WO2010120031A1 - 가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법 - Google Patents

가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법 Download PDF

Info

Publication number
WO2010120031A1
WO2010120031A1 PCT/KR2009/007543 KR2009007543W WO2010120031A1 WO 2010120031 A1 WO2010120031 A1 WO 2010120031A1 KR 2009007543 W KR2009007543 W KR 2009007543W WO 2010120031 A1 WO2010120031 A1 WO 2010120031A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite powder
gas
crucible
producing
metal composite
Prior art date
Application number
PCT/KR2009/007543
Other languages
English (en)
French (fr)
Inventor
김용진
양상선
박용호
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090032343A external-priority patent/KR20100113828A/ko
Priority claimed from KR1020090032331A external-priority patent/KR20100113816A/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2010120031A1 publication Critical patent/WO2010120031A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1042Alloys containing non-metals starting from a melt by atomising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to an apparatus for producing a metal composite powder using a gas spraying process and a method for producing a metal composite powder using the same.
  • the area occupied by powder metallurgy parts is related to friction or wear.
  • the heavy parts of a car are driving parts that repeat high-speed translation and rotational movements such as engines, transmissions, and brakes.
  • powder metallurgy materials which have high raw material prices but do not require a lot of processing, can make complex shapes, and have high strength and excellent wear resistance through alloying and compounding with a wide composition, have been considered as materials to replace steel. .
  • diesel engine pistons Toyoda
  • cylinder liners Honda
  • drive shafts GM trucks
  • brake parts GM
  • Aluminum powder materials solve this problem through alloying and compounding.
  • Representative examples include over-processed aluminum-silicon (Al-Si) alloy powder materials that maximize strength and wear resistance through alloying, and aluminum-silicon carbide (Al-SiC) composite powder materials that maximize wear resistance through complexation.
  • Al-Si aluminum-silicon
  • Al-SiC aluminum-silicon carbide
  • the casting material has to go through a machining process for dimensional correction
  • the composite material is a relatively soft metal base and hard ceramic particles are mixed is not easy to cut, has excellent wear resistance and difficult to polish.
  • the powder metallurgy process which does not require dimensional correction, is a very suitable process for manufacturing a composite material part, and also has an advantage of easier microstructure control than the casting process.
  • the advantage of easy control of the microstructure is that the uniform distribution of ceramic particles, prevention of coarsening of ceramic particles, and prevention of reaction of metal base-ceramic particles.
  • the gas spraying process is a method of manufacturing a metal powder by injecting a gas jet of high pressure and high speed into the molten metal, separating the molten metal into a fine solution, and simultaneously solidifying it.
  • over-process aluminum-silicon (Al-Si) alloy When the over-process aluminum-silicon (Al-Si) alloy is prepared by a gas spraying process, it is possible to control the particle size of the powder and to prepare a spherical uniform powder.
  • over-processed aluminum-silicon (Al-Si) alloys typically exhibit lower mechanical properties than conventional iron-based components due to the weak strength and abrasion resistance of aluminum bases.
  • the ceramic reinforcement phase is overprocessed during the sintering process.
  • the mechanical properties do not improve as fracture occurs first at the interface where the ceramic reinforcement phase is located.
  • An object of the present invention is to provide an apparatus for producing a metal composite powder using a gas spraying process.
  • Another object of the present invention to provide a method for producing a metal composite powder using a gas spraying process.
  • the present invention is a housing; A crucible accommodated in the housing and containing a molten metal containing dissolved metal; An induction coil installed at an outer circumference of the crucible; A spray nozzle connected to the crucible and spraying molten metal in which the metal in the crucible is dissolved; Dissolution chamber for receiving the spray injected from the spray nozzle; A gas emission system for injecting argon (Ar) or a mixed gas of nitrogen and oxygen into the dissolution chamber; The lower chamber is in communication with the melting chamber, the lower chamber for collecting the metal composite powder; provides an apparatus for producing a metal composite powder using a gas spraying process comprising a.
  • the present invention (a) a titanium carbide forming step of forming a titanium carbide (TiC) by injecting carbon in the molten aluminum (Al) and titanium (Ti) mixed melt; (b) an ingot forming step of forming an ingot of titanium carbide (TiC) and aluminum-silicon (AlSi) generated in the (a) titanium carbide forming step; (c) accommodating the ingot of titanium carbide (TiC) and aluminum-silicon (AlSi) formed in the ingot forming step into a crucible; (d) a heating step of forming a molten metal by a high frequency induction heating method while a cylindrical heating coil provided around the crucible heats the ingot received in the receiving step (c); (e) a flow step of flowing the melt formed in the heating step (d) to a nozzle; (f) an injection step of injecting a mixed gas of argon (Ar), nitrogen and oxygen at the end of the nozzle; And (g)
  • the ceramic reinforcement phase (TiC) is in-situ in an aluminum-silicon (Al-Si) matrix phase. -situ) It is possible to produce a metal composite powder produced by the reaction, it is possible to mass-produce a metal composite powder at a low price by using the above process, and also to provide excellent wear resistance and strength through sintering, extrusion, etc. Since mechanical structural parts can be manufactured, there is an effect of replacing iron-based powder parts.
  • FIG. 1 is a schematic view showing an example of an apparatus for producing a metal composite powder using a gas spraying process according to an embodiment of the present invention.
  • Figure 2 is a flow chart illustrating a method for producing a metal composite powder using the apparatus for producing a metal composite powder using a gas spraying process according to an embodiment of the present invention.
  • FIG. 3 is a photograph of an aluminum composite powder containing titanium carbide (TiC) prepared using a gas spraying process, using a scanning electron microscope.
  • TiC titanium carbide
  • Figure 4 is a cross-sectional view of the manufactured composite powder through an energy dispersive X-ray micro analyzer (EDX).
  • EDX energy dispersive X-ray micro analyzer
  • FIG. 5 is a diagram in which cross-sections of the prepared composite powders are mapped through an energy dispersive X-ray micro analyzer (EDX).
  • EDX energy dispersive X-ray micro analyzer
  • FIG. 6 is a sintered composite powder prepared by hot press, and the surface thereof is measured by X-ray photoelecron spectroscopy (XPS).
  • XPS X-ray photoelecron spectroscopy
  • FIG. 1 is a schematic diagram showing an example of an apparatus for producing a metal composite powder using a gas spraying process according to an embodiment of the present invention
  • Figure 2 is an apparatus for producing a metal composite powder using a gas spraying process according to an embodiment of the present invention
  • Figure 3 is a flow chart illustrating a method for manufacturing a metal composite powder using
  • Figure 3 is a view of the observation of the aluminum composite powder containing titanium carbide (TiC) prepared using a gas spraying process with a scanning electron microscope
  • FIG. 5 is a cross-sectional view of a manufactured composite powder using an energy dispersive X-ray micro analyzer (EDX).
  • EDX energy dispersive X-ray micro analyzer
  • FIG. 5 is a cross-sectional view of a manufactured composite powder using an energy dispersive X-ray spectrometer.
  • Figure 6 shows the mapping (Mapping) through the (ray X-ray Micro Analyzer, EDX),
  • Figure 6 shows the X-ray photoelecron
  • the apparatus for producing a metal composite powder using a gas spraying process As shown in the figure, the apparatus for producing a metal composite powder using a gas spraying process according to an embodiment of the present invention, the housing 10, the crucible 20, the induction coil 30, the spray nozzle 40 ), A dissolution chamber 50, a gas release system 60, and a lower chamber 70.
  • the housing 10 has a space therein.
  • the crucible 20 is accommodated in the housing 10 and accommodates a molten metal containing dissolved metal.
  • the induction coil 30 is installed on the outer circumference of the crucible 20 to transfer heat to the crucible 20.
  • the spray nozzle 40 is connected to the end of the crucible 20, to spray the molten metal in the crucible 20.
  • the dissolution chamber 50 is to accommodate the injection sprayed from the spray nozzle (40).
  • the gas emission system 60 injects argon (Ar) or a mixed gas of nitrogen and oxygen into the dissolution chamber 50.
  • the lower chamber 70 communicates with the dissolution chamber 50 and collects the metal composite powder.
  • the temperature of the said molten metal is 700 degrees C (degreeC)-1000 degrees C (degreeC).
  • the vacuum pressure provided in the housing 10 may be 1 ⁇ 10 ⁇ 4 Torr to 1 ⁇ 10 ⁇ 6 Tor.
  • the nozzle is preferably 0.5 mm (mm) in diameter and 5 mm (mm) in length.
  • the argon (Ar) gas is injected from the gas discharge system is preferably injected at a pressure of 18 bar (22) to 22 bar (bar), but may be carried out at a pressure of 5 bar to 100 bar (100 bar) Can be.
  • a mixed gas of nitrogen and oxygen it is preferable to mix at a volume fraction of 7-9: 3-1, and it is preferable to carry out at 5 bar (100 bar) pressure.
  • the over-process aluminum-silicon (Al-Si) alloy system is selected for the design of the aluminum (Al) matrix alloy for in-situ reaction. This is because the over-process aluminum-silicon (Al-Si) alloy has excellent mechanical properties to weight, excellent high temperature properties, excellent tensile strength (> 450 MPa), hardness (> 90 HRB) and rigidity, and a coefficient of thermal expansion. This is because it is low and suitable for manufacturing into parts using powder metallurgy.
  • Al-silicon (Al-Si) casting material has a limitation of silicon (Si) content to increase the mechanical properties of the material due to the coarsening of precipitates, but coarsening of silicon (Si) precipitate during manufacturing by powder metallurgy process It is possible to increase to about 30% by weight (wt%) while suppressing.
  • TiC titanium carbide
  • TiC ceramic reinforcing agent
  • carbon (C) is added to aluminum (Al) and titanium (Ti) molten metal to form an intermediate phase of aluminum carbide and Al 3 Ti, and then reacted again to form a titanium carbide (TiC) reinforced phase.
  • AlSi aluminum-silicon
  • TiC titanium carbide
  • AlSi aluminum-silicon
  • TiC titanium carbide
  • a cylindrical heating induction coil 30 installed around the crucible heats the ingot, and at this time, molten metal is formed by a high frequency induction heating method.
  • the molten metal in the crucible 20 is obtained with a homogeneous molten metal by the residual stirring force. This is more economical than manufacturing a molten metal by heating with a conventional heater and stirring with a stirrer.
  • the temperature of the mixed melt in the crucible 20 is 700 ° C. or less, the viscosity of the mixed melt is increased, so that the flowability to the spray nozzle 40 is lowered.
  • the temperature of the mixed melt is more than 1000 ° C., the fluidity of the mixed melt is increased. Since the rapid flow to the nozzle 40 is faster than the gas injection rate, it is impossible to produce a composite powder of uniform size, so the temperature of the molten metal should be controlled to 700 ° C. to 1000 ° C.
  • the vacuum formed inside the housing 10 is 1 ⁇ 10 ⁇ 4 Torr to 1 ⁇ 10 ⁇ 6 Tor. This is because the vacuum pressure is also related to the flowability of the molten metal, so that the fluidity of the molten metal is lower than the reference value, and the fluidity of the molten metal becomes too high when the reference value is higher than the reference value, so that a desired result cannot be obtained.
  • the molten metal is preferably present in the reinforcing phase titanium carbide (TiC) of 0.1 to 70% by volume.
  • the reinforcement phase is less than 0.1% by volume, there is a problem that the tensile strength and abrasion resistance may not be improved, and when the reinforcement phase is more than 70% by volume, the viscosity of the molten metal is increased so that the metal composite powder may not be manufactured by gas spraying. .
  • the molten metal When the molten metal is formed by the high frequency induction heating method through the above-described process, it flows into the spray nozzle 40 having a diameter of 0.5 mm and a length of 5 mm.
  • high-purity argon (Ar), or a mixed gas of nitrogen and oxygen, is injected through the gas release system 60 to the end of the spray nozzle 40 at a pressure of about 20 bar.
  • the aluminum composite powder containing titanium carbide (TiC) formed through the above-described process is recovered in the lower chamber 70 of FIG. 1 and received separately.
  • TiC titanium carbide
  • Figure 3 shows the observation of the Al-20Si + 3vol% TiC composite powder prepared by using a gas spraying process with a scanning electron microscope, the shape of the composite powder was prepared in a spherical shape, the particle size distribution of the powder is about 500 nanometers Meters (nm) to 25 micrometers ( ⁇ m).
  • Figure 4 shows the cross-sectional view of the prepared composite powder through an energy dispersive X-ray microanalyzer (EDX), it can be confirmed the titanium carbide (TiC) precipitated in the composite powder.
  • EDX energy dispersive X-ray microanalyzer
  • FIG. 5 is a diagram illustrating a cross-section of the manufactured composite powder through an energy dispersive X-ray microanalyzer (EDX).
  • EDX energy dispersive X-ray microanalyzer
  • FIG. 5 shows titanium (Ti) and carbon (C) in the composite powder. It is confirmed that titanium carbide (TiC) is found to correspond to a large number of points.
  • FIG. 6 is a diagram showing the surface of the prepared composite powder by sintering through a hot press and measuring the surface by X-ray photoelecron spectroscopy (XPS). It can be seen that (Si) and titanium carbide (TiC) are present.
  • XPS X-ray photoelecron spectroscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

본 발명은 가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법에 관한 것으로, 더욱 상세하게는 상기 목적을 달성하기 위해, 본 발명은 하우징; 상기 하우징 내부에 수용되며, 용해되는 금속이 포함되는 용탕을 수용하는 도가니; 상기 도가니의 외주에 설치되는 유도코일; 상기 도가니와 연결되며, 상기 도가니 속의 금속이 용해된 용탕을 분사하는 분무노즐; 상기 분무노즐로부터 분사되는 분사물을 수용하는 용해챔버; 상기 용해챔버에 아르곤(Ar), 또는 질소와 산소의 혼합가스를 분사하는 가스방출계; 상기 용해챔버와 연통되며, 금속복합분말을 수거하는 하챔버;를 포함하는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치 및 (a) 알루미늄(Al)과 티타늄(Ti)의 혼합 용탕 중에 카본을 투입하여 티타늄 카바이드(TiC)를 형성시키는 티타늄 카바이드 형성단계; (b) 상기 (a) 티타늄 카바이드 형성단계에서 생성된 티타늄 카바이드(TiC)와 알루미늄-실리콘(AlSi)의 잉곳(ingot)을 형성시키는 잉곳 형성단계; (c) 상기 (b) 잉곳 형성단계에서 형성된 티타늄 카바이드(TiC)와 알루미늄-실리콘(AlSi)의 잉곳(ingot)을 도가니에 수용시키는 수용 단계; (d) 상기 (c) 수용단계에서 수용된 잉곳을 상기 도가니 주변에 마련된 원통형 가열 코일이 가열시키면서 고주파 유도 가열 방식으로 용탕을 형성시키는 가열 단계; (e) 상기 (d) 가열단계에서 형성된 용탕을 노즐로 유동시키는 유동 단계; (f) 상기 노즐의 끝단에 아르곤(Ar), 또는 질소와 산소의 혼합가스를 분사하는 분사 단계; 및 (g) 상기 (f) 분사단계를 거쳐서 형성된 티타늄 카바이드(TiC)가 함유된 알루미늄 복합분말을 회수하는 회수 단계;를 포함하는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법에 관한 것이다.

Description

가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법
본 발명은 가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법에 관한 것이다.
자동차로 대표되는 기계 부품 산업에서 무거운 철강소재 대신 알루미늄 등의 경량금속을 사용하고자 하는 시도는 1990년대부터 본격적으로 이루어졌다.
그 전에도 에너지 소비량을 낮출 수 있다는 관점에서 경량 금속에 대한 선호가 있기는 하였으나, 1990년대 들어 세계적으로 환경오염과 에너지 고갈에 대한 우려가 심각하게 대두되면서 경량 금속에 대한 관심이 높아지게 되었다.
자동차 부품 중 알루미늄이 차지하는 비율(질량비)은 1990년대부터 급격히 증가하여 2000년대 초반, 미국과 독일의 경우 7 퍼센트(%), 일본의 경우 30 퍼센트(%)에 이르렀으며, 국내 자동차의 경우 5 퍼센트(%) 정도를 나타내고 있다.
다양한 자동차용 알루미늄 부품 중 분말 야금 부품이 차지하는 영역은 마찰(friction) 또는 마모(wear)와 관련된 부분이다.
알루미늄이 자동차에 적용되기 시작한 초기에는 제조 공정이 단순해서 원재료 가격이 높지 않은 압연재와 주조재 등이 주로 차체나 샤시 등에 활용되었다.
하지만, 정작 자동차에서 중량을 많이 차지하는 부분은 엔진, 트랜스미션, 브레이크 등과 같이 고속의 병진, 회전운동을 반복하는 구동부품들이다.
이들은 여타 부품들과 달리 높은 강도와 내마모성을 요구하고 형상이 복잡한 특징이 있는데, 압연재와 주조재는 철강에 비해 강도와 내마모성이 떨어지고 복잡한 형상으로 만들기 위해서는 다수의 가공을 거쳐야 하므로 가격이 상승하는 문제점을 안고 있다.
따라서, 원재료 가격은 높지만 다수의 가공을 할 필요가 없이 복잡한 형상을 만들 수 있고 넓은 조성의 합금화와 복합화를 통해 높은 강도와 우수한 내마모성을 가질 수 있는 분말 야금 소재가 철강을 대체할 소재로 거론되게 되었다.
실제로 알루미늄 분말 야금 부품이 처음으로 자동차에 적용된 시점은 미국의 메탈 파우더 프로덕트(Meter Powder Product, MPP) 사가 제조한 캠 샤프트 베어링 캡(Camshaft Bearing Cap)이 지엠(GM)의 노쓰스타(Northstar) 엔진에 탑재한 1993년이다.
이후, 디젤 엔진 피스톤(Toyoda), 실린더 라이너(Honda), 구동축(GM 트럭), 브레이크 부품(GM) 등이 알루미늄 분말 야금 소재로 제작되었다.
그 후, 상기 미국의 메탈 파우더 프로덕트(MPP) 사가 제조한 알루미늄 분말소재 캠 캡(Cam Cap)이 있다.
이러한 부품들은 높은 강도와 우수한 내마모성을 필요로 하는데, 알루미늄 분말소재들은 합금화와 복합화를 통해 이를 해결하고 있다.
대표적인 예를 들자면, 합금화를 통해 강도와 내마모성을 극대화한 과공정 알루미늄-실리콘(Al-Si) 합금분말소재, 복합화를 통해 내마모성을 극대화한 알루미늄-탄화실리콘(Al-SiC) 복합분말소재가 있다.
위의 두 소재 모두 1990년대부터 본격적으로 연구되기 시작하였고 분말야금공정을 통해서만 제조될 수 있다는 특징을 갖는다.
과공정 알루미늄-실리콘(Al-Si) 합금은 주조공정으로 제조될 경우, 고용한계(Solubility Limit)를 넘어 석출된 실리콘 입자들이 느린 냉각속도로 인해 조대해져, 강도를 낮추게 하고 파괴를 일으키는 문제점을 갖는다.
또한, 주조재는 치수보정을 위해 가공공정을 거쳐야 하는데, 복합재료는 상대적으로 무른 금속기지와 단단한 세라믹 입자가 혼합되어 절단이 쉽지 않고, 내마모성이 우수해 연마도 어려운 문제점을 갖는다.
따라서, 치수보정이 필요 없는 분말야금공정은 복합재료부품을 제조하기에 매우 적합한 공정이며, 아울러 주조공정에 비해 미세조직 제어도 용이한 장점이 있다. 위의 미세조직 제어도 용이한 장점은 세라믹 입자의 균일한 분포, 세라믹 입자의 조대화 방지, 금속기지-세라믹 입자의 반응 방지 등에서 비롯된 장점이다.
알루미늄 분말을 제조하기 위한 방법은 가스분사, 회전분사, 볼밀링 등 매우 다양하게 개발되어 있다. 그러나, 경제적이면서 대량생산을 위해서는 가스분무공정(Gas atomization process)이 현재까지 가장 적합한 분말 제조 방법으로 알려져 있다.
기본적으로 가스분무공정은 용탕에 고압, 고속의 가스제트를 분사시켜, 용탕을 미세한 용액으로 분리시킴과 동시에 응고시켜서 금속분말을 제조하는 방법이다.
과공정 알리미늄-실리콘(Al-Si) 합금을 가스분무 공정으로 제조할 경우 분말의 입자크기를 제어할 수 있고, 구형의 균일한 분말을 제조할 수 있다. 하지만, 과공정 알리미늄-실리콘(Al-Si) 합금의 경우 전통적으로 알루미늄 기지의 취약한 강도와 내마모성의 한계로 인해서 기존의 철계 부품보다 낮은 기계적 물성을 나타낸다.
또한, 가스분무법으로 과공정 알리미늄-실리콘(Al-Si) 합금을 제조 후 세라믹 강화상을 기계적으로 혼합하는 엑스-시추(ex-situ) 공정의 경우, 소결 시 세라믹 강화상이 과공정 알리미늄-실리콘(Al-Si) 합금의 계면에 위치하고, 균일하게 분산하지 못하여 응집되는 현상이 발생하여, 파괴가 세라믹 강화상이 위치한 계면에서 먼저 일어남에 따라서 기계적 성질이 향상되지 못한다는 단점이 있었다.
따라서 분말의 입자크기를 제어할 수 있는 가스분무법을 이용하여 알루미늄(Al) 기지내에 세라믹 강화상을 형성시키는 인-시추(in-situ) 공정의 금속복합분말의 제조 공정의 개발이 필수불가결한 실정이다.
본 발명의 목적은 가스분무공정을 이용한 금속복합분말의 제조장치를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 가스분무공정을 이용한 금속복합분말의 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 하우징; 상기 하우징 내부에 수용되며, 용해되는 금속이 포함되는 용탕을 수용하는 도가니; 상기 도가니의 외주에 설치되는 유도코일; 상기 도가니와 연결되며, 상기 도가니 속의 금속이 용해된 용탕을 분사하는 분무노즐; 상기 분무노즐로부터 분사되는 분사물을 수용하는 용해챔버; 상기 용해챔버에 아르곤(Ar), 또는 질소와 산소의 혼합가스를 분사하는 가스방출계; 상기 용해챔버와 연통되며, 금속복합분말을 수거하는 하챔버;를 포함하는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치를 제공한다.
또한, 본 발명은 (a) 알루미늄(Al)과 티타늄(Ti)의 혼합 용탕 중에 카본을 투입하여 티타늄 카바이드(TiC)를 형성시키는 티타늄 카바이드 형성단계; (b) 상기 (a) 티타늄 카바이드 형성단계에서 생성된 티타늄 카바이드(TiC)와 알루미늄-실리콘(AlSi)의 잉곳(ingot)을 형성시키는 잉곳 형성단계; (c) 상기 (b) 잉곳 형성단계에서 형성된 티타늄 카바이드(TiC)와 알루미늄-실리콘(AlSi)의 잉곳(ingot)을 도가니에 수용시키는 수용 단계; (d) 상기 (c) 수용단계에서 수용된 잉곳을 상기 도가니 주변에 마련된 원통형 가열 코일이 가열시키면서 고주파 유도 가열 방식으로 용탕을 형성시키는 가열 단계; (e) 상기 (d) 가열단계에서 형성된 용탕을 노즐로 유동시키는 유동 단계; (f) 상기 노즐의 끝단에 아르곤(Ar), 질소와 산소의 혼합가스를 분사하는 분사 단계; 및 (g) 상기 (f) 분사단계를 거쳐서 형성된 티타늄 카바이드(TiC)가 함유된 알루미늄 복합분말을 회수하는 회수 단계;를 포함하는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법을 제공한다.
본 발명에 따른 가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법에 의하면, 세라믹 강화상(TiC)이 알리미늄-실리콘(Al-Si) 기지상 내에 인-시추(in-situ) 반응으로 생성된 금속복합분말을 제조할 수 있으며, 상기 공정을 사용함으로써 금속복합분말을 저가로 대량 생산할 수 있으며, 또한 제조된 금속복합분말을 소결, 압출 등을 거쳐 내마모성과 강도가 우수한 기계 구조용 부품을 제조할 수 있어 철계 분말 부품을 대체할 수 있는 효과가 있다.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되나, 이는 예시적인 것이며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 보호범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다.
도 1은 본 발명의 실시예에 따른 가스분무공정을 이용한 금속복합분말의 제조장치의 일례를 도시한 개략도.
도 2는 본 발명의 실시예에 따른 가스분무공정을 이용한 금속복합분말의 제조장치를 사용하여 금속복합분말을 제조하는 방법을 도시한 순서도.
도 3은 가스분무공정을 이용하여 제조된 티타늄 카바이드(TiC)가 함유된 알루미늄 복합분말을 주사전자현미경으로 관찰한 그림.
도 4는 제조된 복합분말의 단면을 에너지 분산형 선 분광기(Energy Dispersive X-ray Micro Analyzer, EDX)를 통하여 관찰한 그림.
도 5는 제조된 복합분말의 단면을 에너지 분산형 선 분광기(Energy Dispersive X-ray Micro Analyzer, EDX)를 통해서 맵핑(Mapping)한 그림.
도 6은 제조된 복합분말을 핫 프레스(Hot press)를 통하여 소결하여 표면을 엑스(X)선 광전자 분광법(X-ray Photoelecron Spectroscopy, XPS)으로 측정한 그림.
< 도면의 주요 부분에 대한 부호의 설명 >
10. 하우징 20. 도가니
30. 유도코일 40. 분무노즐
50. 용해챔버 60. 가스방출계
70. 하챔버
이하, 본 발명의 바람직한 실시예에 따른 가스분무공정을 이용한 금속복합분말의 제조장치를 첨부된 도면에 의거하여 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 가스분무공정을 이용한 금속복합분말의 제조장치의 일례를 도시한 개략도를, 도 2는 본 발명의 실시예에 따른 가스분무공정을 이용한 금속복합분말의 제조장치를 사용하여 금속복합분말을 제조하는 방법을 도시한 순서도를, 도 3은 가스분무공정을 이용하여 제조된 티타늄 카바이드(TiC)가 함유된 알루미늄 복합분말을 주사전자현미경으로 관찰한 그림을, 도 4는 제조된 복합분말의 단면을 에너지 분산형 선 분광기(Energy Dispersive X-ray Micro Analyzer, EDX)를 통하여 관찰한 그림을, 도 5는 제조된 복합분말의 단면을 에너지 분산형 선 분광기(Energy Dispersive X-ray Micro Analyzer, EDX)를 통해서 맵핑(Mapping)한 그림을, 도 6은 제조된 복합분말을 핫 프레스(Hot press)를 통하여 소결하여 표면을 엑스(X)선 광전자 분광법(X-ray Photoelecron Spectroscopy, XPS)으로 측정한 그림을 각각 나타낸 것이다.
상기 도면에 도시된 바와 같이, 본 발명의 실시예에 따른 가스분무공정을 이용한 금속복합분말의 제조장치는 하우징(10)과, 도가니(20)와, 유도코일(30)과, 분무노즐(40)과, 용해챔버(50)와, 가스방출계(60)와, 하챔버(70)를 포함한다.
상기 하우징(10)은 그 내부에 공간을 가진다.
상기 도가니(20)는 상기 하우징(10) 내부에 수용되며, 용해되는 금속이 포함되는 용탕을 수용하는 것이다.
상기 유도코일(30)은 상기 도가니(20)의 외주에 설치되어 상기 도가니(20)에 열을 전달하는 것이다.
상기 분무노즐(40)은 상기 도가니(20)의 끝단과 연결되며, 상기 도가니(20) 속의 금속이 용해된 용탕을 분사하는 것이다.
상기 용해챔버(50)는 상기 분무노즐(40)로부터 분사되는 분사물을 수용하는 것이다.
상기 가스방출계(60)는 상기 용해챔버(50)에 아르곤(Ar), 또는 질소와 산소의 혼합가스를 분사하는 것이다.
상기 하챔버(70)는 상기 용해챔버(50)와 연통되며, 금속복합분말을 수거하는 것이다.
한편, 상기 용탕의 온도는 700 도씨(℃) 내지 1000 도씨(℃)인 것이 바람직하다.
그리고, 상기 하우징(10) 내부에 제공되는 진공 압력은 1×10-4 토르(Torr) 내지 1×10-6 토르(torr) 인 것이 바람직하다.
그리고, 상기 노즐은 직경 0.5 미리미터(mm), 길이 5 미리미터(mm) 인 것이 바람직하다.
또한, 상기 가스방출계에서 분사되는 아르곤(Ar) 가스는 18 바(bar) 내지 22 바(bar)의 압력으로 분사되는 것이 바람직하나, 5 바(bar) 내지 100 바(bar) 압력으로 수행될 수 있다. 질소와 산소의 혼합가스인 경우에는 7~9:3~1의 부피분율로 혼합되는 것이 바람직하며, 5 바(bar) 내지 100 바(bar) 압력으로 수행되는 것이 바람직하다.
상기와 같은 구성을 가진 본 발명의 실시예에 따른 가스분무공정을 이용한 금속복합분말의 제조장치를 이용한 금속복합분말의 제조방법을 더욱 자세히 설명한다.
인-시추(in-situ) 반응용 알루미늄(Al) 기지 합금설계를 위해서 과공정 알루미늄-실리콘(Al-Si) 합금계를 선택한다. 이는 상기 과공정 알루미늄-실리콘(Al-Si) 합금이 무게 대비 기계적 특성이 우수하고, 뛰어난 고온 특성을 보이며, 인장강도(>450 MPa), 경도(>90 HRB) 및 강직성이 우수하고, 열팽창 계수가 낮아 분말야금법을 이용하여 부품으로 제조하기에 적합하기 때문이다.
또한, 알루미늄-실리콘(Al-Si) 주조재는 석출물의 조대화가 일어나 소재의 기계적 특성을 증가시키는 실리콘(Si) 함량의 제한이 있으나, 분말야금 공정에 의해 제조 시 실리콘(Si) 석출물의 조대화를 억제시키면서 약 30 중량퍼센트(wt%)까지 증가가 가능하기 때문이다.
한편, 티타늄 카바이드(TiC)가 기지상 내의 인-시추(in-situ) 반응으로 형성된 알루미늄 복합분말을 얻기 위해서, 먼저 알루미늄 기지내 세라믹 강화제(TiC) 형성을 위한 작업을 한다.
이 작업은, 알루미늄(Al)과 티타늄(Ti) 용탕 중에 카본(C)을 투입하여 알루미늄 카바이드와 Al3Ti 중간상을 형성하고 다시 이들을 반응시켜 티타늄 카바이드(TiC) 강화상을 형성시킬 수 있다.
이 때의 반응식은 아래와 같다.
Al + Ti + C → Al3Ti or Al4C3 생성
Al4C3 + 3Al3Ti → 3TiC + 13Al
한편, 별도로 제조된 알루미늄-실리콘(AlSi) 잉곳(ingot)을 준비하고, 위의 과정을 거쳐서 형성된 티타늄 카바이드(TiC)를 잉곳(ingot)의 형태로 준비한다.
이어서, 상기 알루미늄-실리콘(AlSi) 잉곳(ingot)과 티타늄 카바이드(TiC) 잉곳(ingot)을 도가니(20)에 잠입시킨다.
이어서, 상기 도가니 주변에 설치된 원통형 가열 유도 코일(30)이 상기 잉곳을 가열시켜며, 이 때 고주파 유도 가열 방식으로 용탕을 만든다.
상기 고주파 유도 가열 방식으로 용탕을 만들면, 상기 도가니(20) 내의 용탕은 잔지교반력으로 균질의 용탕이 얻어진다. 이는 기존의 히터에 의해서 가열, 교반기에 의해서 교반하여 혼합용탕을 제조하는 것보다 경제적이다.
또한, 고주파 유도 가열 방식으로 혼합 용탕 제조 시, 용탕 온도 분포의 불균형이 적고, 성분의 조정이 용이하다.
상기 도가니(20) 내의 혼합 용탕의 온도가 700 도씨(℃) 이하일 경우 혼합 용탕의 점성이 높아져 분무노즐(40)로의 유동성이 떨어지고, 1000 도씨(℃) 이상일 경우 혼합 용탕의 유동성이 높아져 분무노즐(40)로 급격히 흐르게 되어 가스분사 속도보다 빠르기 때문에 균일한 크기의 복합분말을 제조할 수 없으므로 상기 용탕의 온도를 700 도씨(℃) 내지 1000 도씨(℃)로 제어하여야 한다.
이 때 상기 하우징(10)의 내부에 형성되는 진공은 1×10-4 토르(Torr) 내지 1×10-6 토르(torr) 인 것이 바람직하다. 왜냐하면 진공압력 역시 용탕의 유동성과 관계가 있기 때문에, 기준치 이하이면 용탕의 유동성이 떨어지고 기준치 이상이면 용탕의 유동성이 너무 높아져서 소망하는 결과를 얻을 수 없기 때문이다. 또한, 상기 용탕은 강화상인 티타늄 카바이드(TiC)가 0.1 - 70 부피%로 존재하는 것이 바람직하다. 만약, 상기 강화상이 0.1 부피% 미만인 경우에는 인장강도 및 내마모성이 향상되지 못하는 문제가 있고, 70 부피%를 초과하는 경우에는 용탕의 점성이 증가하여 가스분무법으로 금속복합분말을 제조하지 못하는 문제가 있다.
상술한 과정을 거쳐서 고주파 유도 가열 방식으로 혼합용탕을 형성하게 되면, 직경 0.5 mm, 길이 5 mm 의 분무노즐(40)로 흘러 보낸다.
이와 함께, 약 20 바(bar)의 압력으로 고순도 아르곤(Ar), 또는 질소와 산소의 혼합가스를 상기 가스방출계(60)를 통해서 상기 분무노즐(40) 끝단으로 분사한다.
이렇게 함으로써 크기가 0.001 - 50 마이크로미터(㎛) 범위인 티타늄 카바이드(TiC)가 함유된 직경이 1 - 500 마이크로미터(㎛) 범위인 미세한 복합분말을 형성하게 되는 것이다.
상술한 과정을 거쳐서 형성된 티타늄 카바이드(TiC)가 함유된 알루미늄 복합분말은 도 1의 하챔버(70) 내부에서 회수되어 별도로 수용된다.
상술한 과정을 거쳐서 형성된 티타늄 카바이드(TiC)가 함유된 알루미늄 복합분말의 그림을 도 3 내지 도 6에 도시하였다.
도 3은 가스분무공정을 이용하여 제조된 Al-20Si+3vol%TiC 복합분말을 주사전자현미경으로 관찰한 그림을 나타낸 것으로, 복합분말의 형상은 구형으로 제조되었으며, 분말의 입도분포는 약 500 나노미터(nm) 내지 25 마이크로미터(㎛)이다.
도 4는 제조된 복합분말의 단면을 에너지 분산형 선 분광기(Energy Dispersive X-ray Micro Analyzer, EDX)를 통하여 관찰한 그림을 나타낸 것으로, 복합분말 내 석출된 티타늄 카바이드(TiC)를 확인할 수 있다.
도 5는 제조된 복합분말의 단면을 에너지 분산형 선 분광기(Energy Dispersive X-ray Micro Analyzer, EDX)를 통해서 맵핑(Mapping)한 그림을 나타낸 것으로서, 복합분말 내 티타늄(Ti)와 카본(C)의 위치한 지점이 상당수 일치하는 것으로 티타늄 카바이드(TiC)인 것을 확인할 수 있다.
도 6은 제조된 복합분말을 핫 프레스(Hot press)를 통하여 소결하여 표면을 엑스(X)선 광전자 분광법(X-ray Photoelecron Spectroscopy, XPS)으로 측정한 그림을 나타낸 것으로, 알루미늄(Al), 실리콘(Si), 티타늄 카바이드(TiC)가 존재하는 것을 확인할 수 있다.

Claims (15)

  1. 하우징;
    상기 하우징 내부에 수용되며, 용해되는 금속이 포함되는 용탕을 수용하는 도가니;
    상기 도가니의 외주에 설치되는 유도코일;
    상기 도가니와 연결되며, 상기 도가니 속의 금속이 용해된 용탕을 분사하는 분무노즐;
    상기 분무노즐로부터 분사되는 분사물을 수용하는 용해챔버;
    상기 용해챔버에 아르곤(Ar), 또는 질소와 산소의 혼합가스를 분사하는 가스방출계;
    상기 용해챔버와 연통되며, 금속복합분말을 수거하는 하챔버;를 포함하는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치.
  2. 제 1 항에 있어서,
    상기 용탕의 온도는 700 도씨(℃) 내지 1000 도씨(℃)인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치.
  3. 제 1 항에 있어서,
    상기 하우징 내부에 제공되는 진공 압력은 1×10-4 토르(Torr) 내지 1×10-6 토르(torr) 인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치.
  4. 제 1 항에 있어서,
    상기 노즐은 직경 0.5 미리미터(mm), 길이 5 미리미터(mm) 인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치.
  5. 제 1 항에 있어서,
    상기 가스방출계에서 분사되는 아르곤(Ar), 또는 질소와 산소의 혼합가스는 5 바(bar) 내지 100 바(bar)의 압력으로 분사되는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치.
  6. 제 1 항에 있어서,
    상기 가스방출계에서 분사되는 질소와 산소의 혼합비율은 7~9:3~1인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조장치.
  7. (a) 알루미늄(Al)과 티타늄(Ti)의 혼합 용탕 중에 카본을 투입하여 티타늄 카바이드(TiC)를 형성시키는 티타늄 카바이드 형성단계;
    (b) 상기 (a) 티타늄 카바이드 형성단계에서 생성된 티타늄 카바이드(TiC)와 알루미늄-실리콘(AlSi)의 잉곳(ingot)을 형성시키는 잉곳 형성단계;
    (c) 상기 (b) 잉곳 형성단계에서 형성된 티타늄 카바이드(TiC)와 알루미늄-실리콘(AlSi)의 잉곳(ingot)을 도가니에 수용시키는 수용 단계;
    (d) 상기 (c) 수용단계에서 수용된 잉곳을 상기 도가니 주변에 마련된 원통형 가열 코일이 가열시키면서 고주파 유도 가열 방식으로 용탕을 형성시키는 가열 단계;
    (e) 상기 (d) 가열단계에서 형성된 용탕을 노즐로 유동시키는 유동 단계;
    (f) 상기 노즐의 끝단에 아르곤(Ar), 또는 질소와 산소의 혼합가스를 분사하는 분사 단계; 및
    (g) 상기 (f) 분사단계를 거쳐서 형성된 티타늄 카바이드(TiC)가 함유된 알루미늄 복합분말을 회수하는 회수 단계;를 포함하는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  8. 제 7 항에 있어서,
    상기 (d) 가열 단계에서 상기 용탕의 온도는 700 도씨(℃) 내지 1000 도씨(℃)인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  9. 제 7 항에 있어서,
    상기 (d) 가열 단계에서 상기 도가니의 외부에 제공되는 진공 압력은 1×10-4 토르(Torr) 내지 1×10-6 토르(torr) 인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  10. 제 7 항에 있어서,
    상기 (d) 가열 단계에서 용탕은 티타늄 카바이드(TiC)가 0.1 - 70 부피%로 존재하는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  11. 제 7 항에 있어서,
    상기 노즐은 직경 0.5 미리미터(mm), 길이 5 미리미터(mm) 인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  12. 제 7 항에 있어서,
    상기 (f) 분사 단계에서 분사되는 아르곤(Ar), 또는 질소와 산소의 혼합가스는 5 바(bar) 내지 100 바(bar)의 압력으로 분사되는 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  13. 제 7 항에 있어서,
    상기 (f) 분사 단계에서 분사되는 질소와 산소의 혼합가스는 7~9:3~1의 부피분율인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  14. 제 7 항에 있어서,
    상기 (g) 회수 단계에서 티타늄 카바이드(TiC)의 크기는 0.001 - 50 ㎛ 범위인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
  15. 제 7 항에 있어서,
    상기 금속복합분말은 직경이 1 - 500 ㎛ 범위인 것을 특징으로 하는 가스분무공정을 이용한 금속복합분말의 제조방법.
PCT/KR2009/007543 2009-04-14 2009-12-16 가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법 WO2010120031A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0032343 2009-04-14
KR1020090032343A KR20100113828A (ko) 2009-04-14 2009-04-14 가스분무공정을 이용한 금속복합분말의 제조장치
KR10-2009-0032331 2009-04-14
KR1020090032331A KR20100113816A (ko) 2009-04-14 2009-04-14 가스분무공정을 이용한 금속복합분말의 제조방법

Publications (1)

Publication Number Publication Date
WO2010120031A1 true WO2010120031A1 (ko) 2010-10-21

Family

ID=42982673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007543 WO2010120031A1 (ko) 2009-04-14 2009-12-16 가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법

Country Status (1)

Country Link
WO (1) WO2010120031A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223492A (zh) * 2013-04-09 2013-07-31 宁夏新和新材科技有限公司 超细高活性铝粉的制备工艺及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331505A (ja) * 1992-06-01 1993-12-14 Kobe Steel Ltd 複合金属粉末の製造方法
KR950005300B1 (ko) * 1993-06-18 1995-05-23 주식회사창성 금속분말제조용 고압가스분사기 및 금속분말 제조방법
KR100307711B1 (ko) * 1999-02-02 2001-09-13 김상렬 급냉응고된 마그네슘합금분말의 제조장치 및 마그네슘합금 제조방법
KR20070014314A (ko) * 2005-07-28 2007-02-01 현대자동차주식회사 엔진블럭의 알루미늄 라이너용 고규소 알루미늄 합금 분말제조 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331505A (ja) * 1992-06-01 1993-12-14 Kobe Steel Ltd 複合金属粉末の製造方法
KR950005300B1 (ko) * 1993-06-18 1995-05-23 주식회사창성 금속분말제조용 고압가스분사기 및 금속분말 제조방법
KR100307711B1 (ko) * 1999-02-02 2001-09-13 김상렬 급냉응고된 마그네슘합금분말의 제조장치 및 마그네슘합금 제조방법
KR20070014314A (ko) * 2005-07-28 2007-02-01 현대자동차주식회사 엔진블럭의 알루미늄 라이너용 고규소 알루미늄 합금 분말제조 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223492A (zh) * 2013-04-09 2013-07-31 宁夏新和新材科技有限公司 超细高活性铝粉的制备工艺及装置

Similar Documents

Publication Publication Date Title
CN109759578B (zh) 两种超细陶瓷颗粒组装修饰的3d打印用铝基复合粉末及其制备方法与应用
CN1325681C (zh) 陶瓷颗粒增强铝基复合材料及其制备方法
CN100376703C (zh) 一种镁合金复合材料的制备方法
CN101280376A (zh) 高耐磨锌铝合金及其制备方法
CN106893881B (zh) 一种氧化锆改性石墨烯增强镁基复合材料的方法
WO2016010226A1 (ko) 써멧 및 그 제조 방법
CN110423915B (zh) 一种铝基复合材料的制备方法
CN110340371A (zh) 一种颗粒增强钛基复合材料增材制造用粉末的制备方法
WO2018056595A1 (ko) 단일벽 탄소나노튜브 강화 금속기지 복합재료 제조를 위한 방전 플라즈마 소결 방법 및 이에 의해 제조된 복합재료
CN110438379B (zh) 一种含锂的镁/铝基复合材料的制备方法
CN101717900B (zh) 一种氮化硅增强铝基复合材料的制备方法
CN100371483C (zh) 塑性加工用铝合金及其制造方法
US20210062315A1 (en) Preparation method of a lithium-containing magnesium/aluminum matrix composite
US20130189151A1 (en) Particulate aluminium matrix nano-composites and a process for producing the same
WO2010120031A1 (ko) 가스분무공정을 이용한 금속복합분말의 제조장치 및 이를 이용한 금속복합분말의 제조방법
CN113798494A (zh) 一种TiB2颗粒增强镁基复合材料及其制备方法
Tian et al. Preparation and forming technology of particle reinforced aluminum matrix composites
US20210254194A1 (en) Preparation method for magnesium matrix composite
CN102899517A (zh) 原位SiC-TiC颗粒混合增强铝基复合材料及其制备工艺
CN107058817B (zh) 一种高硅Sip/Al合金复合材料的制备方法
US20220033934A1 (en) Method for preparation of aluminum matrix composite
CN110079710A (zh) 一种原位纳米TiC颗粒增强Al-Si基复合材料及其制备方法
KR20100113816A (ko) 가스분무공정을 이용한 금속복합분말의 제조방법
CN112453422B (zh) 一种轻质Al-Si-Mg2Si电子封装材料及其制备方法和应用
CN1224732C (zh) 一种硅化物颗粒增强高温钛基复合材料的制备技术

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843407

Country of ref document: EP

Kind code of ref document: A1