.g. decision on which data to store; time-stamping measurements

Definitions

  • the present invention relates to a restroom appliance, and more particularly to an appliance for installing a sensor faucet, a sensor urinal flusher, an inductive toilet flusher, a sensing water tank, etc., in a restroom to provide a remote monitoring system for the above-mentioned restroom appliance.
  • toilets for toilets induction faucets, induction urinal flushers, induction stool flushers, induction water tanks, etc.
  • suppliers or professional Maintenance service company
  • a typical maintenance process is as follows, the product fails and a user reports a defect to a supplier to maintain.
  • Figure 1 it is an existing maintenance operation flow chart.
  • the thick solid arrow indicates the development of the fault.
  • the arrow touches the maintenance personnel box it indicates that the fault has occurred and the maintenance personnel receive the fault information.
  • the above traditional maintenance methods have the following deficiencies: (1) The larger the number of product installations, the more products fail at the same time; moreover, the occurrence of existing product failures is unpredictable, so the traditional Maintenance business is equivalent to "firefighter fire fighting", with great uncertainty and suddenness. Moreover, in order to come to the door within a reasonable period of time (such as 24 small doors in the city and 48 hours in the suburbs), the supplier must maintain a large maintenance team, and the cost will be directly passed on to the user, thus limiting the product. (2) The traditional maintenance operation process has a drawback, that is, post-fault maintenance, which means that the user can not use the product before the supplier eliminates the product failure, which will cause serious health problems to the user's bathroom.
  • the object of the present invention is to solve the above-mentioned deficiencies of the prior art, and to provide an intervention before the malfunction of the restroom appliance, to balance the maintenance work, thereby reducing the maintenance cost, and avoiding the user's toilet caused by the failure to timely eliminate the appliance failure. Hygiene troubled out of the output of the toilet equipment for running data.
  • a toilet appliance for outputting operation data comprising: a control component and an action component, wherein the data acquisition module is further provided with a data acquisition module and a data output module, wherein the data acquisition module is provided with a counting unit and a storage unit, and the counting unit and the counting unit
  • the power input terminal of the action component is electrically connected; the storage unit stores appliance operation data collected by the counting unit; and the data output module outputs data in the storage unit.
  • the data output module is an RF data transmission unit or an infrared data transmission unit.
  • the data output module is a mobile phone short message transceiving unit.
  • the restroom appliance transmits appliance operation data through the RF data transmission unit, and determines an adjacent restroom appliance according to a transmission distance of the RF number flyer element, and at least one of the adjacent restroom appliances is provided with a mobile phone short message transceiving unit.
  • the restroom appliance collects its own operation data and stores it in the storage unit, and the maintenance personnel can extract the operation data to evaluate the restroom appliance, for example, predict the type of failure and the time of occurrence of the remote appliance.
  • the maintenance personnel can extract the operation data to evaluate the restroom appliance, for example, predict the type of failure and the time of occurrence of the remote appliance.
  • Figure 1 is a flow chart of the existing maintenance operation.
  • FIG. 2 is a schematic structural view of a restroom appliance that outputs operational data.
  • Figure 3 is a schematic illustration of the proximity of the restroom appliance that outputs operational data.
  • Figure 4 is a schematic view showing the structure of a handheld reading device.
  • Figure 5 is a flow chart of data processing in the database system.
  • Figure 6 is a flow chart for predicting the life of the components of the restroom appliance.
  • Figure 7 is a flow chart for predicting the battery life of the restroom appliance.
  • Figure 8 is a schematic diagram of the weight distribution of the additional priority.
  • Figure 9 is a schematic diagram 2 of the weight distribution of the additional priority.
  • Fig. 10 is a flow chart showing the maintenance operation of the restroom appliance that outputs the operation data.
  • a restroom appliance for outputting operational data comprising a control component 1 and an action component 2, wherein the control component 1 is configured to implement an automatic function of a restroom appliance,
  • the operating member 2 is a solenoid valve or a micromotor assembly for controlling the on and off of the water passage.
  • a data acquisition module 3 and a data output module 4 are further provided.
  • the data acquisition module 3 is provided with a counting unit 30 and a storage unit 31.
  • the counting unit 30 is electrically connected to the power input end of the operating component 2 (Fig. It is not shown in the drawing.
  • the pulse signal of the power input terminal of the action component 2 is collected, and the pulse signal is counted to count the operation of the appliance.
  • the load voltage of the battery is also collected.
  • the storage unit '31 stores the appliance operation data collected by the counting unit 30; the data output module 4 outputs the data in the storage unit 31.
  • the data output module 4 is an RF data transmission unit, and the RF data transmission unit 4 encodes and outputs the appliance operation data in the storage unit 31.
  • the data transmission technologies involved are well-known technologies, and are not described in this embodiment.
  • the restroom appliance transmits the appliance operation data through the RF data transmission, and determines the adjacent toilet appliance according to the transmission distance of the RF data transmission unit, and at least one of the adjacent toilet appliances has a mobile phone short message.
  • Transceiver unit 5 Referring to Fig. 3, for example, five sets of toilet appliances provided with RF data transmission units 1 to 5 are adjacent to each other, and a mobile phone short message transmitting and receiving unit 5 is provided on the apparatus where the RF data transmission unit 5 is located.
  • the adjacent toilet appliances transfer their own operational data to the appliance provided with the mobile phone short message transceiving unit 5, and then transmit the data to the product supplier's database through the mobile phone short message transceiving unit 5.
  • Such product suppliers can evaluate the appliance through collected instrument operating data, such as predicting the type of failure and the time of occurrence of the remote appliance, to achieve pre-failure intervention.
  • the operating data of the restroom appliance can also be read in the following manner.
  • the mobile phone short message transceiving unit 5 can also be replaced by the handheld reading device 6.
  • the RF data transmission unit 4 is installed on one Internet access device, the operation data of the appliance is received by the RF data transmission unit 4, and the data is stored in the memory 60 of the Internet access device, and the access is performed.
  • the Internet transmits data to the product vendor's database.
  • the RF data transmission unit 4 of the restroom appliance can also be replaced by an infrared data transmission unit which is also used by the infrared control unit of the restroom appliance.
  • the hardware cost of this solution is lower, but the reading process is not as fast as the RF data transmission unit.
  • the handheld reading device reads the data through the maintenance personnel, so the handheld reading device can read the operational data of several even the non-adjacent restroom appliances. In actual operation, it mainly involves the time interval of reading the operating data of the appliance. This time interval is related to factors such as the frequency of use of the appliance, the number of people who read the operating data of the appliance, and the like.
  • the obtained data can be used to estimate the frequency of use of the appliance, and the extraction interval can be extended to 1.5 to 2. week. Therefore, there is usually a data lag in the use of handheld devices, but for appliances that have an annual life expectancy, even if the predicted life data lags by one to two weeks, there is still a positive reference.
  • the above embodiments also relate to the identification of data, such as how the database system determines which toilet appliance the received data is from.
  • data such as how the database system determines which toilet appliance the received data is from.
  • the toilet appliance for outputting operational data provided by the present invention will be described in detail below.
  • the maintenance service has obvious advantages over the conventional toilet, mainly because the product supplier can obtain the operating data of the restroom appliance, and the toilet appliance can be evaluated, for example, prediction.
  • the type of failure and the time of occurrence of the remote appliance so as to achieve pre-fault intervention, balance the maintenance workload, save manpower, and reduce maintenance costs.
  • the database system In order to facilitate the application of the data processing results of the database system, the database system also records the installation address of the appliance, and establishes a pairing relationship between the appliance, the installation address, and the data processing result.
  • the installation address is known and the type of appliance is also known.
  • a typical example is shown in Table 1 (excerpt).
  • Step 501 The database system predicts the life of the appliance operating component according to the number of appliance actions. As described above, the number of appliance operations and the battery load voltage value are collected, and the target components associated with the two data are the action component and the battery, so that the data can be processed after the "moving" of the data. And battery life, which can predict the time when the appliance's moving parts and battery may malfunction.
  • the unit time period for example, 30 days, 'establish the corresponding relationship between the number of actions and the unit time period.
  • the action component action count is performed.
  • the pulse signal of the driving solenoid valve is counted, and the action counting of the operating part of the induction faucet can be realized.
  • the cumulative number of moving parts is 5000 times, and the number of increments is 5,000 times; in the second unit time period, the cumulative number of moving parts is 20,000 times, and the number of increments is 15,000 times; In the three unit time period, the cumulative number of action parts is 60,000, and the number of increments is 40,000.
  • the induction faucet is used for a total of 3 unit time periods. That is 90 days, Yun Zuo The cumulative number of movements of the parts reached 60,000, and the average number of movements per unit time period was 20,000.
  • the corresponding weight is set for different unit time periods, for example, a higher weight is used to set a higher weight. Applying a weighted calculation, the predicted motion component life will be closer to the actual situation.
  • Predicting battery life includes the following steps:
  • the battery parameters and the power components of the appliance are set.
  • the battery parameters such as the battery discharge capacity can be obtained from the battery manufacturer.
  • a typical battery parameter is expressed as: nominal voltage DC6.0V, nominal capacity 2,000mah (mAh).
  • a correction percentage parameter is usually set to calculate the battery discharge capacity, for example, 80%, which means that the battery discharge capacity is calculated as 80% of the nominal capacity.
  • Battery discharge capacity: 2,000mahx80% 1,600mah.
  • the appliance operating component power parameters it can be obtained from the appliance operating component manufacturer. Taking the induction faucet as an example, the moving parts are solenoid valves.
  • a typical solenoid valve parameter is expressed as: rated voltage DC6.0V, coil resistance 16 ohms, opening pulse width 35ms (milliseconds), closing pulse width 35ms (milliseconds).
  • the unit time period is set; in this embodiment, the unit is 30 days.
  • the power consumption of the appliance action component calculates the power consumption of the motion component; first calculate the power consumption of the motion component.
  • Count Calculate battery life.
  • the data in Table 1 is used. Induction faucet, the total time of use is 3 unit time periods.
  • the corresponding weight value is set for the unit time period of different usage frequency, for example, the unit time period with high frequency is set to a higher weight. Applying a weighted calculation, the predicted remaining life will be closer to the actual situation.
  • the parameters related to the power consumption of the appliance are the appliance static power parameter, and the appliance static power parameter specifically refers to the power consumption of the appliance, for example, the induction faucet in the standby state, which is also available from the manufacturer.
  • the database system realizes the life prediction of the appliance operating part and the battery by the number of times of the action component.
  • the present embodiment also collects the load voltage data of the battery.
  • the battery load voltage is mainly used to supplement the battery life prediction.
  • the battery life calculation method can be used for a battery with a relatively simple discharge curve, such as a lithium battery, but there is still an error. . Therefore, the battery life can be estimated by the battery parameters provided by the battery manufacturer. For example, the rated voltage of the battery is 6V, and the power is 90% released between 6V and 5.6V. Therefore, when the battery load voltage is 5.6V, even if the predicted battery life can be used for 1 week, an alarm message is issued to request replacement of the battery.
  • This embodiment is based on 80% of the rated capacity of the battery, with an additional 10% safety margin. The purpose is to offset the error, that is, the assumed life prediction. Accurate and simplify the explanation of the present invention. Therefore, this embodiment only schematically lists the battery load voltage data table, and the data in the table is not used for subsequent data processing in this embodiment.
  • the data node is a handheld device and the database system performs a predictive life calculation, it also involves the time interval of reading the instrument operational data.
  • This time interval is related to factors such as the frequency of use of the appliance and the number of people who read the operating data of the appliance. For example, in the first few time periods used by the sensing faucet, it can be read once a week. After obtaining the frequency information of the sensing faucet, the interval can be extended by 1.5 to 2 weeks. For another example, when the load voltage of the battery is 5.7V, the interval can be adjusted to 0.5 to 1 week. Therefore, there is usually a data lag phenomenon in handheld devices, but for appliances that have an annual life expectancy, even if the predicted life data lags behind for a week or so, there is still a positive reference.
  • Step 502 Generate an appliance action component life data table.
  • the life of the appliance's moving parts and battery can be predicted, but in the actual use, there are some sudden factors that cause the appliance to operate or the battery is faulty. These faults are generally unpredictable. Usually, for suppliers, there is a commitment to maintain response time for faulty appliances, such as 24 small doors in the city and 48 hours in the suburbs. Therefore, if there is a fault with different response time, it will naturally form a sequence of processing faulty faults, which is equivalent to the faulty appliance also has a predicted life, but only predicts the generation of the life-long maintenance response time, such as 1 day or 2 days. This embodiment assumes that each of the appliance failures has a response time of 1 day and a response time of 2 days.
  • This embodiment also assumes that the old and new states of the battery and appliance operating components are different. For example, the appliance has been replaced with a new battery, but the operating components have not failed to reach the rated number of operations, so there is no replacement, so The life of the moving parts and the life of the battery are considered to be independent of each other.
  • Table 4 is the instrument action component life data sheet
  • the appliances of serial numbers 1 to 10 are predicted by the database system, the appliance of serial number 11 is a sudden faulty appliance, the maintenance response time is 1 day, and the appliance of serial number 12 is also a sudden faulty appliance, and the maintenance response time is 2 days.
  • Table 4 can be used for common sorting, for example, in ascending order of the number of days in life, then the instrument at the front end of the queue is a one-day life, which needs to be prioritized.
  • Step 503 Determine whether the appliance is in the 1-day life span. If yes, go to step 504; if not, go to step 505.
  • the life of the operating parts and battery is as short as 1 day and the longest is 6 days.
  • Several life intervals are set according to the length of the operating parts. For example, two life intervals are set, which are the 1-day life interval and the 1-day life interval. .
  • step 504 the appliance is assigned to the 1-day life span. As shown in Table 4, the appliances numbered 2-1, 5-1, 8-1, and 11-1 are assigned to the 1-day life span.
  • Step 505 generating a priority processing area.
  • the GPS coordinates of the appliance in the 1-day life span are a range of areas within the center, and other appliances in the area are geographically adjacent to the appliance that generated the priority processing zone.
  • the GPS coordinates of the appliance queue can be obtained by using a handheld GPS navigator (generally the GPS coordinates of the restroom where the appliance queue is located), and all the appliances in the queue are based on the GPS. The coordinates are correct.
  • Step 506 determining whether the appliance not assigned to the 1-day life span is in the priority processing area, if If yes, go to step 507; if no, go to step 512.
  • the irregular figure 60 in the figure indicates the geographical extent of the XX city.
  • a circle with a numeric number indicates the location of the appliance.
  • the numerical number in the circle for example, 2-1 indicates the appliance in Table 4 with the serial number 2 life of 1 day, wherein the operating component of the appliance has a life La of 1 day, a battery life Lv of 4 days, and a small value as the life of the appliance. .
  • the dotted circle indicates the range of the priority processing area.
  • the priority processing area number of the appliance is indicated by the number of the priority processing area finder, for example, 2-1.
  • the priority processing area is set with the GPS coordinates of the appliance in the one-day life section as the origin, and the appliance in the priority processing area is found.
  • a reference radius d 0 for example, 6 kilometers.
  • the range of the priority processing area numbered 2-1 is the range of the radius of 6 kilometers centering on the GPS coordinates of the appliance numbered 2-1 in Table 4.
  • the distance between the appliances is calculated from the GPS coordinates to determine which appliances are within the stated range.
  • the reference radius do do mainly refers to the installation density of the appliance, the traffic conditions, and the workload of the maintenance personnel.
  • the size of the generalized processing area can be flexibly set.
  • the installation density of appliances is very large, and the reference radius d 0 can be set to a small value such as 5 kilometers. If the traffic conditions are not good, such as frequent traffic jams, refer to radius d. Smaller values such as 4 km can be set; for example, in suburban areas, the installed density of appliances is lower, traffic conditions are better, and the reference radius d Q can be increased to c ', such as 7 km.
  • the size of the reference radius d Q can be further modified according to the characteristics of the maintenance service.
  • the reference radius is d.
  • the priority processing area of the appliance numbered 5-1 is indicated by a solid circle, and the priority processing area number is represented by 5-1*, in which the numbers 5-1, 11-1, 3-4, and 12-2 are included.
  • the priority processing area 11-1* of the appliance having the reference radius d Q number 11-1 includes 4 instruments numbered 11-1, 5-1, 3-, and 4-2, and the appliance numbered 12-2 is 11 - Next to it. Therefore, if you increase the radius value of 5-1* or 11-1*, you can include all five instruments.
  • the radius value of 5-1* is increased to d 2
  • the priority processing area is represented by 5-1.
  • the priority processing area 5-1 includes numbers 11-1, 5-1, 3-4, and 12-2. A total of 5 instruments with 4-2.
  • appliances of the numbers 7-5, 6-2, and 2-1 are in the priority processing area 2-1; the appliances of the numbers 10-3 and 8-1 are in the priority processing area 8-1.
  • Appliances 9-3 and 1-2 are not adjacent to any of the appliances in the 1-day life span.
  • Step 507 giving the appliance a basic priority and an additional priority.
  • the instrument is assigned a basic priority corresponding to the life interval, for example, the weight of the basic priority of the appliance in the 1-day life span is 1; the weight of the basic priority of the appliance in the life span of more than one day is calculated by the life, for example, 2
  • the weight of the appliance-based priority of the daily life is 2, and the weight of the appliance-based priority of the 3-day life is 3, and so on.
  • the additional priority corresponding to the priority processing area is set, the appliance in the priority processing area is given a lower weight, and the appliance outside the priority processing area is given a higher weight; for example, the additional priority of the appliance in the priority processing area
  • the weight of the weight is 0.5, and the weight of the additional priority of the appliance outside the priority processing area is 2; referring to Figure 8, the appliances 9-3 and 1-2 do not belong to any of the priority processing areas, with additional priority
  • the weight is 2, while the other appliances are in different priority processing areas, so the additional priority weight is 0.5.
  • the appliance base priority and additional priority are combined into a total weight.
  • the weight of the base priority is added to the weight of the additional priority, and the value is taken as the total weight.
  • Table 5 and Figure 8 summarize the table of equipment weight data in Table 5.
  • Table 5 is the appliance weight data sheet
  • Step 508 Determine whether the total weight of the appliance is less than the starting weight.
  • the startup maintenance service weight is set, and the total weight of the appliance is determined to be less than the startup weight. If yes, step 509 is performed, and if not, step 512 is performed.
  • setting the appliance start maintenance weight condition is that the total weight is less than or equal to 3.5, that is, the base priority is less than or equal to 3, and the additional priority is 0.5, which means that the processing of a priority processing area has a life of not more than 3 days.
  • Step 509 Determine whether the number of appliances is greater than the unit daily processing amount. If yes, go to step 510; if no, go to step 511.
  • priority processing area 5-1 although containing 5 sets of appliances, can be shortened by geographical proximity, such as traffic time, so maintenance work of the priority processing area can be completed within one working day.
  • Step 510 dividing according to the unit daily processing amount.
  • this figure reflects the high installation density of the appliance.
  • the priority treatment area 5-1 there are 9. kits. It is therefore necessary to segment the appliances in the area.
  • 9-3, 12-2, 1-2, and 5-1 can be grouped together, and 11-1, 8-1, 3-4, 10-3, and 4-2 are grouped together.
  • Step 511 generating a maintenance work order.
  • Work Order 5-1 relates to Appliances 5-1, 11-1, 4-2, 3-4, 12-2
  • Work Order 8-1 relates to Appliances 8-1 and 10-3
  • Job Ticket 2-1 relates to Appliances 2-1 and 6-2;
  • the priority processing area 5-1 generates two maintenance job sheets, for example, 5-1 A and 5- 1 B
  • Another priority processing area 2-1 generates a maintenance work order number 2-1. Therefore, the situation in Figure 9 also requires three maintenance personnel.
  • Step 512 updating the life data.
  • the database system processes the data in the early morning of April 1, 2009.
  • job orders 5-1, 2-1, and 8-1 are generated.
  • the appliances 2-1, 6-2 are involved.
  • the maintenance service of the appliance 2-1 relates to the operating component
  • the maintenance service of the appliance 6-2 relates to the battery.
  • the system virtual service ticket 2-1 is executed, and the process of data update is as follows, the life of the operating component of the appliance 2-1 is set to the initial life, Sfl is equivalent to 300,000 times, for example, 200 days; the battery life of the appliance 6-2 Also set to the initial life, equivalent to 1,600mah, for example 100 days. At the same time, the battery life of the appliance 2-1 was reduced from 4 days to 3 days; the life of the operating parts of the appliance 6-2 was reduced from 5 days to 4 days. Other appliances analogy.
  • Table 4 is updated to Table 6, which is an update table of appliance life data. For ease of understanding, Table 6 is simplified, and only the update results of appliances 2-1 and 6-2 ⁇ in Table 4 are listed. Comparing Tables 4 and 6, the serial number of the appliance is unchanged, the La and Lv values of the appliance are changed, and the number of the appliance is changed accordingly.
  • FIG. 10 is a flow chart of the maintenance operation of the maintenance service using the monitoring system.
  • the thick solid arrow in the figure indicates the development process of the fault
  • the hollow up and down arrows between the maintenance personnel box and the thick solid arrow indicate the appliance.
  • the life of the moving parts the length of which indicates the length of the life of the moving parts, as predicted by the database system.
  • the maintenance personnel box has only one line connected to the maintenance line, indicating that only one maintenance person is dispatched.
  • Pre-failure maintenance can balance maintenance operations. For example, if you receive a customer product report and need to go to the door within 24 hours, you can use the obstacle device to generate a priority processing area after receiving the obstacle message, so that the maintenance personnel can handle the priority process when they go to the maintenance. The equipment that is about to fail in the area will improve the efficiency of the current maintenance work and balance the maintenance work. For maintenance services that are not accidental, a more efficient equalization process can be performed.
  • the total number of induction faucets installed is 100,000 sets, and 1% will appear one day in 100 days.
  • the probability of failure rate is 100%, that is, the probability of failure of 100 induction faucets within one day within 100 days is 100%.
  • a maintenance staff handles product failures at five different locations each day.
  • the failure rate date involves 100 sets of products, that is, the predicted life of the 100 sets of products is the closest. According to the assumption, the 1%. The failure rate occurred on the 50th day after April 1, 2009.
  • a maintenance person handles product failures at five different locations each day. With 2 maintenance personnel, 10 points of failure can be processed per day. If the two maintenance personnel prioritize these 100 points of failure from April 1, 2009 (including the day) to April 10, 2009 (including the same day), it will only take 10 days and 40 days remain. Therefore, there is sufficient time for equalization processing in the order of processing the 100 defective products. Two people can balance a total of 1,000 points of failure within 100 days. That is, with the method of the present invention, maintenance of 100,000 sets of induction faucets can be handled by at least two people.
  • the traditional mode can only be configured based on the condition that the probability of having 100 failure points per day is 100%.
  • Result After applying the remote monitoring system of the bathroom appliance, 2 people are required; in the traditional way, 20 people are needed. Therefore, the application of the remote monitoring system of the toilet appliance can realize the pre-failure intervention, thereby balancing the maintenance workload, saving the manpower, reducing the maintenance cost, and facilitating the promotion and application of the induction appliance, thereby improving the public environmental sanitation level.

Description

输出运行数据的洗手间器具
技术领域
本发明涉及洗手间器具, 尤其是将感应水龙头、 感应小便冲水器、 感应大 便冲水器、 感应水箱等一起安装在洗手间的器具, 以提供涉及上述洗手间器具 远程监控系统。
背景技术
现在, 用于洗手间的洗手间器具, 感应水龙头、 感应小便冲水器、 感应大 便冲水器、 感应水箱等, 虽然具备卫生、 使用方便特点, 但是由于结构复杂, 一般都由供应商 (或专业的维护服务公司) 维护。
目前一个典型的维护过程如下, 产品出现故障一用户报障一供应商前 往维护。 如图 1 所示, 系现有维护作业流程图。 图中.粗实线箭头表示故障的发 展过程, 当箭头触及维护人员方框时, 表示故障已经出现, 维护人员接到报障 信息。 图中, 有 3条标记为维护的带箭头的线分别触及报障的器具 1、 器具 n、 器具 n+x, 表示派出 3名维护人员分别处理器具 1、 器具 n、 器具 n+x的故障。 上述传统的维护方法存在以下不足之处: (1 ) 由于产品安装的数量越庞大, 在 同一时刻出现故障的产品数量就越多; 而且, 现有产品故障的发生是不能预测 的, 因此传统的维护业务相当于 "消防员救火", 具有极大的不确定性和突发性。 再者, 为了在合理的时间内 (如市内 24小上门, 郊区 48小时) 上门, 供应商 要维持一支规模庞大的维护人员队伍, 其成本将直接转嫁到用户身上, 因此限 制了产品的推广应用; (2) 传统的维护作业流程还有一个弊端, 就是故障后维 护, 意味着用户在供应商排除产品故障前, 产品不能正常使用, 这将对用户洗 手间造成严重的卫生困扰。
发明内容
本发明的目的是为了解决上述现有技术的不足, 而提供一种可实现洗手间 器具故障前干预, 使维护工作得到均衡, 以降低维护成本, 而且可以避免因不 能及时排除器具故障对用户洗手间造成卫生困扰的不足的输出运行数据的洗手 间器具。
本发明的目的是这样实现的- 输出运行数据的洗手间器具, 它包括控制部件和动作部件, 其特征在于, 还设有数据采集模块和数据输出模块, 所述的数据采集模块设有计数单元、 存 储单元, 所述的计数单元与所述动作部件的电源输入端电连接; 所述的存储单 元存储计数单元采集到的器具运行数据; 所述的数据输出模块将所述存储单元 中的数据输出。
本发明的目的还可以采用以下技术措施解决:
所述的数据输出模块为 RF数传单元或红外数传单元。
所述的数据输出模块为手机短信收发单元。
所述的洗手间器具通过 RF数传单元传送器具运行数据,且依据 RF数传单 元的传输距离确定邻近的洗手间器具, 至少在所述邻近的洗手间器具之一设有 手机短信收发单元。
本发明提供的技术方案, 洗手间器具采集自身的运行数据并存储在存储单 元, 维护人员可以提取出所述的运行数据, 对洗手间器具进行评估, 例如预测 远程器具将要发生的故障类型和发生的时间, 从而实现故障前干预, 使维护工 作负荷得到均衡, 节省人手, 降低维护成本, 有利于感应器具推广应用, 提高 公共环境卫生水平。
附图说明
图 1是现有维护作业流程图。
图 2是输出运行数据的洗手间器具结构示意图。
图 3是输出运行数据的洗手间器具邻近示意图。
图 4是手持读数装置结构示意图。
图 5是数据库系统数据处理流程图。
图 6是预测洗手间器具动作部件寿命流程图。
图 7是预测洗手间器具电池寿命流程图。
图 8是附加优先权的权值分布示意图 1。
图 9是附加优先权的权值分布示意图 2。
图 10是输出运行数据的洗手间器具的维护作业流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。 参阅图 2所示, 为本发明的一实施例, 一种输出运行数据的洗手间器具, 它包括控制部件 1和动作部件 2, 所述的控制部件 1用于实现洗手间器具自动 功能, 所述的动作部件 2为电磁阀或微电机组件, 用于控制水路的通断。
还设有数据采集模块 3和数据输出模块 4, 所述的数据采集模块 3设有计 数单元 30、 存储单元 31, 所述的计数单元 30与所述动作部件 2的电源输入端 电连接 (图中未画出) 采集动作部件 2 电源输入端的脉冲信号, 对脉冲信号进 行计数, 实现对器具的动作计数; 还采集电池的负载电压。 所述的存储单元' 31 存储计数单元 30采集到的器具运行数据;所述的数据输出模块 4将所述存储单 元 31中的数据输出。
所述的数据输出模块 4为 RF数传单元, RF数传单元 4将存储单元 31 中 的器具运行数据编码输出, 所涉及的数据传输技术都是公知技术, 本实施例不 额外说明。
进一步地,所述的洗手间器具通过 RF数传笋元传 4送器具运行数据,则依 据 RF数传单元的传输距离确定邻近的洗手间器具,至少在所述邻近的洗手间器 具之一设有手机短信收发单元 5。 参阅图 3, 例如设有 RF数传单元传 1至 5的 5套洗手间器具彼此邻近,在 RF数传单元传 5所在的器具上设有手机短信收发 单元 5。邻近的洗手间器具都将其自身的运行数据传送到设有手机短信收发单元 5的器具中,再通过手机短信收发单元 5将数据远传到产品供应商的数据库。这 样产品供应商就可以通过采集到的器具运行数据对器具进行评估, 例如预测远 程器具将要发生的故障类型和发生的时间, 从而实现故障前干预。
本实施例还可以通过以下的方式读出洗手间器具的运行数据,参阅图 4, 所 述的手机短信收发单元 5也可以是由手持读数设备 6代替。 例如在 1 台互联网 接入装置上安装 RF数传单元 4, 通过 RF数传单元 4接收器具的运行数据, 并 将所述的数据存储在所述互联网接入装置的存储器 60中,通过接入互联网将数 据传送到产品供应商的数据库。
对于采用手持读数设备读出洗手间器具的运行数据的方式, 洗手间器具的 RF数传单元 4还可以由红外数传单元代替,该红外数传单元由洗手间器具的红 外控制部件兼作。 这样方案硬件成本较低, 但读数过程不及 RF数传单元快捷。 手持读数设备通过维护人员上门读取数据, 因此手持读数设备可以读取若 干个即使是不邻近的洗手间器具的运行数据。 在实际的操作中, 主要涉及读入 器具运行数据的时间间隔问题。 该时间间隔与器具的使用频度、 上门读入器具 运行数据的人手多寡等因素有关。
例如, 可以在洗手间器具初装后的一段时间, 例如是 2个月, 可以每周读 入一次, 利用获得的数据可以评估出器具的使用频度资料, 就可以延长提取间 隔时间为 1.5至 2周。 因此采用手持设备通常存在数据滞后的现象, 但对于以 年计算使用寿命的器具, 即使预测寿命数据滞后 1至 2个星期依然有积极的参 考意义。
上述的实施例还涉及数据的识别问题, 例如是数据库系统如何判别接收到 数据是来自哪个洗手间器具。 有多种公知的解决方法> 例如是对洗手间器具进 行编码, 即洗手间器具有识别码, 在洗手间器具传送数据时, 将识别码合成到 需要传送的数据中, 这样数据接收端就可以通过识别码判别出所述数据是属于 哪个洗手间器具。 显然本发明所涉及的数据识别问题属于公知技术领域, 直接 应用现有技术即可以解决, 本实施不做详述。
下面将详细说明本发明提供的输出运行数据的洗手间器具在维护业务上较 传统洗手间器具有明显的优势, 主要是由于产品供应商可以获取洗手间器具的 运行数据, 可以对洗手间器具进行评估, 例如预测远程器具将要发生的故障类 型和发生的时间, 从而实现故障前干预, 使维护工作负荷得到均衡, 节省人手, 降低维护成本。
下面详细说明输出运行数据的洗手间器具的运行数据的数据处理过程。 通 常, 处理数据都通过数据库系统进行, 现有数量繁多的商品化数据库系统可供 选用, 本文所提及的数据库系统只是示意性质, 说明洗手间器具如果能输出其 运行数据所产生的明显效益。
为了方便数据库系统数据处理结果的应用, 数据库系统还记录器具的安装 地址, 建立器具、 安装地址和数据处理结果的配对关系。 安装地址是己知的, 器具的类型也是已知的。 一个典型的例子如表 1 (节选) 所示。
表 1器具数据处理结果输出表 序号 器具 安装地址 数据处理结果
1 感应水龙头 XX省 XX市 XX区 XX路 XX号 XX餐厅男洗手间左起第 1个 数据处理结果 1
2 感应水龙头 XX省 X 市 XX路 XX号 XX商场 2层女洗手间左起第 2个 数据处理结果 2
数据库系统处理数据和输出处理结果的典型流程如下。
步骤 501, 数据库系统依据器具动作次数预测器具动作部件寿命。 如上所 述, 采集的器具动作次数和电池负载电压值, 与这两个数据关联的目标部件为 动作部件和电池,―因此可 曾过对动所述数据进行处理「例如是预测出动作部 件寿命和电池寿命, 即可以预测出器具动作部件和电池可能出现故障的时间。
数据库系统依据器具动作次数预测器具动作部件寿命的过程包括如下步 骤, 参阅图 6,
首先设定动作部件额定动作次数; 该参数由生产商提供, 描述动作部件使 用寿命, 例如动作 300,000次, 则将 300,000次设置为动作部件额定动作次数。
然后设置单位时间段, 例如是 30日,'建立动作次数与单位时间段的对应关 系。 通过统计若干单位时间段内的动作次数, 获得器具使用频度信息, 进而更 合理地评估器具动作部件可能发生故障的时间。
然后进行动作部件动作计数。 以电磁阀为例, 对驱动电磁阀的脉冲信号进 行计数, 即可实现感应水龙头动作部件的动作计数。
参阅表 2, 假设上述的某个感应水龙头, 使用时间共计 3个单位时间段。在 第一个单位时间段, 动作部件的累计次数为 5000次, 增量次数为 5,000次; 在 第二个单位时间段, 动作部件的累计次数为 20,000次, 增量次数为 15,000次; 在第三个单位时间段, 动作部件的累计次 为 60,000次, 增量次数为 40,000 次。
表 2 动作部件动作次数记录表
Figure imgf000007_0001
表 2所示, 该感应水龙头, 使用时间共计 3个单位时间段。 即 90天, 云作 部件累计动作次数达到 60,000次, 单位时间段平均动作次数为 20,000次。 动 作部件的寿命为剩余的动作次数除以单位时间段平均动作次数, 即 (300,000 次 -60,000次) /20,000次 =12个单位时间段, 计 360天, 即所述的动作部件还 可以使用 360天。
如果就不同的单位时间段设置相应的权值, 例如使用频度较高的时间段设 置较高的权值。 应用加权计算, 其预测的动作部件寿命将更为接近于实际情况。
Figure imgf000008_0001
间段。 动作部件寿命为剩动作次数除以加权单位时间段平均动作次数, 对于本 实施例, (300,000次 -60,000次) /30.833次 =7.78个单位时间段, 计 233.5天, 即所述的动作部件还可以使用 233.5天。 '
进一步地, 还可以利用动作次数预测电池的寿命。参阅图 7, 预测电池的寿 命包括如下步骤:
首先设定电池参数和器具动作部件功率参数; 其中, 电池参数例如是电池 放电容量可以从电池生产商处获得, 例如一个典型的电池参数表述为: 标称电 压 DC6.0V, 标称容量 2,000mah (毫安时)。 在实际的应用过程中, 通常会设 定一个修正百分比参数计算电池放电容量, 例如 80%, 即表示电池放电容量按 标称容量的 80%计算。 电池放电容量: 2,000mahx80%=1 ,600mah。 至于器具 动作部件功率参数可以从器具动作部件生产商处获得。 以感应水龙头为例, 动 作部件为电磁阀, 一个典型的电磁阀参数表述为: 额定电压 DC6.0V, 线圈电阻 16欧姆,开启脉冲宽度 35ms (毫秒),关闭脉冲宽度 35ms (毫秒)。其中 35ms (毫秒) =0.035s (秒) =0.00000972h (小时), 电流值为 6/16=0.375a (安培) =375ma (毫安)。
感应水龙头开关一次的功耗 .· 375max0.00000972hx2=0.0073mah (毫安 时)。
然后设置单位时间段; 本实施例以 30日为单位 间段。
然后进行动作部件动作计数;
然后计算器具动作部件耗电量; 首先计算动作部件的功耗。 依据表 1 的数 据, 动作部件累计动作 60,000次, 其功耗: 60,000x0.0073mah =438mah。 计 算电池寿命。 将电池放电容量减去器具动作部件耗电量即为该电池剩余放电容 量, 即 1 ,600mah-438mah=1,162mah。 沿用表 1数据。 感应水龙头, 使用时间 共计 3个单位时间段。 单位时间段平均功耗: 438mah/3=146mah, 电池剩余放 电容量的使用时间为: 1,162mah/146mah=7.96 单位时间段, 电池还可以用 7.96x30=238.8天。
如果就不同使用频度的单位时间段设置相应的权重值, 例如使用频度高的 单位时间段设置较高的权。 应用加权计算, 其预测的剩余使用寿命将更为接近 于实际情况。沿用表 2数据。计算加权平均数: (5,000x1 +15,000x3+40,000x8) /(1 +3+8)=30,833次 /单位时间段。加权单位对间段平均功耗: 30,833x0.0073mah =225.08mah
电池剩余放电容量的使用时间为:1 ,162mah/225.08mah=5.16单位时间段, 电池还可以用 5.16x30=154.8天。
另外, 与器具功耗有关的参数还有器具静态功率参数, 器具静态功率参数 具体指器具例如是感应水龙头在待机状态的功耗, 也是可以从生产商处获得。 一个典型的器具静态功率参数表述为: 静态电流≤251^ (微安) =0.025ma (毫 安)。依据表 1数据, 单位时间段内器具静态功耗: 0.025ma (毫安) x24h/d (小 时 /天) x30d (天) =18mah (毫安时)。 因此修正后的电池剩余放电容量为 1 ,600mah-438mah- 3 x 18mah =1,108mah。 以加权单位时间段平均功耗计算 修正后电池剩余放电容量的使用时间。 1 ,108/(225.08+18)=4.56单位时间段, 电 池还可以用 4.56x30=136.8天。
至此, 数据库系统通过动作部件的动作次数实现对器具动作部件和电池的 寿命预测。 另外本实施例还采集电池'的负载电压数据, 采集电池负载电压主要 是对电池寿命预测的补充, 上述电池寿命计算方式可以用于放电曲线比较平缓 的电池, 例如是锂电池, 但还是存在误差。 因此可以通过电池生产商提供的电 池参数评估电池的寿命,例^.电池的额定电压为 6V,其电量 90%都在 6V至 5.6V 之间释放。 因此当采集电池负载电压为 5.6V时, 即使预测的电池寿命还可以用 1 周, 都要发出报警信息, 要求更换电池。 本实施例是以电池额定容量的 80% 计算, 额外增加 10%的安全裕度, 目的是要抵消所述的误差, 即假定寿命预测 准确, 简化本发明的解释。 因此, 本实施例仅示意性地列举电池负载电压数据 表, 而表中的数据并不用于本实施例后续的数据处理。
表 3电池负载电压记录表
Figure imgf000010_0001
另外, 如果数据节点为手持设备, 数据库系统执行预测寿命计算时, 还涉 及读入器具运行数据的时间间隔问题。 该时间间隔与器具的使用频度、 上门读 入器具运行数据的人手多寡等因素有关。 例如, 在感应水龙头使用的前几个单 位时间段, 可以每周读入一次, 在获取该感应水龙头的使用频度信息后, 就可 以延长间隔时间为 1.5至 2周。 又例如, 当电池的负载电压为 5.7V时, 可以将 间隔时间调整为 0.5至 1 周。 因此采用手持设备通常存在数据滞后的现象, 但 对于以年计算使用寿命的器具, 即使预测寿命数据滞后一个星期左右依然有积 极的参考意义。
步骤 502, 生成器具动作部件寿命数据表。
理论上器具动作部件和电池的寿命都可以预测计算, 但是在实际的使用过 程中, 还有一些突发因素导致器具动作部件或电池故障, 这些故障一般不可预 测。 通常, 对于供应商来说,.对于故障器具都有维护响应时间的承诺, 如市内 24小上门, 郊区 48小时上门。 因此如果出现不同的响应时间的故障, 就自然 形成处理突发故障器具先后次序, 相当于故障器具也有预测寿命, 只是预测寿 命按承诺的维护响应时间的生成, 如 1 天或 2天。 本实施例假设响应时间为 1 天和响应时间为 2天的器具故障各发生一例。
一个简化的例子,如表 4所示,假设该表的生成日期是 2009年 4月 1 曰凌 晨。 其中 La表示动作部件寿命、 Lv表示电池寿命, Lt表示故障响应时间, 单 位都为天。 为了方便数据处理, 将非突发故障器具的 Lt设为 0天, 将突发故障 器具的 La、 Lv设为 0天。 表中, xxxx表示不同的器具都安装在 xx市, 但具 体地址不同, 且表中器具不属于同一器具队列。
本实施例还假设电池和器具动作部件的新旧状态不一样, 例如是, 器具己 经更换新的电池, 但动作部件并没有未达额定动作次数, 因此未有更换, 所以 动作部件的寿命和电池的寿命看作彼此独立的。
表 4是器具动作部件寿命数据表
Figure imgf000011_0001
其中, 序号 1至 10的器具是数据库系统预测出的, 序号 11的器具是突发 故障器具, 其维护响应时间为 1天, 序号 12的器具也是突发故障器具, 其维护 响应时间为 2天。 可以对表 4进行常见的排序处理, 例如是按寿命天数的多少 升序排列, 那么在队列的前端就是 1天寿命的器具, 需要优先处理。
步骤 503, 判断器具是否在 1天寿命区间, 如果是, 执行步骤 504; 如果不 是, 执行步骤 505。 如表 4所示。 动作部件和电池的寿命为最短为 1天, 最长 为 6天, 按动作部件寿命的长短设定若干寿命区间, 例如设定 2个寿命区间, 分别是 1天寿命区间和 1天以上寿命区间。
步骤 504, 将器具划归 1天寿命区间, 如表 4所示, 编号为 2-1、 5-1、 8-1、 11-1的器具划归 1天寿命区间。
步骤 505, 生成优先处理区域。 以 1天寿命区间中的器具的 GPS坐标为中 心的一定范围的区域, 该区域内的其他器具与生成优先处理区域的器具地理上 邻近。一般地, 在表 4中的器具安装时, 就可以利用手持的 GPS导航仪获得该 器具队列的 GPS坐标(一般为器具队列所在的洗手间的 GPS坐标), 该队列内 的所有器具都以该 GPS坐标为准。
步骤 506, 判断未划归 1天寿命区间的器具是否在优先处理区域内, 如果 是, 执行步骤 507; 如果不是, 执行步骤 512。
请参阅图 8, 若表 4器具的地理位置如图所示。 图中不规则图形 60表示 XX 市的地域范围。 内含数字编号的圆圈表示器具所在地点。 圆圈中的数字编号例 如 2-1表示表 4中序号为 2寿命为 1天的器具, 其中该器具的动作部件寿命 La 为 1天, 电池寿命 Lv为 4天, 以小的值作为器具的寿命。 其他类推。 虚线圆表 示优先处理区域的范围。 用优先处理区域原点器 的编号例如 2-1 表示该器具 的优先处理区域编号。
以 1天寿命区间中的器具的 GPS坐标为原点设定优先处理区域,找出处于 所述优先处理区域内的器具。 以编号 2-1 的器具为例, 设定一个参考半径 d0, 例如是 6千米。 那么编号为 2-1 的优先处理区域的范围是以表 4中编号为 2-1 的器具 GPS坐标为中心, 半径 6千米的范围。 通过 GPS坐标计算出器具之间 的距离, 从而确定哪些器具在所述的范围内。 如图, 在该区域里, 还包含编号 为 7-5、 6-2的器具,共 3个器具。所述的参考半径 do主要参考器具的安装密度、 交通状况和维护人员的工作负荷。 在实际的维护业务中, 可以灵活设置优宪处 理区域的大小。 例如, 省会城市的中心城区, 器具的安装密度很大, 参考半径 d0可以设置较小的值如 5千米。 如果交通状况不佳, 例如是经常堵车, 参考半 径 d。可以设置更小的值如 4千米; 又例如, 在城郊地区, 器具的安装密度较低, 交通状况较好, 参考半径 dQ可以增加至 c ', 如 7千米。
而事实上参考半径 dQ的大小还可以进一步依据维护业务的特点迸行修正。 如图 8所示, 以参考半径为 d。编号 5-1 的器具的优先处理区域用实线圆表示, 该优先处理区域编号用 5-1*表示,在该区域里,包含编号 5-1、 11-1、 3-4和 12-2 共 4个器具,而编号 4-2的器具在 5-1*的旁边。 以参考半径为 dQ编号 11-1的器 具的优先处理区域 11-1*包含编号 11-1、 5-1、 3- 和 4-2共 4个器具, 而编号 12-2的器具在 11- 的旁边。 因此如果增大 5-1*或 11-1*的半径值就可以将 5个 器具都包含进去。 本例增加 5-1*的半径值至 d2, 优先处理区域用 5-1表示, '如 图, 优先处理区域 5-1包含编号 11-1、 5-1、 3-4、 12-2和 4-2共 5个器具。
如图 8所示,编号 7-5、 6-2和 2-1的器具在优先处理区域 2-1中;编号 10-3 和 8-1的器具在优先处理区域 8-1中。 器具 9-3和 1-2不与 1天寿命区间中任何一个器具邻近。
步骤 507, 赋予器具基础优先权和附加优先权。
赋予器具对应于寿命区间的基础优先权, 例如 1天寿命区间中的器具的基础 优先权的权值为 1 ; 一天以上寿命区间中的器具的基础优先权的权值按寿命计 算, 例如, 2天寿命的器具基础优先权的权值为 2, 3天寿命的器具基础优先权 的权值为 3, 其他类推。
设定对应于优先处理区域的附加优先权, 优先处理区域内的器具赋予较低的 权值, 优先处理区域外的器具赋予较高的权值; 例如, 在优先处理区域内的器 具的附加优先权的权值为 0.5,在优先处理区域外的器具的附加优先权的权值为 2; 参阅图 8, 不属于任何一个优先处理区域内的器具 9-3和 1-2, 其附加优先 权的权值为 2,而其他器具都分别处于不同的优先处理区域内, 因此附加优先权 权值为 0.5。
将器具基础优先权和附加优先权合成为总权值。 例如将基础优先权的权值与 附加优先权的权值相加,和值作为总权值。编号为 9-3的器具的总权值为 3+2=5; 编号为 2-1的器具的总权值为 1 +0.5=1.5; 其他类推。
由表 4和图 8综合得出表 5器具权值数据表。
表 5是器具权值数据表
Figure imgf000013_0001
步骤 508, 判断器具总权值否小于启动权值。 设定启动维护业务权值, 判断器 具总权值是否小于启动权值,如果是,执行步骤 509,如果不是,执行步骤 512。
例如设定器具启动维护权值条件为总权值小于等于 3.5, 即基础优先权小于 等于 3, 附加优先权为 0.5, 其意义是, 处理某个优先处理区域内, 寿命不多于 3天的所有器具。参阅表 5,满足条件的器具为 2-1、 4-2、 5-1、 6-2、 8-1、 10-3、 11-1、 12-2。
步骤 509, 判断器具数量是否大于单位日处理量。 如果是, 执行步骤 510; 如果不是, 执行步骤 511。
例如, 假设维护一个器具需时 60分钟, 而辅助时间例如是交通时间 60分 钟, 如果一个工作天按 8小时计算, 共 480分钟, 因此一个维护人员可以处理 4个不同地点器具的故障。因此如果一个优先处理区域内需要维护的器具数量多 于 4套, 就可能需要将该区域内内需要维护的器具分割。参阅图 8, 优先处理区 域 5-1, 虽然包含 5套器具, 但是由于地理上比较接近, 可以缩短辅助时间例如 是交通时间, 因此在一个工作天内可以完成该优先处理区域的维护工作。
步骤 510, 按单位日处理量分割。 参阅图 9, 该图反映出器具安装密度较大 的情况, 在优先处理区域 5-1 中, 含有 9 .套器具。 因此需要对区域内的器具进 行分割。 如图, 可以将 9-3、 12-2、 1-2、 5-1 组成一组, 将 11-1、 8-1、 3-4、 10-3、 4-2组成一组, 这样需要派 2名维护人员。
步骤 511, 生成维护作业单。参阅图 8, 共有 3个优先处理区域, 因此生成 3 张维护作业单。 如以优先处理区域的编号作为维护作业单编号, 则需要派 3名 维护人员分别处理编号 5-1、 编号 2-1和编号 8-1的业务单。 其中作业单 5-1涉 及器具 5-1、 11-1、 4-2、 3-4、 12-2; 作业单 8-1涉及器具 8-1和 10-3; 作业单 2-1涉及器具 2-1和 6-2;
参阅图 9, 虽然只有 2个优先处理区域, 但在优先处理区域 5-1需要两名维 护人员处理,因此优先处理区域 5-1生成 2张维护作业单,例如是 5-1 A和 5-1 B, 另 1个优先处理区域 2-1生成编号 2-1 的维护作业单。 因此图 9的情况同样需 要 3名维护人员。
步骤 512, 更新寿命数据。 对于本实施例, 假设数据库系统在 2009年 4月 1 日凌晨处理数据。 经过第 一轮处理, 生成作业单 5-1、 2-1和 8-1。 参阅图 8, 以作业单 2-1为例, 涉及器 具 2-1、 6-2。参阅表 4, 器具 2-1的维护业务是涉及动作部件, 器具 6-2的维护 业务是涉及电池。 系统虚拟业务单 2-1 被执行, 数据更新的过程如下, 将器具 2-1的动作部件的寿命设置为初始寿命, Sfl与 300,000次相当, 例如是 200天; 器具 6-2的电池的寿命也设置为初始寿命, 与 1 ,600mah相当, 例如是 100天。 同时器具 2-1 的电池寿命由 4天减少至 3天; 器具 6-2的动作部件的寿命由 5 天减少到 4天。 其他器具类推。 当完成数据更新后, 表 4更新为表 6, 表 6是 器具寿命数据一次更新表。 为了便于理解, 对表 6进行简化, 仅列出表 4中器 具 2-1和 6-2·的更新结果。 对比表 4和表 6, 器具的序号不变, 器具的 La和 Lv 值改变, 器具的编号也相应改变。
器具寿命数据一次更新表
Figure imgf000015_0001
如果数据库系统重复执行步骤 502至步骤 512, 就可以生成下一个工作曰 的维护作业单。 因此可以生成 3天或一周甚至是一个月的维护作业计划。 图 10 是应用本监控系统开展维护业务的维护作业流程图, 如图所示, 图中粗实线箭 头表示故障的发展过程, 维护人员方框与粗实线箭头之间的空心上下箭头表示 器具动作部件寿命, 其长度表示动作部件寿命的长短,. 由数据库系统预测得出。 如图有 3条标记为维护的带箭头的线分别触及即将发生故障的器具 1、 器具 n、 器具 n+x, 维护人员方框只有一条线与所述的维护线连接, 表示只派出 1 名维 护人员。 实现故障前维护能使维护业务均衡化。 例如是, 接到客户产品报障, 需要在 24小时内上门处理, 那么可以在接到报障信息后, 利用报障器具生成优 先处理区域, 这样维护人员前往维护时, 可以顺便处理该优先处理区域内即将 出现故障的器具, 提高当次出行维护作业的效益, 使维护工作得到均衡。 而对 于非特发故障的维护业务, 则可进行更为高效的均衡化处理。
下面设计一个简化模型, 假设本监控过程没有特发故障。
假设:
1)感应水龙头安装总量为 100,000套, 在 100日内有一天出现 1%。故障率 的概率为 100%, 即在 100日内出现一天内有 100个感应水龙头发生故障的概 率为 100%。
2)在 100日内出现故障的感应水龙头的总数为 1,000个。
3)—个维护人员每天处理 5个不同地点的产品故障。
4)承诺维护上门时间为 24小时
5)所有产品都安装在 XX市市区内。
假设以 2009年 4月 1 日凌晨为数据库系统处理数据的时间点,假定通过本 发明提供的监控系统得出 50日后出现 1%。故障率日,涉及 100套产品,即该 100 套产品的预测寿命最为接近。根据假设, 该 1%。故障率出现在 2009年 4月 1 日 之后的第 50日。
依据假设,一个维护人员每天处理 5个不同地点的产品故障。 2位维护人员, 则每天可处理 10个故障点。如果这 2位维护人员从 2009年 4月 1 日(含当天) 至 2009年 4月 10日 (含当天) 优先处理这 100个故障点, 即只需要 10天时 间, 还剩下 40天。因此在处理所述 100个故障产品的先后次序上有足够的时间 进行均衡化处理。 2个人 100日内能均衡处理总数为 1,000的故障点。 即应用 本发明的方法, 最少 2个人即可处理 100,000套感应水龙头的维护工作。
参阅图 1,传统模式只能依据出现一天有 100个故障点的概率为 100%这个 条件配置人手。 为了兑现为 24小时上门维护的承诺, 她需要配备的维护人员数 量 =100/5=20人, 同样在 100日内处理 1 ,000个故障, 但是应用消防员救火的 方式运作, 工作负荷不均衡, 人员的效率低下。 结果:应用洗手间器具远程监控系统后, 需要 2人; 传统方式, 需要 20人。 因此应用洗手间器具远程监控系统能实现故障前干预, 从而使维护工作负荷得 到均衡, 节省人手, 降低维护成本, 有利于感应器具推广应用, 从而提高公共 环境卫生水平。
以上所述的实施例, 所涉及的数据和计算方法仅作为示意性说明, 举凡依 本发明申请专利范围所做的等同设计, 均应为本发明的技术所涵盖。

Claims

权 利 要 求 书
1. 输出运行数据的洗手间器具, 包括控制部件和动作部件, 其特征在于, 设有数据采集模块和数据输出模块, 所述的数据采集模块设有计数单元、 存储 单元, 所述的计数单元与所述动作部件的电源输入端电连接; 所述的存储单元 存储计数单元采集到的器具运行数据; 所述的数据输出模块将所述存储单元中 的数据输出。
2. 根据权利要求 1所述的输出运行数据的洗手间器具, 其特征在于, 所述 的数据输出模块为 RF数传单元或红外数传单元。
3. 根据权利要求 1所述的输出运行数据的洗手间器具, 其特征在于, 所述 的数据输出模块为手机短信收发单元。
4. 根据权利要求 2所述的输出运行数据的洗手间器具, 其特征在于, 所述 的洗手间器具通过 RF数传单元传送器具运行数据,且依据 RF数传单元的传输 距离确定邻近的洗手间器具, 至少在所述邻近的洗手间器具之一设有手机短信 收发单元。
PCT/CN2010/000567 2009-04-24 2010-04-23 输出运行数据的洗手间器具 WO2010121499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910038958A CN101872170A (zh) 2009-04-24 2009-04-24 输出运行数据的洗手间器具
CN200910038958.9 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010121499A1 true WO2010121499A1 (zh) 2010-10-28

Family

ID=42997090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000567 WO2010121499A1 (zh) 2009-04-24 2010-04-23 输出运行数据的洗手间器具

Country Status (2)

Country Link
CN (1) CN101872170A (zh)
WO (1) WO2010121499A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117092933B (zh) * 2023-07-26 2024-04-16 天津通信广播集团有限公司 转动机械设备控制方法、装置、设备和计算机可读介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237075A (ja) * 1999-02-23 2000-09-05 Janome Sewing Mach Co Ltd 浴水循環装置のエアー抜き制御装置及びそのエアー抜き制御プログラムを記録したコンピュータ読取り可能な記録媒体
US20030182014A1 (en) * 2002-03-22 2003-09-25 Mcdonnell Ryan P. Tool wear monitoring system
CN2642209Y (zh) * 2003-08-01 2004-09-22 叶克骅 感应双出皂液机
CN1552007A (zh) * 2001-09-07 2004-12-01 株式会社山武 故障预测支援装置
CN101140469A (zh) * 2006-09-07 2008-03-12 株式会社东芝 维护计划系统、维护计划方法以及图像形成装置
CN201378279Y (zh) * 2009-04-24 2010-01-06 邓树培 输出运行数据的洗手间器具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237075A (ja) * 1999-02-23 2000-09-05 Janome Sewing Mach Co Ltd 浴水循環装置のエアー抜き制御装置及びそのエアー抜き制御プログラムを記録したコンピュータ読取り可能な記録媒体
CN1552007A (zh) * 2001-09-07 2004-12-01 株式会社山武 故障预测支援装置
US20030182014A1 (en) * 2002-03-22 2003-09-25 Mcdonnell Ryan P. Tool wear monitoring system
CN2642209Y (zh) * 2003-08-01 2004-09-22 叶克骅 感应双出皂液机
CN101140469A (zh) * 2006-09-07 2008-03-12 株式会社东芝 维护计划系统、维护计划方法以及图像形成装置
CN201378279Y (zh) * 2009-04-24 2010-01-06 邓树培 输出运行数据的洗手间器具

Also Published As

Publication number Publication date
CN101872170A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
US11886213B2 (en) Connected sanitaryware systems and methods
CN101911108B (zh) 洗手间便利中心
CN106886172A (zh) 智能设备故障检测方法、装置及系统
US11644378B2 (en) Building sensor network for monitoring environmental conditions
US9169625B2 (en) Water-saving management system for sanitary facility and water-saving management method for sanitary facility
JPH11341155A (ja) ネットワ―ク制御センタへのネットワ―クインフラストラクチャ情報の提供方法及び装置
JP6308465B2 (ja) 給電制御装置、給電制御システム、プログラム
WO2020071998A1 (en) A system and method for toilet room management employing iot sensors
CA3120745A1 (en) Information providing apparatus and information providing program
WO2011039603A1 (ja) 電力監視システム
WO2014007061A1 (ja) 情報処理システム、情報処理方法、情報処理装置およびその制御方法と制御プログラム
US20100262403A1 (en) Systems and methods for monitoring water heaters or boilers
WO2010121499A1 (zh) 输出运行数据的洗手间器具
JPH06317346A (ja) 機器管理システム
WO2010121498A1 (zh) 洗手间器具远程监控系统及其远程监控方法
CN101871998A (zh) 感应器具电池剩余寿命预测方法及系统
CN201378279Y (zh) 输出运行数据的洗手间器具
Goto et al. Integrated management and remote monitoring system for telecommunications power plants with fully DC-powered center equipment
KR20240018502A (ko) 연결된 수전 시스템
CN101872180A (zh) 洗手间器具远程监控系统
CN101872434A (zh) 洗手间器具动作部件维护方法
US20240153622A1 (en) Management apparatus, management system, terminal device, and non-transitory computer-readable storage medium storing management program for managing work on lavatory equipment
Cha Implementing a New SCADA System
Meier et al. Lessons Learned While Implementing a New SCADA System
RU2264652C2 (ru) Способ автоматического управления водоснабжением

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766590

Country of ref document: EP

Kind code of ref document: A1