WO2010121455A1 - 使用包囊抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合物 - Google Patents

使用包囊抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合物 Download PDF

Info

Publication number
WO2010121455A1
WO2010121455A1 PCT/CN2009/073382 CN2009073382W WO2010121455A1 WO 2010121455 A1 WO2010121455 A1 WO 2010121455A1 CN 2009073382 W CN2009073382 W CN 2009073382W WO 2010121455 A1 WO2010121455 A1 WO 2010121455A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
block
tumor
polymeric micelle
drug
Prior art date
Application number
PCT/CN2009/073382
Other languages
English (en)
French (fr)
Inventor
许源宏
薛竹君
张原嘉
吕瑞梅
甘霈
Original Assignee
财团法人工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 财团法人工业技术研究院 filed Critical 财团法人工业技术研究院
Priority to EP09843559.7A priority Critical patent/EP2422816B1/en
Priority to US13/265,802 priority patent/US8420119B2/en
Priority to CA2759060A priority patent/CA2759060C/en
Publication of WO2010121455A1 publication Critical patent/WO2010121455A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids

Definitions

  • composition for treating tumors using polymeric micelles containing anti-tumor drugs comprising:
  • the present disclosure relates to pharmaceutical compositions for treating tumors using polymeric micelles that encapsulate the anti-tumor drug.
  • the polymeric micelle comprises a block copolymer comprising at least one hydrophilic block, at least one hydrophobic block and At least one zwitterions.
  • the antitumor drug is, for example, hydrophobic.
  • the present disclosure also relates to methods of enhancing the solubility of anti-tumor drugs, methods of increasing the blood circulation time of anti-tumor drugs, and methods of delivering anti-tumor drugs to one or more solid tumors. Background technique
  • CPT camptothecin
  • an inhibitor of DNA topoisomerase I has been shown to be a therapeutic candidate for the treatment of tumors.
  • CPT has a terminal ring which is converted between a lactone form in an acidic medium (pH ⁇ 5) and a ring-opened carboxylate form in an alkaline medium (pH > 8), but only internally
  • the ester form CPT is pharmaceutically active.
  • this active form is hydrophobic and therefore has difficulty in delivery in a physiological environment.
  • CPT its biological analogues, such as 7-ethyl-10-hydroxycamptothecin (SN38, ie
  • CPT11 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT11) and some other antitumor drugs in physiological environment It also has poor solubility and similar active form-inactive form conversion problems. Because these drugs may be highly toxic and rapidly metabolized, it is desirable to introduce and deliver therapeutic levels of the drug to solid tumors while reducing their toxicity.
  • the present disclosure provides a pharmaceutical composition for treating a tumor using a polymeric micelle of a coated anti-tumor drug, wherein the polymeric micelle comprises a block copolymer, the block copolymer comprising a Or a plurality of hydrophilic blocks, one or more hydrophobic blocks, and one or more zwitterions.
  • the hydrophobic block may comprise at least one entity selected from the group consisting of polycaprolactone (PCL), polyvalerolactone (PVL), and poly(lactide). ⁇ (poly(lactide-co-glycolide), PLGA), polylactic acid (PLA), polybutyrolactone (PBL), polyglycolide and polypropionide
  • the hydrophilic block may comprise at least one entity selected from, for example, polyethylene glycol (PEG), hyaluronic acid (HA), and poly-gamma-glutamic acid (poly -y-glutamine acid, ⁇ -PGA).
  • the zwitterion may comprise at least one entity selected from the group consisting of phosphorylcholine (PC), and betaine betaine.
  • the antitumor drug encapsulated in the polymeric micelle may be a single drug or a combination of different drugs.
  • the present disclosure also relates to methods of enhancing the solubility of an anti-tumor drug, methods of increasing the blood circulation time of the drug, and methods of delivering the drug to one or more solid tumors. These methods use the polymeric micelles described above to encapsulate at least one anti-tumor drug to increase the solubility of the drug, blood circulation time, and/or deliver the drug to one or more solid tumors.
  • Figure 1 shows the release profile of CPT (or SN38) with incubation time for various compositions using a dialysis bag.
  • Figure 2 shows the proportion of lactone form CPT (or SN38) remaining with incubation time for each composition using direct dilution.
  • Figure 3 shows the quantitative distribution of lactone form CPT in plasma after injection in an in vivo kinetic assay.
  • Figure 4 shows the quantitative distribution of lactone form SN38 in plasma after injection in an in vivo kinetic assay.
  • Figure 5 shows the size of HT29 tumors after treatment with CCP201 and free CPT11.
  • Figure 6 shows the size of HT29 tumors after treatment with SCP201 and free CPT11.
  • Figure 7 shows the size of Colo205 tumors after treatment with SCP201 and free CPT11.
  • the present disclosure relates to a pharmaceutical composition for treating tumors using polymeric micelles that contain anti-tumor drugs.
  • the polymeric micelles comprise a block copolymer comprising at least one hydrophilic block, at least one hydrophobic block, and at least one zwitterion.
  • the block copolymer can be, for example, amphiphilic.
  • the hydrophobic block has a molecular weight of, for example, from about 500 to about 30,000 Daltons.
  • the hydrophobic block may comprise, for example, at least one entity selected from, for example, polycaprolactone (PCL), polyvalerolactone (PVL), poly(lactide co-glycolide) (PLGA), Polylactic acid (PLA), polybutyrolactone (PBL), polyglycolide and polypropion lactone (PPL).
  • the hydrophilic block has a molecular weight of, for example, from about 500 to about 30,000 Daltons.
  • the hydrophilic block may comprise, for example, at least one entity selected from the group consisting of polyethylene glycol (PEG), hyaluronic acid (HA), and poly-gamma-glutamic acid-PGA.
  • the zwitterion may comprise, for example, at least one entity selected from the group consisting of lysine (PC), sulfobetaine (NS) and an amino acid.
  • PEG-PCL-PC has the following structure:
  • R is a hydrogen atom, an alkyl group, a benzyl group or an acyl group, and the alkyl group, benzyl group or acyl group may be Is unsubstituted or substituted by a functional group, and the hydrogen atom, alkyl group, benzyl group or acyl group may be protected; m and n may be the same or different, each of which is an integer; preferably, m and n are each 1 An integer of 200, more preferably, m and n are each an integer of from 10 to 100, most preferably, m is an integer of from 30 to 85, and n is an integer of from 10 to 80.
  • the block copolymers disclosed herein can be prepared by the method disclosed in U.S. Patent Application Publication No. 2007/0104654.
  • the block copolymer disclosed in the present application exceeds the critical micelle concentration (critical micelle
  • CMC Concentration, is the ability to form polymeric micelles in an aqueous medium in which the hydrophobic portion is embedded in the core.
  • the polymeric micelles may, for example, have a diameter of from about 20 to about 10,000 nm. Due to the chain flexibility of hydrophilic blocks and the presence of zwitterions, the polymeric micelles are essentially non-immunogenic.
  • the hydrophobic block can be decomposed by enzymatic or hydrolysis.
  • the polymeric micelles are biodegradable and/or biocompatible. Therefore, after the hydrophobic block is decomposed, the remaining harmless substances such as hydrophilic blocks and zwitterions are soluble in the blood and then removed from the renal system.
  • the antitumor drug encapsulated in the polymeric micelles can be a single drug or a combination of different drugs.
  • the polymeric micelles disclosed herein can be used as an effective pharmaceutical carrier and are capable of absorbing at least one hydrophobic drug into its hydrophobic core to form a pharmaceutical composition.
  • the present disclosure also relates to methods of enhancing the solubility of an anti-tumor drug, methods of increasing the blood circulation time of the drug, and methods of delivering the drug to one or more solid tumors. These methods use the polymeric micelles disclosed herein to encapsulate at least one anti-tumor drug to increase the solubility, effectiveness or potency of the drug, and to deliver the drug to one or more solid tumors.
  • the present disclosure relates to a method of delivering an anti-tumor drug to a solid tumor, the method comprising encapsulating the anti-tumor drug in a polymeric micelle disclosed herein to form an encapsulation complex
  • the gingival complex is then delivered to the human body by known drug delivery methods, such as by oral administration, transdermal administration, injection or inhalation.
  • the polymeric micelles of the at least one anti-tumor drug disclosed in the present application can be prepared, for example, by the following method.
  • a certain amount of the antitumor drug and the block copolymer were stirred and dissolved in 1 ml of dimercaptosulfoxide (DMSO).
  • DMSO dimercaptosulfoxide
  • 1 ml of a 10% sugar solution was added, and then the freeze-dried solid was dissolved to form a suspension.
  • the suspension was further filtered through a 0.45 ⁇ m filter to remove unencapsulated drug crystals, and then polymerized micelles containing at least one antitumor drug were obtained.
  • Table 1 shows the selection of various antitumor drugs (CPT or SN38), block copolymers and their amounts in each formulation.
  • PEG, PCL, PVL, and PC represent polyethylene glycol, polycaprolactone, polyvalerolactone, and leucoylcholine, respectively, and the attached numbers indicate approximate molecular weights of PEG, PCL, and PVL.
  • PEG 5QQQ PCL 19QQ PC means that the block copolymer comprises PEG having a molecular weight of about 5000 Daltons, which is linked to PCL having a molecular weight of about 1900 Daltons, which is further attached to the PC.
  • composition code is arbitrarily given to represent different compositions.
  • the CC201, CC301, CC701, CV201 and SC201 compositions did not contain any zwitterions and were therefore used for comparison purposes.
  • the particle size distribution can be obtained, for example, by a laser particle size analyzer (Coulter N4 plus), and the amount of CPT or SN38 contained in each preparation can be determined by HPLC.
  • R S ., RI. and E.E. in Table 1 represent the particle size, polydispersity index and encapsulation efficiency, respectively. These parameters can be measured and/or calculated according to techniques known in the art.
  • Example 1 Release test using a dialysis bag
  • a 5 (L solution) of the pharmaceutical composition prepared according to the method described above was added to a dialysis bag having a molecular weight cutoff of about 3,500 Daltons, followed by 50 ml of phosphate buffered saline at 37 C. Dialysis was performed (PBS) (pH 7.4). After 0.5, 1, 1.5, 2, 4, and 8 hours of dialysis, 25 ( ⁇ L out-of-bag buffers, respectively, and then 750 ⁇ each were taken out. ⁇ sterol (solution in 0.6 ⁇ HCl) was mixed. The amount of each drug released from the polymeric micelles and then dialyzed into the extra-buffer buffer was determined by HPLC. Use 5 ( ⁇ L of CPT-containing DMSO solution (CPT) -DMSO) For comparison.
  • CPT CPT-containing DMSO solution
  • Figure 1 shows the release profile of CPT (or SN38) with incubation time for various compositions using a dialysis bag.
  • Table 2 shows the raw data.
  • A% indicates the percentage of CPN/SN38 released.
  • a 15 ( ⁇ L solution of the pharmaceutical composition of the present disclosure prepared according to the method described above was mixed with 135 (L PBS (pH 7.4), and then incubated at 37 ° C. During incubation 0.5, 1, 2, 4 and After 8 hours, 1 (L incubation solution) was separately taken, and then each was mixed with 99 (L). The amount of lactone form CPT or SN38 in the mixture was determined by HPLC. 15 ( ⁇ L of DMSO solution containing CPT (CPT- DMSO) served as a control.
  • Figure 2 shows the ratio of lactone form CPT (or SN38) remaining with incubation time for each composition using direct dilution.
  • Table 3 shows the raw data.
  • A% indicates the percentage of remaining lactone forms CPT and SN38
  • CPT at a dose of 1 mg/kg in DMSO, CC201, CCP201 and CV201 was introduced into SD mice by intravenous injection, respectively.
  • the concentration of the lactone form of CPT in the blood over time is then determined by HPLC.
  • Figure 3 shows the quantitative distribution of lactone form CPT in plasma after injection in an in vivo kinetic test.
  • Table 4 shows the raw data.
  • Table 5 shows the kinetic data.
  • CL mL/hr/kg and Vss (mL/kg) represent the half-life, area under the curve to infinity, clearance and steady-state volume, and their units, respectively.
  • n represents the number of samples.
  • CCP201 provides the best protection against lactone form of CPT in the blood because T 1/2 (hr) and the plasma lactone form of CPT are related to CCP201.
  • the T 1/2 (hr) and the plasma lactone form of CPT About 4 times and 9.5 times, and a zwitterionic polymeric micelle such as CCP201 is more effective in maintaining CPT in the form of a lactone in the blood compared to a zwitterion-free polymeric micelle.
  • Table 5 demonstrates that an exemplary embodiment of the present invention is capable of substantially improving the stability of the lactone form of CPT in the presence of HSA and reducing the amount of CPT convertible to the carboxylate form in the presence of HSA.
  • Example 4 In vivo kinetics test of SN38
  • SN38 at a dose of 4 mg/kg in DMSO, SC201 and SCP201 was introduced into SD mice by intravenous injection, respectively.
  • the concentration of the lactone form SN38 in the blood is then determined by HPLC.
  • Figure 4 shows the quantitative distribution of lactone form SN38 in plasma after injection in an in vivo kinetic assay.
  • Table 6 shows the raw data.
  • Table 7 shows the kinetic data.
  • CL mL/hr/kg and Vss (mL/kg) represent the half-life, the area under the infinite curve, the clearance rate and the steady-state volume of distribution, and their units, respectively.
  • n represents the number of samples.
  • Figure 5 shows the size of HT29 tumors after treatment with CCP201 and free CPT11.
  • Table 8 shows the raw data and Table 9 shows the summarized data.
  • the results indicate that, in general, CCP201 is able to provide higher drug efficacy or potency than free CPT11. Specifically, the tumor inhibition rate of the 18 mg/kg CCP201 dose exceeded 60%, which was significantly higher than the tumor inhibition rate of free CPT11.
  • aTIR (1-V treatment group / V control group) * 100
  • Figure 6 shows the size of HT29 tumors after treatment with SCP201 and free CPT11.
  • Table 10 shows the raw data and Table 11 shows the summarized data.
  • aTIR (1-V treatment group / V control group) * 100
  • Figure 7 shows the size of Colo205 tumors after treatment with SCP201 and free CPT11.
  • the table shows the raw data
  • Table 13 shows the summarized data.
  • aTIR (1-V treatment group / V control group) * 100
  • Table 12 and Table 13 show that, in general, SCP201 is able to provide higher drug efficacy than free CPT11. Specifically, Tables 11 and 13 both show that when 20 mg/kg of SCP201 is used, the tumor inhibition rate against HT29 and Colo205 can be higher than 90%.
  • Example 7 In vivo drug efficacy test of SCP201 using MTT assay
  • Dulbecco's Modified Eagle Media Dulbecco's Modified Eagle Media
  • P/S high glucose
  • Table 14 shows the selection of cancer cell lines and CPT11, SN38, respectively, and SCP201 half maximal inhibitory concentration of each tumor cell line (IC 50). The difference in drug activity between CPT11 and SN38 is consistent with the data disclosed in the publication. Table 14 shows that there is no reduction in the in vitro pharmaceutical activity of the pharmaceutical composition comprising SN38 disclosed herein.
  • Ovarian cancer OVCAR-3 16.75 ⁇ 1.43 22.73 ⁇ 2.14 28.10 ⁇ 1.69
  • lN.D indicates that the human lung cancer cell lines (A549 and AS2) not used in the present application were provided by Prof. Wu-Chou Su (National Cheng Kung University Hospital College of Medicine, Taiwan). Human colorectal cancer (Colo 205 and HT29) was provided by Dr. Ming-Jium Shieh (National Taiwan University College of Medicine and College of Engineering, Taiwan). Human liver cancer cell line SK-HEP-1 was obtained from the American Type Culture Collection (ATCC, Rockville, MD). All remaining cell lines tested in this application were obtained from the Bioresource Collection and Research Center (BCRC, Food Industry Research and Development Institute, Hsinchu, Taiwan).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Description

使用包嚢抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合物 技术领域
本公开涉及使用包嚢 (encapsulating)抗肿瘤药物的聚合胶束 (polymeric micelle)用于治疗肿瘤的药物组合物。 在一个实施方案中, 所述聚合胶束包含 嵌段共聚物, 所述嵌段共聚物含有至少一种亲水性嵌段 (hydrophilic block), 至少一种疏 ^水性嵌段 (hydrophobic block)和至少一种两性离子 (zwitterions)。 并 且所述抗肿瘤药物例如为疏水性的。 本公开还涉及增强抗肿瘤药物溶解度的 方法、增加抗肿瘤药物血液循环时间(blood circulating time)的方法、 以及将抗 肿瘤药物递送至一种或多种实体瘤(solid tumor)的方法。 背景技术
许多抗肿瘤药物是疏水性的,因此在含水介质 (aqueous medium)中具有有 限的溶解度。 例如, 已经证明喜树碱 (camptothecin, CPT), 即 DNA拓朴异构 酶 I的抑制剂,是可能用于治疗肿瘤的治疗候选物。 CPT具有末端环 (terminal ring), 所述末端环在酸性介质 (pH < 5)中的内酯形式和碱性介质 (pH > 8)中的 开环羧酸盐形式之间转化,但是只有内酯形式 CPT是具有药物活性的。然而, 这种活性形式是疏水的, 因此在生理环境中存在递送困难。
在递送 CPT或其类似物时存在另一问题。 例如, 因为内酯形式 CPT和 羧酸盐形式 CPT在 pH依赖的平衡中是可相互转化的,所以内酯形式 CPT在 生理环境中可迅速转化为羧酸盐形式 CPT。此外, 因为羧酸盐形式 CPT可以 与人血清白蛋白 (HSA)非常有效地结合, 所以在 HAS的存在下更多内酯形式 CPT会转化为羧酸盐形式 CPT以达到平衡。
正如 CPT那样, 其生物学类似物, 如 7-乙基 -10-羟基喜树碱 (SN38, 即
7-乙基 -10-[4-(1-哌啶子基) -1-哌啶子基]羰基氧基喜树碱 (CPT11)的代谢产物) 以及一些其它的抗肿瘤药物在生理环境中也具有较差的溶解度和类似的活性 形式-无活性形式转化问题。因为这些药物可能是高度毒性的并且是快速代谢 的, 所以期望的是, 将期望治疗水平的所述药物引入并且递送至实体瘤中, 同时降低它们的毒性。
已经开发了几种方法用于这些目的, 包括使用胶束作为载体, 这是因为 精心设计的胶束, 如生物可降解的和生物相容的胶束, 在生理环境中能够增 溶疏水性抗肿瘤药物, 增加所述药物的血液循环时间, 以及由此将期望治疗 水平的所述药物递送至实体瘤。 但是, 仍然需要更好的供选方案。 发明内容
本发明的发明人已经意外地发现某些聚合胶束可以在递送抗肿瘤药物 时提供更好的性质。 在一个实施方案中, 本公开提供了使用包嚢抗肿瘤药物 的聚合胶束用于治疗肿瘤的药物组合物,其中所述聚合胶束包含嵌段共聚物, 所述嵌段共聚物含有一种或多种亲水性嵌段、 一种或多种疏水性嵌段和一种 或多种两性离子。
所述疏水性嵌段可包含至少一种实体 (entity), 所述实体例如选自聚己内 酯 (polycaprolactone, PCL)、 聚戊内酯 (polyvalerolactone, PVL)、 聚(丙交酯共乙 交酉^ (poly(lactide-co-glycolide), PLGA)、 聚乳酸 (polylactic acid, PLA)、 聚丁内 酯 (polybutyrolactone, PBL)、 聚乙交酯 (polyglycolide)和聚丙内酉
(polypropiolactone, PPL)。 所述亲水性嵌段可包含至少一种实体, 所述实体例 如选自聚乙二醇 (polyethylene glycol, PEG)、透明质酸 (hyaluronic acid, HA)和聚 -γ-谷氨酸 (poly-y-glutamine acid, γ-PGA)。 以及所述两性离子可包含至少一种 实体, 所述实体例如选自磷酰胆碱 (phosphorylcholine, PC)、 黄基甜菜碱
(sulfobetaine, NS)和氨基酸。 包嚢在聚合胶束中的抗肿瘤药物可以是单一的药 物或不同药物的组合。
本公开还涉及增强抗肿瘤药物溶解度的方法, 增加所述药物血液循环时 间的方法, 以及将所述药物递送至一种或多种实体瘤的方法。 这些方法使用 上述的聚合胶束包嚢至少一种抗肿瘤药物, 以增加所述药物的溶解度、 血液 循环时间和 /或将所述药物递送至一种或多种实体瘤。
应该理解, 前述的一般说明和以下的详细说明都仅是示例性和解释性 的, 而不是对所要求保护的本发明进行限制。
引入本申请并构成本说明书一部分的附图显示了本发明的几个实施方 案, 并且与说明书一起用于解释本发明的原理。 附图说明
图 1显示了使用透析袋就各种组合物而言 CPT (或 SN38)随孵育时间的释 放分布。
图 2显示了使用直接稀释法就各种组合物而言剩余的内酯形式 CPT (或 SN38)随孵育时间的比例。
图 3显示了在体内动力学试验中注射后内酯形式 CPT在血浆中的定量分 布。
图 4显示了在体内动力学试验中注射后内酯形式 SN38在血浆中的定量 分布。
图 5显示了经过 CCP201和游离 CPT11治疗后 HT29肿瘤的大小。 图 6显示了经过 SCP201和游离 CPT11治疗后 HT29肿瘤的大小。 图 7显示了经过 SCP201和游离 CPT11治疗后 Colo205肿瘤的大小。 具体实施方式
现详细阐述本发明的示例性实施方案, 其实施例在附图中得以说明。 本公开涉及使用包嚢抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合 物。 所述聚合胶束包含嵌段共聚物, 所述嵌段共聚物含有至少一种亲水性嵌 段、 至少一种疏水性嵌段和至少一种两性离子。 所述嵌段共聚物可例如为两 亲的 (amphiphilic)。 在一个实施方案中, 所述疏水性嵌段具有例如约 500至约 30,000道尔顿的分子量。 所述疏水性嵌段可包含例如至少一种实体, 所述实 体例如选自聚己内酯 (PCL)、 聚戊内酯 (PVL)、 聚 (丙交酯共乙交酯 )(PLGA)、 聚乳酸 (PLA)、 聚丁内酯 (PBL)、 聚乙交酯和聚丙内酯 (PPL)。 所述亲水性嵌段 具有例如约 500至约 30,000道尔顿的分子量。所述亲水性嵌段可包含例如至 少一种实体, 所述实体选自聚乙二醇 (PEG)、 透明质酸 (HA)和聚 -γ-谷氨酸 -PGA)。 以及所述两性离子可包含例如至少一种实体, 所述实体选自碑酰胆 碱 (PC)、 磺基甜菜碱 (NS)和氨基酸。
示例性的嵌段共聚物即 PEG-PCL-PC具有以下结构:
Figure imgf000004_0001
其中 R为氢原子、 烷基、 苄基或酰基, 所述 烷基、 苄基或酰基可以 是未取代的或被官能团取代, 所述氢原子、 烷基、 苄基或酰基可以是受 保护的; m和 n可以相同或不同,其各自为整数;优选地, m和 n各自为 1-200 的整数, 更优选地, m和 n各自为 10-100的整数, 最优选地, m为 30-85的 整数, 以及 n为 10-80的整数。 本申请披露的嵌段共聚物可通过美国专利申 请公开号 2007/0104654中披露的方法制备。
本申请披露的嵌段共聚物在超过临界胶束浓度 (critical micelle
concentration, CMC)时能够在含水介质中形成聚合胶束,其中疏水部分被包埋 在核芯中。 所述聚合胶束可以例如具有约 20-l,000nm的直径。 由于亲水性嵌 段的链柔性 (chain flexibility)和两性离子的存在, 所述聚合胶束基本上是非免 疫原性的 (non-immunogenic)。 疏水性嵌段能够通过酶或水解而被分解。 所述 聚合胶束为生物可降解的和 /或生物相容的。 因此, 在疏水性嵌段被分解后, 剩余的无害物质例如亲水性嵌段和两性离子可溶于血液中, 然后从肾脏系统 除去。
包嚢在聚合胶束中的抗肿瘤药物可以是单一的药物或不同药物的组合。 本申请披露的聚合胶束可用作有效的药物载体, 并且能够将至少一种疏 水药物吸收到其疏水核芯中以形成药物组合物。 因此, 本公开还涉及增强抗 肿瘤药物溶解度的方法、 增加所述药物血液循环时间的方法和将所述药物递 送至一种或多种实体瘤的方法。 这些方法使用本申请披露的聚合胶束包嚢至 少一种抗肿瘤药物, 以增加所述药物的溶解度、 有效性或效能, 并且将所述 药物递送至一种或多种实体瘤。 在一个实施方案中, 本公开涉及递送抗肿瘤 药物至实体瘤的方法, 所述方法包括将所述抗肿瘤药物包嚢在本申请披露的 聚合胶束中以形成包嚢复合物 (encapsulation complex), 然后通过已知的药物 递送方法 (如通过口服给药、 经皮给药、 注射或吸入)将所述包嚢复合物递送 至人体。
本申请披露的包嚢至少一种抗肿瘤药物的聚合胶束可以例如通过以下 方法制备。 对一定量的抗肿瘤药物和嵌段共聚物进行搅拌并溶于 1ml二曱基 亚砜 (DMSO)中。 通过冷冻干燥除去 DMSO后, 加入 lml 10% 糖溶液, 然 后使冷冻干燥的固体溶解以形成混悬液。 经受超声处理 (ultra-sonication)十分 钟后, 使混悬液进一步通过 0.45μπι过滤器过滤, 以除去未经包嚢的药物晶 体, 然后可以得到包嚢至少一种抗肿瘤药物的聚合胶束。 药物包封率 (drug encapsulation efficiency, E.E.)使用下式计算: E.E(%) = 胶束中药物的总重量 x 100
加栽时药物的总重量
表 1显示了对各种抗肿瘤药物 (CPT或 SN38)、嵌段共聚物和它们在每种 制剂中用量的选择。 PEG、 PCL、 PVL和 PC分别表示聚乙二醇、 聚己内酯、 聚戊内酯和碑酰胆碱, 以及所附加的数字表示 PEG、 PCL和 PVL的近似分 子量。 例如, PEG5QQQPCL19QQPC表示嵌段共聚物包含分子量为约 5000道尔顿 的 PEG, 所述 PEG与分子量为约 1900道尔顿的 PCL相连, 所述 PCL进一 步与 PC相连。
任意给出组合物代码以表示不同的组合物。 CC201、 CC301、 CC701、 CV201和 SC201组合物不包含任何两性离子, 由此用于对照目的。
粒度分布 (particle size distribution)可通过例如激光粒度分析仪 (Coulter N4 plus)获得, 每种制剂中包嚢的 CPT或 SN38的量可通过 HPLC确定。 表 1 中的 R S .、 RI.和 E.E.分别表示粒度、 多分散指数 (polydispersity index)和包封 率。 这些参数可按照本领域已知的技术测量和 /或计算。
表 1
Figure imgf000006_0001
基于以下实施例更详细地解释本发明, 这些实施例不应理解为对本发明 的范围进行限制。 实施例 1 : 使用透析袋进行释放试验
将根据上文所述方法制备的药物组合物的 5(^L溶液加到截留分子量 (molecular weight cutoff)为约 3,500道尔顿的透析袋中, 然后在 37。C用 50ml 磷酸盐緩冲盐水 (PBS)(pH 7.4)进行透析。 在透析 0.5、 1、 1.5、 2、 4和 8小时 后,分别取出 25(^L袋外緩冲液 (out-of-bag buffer),然后各自与 750μΙ^曱醇 (于 0.6Ν HC1中的溶液)混合。经 HPLC确定从聚合胶束中释放然后透析进入袋外 緩冲液中的各药物的量。 使用 5(^L含有 CPT的 DMSO溶液 (CPT-DMSO)作 为对照。
图 1显示了使用透析袋就各种组合物而言 CPT (或 SN38)随孵育时间的释 放分布, 表 2显示了原始数据。
表 2
Figure imgf000007_0001
a%表示释放的 CPN/SN38的百分数。
bS.D.表示标准偏差。
如图 1和表 2所示, 透析 8小时后, CPT-DMSO中包含的超过 90%的 CPT透析进入袋外緩冲液中, 但是药物组合物中包含的仅 30%或更少百分数 的药物透析进入袋外緩冲液中。 图 1和表 2还显示, 一般而言, 与不含两性 离子的聚合胶束相比, 含有两性离子的聚合胶束如 CCP201和 SCP201组合 物能够更有效地使药物保持包嚢。 实施例 2: 直接稀释试验
将根据上文所述方法制备的本公开的药物组合物的 15(^L溶液与 135(^L PBS(pH 7.4)混合, 然后在 37。C孵育。 在孵育 0.5、 1、 2、 4和 8小时 后, 分别取出 1( L孵育溶液, 然后各自与 99(^L曱醇混合。 经 HPLC确定 混合物中内酯形式 CPT或 SN38的量。 使用 15(^L含有 CPT的 DMSO溶液 (CPT-DMSO)作为对照。
图 2显示了使用直接稀释法就各种组合物而言剩余的内酯形式 CPT (或 SN38)随孵育时间的比例, 表 3显示了原始数据。 表 3
Figure imgf000008_0001
a%表示剩余的内酯形式 CPT和 SN38的百分数
bS.D.表示标准偏差。
如图 2和表 3所示, 孵育 8小时后, CPT-DMSO中仅约 20%的 CPT保 持内酯形式, 但是最初包含在药物组合物中的超过 50%的 CPT和 SN38保持 内酯形式。 图 2和表 3还显示, 一般而言, 与不含两性离子的聚合胶束相比, 含有两性离子的聚合胶束如 CCP201和 SCP201组合物能够更有效地保持 CPT和 SN38为内酯形式。 实施例 3: CPT的体内动力学试验
分别将在 DMSO、 CC201、 CCP201和 CV201中的剂量为 lmg/kg的 CPT 通过静脉注射引入到 SD小鼠中。 然后经 HPLC确定内酯形式 CPT在血液中 随时间的浓度。
图 3显示了在体内动力学试验中注射后内酯形式 CPT在血浆中的定量分 布, 表 4显示了原始数据。
表 4
Figure imgf000008_0002
Figure imgf000008_0003
S.D.表示标准偏差 ^.D.表示不可检测
其中 ng表示 10-9
表 5显示了动力学数据。表 5中的
Figure imgf000009_0001
CL mL/hr/kg) 和 Vss(mL/kg)分别表示半衰期、直到无限的曲线下面积 (area under the curve to infinity), 清除率和稳态分布容积以及它们的单位。 n表示样本数目。 这些参 数可根据本领域已知的技术测量和 /或计算。
Figure imgf000009_0002
Figure imgf000009_0005
根据表 5, 4小时后, 就使用 CPT-DMSO而言, 在血液中仅检测到痕量 的内酯形式 CPT, 但相反的是, 就使用 CC201、 CV201和 CCP201组合物而 言, 检测到显著较高的血浆内酯形式 CPT浓度。 表 5显示 CCP201提供了在 血液中对内酯形式 CPT的最好保护, 这是因为就 CCP201而言血浆内酯形式 CPT的 T1/2(hr)和
Figure imgf000009_0003
而言血浆内酯形式 CPT 的 T1/2(hr)和
Figure imgf000009_0004
约 4倍和 9.5倍,并且与不含两性离子的聚 合胶束相比, 含有两性离子的聚合胶束如 CCP201能够更有效地在血液中保 持 CPT为内酯形式。 此外, 表 5表明本发明的示范性实施方案能够在 HSA 的存在下基本上改善内酯形式 CPT的稳定性, 并且在 HSA的存在下降低可 转化为羧酸盐形式的 CPT的量。 实施例 4: SN38的体内动力学试验
分别将在 DMSO、 SC201和 SCP201中的剂量为 4mg/kg的 SN38通过静 脉注射引入到 SD小鼠中。 然后经 HPLC确定内酯形式 SN38在血液中随时 间的浓度。
图 4显示了在体内动力学试验中注射后内酯形式 SN38在血浆中的定量 分布, 表 6显示了原始数据。 表 6
Figure imgf000010_0003
Figure imgf000010_0004
S.D.表示标准偏差
表 7显示了动力学数据。表 7中的
Figure imgf000010_0001
CL mL/hr/kg) 和 Vss(mL/kg)分别表示半衰期、 直到无限的曲线下面积、 清除率和稳态分布 容积以及它们的单位。 n表示样本数目。 这些参数可根据本领域已知的技术 测量和 /或计算。
表 7
Figure imgf000010_0005
根据表 7 , 4小时后, 就使用 SN38-DMSO而言, 在血液中仅检测到有 限量的 SN38,但相反的是, 就使用 SC201和 SCP201而言,检测到显著较高 的血浆 SN38浓度。 表 7显示 SCP201在血液中提供了对 SN38的最好保护, 这是因为就 SCP201而言血浆 SN38的 T1/ 比就 SN38-DMSO而言血浆 SN38的 T1/2(hr)和
Figure imgf000010_0002
50 倍。 实施例 5 CCP201与游离 CPT 11的体内药物效力比较
将人结肠癌 HT29细胞皮下植入在免疫缺陷小鼠的背肌 (dorsal muscle) 中。 肿瘤大小达到约 300-500mm3后, 将小鼠随机分为 4组, 然后通过静脉 注射分别将盐水、 CPT11和 CCP201引入到小鼠中。 给药频率为每周两次, 共给药五次。监测每只小鼠的肿瘤大小和重量。测量肿瘤大小并根据式 V=l/2 ab2计算, 其中 V为肿瘤体积, a为肿瘤的最长直径, 以及 b为肿瘤的最短直 径。
图 5显示了经过 CCP201和游离 CPT11治疗后 HT29肿瘤的大小。 表 8 显示了原始数据,表 9显示了概括的数据。结果表明,一般而言,与游离 CPT11 相比, CCP201能够提供更高的药物效力或效能。 具体地, 18mg/kg CCP201 剂量的肿瘤抑制率超过 60%, 这显著高于游离 CPT11的肿瘤抑制率。
表 8
Figure imgf000011_0001
S.D.表示标准偏差
表 9
Figure imgf000011_0002
aTIR(%): 肿瘤抑制率 =(1-V 治疗组 /V对照组 )*100
b第一次治疗后测量的最大体重
实施例 6: SN38与游离 CPT11的体内药物效力比较
将人结肠癌 HT29细胞皮下植入到免疫缺陷小鼠的背肌中。 肿瘤大小达 到约 100-200mm3后, 将小鼠随机分为 5组, 然后通过静脉注射分别将盐水、 CPT11和 SCP201引入到小鼠中。 给药频率为每周两次, 共给药五次。 监测 每只小鼠的肿瘤大小和重量。测量肿瘤大小并根据式 V=l/2 ab2计算,其中 V 为肿瘤体积, a为肿瘤的最长直径, 以及 b为肿瘤的最短直径。 人结肠癌 Colo205细胞也通过与上文描述相同的方法进行试验,不同的是将小鼠分为 6 组。
图 6显示了经过 SCP201和游离 CPT11治疗后 HT29肿瘤的大小。表 10 显示了原始数据, 表 11显示了概括的数据。
表 10
Figure imgf000012_0001
S.D.表示标准偏差 表 11
Figure imgf000013_0001
aTIR(%): 肿瘤抑制率 =(1-V 治疗组 /V对照组 )*100
b第一次治疗后测量的最大体重
图 7显示了经过 SCP201和游离 CPT11治疗后 Colo205肿瘤的大小。 表 显示了原始数据, 表 13显示了概括的数据。
表 12
Figure imgf000013_0002
Figure imgf000013_0003
S.D.表示标准偏差 表 13
Figure imgf000014_0001
aTIR(%): 肿瘤抑制率 =(1-V 治疗组 /V对照组 )*100
b第一次治疗后测量的最大体重
图 7、 表 12和表 13显示, 一般而言, 与游离 CPT11相比, SCP201能 够提供更高的药物效力。 具体地, 表 11和 13都显示, 当使用 20mg/kg的 SCP201时, 对 HT29和 Colo205的肿瘤抑制率可高于 90%。 实施例 7: 使用 MTT测定进行 SCP201的体内药物效力试验
将各种人癌细胞系如 A549、 AS2和 H460植入到多孔板上, 然后将含有 10%胎牛血清和 1%P/S的 Dulbecco改进的 Eagle培养基 (Dulbecco's Modified Eagle Media) (高葡萄糖)加到每个孔中。 在 37。C和 C02下孵育 24小时后, 分 别将各种量的 CPT11、 SN38和 SCP201加到每个孔中,然后将混合物在 37。C 和 C02下再孵育 72小时。 然后将 2(^L 0.5mg/ml的 MTT (溴化 3-(4,5-二曱基 噻唑 -2-基) -2,5-二苯基四唑锬)溶液加到每个孔中以开始反应。 2小时后, 除去 每个孔中的混悬液, 然后将 DMSO加到孔中以溶解反应过程中形成的曱 艚 (formazan)。 然后通过分析每个孔的 OD570和 OD600数据, 获得活细胞浓 度。
表 14显示了对癌细胞系的选择以及 CPT11、 SN38和 SCP201分别对各 肿瘤细胞系的半数最大抑制浓度 (IC50)。 CPT11和 SN38的药物活性差异与出 版物中披露的数据一致。表 14显示本申请所披露的包含 SN38的药物组合物 的体外药物活性没有降低。
表 14
Figure imgf000014_0002
SK-HEP-1 N.D. 15.21±1.33 25.67±1.40
η rs, AGS N.D. 40.22±14.24 36.42±12.95
前列腺癌 PC-3 N.D. 95.9±21.27 105.48±34.23
脑癌 U-87 MG N.D. 10.22±2.60 9.99±3.00
t癌 MCF-7 N.D. 60.93±48.86 89.33±69.47
卵巢癌 OVCAR-3 16.75±1.43 22.73±2.14 28.10±1.69
膀胱癌 5637 1.42±0.10 0.36±0.03 0.64±0.07
鼻中隔癌 RPMI2650 1.47±0.26 0.97±0.07 1.22±0.11
舌癌 SCC-25 12.35±1.16 19.71±11.28 27.06±23.48
lN.D表示没有进行 本申请中所使用的人肺癌细胞系 (A549和 AS2)由 Prof. Wu-Chou Su (National Cheng Kung University Hospital College of Medicine, Taiwan)提供。 人 结肠直肠癌 (Colo 205和 HT29)由 Dr. Ming-Jium Shieh (National Taiwan University College of Medicine and College of Engineering, Taiwan)提供。 人肝 癌细胞系 SK-HEP-1获自 American Type Culture Collection (ATCC, Rockville, MD)。 在本申请中所有其余的被测试的细胞系获自 Bioresource Collection and Research Center (BCRC, Food Industry Research and Development Institute, Hsinchu, Taiwan)„
鉴于本申请披露的本发明说明书和实践, 本发明的其它实施方案对本领 域技术人员而言是显而易见的。应该理解,说明书和实施例仅视为示例性的, 而本发明的真正范围由权利要求书所指明。

Claims

权利要求
1. 用于治疗肿瘤的药物组合物, 所述组合物包含:
至少一种聚合胶束; 以及
至少一种包嚢在所述聚合胶束中的抗肿瘤药物;
其中所述聚合胶束包含嵌段共聚物, 所述嵌段共聚物含有至少一种亲水 性嵌段、 至少一种疏水性嵌段和至少一种两性离子。
2. 权利要求 1的药物组合物, 其中所述聚合胶束的直径范围为约 20nm 至约 l,000nm。
3. 权利要求 1的药物组合物,其中所述聚合胶束具有疏水内部和亲水表 面。
4. 权利要求 1 的药物组合物, 其中所述至少一种抗肿瘤药物是疏水性 的。
5. 权利要求 1的药物组合物, 其中所述肿瘤为实体瘤。
6. 权利要求 1的药物组合物,其中所述至少一种抗肿瘤药物选自 7-乙基 -10-羟基喜树碱、 喜树碱和它们的衍生物。
7. 权利要求 1的药物组合物, 其中所述嵌段共聚物是两亲性的。
8. 权利要求 1的药物组合物, 其中所述嵌段共聚物是生物可降解的。
9. 权利要求 1的药物组合物, 其中所述嵌段共聚物是生物相容的。
10. 权利要求 1 的药物组合物, 其中所述疏水性嵌段的分子量为约 500 至约 30,000。
11. 权利要求 1的药物组合物,其中所述疏水性嵌段包含至少一种聚酯。
12. 权利要求 1的药物组合物,其中所述疏水性嵌段包含至少一种实体, 所述实体选自聚己内酯 (PCL)、聚戊内酯 (PVL)、 聚 (丙交酯共乙交酯 )(PLGA)、 聚乳酸 (PLA)、 聚丁内酯 (PBL)、 聚乙交酯和聚丙内酯 (PPL)。
13. 权利要求 1 的药物组合物, 其中所述两性离子选自磷酰胆碱 (PC)、 磺基甜菜碱 (NS)和氨基酸。
14. 权利要求 1 的药物组合物, 其中所述亲水性嵌段的分子量为约 500 至约 30,000。
15. 权利要求 1的药物组合物,其中所述亲水性嵌段包含至少一种实体, 所述实体选自聚乙二醇 (PEG)、 透明质酸 (HA)和聚 -γ-谷氨酸 (Y-PGA)。
16. 增强抗肿瘤药物水溶度的方法, 所述方法包括:
形成聚合胶束; 以及
将所述抗肿瘤药物包嚢在所述聚合胶束中;
其中所述聚合胶束包含嵌段共聚物 , 所述嵌段共聚物含有至少一种亲水 性嵌段、 至少一种疏水性嵌段和至少一种两性离子。
17. 增加抗肿瘤药物血液循环时间的方法, 所述方法包括:
形成聚合胶束; 以及
将所述抗肿瘤药物包囊在所述聚合胶束中;
其中所述聚合胶束包含嵌段共聚物, 所述嵌段共聚物含有至少一种亲水 性嵌段、 至少一种疏水性嵌段和至少一种两性离子。
18. 将抗肿瘤药物递送至实体瘤的方法, 所述方法包括:
形成聚合胶束;
将所述抗肿瘤药物包嚢在所述聚合胶束中, 形成包嚢复合物; 以及 将所述包嚢复合物引入到人体中;
其中所述聚合胶束包含嵌段共聚物, 所述嵌段共聚物含有至少一种亲水 性嵌段、 至少一种疏水性嵌段和至少一种两性离子。
PCT/CN2009/073382 2009-04-21 2009-08-20 使用包囊抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合物 WO2010121455A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09843559.7A EP2422816B1 (en) 2009-04-21 2009-08-20 A drug composition for treating tumor with polymeric micelle encapsulating antineoplastic
US13/265,802 US8420119B2 (en) 2009-04-21 2009-08-20 Drug composition for treating tumor with polymeric micelle encapsulating anti-neoplastic
CA2759060A CA2759060C (en) 2009-04-21 2009-08-20 A drug composition for treating tumor with polymeric micelle encapsulating anti-neoplastic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910132138.6A CN101869712B (zh) 2009-04-21 2009-04-21 使用包囊抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合物
CN200910132138.6 2009-04-21

Publications (1)

Publication Number Publication Date
WO2010121455A1 true WO2010121455A1 (zh) 2010-10-28

Family

ID=42994917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073382 WO2010121455A1 (zh) 2009-04-21 2009-08-20 使用包囊抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合物

Country Status (5)

Country Link
US (1) US8420119B2 (zh)
EP (1) EP2422816B1 (zh)
CN (1) CN101869712B (zh)
CA (1) CA2759060C (zh)
WO (1) WO2010121455A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10980798B2 (en) 2011-11-03 2021-04-20 Taiwan Liposome Company, Ltd. Pharmaceutical compositions of hydrophobic camptothecin derivatives
TWI619496B (zh) 2011-11-03 2018-04-01 台灣微脂體股份有限公司 疏水性喜樹鹼衍生物之醫藥組合物
CN103478145A (zh) * 2013-09-26 2014-01-01 卞佳林 一种多杀菌素和阿维菌素复合聚合物胶束杀虫剂
CN103990135B (zh) * 2014-05-13 2017-02-01 广东众生药业股份有限公司 两嵌段聚合物负载紫杉烷类药物的胶束及其制备方法和应用
GB2542092B (en) * 2014-07-15 2019-05-29 Teng Xin Polyethylene glycol methyl ether-polylactide-lysine micellar compositions comprising docetaxel
WO2016131006A1 (en) * 2015-02-13 2016-08-18 Orient Pharma Inc. Compositions and methods of tumor treatment utilizing nanoparticles
HUE053929T2 (hu) * 2017-06-22 2021-07-28 Snbioscience Inc Dupla maghéjszerkezettel rendelkezõ, oldhatatlan kamptotecin-vegyületet tartalmazó részecske és gyógyszerkészítmény és módszer ugyanennek az elõállítására
CN110478332A (zh) * 2019-09-12 2019-11-22 青岛科技大学 一种新型聚乙二醇-聚γ丁内酯两嵌段共聚物纳米载药微球的制备方法
CN115433349A (zh) * 2021-06-03 2022-12-06 中国科学技术大学 聚乳酸两性离子化合物、合成方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531566A (zh) * 2001-07-14 2004-09-22 ������������ʽ���� 作为药物载体的带正电的两亲嵌段共聚物及其与带负电的药物的络合物
US20070104654A1 (en) 2005-11-08 2007-05-10 Industrial Technology Research Institute Amphiphilic block copolymers and nano particles comprising the same
CN100998870A (zh) * 2006-11-27 2007-07-18 涂家生 一种稳定的聚合物胶束载药系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030059465A1 (en) * 1998-05-11 2003-03-27 Unger Evan C. Stabilized nanoparticle formulations of camptotheca derivatives
TWI246524B (en) * 2001-01-19 2006-01-01 Shearwater Corp Multi-arm block copolymers as drug delivery vehicles
US20050220880A1 (en) 2002-03-07 2005-10-06 Lewis Andrew L Drug carriers comprising amphiphilic block copolymers
US20070258889A1 (en) * 2005-11-09 2007-11-08 Montana State University Novel nanoparticles and use thereof
ES2357354T3 (es) * 2007-04-30 2011-04-25 Intezyne Technologies Inc. Micelas híbridas de copolímero en bloque con estereoquímica mixta para encapsulación de agentes hidrófobos.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531566A (zh) * 2001-07-14 2004-09-22 ������������ʽ���� 作为药物载体的带正电的两亲嵌段共聚物及其与带负电的药物的络合物
US20070104654A1 (en) 2005-11-08 2007-05-10 Industrial Technology Research Institute Amphiphilic block copolymers and nano particles comprising the same
US20080166382A1 (en) * 2005-11-08 2008-07-10 Industrial Technology Research Institute Amphiphilic block copolymers and nanoparticles comprising the same
CN100998870A (zh) * 2006-11-27 2007-07-18 涂家生 一种稳定的聚合物胶束载药系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2422816A4

Also Published As

Publication number Publication date
EP2422816A1 (en) 2012-02-29
CN101869712B (zh) 2016-01-20
CA2759060C (en) 2013-12-24
CA2759060A1 (en) 2010-10-28
US8420119B2 (en) 2013-04-16
EP2422816A4 (en) 2013-12-18
US20120100220A1 (en) 2012-04-26
CN101869712A (zh) 2010-10-27
EP2422816B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2010121455A1 (zh) 使用包囊抗肿瘤药物的聚合胶束用于治疗肿瘤的药物组合物
Zhao et al. Polyphosphoesters in drug and gene delivery
JP6363320B2 (ja) 薬剤を装填したポリマーナノ粒子及びその製造方法と使用方法
EP2515946B1 (en) Nanoconjugates and nanoconjugate formulations
Chen et al. KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted neuroendocrine cancer therapy
US11857634B2 (en) Cationic amphiphilic polymers for codelivery of hydrophobic agents and nucleic acids
JP5780775B2 (ja) プロスタグランジンi2誘導体を含有するナノ粒子
CN102600063A (zh) 一种高载药量姜黄素胶束的制备方法
CN102099016A (zh) 载药的聚合物纳米微粒及其制备和使用方法
CN104888235A (zh) 具有共递送多个药物的pH敏感纳米粒前药及其制备方法与应用
EP3119395B1 (en) Polymeric nanoparticles and methods of making and using same
CN105362223B (zh) 一种可靶向药物的三嵌段共聚物胶束的制备方法
Rodríguez-Acosta et al. Polymer-dendrimer hybrids as carriers of anticancer agents
US20230414602A1 (en) Pharmaceutical composition comprising insoluble camptothecin compound-containing nanoparticle for treatment of cancer and combination therapy thereof
TWI453034B (zh) 用於治療腫瘤的醫藥組成物及其使用
CN105688225A (zh) 一种生物降解高分子-多西紫杉醇键合药及其制备方法
US20240131170A1 (en) Cationic amphiphilic polymers for codelivery of hydrophobic agents and nucleic acids
US20220184219A1 (en) Method of Making Prodrug for Sustained and Controlled Release
US20150140109A1 (en) Docetaxel-based prolonged-release cancer treatment drug
Shi et al. Reduction-responsive and tumor-targeted polyprodrug nanocarriers for targeting therapy of hepatocellular carcinoma
Yue Synthesis And Application of Partial Block Polymers in Drug Delivery
JP2013535443A (ja) 5−フルオロ−2−[[(1s)−1−(5−フルオロ−2−ピリジル)エチル]アミノ]−6−[(5−イソプロポキシ−1h−ピラゾール−3−イル)アミノ]ピリジン−3−カルボニトリルのための医薬用デポ剤
KR20140118458A (ko) Sda/pei 공중합체 및 이를 포함하는 유전자 전달체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2759060

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009843559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13265802

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924951

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924951

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111021