WO2010119634A1 - アーク溶接制御方法およびアーク溶接制御装置 - Google Patents

アーク溶接制御方法およびアーク溶接制御装置 Download PDF

Info

Publication number
WO2010119634A1
WO2010119634A1 PCT/JP2010/002435 JP2010002435W WO2010119634A1 WO 2010119634 A1 WO2010119634 A1 WO 2010119634A1 JP 2010002435 W JP2010002435 W JP 2010002435W WO 2010119634 A1 WO2010119634 A1 WO 2010119634A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
arc
voltage
current
output
Prior art date
Application number
PCT/JP2010/002435
Other languages
English (en)
French (fr)
Inventor
佐藤公哉
川本篤寛
中川晶
藤原潤司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/130,068 priority Critical patent/US8933370B2/en
Priority to CN201080004021.0A priority patent/CN102271854B/zh
Priority to JP2011509195A priority patent/JP5278542B2/ja
Priority to EP10764221.7A priority patent/EP2368661B1/en
Publication of WO2010119634A1 publication Critical patent/WO2010119634A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/067Starting the arc
    • B23K9/0671Starting the arc by means of brief contacts between the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0734Stabilising of the arc power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • B23K9/0735Stabilising of the arc length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical

Definitions

  • the present invention relates to an arc welding control method and an arc welding control apparatus for controlling welding output by generating an arc between a welding wire as a consumable electrode and a welding base material as a workpiece.
  • the welding output current immediately after the arc re-generation is made higher than the welding current immediately before the short-circuit opening, thereby forming droplets early after the arc re-occurs, shortening the short-circuit occurrence cycle and reducing the welding voltage.
  • the arc length can be shortened by reducing the length (for example, see Patent Document 1).
  • FIG. 4 is a diagram showing a welding output voltage / welding output current waveform when welding is performed by the conventional output control method described above.
  • FIG. 4 shows elapsed time on the horizontal axis and welding output voltage / welding output current on the vertical axis.
  • a short circuit period 101 is a state in which the wire and the base material are short-circuited.
  • the arc period 102 is a state where an arc is generated between the wire and the base material.
  • the short circuit is opened and the arc is re-generated.
  • a current 104a immediately before opening the short circuit flows.
  • the arc initial current 105 a flows during the initial control period 106.
  • the current waveform shown in FIG. 4 will be described in relation to the control method for each passage of time.
  • the low welding output current is sharply increased to the arc initial current 105a.
  • a constant current is output, and then the welding current value is controlled to gradually decrease by arc control (voltage control).
  • the arc initial current 105a is controlled to a value obtained by adding the superimposed current value 107 to the current 104a immediately before the short circuit is opened, thereby enabling early formation of droplets at the wire tip. That is, the initial arc current 105a is controlled to be always higher than the current 104a immediately before the short circuit is opened.
  • the short-circuit generation cycle is longer than the welding state shown in FIG. 4, and the average value of the welding output voltage is increased.
  • the next short-circuiting time becomes long, and the current value 104b immediately before the short-circuit opening becomes higher than the current value 104a immediately before the short-circuit opening as shown in FIG.
  • the arc initial current 105b is also higher than the previous arc initial current 105a.
  • the control is performed to increase the welding output voltage. That is, the control is such that the melting amount is suppressed and the arc length is shortened to shorten the short-circuit cycle.
  • the present invention relates to an arc welding control method and an arc welding apparatus capable of shortening the arc length by shortening the arc length by suppressing the amount of melting of the wire and shortening the short-circuit cycle when a disturbance occurs such as when the protruding length or the arc length becomes long. Is to provide.
  • An arc welding control method of the present invention is a welding control method for welding a workpiece by alternately repeating a short-circuit period in which a welding wire is short-circuited with the workpiece and an arc period in which an arc is generated and arc discharge occurs.
  • the average output voltage which is an average of welding voltages calculated during welding, is compared with a preset setting voltage, and based on the comparison result between the average output voltage and the preset setting voltage, an arc The welding output current is controlled.
  • An arc welding control apparatus of the present invention is an arc welding apparatus that welds a workpiece by alternately repeating a short-circuit period in which a welding wire is short-circuited to the workpiece and an arc period in which an arc is generated and arc discharge is performed.
  • a welding current detection unit that detects an output current
  • a welding voltage detection unit that detects a welding output voltage
  • a switching element that controls the welding output
  • a short-circuit arc determination unit that determines whether the welding state is a short-circuit period or an arc period
  • a setting unit for setting at least one of a current or a voltage in a short-circuit period, at least one of a current or a voltage in an arc period, a set voltage, and a predetermined current value; and the welding current detection unit
  • an arc initial control unit for controlling the welding output current at the initial stage of arc generation using the outputs of the welding voltage detection unit and the setting unit as inputs, and a short-circuit arc detection
  • a driving unit that controls the switching element based on the output of the unit, a timing unit that receives the output of the short-circuit arc determination unit as an input and measures a predetermined time from the occurrence of the arc and outputs it to the driving unit, and detection of the welding voltage
  • the wire can be used in a disturbance such as when the arc length becomes long or short.
  • the arc length is adjusted by adjusting the melting amount of the steel, and the short-circuit cycle is made to be constant, thereby enabling low heat input.
  • the bead width can be made uniform and the occurrence of burn-out during gap welding can be suppressed. Therefore, the applicable range can be expanded with respect to the occurrence of disturbance and gap welding.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a welding output voltage waveform and a welding output current waveform when the arc length in the arc welding apparatus of the embodiment is longer than that during normal welding.
  • FIG. 3 is a diagram showing a welding output voltage waveform and a welding output current waveform when the arc length in the arc welding apparatus of the embodiment is shorter than that during normal welding.
  • FIG. 4 is a diagram showing a welding output voltage waveform and a welding output current waveform during normal welding in a conventional arc welding apparatus.
  • FIG. 5 is a diagram showing a welding output voltage waveform and a welding output current waveform when the arc length in a conventional arc welding apparatus is longer than that during normal welding.
  • welding is performed by alternately repeating a short-circuit period in which the welding wire is short-circuited with the workpiece and an arc period in which an arc is generated and arc discharge occurs.
  • the short circuit period the occurrence of an arc is predicted and the short circuit is opened by reducing the welding output current immediately before the occurrence of the arc.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welding apparatus according to the present embodiment.
  • FIG. 2 shows a welding output voltage / welding output current waveform when the arc length is longer than the appropriate length during normal welding and the arc period is longer than during normal welding due to disturbance or the like in the present embodiment.
  • FIG. 3 shows the welding output voltage and welding output current waveforms when the arc length is shorter than the appropriate length during normal welding and the arc period is shorter than during normal welding in the present embodiment due to disturbance or the like.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welding apparatus according to the present embodiment.
  • FIG. 2 shows a welding output voltage / welding output current waveform when the arc length is longer than the appropriate length during normal welding and the arc period is longer than during normal welding due to disturbance or the like in the present embodiment.
  • FIG. 3 shows the welding output voltage and welding output current waveforms when the arc length is shorter than the appropriate length during normal welding and the arc period is shorter than during normal welding in
  • AC power input from a commercial power source 1 is rectified by a primary rectification unit 2 and converted to AC by a switching element 3 that controls a welding output.
  • the output voltage of the switching element 3 is insulated from the commercial power source 1 and stepped down by the transformer 4, rectified by the secondary rectification unit 5 connected to the secondary side output of the transformer 4, and a welding output is obtained through the reactor 6. This welding output is applied between a welding wire (not shown) and the workpiece.
  • the arc welding apparatus of the present embodiment is inserted in series with the DC output terminal and connected between the welding current detection unit 11 for detecting the welding output current and both ends of the DC output terminal, and detects the welding output voltage.
  • a welding voltage detection unit 10 and a short circuit arc determination unit that determines whether the welding state is a short circuit period or an arc period are provided.
  • the arc welding apparatus of the present embodiment has a set current for obtaining a welding current, a set voltage for obtaining a welding voltage, a feeding speed of a welding wire, a type of shield gas at the time of arc welding, a type of wire,
  • a setting unit 9 is provided for setting a welding method such as the diameter of the wire, the presence / absence of pulse control and the presence / absence of crater processing, and a predetermined current value required in the present embodiment.
  • the setting unit 9 receives outputs from the welding voltage detection unit 10 and the welding current detection unit 11.
  • various parameters necessary for welding are set by inputting the various setting conditions.
  • at least one of the current or voltage during the short circuit period, at least one of the current or voltage during the arc period, the set voltage, and a predetermined current value are set.
  • the arc welding apparatus has an arc initial control in which the outputs of the welding current detection unit 11, the welding voltage detection unit 10 and the setting unit 9 are input and the welding output current at the initial stage of arc regeneration is set and output. Part 12 is provided. Furthermore, the arc welding apparatus according to the present embodiment has a drive unit 8 that controls the switching element 3 based on the output of the short-circuit arc determination unit 7 and a predetermined time from when the arc is generated with the output of the short-circuit arc determination unit 7 as an input. And a timer 15 for setting the arc initial control time and outputting it to the drive unit 8.
  • the arc initial control unit 12 that controls the output current for a predetermined time from the time of the arc re-generation is the output of the welding voltage detection unit 10, the welding current detection unit 11, and the setting unit 9. Is input and output to the drive unit 8.
  • the arc control unit 13 that controls the output voltage in an arc period after a predetermined time controlled by the arc initial control unit 12 is configured to arc the welding voltage detection unit 10 and the welding current detection unit 11 as a constant value, a descending voltage straight line, or a descending voltage curve.
  • the output of the setting unit 9 for setting the voltage of the period is input and output to the driving unit 8.
  • the arc period has been described by voltage control, but the current may be set by the setting unit 9 as current control instead of voltage control.
  • the short-circuit control unit 14 that controls the output current during the short-circuit period receives the welding current detection unit 11 and the output of the setting unit 9 that sets the current as a current waveform of a combination of straight lines or curves, and outputs the input to the drive unit 8.
  • the short-circuit period has been described by current control.
  • the voltage may be set by the setting unit 9 as voltage control instead of current control.
  • the timer unit 15 receives the outputs of the short-circuit arc determining unit 7 and the setting unit 9, measures a predetermined time from the occurrence of the arc, sets an arc initial control time, and outputs it to the drive unit 8.
  • the setting unit 9 calculates an average output voltage based on the detection result of the welding voltage detection unit 10, an average voltage calculation unit 9a, a setting voltage set by the setting unit 9, and an average calculated by the average voltage calculation unit 9a And a voltage comparator 9b for comparing output voltages.
  • the arc initial control unit 12 has a welding output current calculation unit 12a that calculates and determines a welding output current at the time of arc generation based on the comparison result of the voltage comparison unit 9b, Controls the drive unit 8 so that the welding output current determined by the welding output current calculation unit 12a is obtained.
  • the welding output current calculation unit 12a of the arc initial control unit 12 sets the average output voltage to a predetermined current value set in advance.
  • the welding output current at the time of arc occurrence is calculated by multiplying by a factor smaller than 1 based on the difference between and the set voltage.
  • the arc initial control unit 12 controls the output so that the welding output current at the time of arc occurrence becomes a calculated welding output current smaller than a predetermined current value during the arc initial control time set by the time measuring unit 15.
  • the welding output current calculation unit 12a of the arc initial control unit 12 sets the average output voltage to a predetermined current value set in advance.
  • the welding output current at the time of arc occurrence is calculated by multiplying by a factor larger than 1 based on the difference between and the set voltage.
  • the arc initial control unit 12 controls the output so that the welding output current when the arc is generated becomes a calculated welding output current larger than a predetermined current value during the arc initial control time set by the time measuring unit 15.
  • the average output voltage is an average value of the output voltage for a predetermined time determined in advance, and is calculated every predetermined time.
  • the average voltage of the setting unit 9 is calculated based on the output of the welding voltage detection unit 10. Calculated in part 9a.
  • FIG. 2 is a diagram illustrating a welding output voltage waveform and a welding output current waveform at the time of short-circuit transition of consumable electrode arc welding, where the horizontal axis represents elapsed time, and the vertical axis represents welding output voltage VL and welding output current IL.
  • FIG. 2 shows the welding current waveform IL when the arc length is longer than the appropriate length during normal welding.
  • the welding output current IL includes a short-circuit period 101 in which the wire and the base material are short-circuited, an arc period 102 in which an arc is generated between the wire and the base material, and a short-circuit is released and the arc is regenerated.
  • An arc re-occurrence point 103 has a timing 108 in which the arc length is extended from an appropriate length.
  • the welding output current IL becomes the value of the current values 104a and 104b immediately before the short-circuit opening immediately before the arc re-occurrence time 103 and immediately before the short-circuit opening after the short-circuit period 101.
  • the waveform of the welding output voltage VL changes as shown in the figure according to the waveform of the welding output current IL.
  • the initial control time 106 is set by the time measuring unit 15 starting from that time point.
  • the arc initial control unit 12 controls the welding output current IL during the arc initial control time 106 so that the arc initial current value 105a is obtained.
  • the initial control time 106 is obtained in advance by experiments or the like.
  • the arc control unit 13 controls the output voltage VL.
  • the arc period 102 is longer than that when the arc length is appropriate as shown in FIG. It becomes longer, the occurrence of short circuit is delayed, and the average output voltage becomes higher. If the occurrence of a short circuit is delayed, the melting of the wire is promoted, so that it takes time for the molten droplet at the tip of the molten wire to move to the base material, so that the next short circuit time becomes long. Therefore, the current value 104b immediately before opening the short circuit is higher than the current value 104a immediately before opening the short circuit.
  • the welding output current calculation unit 12 a of the arc initial control unit 12 gives the setting unit 9 a predetermined magnification (coefficient) smaller than 1 according to the difference between the set voltage and the average output voltage.
  • a predetermined magnification (coefficient) smaller than 1 according to the difference between the set voltage and the average output voltage.
  • an arc initial current 105d smaller than the predetermined current value is obtained.
  • the arc initial control unit 12 performs current control so that an arc initial current 105 d smaller than the predetermined current value I flows during the initial control time 106.
  • the predetermined current value I is an arc initial current value when the arc length is an appropriate length, and is a current value that can ensure a necessary and sufficient arc length immediately after the arc is regenerated.
  • This current value differs depending on the set current, set voltage, wire feed speed, shield gas type, wire type, wire diameter, welding method, and the like, and can be obtained by various experiments and setting unit 9. Since the arc initial current 105d is controlled according to the difference between the set voltage and the average output voltage, it is not related to the current 104b immediately before the short-circuit opening, which is the current immediately before the short-circuit opening.
  • the arc initial current 105b which is always higher than the current 104b immediately before the short circuit opening 104b in the conventional control, is delayed in this embodiment and the average output voltage is increased. 2 becomes lower than the set voltage, the arc initial current 105d is lower than the current 104b immediately before the short circuit is opened, as shown in FIG. Thereby, since the welding output in the period after the arc initial current 105d in the arc period 102 can also be lowered, the average output voltage can be set to the set voltage at an early stage.
  • the amount of wire melting can be suppressed, the arc length can be shortened, the short-circuit cycle can be shortened, and heat input can be reduced. Then, the bead width can be made uniform, the occurrence of burn-out during gap welding can be suppressed, and the applicable range can be expanded with respect to the occurrence of disturbance and gap welding.
  • FIG. 3 is a diagram showing a welding output voltage waveform VS and a welding output current waveform IS when the arc length in the arc welding apparatus of the present embodiment is shorter than an appropriate length during normal welding.
  • FIG. 3 shows a case where the arc length becomes shorter than an appropriate length at timing 109 and the arc period 102 becomes shorter.
  • the horizontal axis indicates the elapsed time
  • the vertical axis indicates the welding output voltage VS and the welding output current IS.
  • the arc period 102 is shortened, the occurrence of a short circuit is accelerated, and the average output voltage is lowered.
  • the occurrence of a short circuit is accelerated, a short circuit occurs in a state where the melted portion at the tip of the wire is small, so that the time until the droplet at the tip of the wire moves to the base material is shortened. Therefore, the next short circuit time is shortened. Therefore, as shown in FIG. 3, the current value 104d immediately before the short circuit opening, which is the current value immediately before the short circuit opening, is lower than the current value 104a immediately before the short circuit opening.
  • the welding output current calculation unit 12 a of the arc initial control unit 12 sets a predetermined magnification (coefficient) greater than 1 according to the difference between the set voltage and the average output voltage at the setting unit 9.
  • a predetermined current value I set in advance is multiplied to obtain an arc initial current 105e larger than the predetermined current value.
  • the arc initial control unit 12 performs current control such that an arc initial current 105e larger than the predetermined current value I flows during the initial control time 106.
  • the predetermined current value I described above is obtained when the arc length is longer than the appropriate length in FIG. 2, the occurrence of a short circuit is delayed, the average output voltage is increased, and the average output voltage is higher than the set voltage. This is the same as the predetermined current value I described as the control.
  • the arc initial current 105d is 190A and 105e is 210A with respect to 200A which is an example of the predetermined current value I set in advance.
  • magnifications and preset predetermined values of the arc initial currents 105d and 105e are set current, set voltage, wire feed speed, shield gas type, wire type, wire diameter,
  • the setting unit 9 sets the value based on at least one of the welding method and the like.
  • the current immediately after the short circuit is opened is controlled to be a predetermined current value I.
  • the average output voltage is repeatedly calculated every predetermined time T, but the average output voltage compared with the set voltage is a value immediately before being calculated at the timing when the arc initial control unit 12 performs current control, That is, it is the latest being calculated.
  • the present invention can expand the range of application to disturbance welding when the arc length changes and gap welding, and can improve the productivity of welding work. Therefore, the arc welding control method and arc welding are mainly used in welding that causes a short circuit. Industrially useful as a device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding Control (AREA)

Abstract

溶接ワイヤが被溶接物と短絡する短絡期間とアークが発生してアーク放電するアーク期間とを交互に繰り返して前記被溶接物の溶接を行う溶接制御方法であって、溶接中に算出された溶接電圧の平均である平均出力電圧と予め設定された設定電圧とを比較し、平均出力電圧と予め設定された設定電圧との比較結果に基づいて、アーク発生時の溶接出力電流を制御することで、アーク長が長くまたは短くなる等の外乱発生時に、ワイヤの溶融量を調整してアーク長を調整して短絡周期を一定に近づける。

Description

アーク溶接制御方法およびアーク溶接制御装置
 本発明は、消耗電極である溶接用ワイヤと被溶接物である溶接母材との間にアークを発生させて溶接出力制御を行うアーク溶接制御方法およびアーク溶接制御装置に関するものである。
 近年、地球環境保護の観点から、自動車や二輪業界では、燃費向上を目的とした軽量化のために年々薄板化が進められている。このため、ロボットを用いて行う薄板のアーク溶接においては、生産性の向上や溶接品質の向上が期待されている。そして、溶接速度の高速化と、スパッタの低減や溶け落ちおよびアンダーカットなどの欠陥防止といった相反する課題の解決が求められている。なかでも、溶接速度の高速化は時間当たりの生産数を増加させる。また、ワーク間にギャップが生じている場合の溶け落ちを抑制することにより、被溶接物の歩留まりを高めて手直し工数を削減できる。そのため、市場から、これら課題の解決の要求が年々高まってきている。
 これらの要求に対し、従来から溶接速度の高速化やギャップ溶接に関しては種々提案されている。例えば、アーク再発生直後の溶接出力電流を、短絡開放直前の溶接電流よりも高め、これによりアークが再発生してから早期に溶滴を形成させ、短絡発生周期を短周期化して溶接電圧を低下させアーク長を短くすることが可能となっている(例えば、特許文献1参照)。これにより溶接速度を高速化して低入熱化することで、ギャップ溶接においても溶け落ちを抑制することができる。
 図4は上記した従来の出力制御方法で溶接した場合の溶接出力電圧・溶接出力電流波形を示す図である。図4は、横軸に経過時間、縦軸に溶接出力電圧・溶接出力電流を示している。図4において、短絡期間101は、ワイヤと母材とが短絡した状態である。アーク期間102は、ワイヤと母材との間でアークが発生している状態である。アーク再発生時点103において、短絡が開放しアークが再発生する。短絡開放の直前では、短絡開放直前電流104aが流れている。また、アーク期間102では、アーク初期電流105aが初期制御期間106の間流れる。
 次に、図4で示す電流波形について、時間の経過ごとの制御方法と関連させて説明する。アークが再発生してから、低い溶接出力電流を急峻に高めてアーク初期電流105aとする。初期制御期間106の期間は定電流を出力し、その後アーク制御(電圧制御)により徐々に溶接電流値が減少するよう制御する。アーク初期電流105aは、図に示すように、短絡開放直前電流104aに対して重畳電流値107を加算した値に制御され、これによりワイヤ先端での溶滴の早期形成を可能にする。すなわち、アーク初期電流105aは、短絡開放直前電流104aよりも必ず高くなるように制御される。
 これにより、アークが再発生してから早期に溶滴を形成させることができ、短絡発生周期を短周期化し、溶接電圧を低下させてアーク長を短くすることが可能である。従って、溶接速度を高速度化して入熱を低下させることができ、ギャップ溶接においても溶け落ちを抑制することができる。
 しかし、上記した従来の出力制御方法では、外乱等によりアーク長が適正な距離よりも長くなると、図5に示すようにアーク期間102が長くなる。そのため、図4に示す溶接状態より短絡発生周期が長くなり、溶接出力電圧の平均値が高くなる。この場合、ワイヤの溶融量が多くなるので、次の短絡時間は長くなり、図5に示すように短絡開放直前の電流値104bは前回の短絡開放直前の電流値104aより高くなる。また、アーク初期電流105bも、前回のアーク初期電流105aよりも高くなる。
 溶接出力電圧の平均値が高くなるので、出力電圧を低下させる必要がある。しかし、アーク初期電流105bは、前回のアーク初期電流105aよりも高めるように制御するので、溶接出力電圧を高める制御となっている。つまり、溶融量を抑制してアーク長を短くして短絡周期を早めることができない制御となっている。
 このため、突出し長さやアーク長が長くなる等の外乱発生時に、ワイヤの溶融量が多くなり、アーク期間が長くなり、ビード幅が不均一になるという課題を有していた。また、入熱を低下できないため、ギャップ溶接時に溶け落ち等が発生するという課題を有していた。
特開2006-021227号公報
 本発明は、突出し長さやアーク長が長くなる場合等の外乱発生時に、ワイヤの溶融量を抑制してアーク長を短くして短絡周期を早めることを可能とするアーク溶接制御方法及びアーク溶接装置を提供するものである。
 本発明のアーク溶接制御方法は、溶接ワイヤが被溶接物と短絡する短絡期間とアークが発生してアーク放電するアーク期間とを交互に繰り返して被溶接物の溶接を行う溶接制御方法であって、溶接中に算出された溶接電圧の平均である平均出力電圧と予め設定された設定電圧とを比較し、平均出力電圧と予め設定された設定電圧との比較結果に基づいて、アーク発生時の溶接出力電流を制御する構成を有する。
 本発明のアーク溶接制御装置は、溶接ワイヤが被溶接物と短絡する短絡期間とアークが発生しアーク放電するアーク期間とを交互に繰り返して被溶接物を溶接するアーク溶接装置であって、溶接出力電流を検出する溶接電流検出部と、溶接出力電圧を検出する溶接電圧検出部と、溶接出力を制御するスイッチング素子と、溶接状態が短絡期間かアーク期間かを判別する短絡アーク判定部と、短絡期間の電流または電圧のうちの少なくとも1つ、およびアーク期間の電流または電圧のうちの少なくとも1つ、および設定電圧、および所定の電流値を設定するための設定部と、前記溶接電流検出部および前記溶接電圧検出部および前記設定部の各出力を入力としアークの発生初期時の溶接出力電流を制御するアーク初期制御部と、短絡アーク判定部の出力に基づいてスイッチング素子を制御する駆動部と、短絡アーク判定部の出力を入力としアーク発生時からの所定時間を計時して駆動部に出力する計時部と、溶接電圧検出部の検出結果に基づいて溶接電圧の平均である平均出力電圧を算出する平均電圧算出部と、設定部で設定された設定電圧と平均電圧算出部で算出された平均出力電圧を比較する電圧比較部とを備え、アーク初期制御部は、電圧比較部での比較結果に基づいて、アーク発生時の溶接出力電流を制御する構成を有する。
 かかる構成によれば、設定電圧と平均出力電圧との差に基づいてアーク再発生時の溶接出力電流を決定することにより、アーク長が長くなる場合、または、短くなる場合等の外乱時に、ワイヤの溶融量を調整してアーク長を調整し、短絡周期を一定に近づけて低入熱化を可能とする。これにより、ビード幅の均一化やギャップ溶接時の溶け落ち発生を抑制することができる。よって、外乱発生時及びギャップ溶接に対して適応範囲を広げることができる。
図1は、本発明の一実施の形態におけるアーク溶接装置の概略構成を示す図である。 図2は、同実施の形態のアーク溶接装置におけるアーク長が通常溶接時よりも長くなった場合の溶接出力電圧波形と溶接出力電流波形を示す図である。 図3は、同実施の形態のアーク溶接装置におけるアーク長が通常溶接時よりも短くなった場合の溶接出力電圧波形と溶接出力電流波形を示す図である。 図4は、従来のアーク溶接装置における通常溶接時の溶接出力電圧波形と溶接出力電流波形を示す図である。 図5は、従来のアーク溶接装置におけるアーク長が通常溶接時よりも伸長した場合の溶接出力電圧波形と溶接出力電流波形を示す図である。
 (実施の形態)
 本実施の形態は、溶接ワイヤが被溶接物と短絡する短絡期間とアークが発生してアーク放電するアーク期間とを交互に繰り返して被溶接物の溶接を行う。短絡期間中にアークの発生を予知してアーク発生直前に溶接出力電流を低下して短絡を開放するものである。
 図1から図3を用いて本実施の形態のアーク溶接装置と制御方法について説明する。図1は本実施の形態のアーク溶接装置の概略構成を示す図である。図2は、本実施の形態において、外乱等によりアーク長が通常溶接時の適正な長さよりも長くなりアーク期間が通常溶接時よりも長くなった場合の溶接出力電圧・溶接出力電流波形を示す図である。図3は、本実施の形態において、外乱等によりアーク長が通常溶接時の適正な長さよりも短くなり、アーク期間が通常溶接時よりも短くなった場合の溶接出力電圧・溶接出力電流波形を示す図である。
 図1において、商用電源1から入力される交流電力は1次整流部2で整流され、溶接出力を制御するスイッチング素子3により交流に変換される。スイッチング素子3の出力電圧は、商用電源1と絶縁してトランス4で降圧され、トランス4の2次側出力に接続された2次整流部5で整流され、リアクタ6を通して溶接出力を得る。この溶接出力が、図示しない溶接ワイヤと被溶接物との間に印加される。
 さらに、本実施の形態のアーク溶接装置は、直流出力端子と直列に挿入され、溶接出力電流を検出する溶接電流検出部11と、直流出力端子の両端間に接続され、溶接出力電圧を検出する溶接電圧検出部10と、溶接状態が短絡期間かアーク期間かを判別する短絡アーク判定部とを備えている。さらに、本実施の形態のアーク溶接装置は、溶接電流を得るための設定電流、溶接電圧を得るための設定電圧、溶接ワイヤの送給速度、アーク溶接時のシールドガスの種類、ワイヤの種類、ワイヤの径、パルス制御の有無やクレータ処理の有無などの溶接の方法、および本実施の形態で必要な所定の電流値などを設定する設定部9を備えている。設定部9は、溶接電圧検出部10および溶接電流検出部11の出力を入力とする。設定部9では上記各種の設定条件を入力することにより、溶接に必要な種々のパラメータが設定される。このように、設定部9では、短絡期間の電流または電圧のうちの少なくとも1つ、およびアーク期間の電流または電圧のうちの少なくとも1つ、および設定電圧、および所定の電流値が設定される。
 さらに、本実施の形態のアーク溶接装置は、溶接電流検出部11と溶接電圧検出部10と設定部9の出力を入力としアーク再発生初期時の溶接出力電流を設定して出力するアーク初期制御部12を備えている。さらに、本実施の形態のアーク溶接装置は、短絡アーク判定部7の出力に基づいてスイッチング素子3を制御する駆動部8と、短絡アーク判定部7の出力を入力としアーク発生時からの所定時間を計時してアーク初期制御時間を設定して駆動部8に出力する計時部15とを備えている。
 さらに、本実施の形態のアーク溶接装置では、アーク再発生時から所定時間の間出力電流を制御するアーク初期制御部12は、溶接電圧検出部10と溶接電流検出部11と設定部9の出力を入力とし、駆動部8に出力する。アーク初期制御部12で制御する所定時間以降のアーク期間において出力電圧を制御するアーク制御部13は、溶接電圧検出部10と溶接電流検出部11と一定値もしくは下降電圧直線もしくは下降電圧曲線としてアーク期間の電圧を設定する設定部9の出力とを入力とし、駆動部8に出力する。ここではアーク期間を電圧制御にて説明したが、電圧制御の変わりに電流制御として、設定部9では電流を設定しても良い。短絡期間中に出力電流を制御する短絡制御部14は、溶接電流検出部11と直線または曲線の組み合わせの電流波形として電流を設定する設定部9の出力とを入力とし、駆動部8に出力する。ここでは短絡期間を電流制御にて説明したが、電流制御の変わりに電圧制御として、設定部9では電圧を設定しても良い。計時部15は短絡アーク判定部7と設定部9の出力を入力としアーク発生時からの所定時間を計時してアーク初期制御時間を設定して駆動部8に出力する。
 また、設定部9は溶接電圧検出部10の検出結果に基づいて平均出力電圧を算出する平均電圧算出部9aと、設定部9で設定された設定電圧と平均電圧算出部9aで算出された平均出力電圧を比較する電圧比較部9bとを有する。アーク初期制御部12は、電圧比較部9bでの比較結果に基づいてアーク発生時の溶接出力電流を演算して決定する溶接出力電流演算部12aを有し、アーク再発生時から所定時間の間は溶接出力電流演算部12aで決定した溶接出力電流となるように駆動部8を制御する。
 すなわち、電圧比較部9bでの比較の結果、平均出力電圧が設定電圧より大きい場合には、アーク初期制御部12の溶接出力電流演算部12aは、予め設定された所定の電流値に平均出力電圧と設定電圧との差に基づいた1より小さい倍率を乗算してアーク発生時の溶接出力電流を算出する。アーク初期制御部12は、計時部15で設定したアーク初期制御時間の間、アーク発生時の溶接出力電流が所定の電流値よりも小さい算出した溶接出力電流となるように出力を制御する。また、電圧比較部9bでの比較の結果、平均出力電圧が設定電圧より小さい場合には、アーク初期制御部12の溶接出力電流演算部12aは、予め設定された所定の電流値に平均出力電圧と設定電圧との差に基づいた1より大きい倍率を乗算してアーク発生時の溶接出力電流を算出する。アーク初期制御部12は、計時部15で設定したアーク初期制御時間の間、アーク発生時の溶接出力電流が所定の電流値よりも大きい算出した溶接出力電流となるように出力を制御する。
 なお、平均出力電圧は、予め決められた所定時間における出力電圧の平均値であり、所定時間毎に計算されるものであり、溶接電圧検出部10の出力に基づいて設定部9の平均電圧算出部9aで計算される。
 以上のように構成されたアーク溶接装置について、その動作を説明する。図2は、消耗電極式アーク溶接の短絡移行時の溶接出力電圧波形と溶接出力電流波形を示す図であり、横軸は経過時間、縦軸は溶接出力電圧VL、溶接出力電流ILを示す。そして、図2は、アーク長が通常溶接時の適正な長さより長くなった場合の溶接電流波形ILを示している。
 図2において、溶接出力電流ILは、ワイヤと母材が短絡している短絡期間101、ワイヤと母材との間でアークが発生しているアーク期間102、短絡が開放しアークが再発生するアーク再発生時点103、アーク長が適正な長さから伸張したタイミング108を有している。また、溶接出力電流ILは、アーク再発生時点103の前および短絡期間101の後の短絡開放直前には、短絡開放直前電流値104a、104bの値となる。溶接出力電圧VLの波形は、溶接出力電流ILの波形に応じて図に示すように変化する。
 本実施の形態では、まず、図2に示すアーク再発生時点103において、その時点を起点とし計時部15で初期制御時間106を設定する。アーク初期制御部12でこのアーク初期制御時間106における溶接出力電流ILを制御し、アーク初期電流値105aとなるようにする。なお、初期制御時間106は、実験等により予め求めておく。
 アーク初期制御時間106の後のアーク期間102では、アーク制御部13により出力電圧VLが制御される。手振れや被溶接物の位置ずれ等の外乱によりタイミング108でアーク長が適正な長さよりも長くなった場合、図2に示すようにアーク長が適正な長さである場合よりもアーク期間102が長くなり、短絡の発生が遅れ、平均出力電圧が高くなる。短絡発生が遅れると、ワイヤ溶融が促進されるので、溶融されたワイヤ先端の溶滴が母材に移行するための時間を要するので次の短絡時間が長くなる。したがって、短絡開放直前電流値104bは前回の短絡開放直前電流値104aより高くなる。
 ここで、短絡発生が遅れ、平均出力電圧が高くなり、平均出力電圧が設定電圧より高くなった場合における本実施の形態の制御について説明する。
 設定部9の出力に基づいて、アーク初期制御部12の溶接出力電流演算部12aでは、設定電圧と平均出力電圧との差に応じた1より小さい所定の倍率(係数)を、設定部9に予め設定された所定の電流値Iに乗算して、所定の電流値よりも小さいアーク初期電流105dを求める。これにより、アーク初期制御部12は、所定の電流値Iよりも小さいアーク初期電流105dが初期制御時間106の間流れるように電流制御を行う。
 なお、所定の電流値Iはアーク長が適正な長さの場合のアーク初期電流値であって、アーク再発生直後に必要充分なアーク長を確保することのできる電流値である。この電流値は、設定電流、設定電圧、ワイヤ送給速度、シールドガス種類、ワイヤ種類、ワイヤ径、溶接法などによって異なり、種々の実験や設定部9などで求められる。アーク初期電流105dは、設定電圧と平均出力電圧の差に応じて制御されるので、短絡開放直前の電流である短絡開放直前電流104bには関係しない。
 また、従来の制御では図5に示すように短絡開放直前電流104bよりも必ず高めていたアーク初期電流105bを、本実施の形態では、短絡発生が遅れ、平均出力電圧が高くなり、平均出力電圧が設定電圧より高くなった場合には、図2に示すように短絡開放直前電流104bよりも低いアーク初期電流105dに低減する。これにより、アーク期間102におけるアーク初期電流105d以降の期間の溶接出力も低めることができるので、早期に平均出力電圧が設定電圧となるようにすることができる。
 従って、突出し長さやアーク長が長くなる場合等の外乱発生時に、ワイヤの溶融量を抑制してアーク長を短くし、短絡周期を早めて低入熱化を可能とすることができる。そして、ビード幅を均一化し、また、ギャップ溶接時の溶け落ち発生を抑制し、外乱発生時及びギャップ溶接に対して適応範囲を広げることができる。
 上記では、外乱等によりアーク長が適正長さより長くなり、アーク期間102が長くなった場合の制御について説明した。次に、アーク長が適正な長さより短くなり、アーク期間が短くなった場合の制御について図3を用いて説明する。図3は、本実施の形態のアーク溶接装置におけるアーク長が通常溶接時の適正な長さよりも短くなった場合の溶接出力電圧波形VS、溶接出力電流波形ISを示す図である。図3は、タイミング109でアーク長が適正な長さより短くなり、アーク期間102が短くなった場合を示している。図3は、図2と同様に、横軸は経過時間、縦軸は溶接出力電圧VS、溶接出力電流ISを示している。図2と同じ構成には同じ符号を用いて説明は省略する。
 タイミング109でアーク長が短くなった場合、図3に示すように、アーク期間102が短くなり、短絡の発生が早まり、平均出力電圧が低くなる。短絡発生が早まると、ワイヤ先端の溶融部が小さい状態で短絡が発生するため、ワイヤ先端の溶滴が母材に移行するまでの時間は短くなる。そのため、次の短絡時間が短くなる。従って、図3に示すように、短絡開放直前の電流値である短絡開放直前電流値104dは前回の短絡開放直前電流値104aより低くなる。
 ここで、短絡発生が早まり、平均出力電圧が低下し、平均出力電圧が設定電圧より低くなった場合における本実施の形態の制御について説明する。設定部9の出力に基づいて、アーク初期制御部12の溶接出力電流演算部12aでは、設定電圧と平均出力電圧との差に応じた1より大きい所定の倍率(係数)を、設定部9で予め設定された所定の電流値Iに乗算して所定の電流値よりも大きいアーク初期電流105eを求める。これにより、アーク初期制御部12は、所定の電流値Iよりも大きいアーク初期電流105eが初期制御時間106の間流れるように電流制御を行う。
 なお、上記した所定の電流値Iは、図2においてアーク長が適正な長さよりも長くなり、短絡の発生が遅れ、平均出力電圧が高くなり、平均出力電圧が設定電圧より高くなった場合における制御として説明した所定の電流値Iと同じものである。
 ところで、上記した所定の倍率の一例として、軟鋼ワイヤでワイヤ径1.2mmのMAG溶接で150Aの溶接時に、設定電圧16.8Vに対して平均出力電圧の差が+1Vの場合は0.95、-1Vの場合は1.05とする。この時、予め設定された所定の電流値Iの一例である200Aに対してアーク初期電流105dは190A、105eは210Aとなる。
 また、これらの倍率やアーク初期電流105d、105eの予め設定された所定値は、設定部9に入力設定される設定電流、設定電圧、ワイヤ送給速度、シールドガス種類、ワイヤ種類、ワイヤ径、および溶接法などのうち少なくとも1つに基づいて設定部9において設定される。
 また、本実施の形態では、平均出力電圧と設定電圧が等しい場合には、短絡開放直後の電流は、所定の電流値Iとなるように制御される。
 また、平均出力電圧は所定の時間T毎に繰り返し算出されているが、設定電圧と比較される平均出力電圧は、アーク初期制御部12が電流制御を行うタイミングで算出されている直前の値、すなわち、算出されている最新のものである。
 なお、本発明は、パルス溶接時の短絡後の制御として用いても良い。
 本発明は、アーク長が変化する外乱発生時及びギャップ溶接に対して適応範囲を拡大でき溶接作業の生産性を向上することができるので、主に短絡を生じる溶接におけるアーク溶接制御方法及びアーク溶接装置として産業上有用である。
 1  商用電源
 2  1次整流部
 3  スイッチング素子
 4  トランス
 5  2次整流部
 6  リアクタ
 7  短絡アーク判定部
 8  駆動部
 9  設定部
 9a  平均電圧算出部
 9b  電圧比較部
 10  溶接電圧検出部
 11  溶接電流検出部
 12  アーク初期制御部
 12a  溶接出力電流演算部
 13  アーク制御部
 14  短絡制御部
 15  計時部

Claims (7)

  1. 溶接ワイヤが被溶接物と短絡する短絡期間とアークが発生してアーク放電するアーク期間とを交互に繰り返して前記被溶接物の溶接を行う溶接制御方法であって、溶接中に算出された溶接電圧の平均である平均出力電圧と予め設定された設定電圧とを比較し、前記平均出力電圧と前記予め設定された設定電圧との比較結果に基づいて、前記アーク発生時の溶接出力電流を制御するアーク溶接制御方法。
  2. 前記平均出力電圧と前記予め設定された設定電圧との比較結果が、前記平均出力電圧が前記設定電圧より大きい場合には、前記アーク発生時の溶接出力電流が、前記平均出力電圧と前記設定電圧との差に基づいた、予め設定された所定の電流値よりも小さい前記溶接出力電流となるように制御し、前記平均出力電圧が前記設定電圧より小さい場合には、前記アーク発生時の前記溶接出力電流が、前記平均出力電圧と前記設定電圧との前記差に基づいた、前記所定の電流値よりも大きい前記溶接出力電流となるように制御する請求項1記載のアーク溶接制御方法。
  3. 前記平均出力電圧が前記設定電圧より大きい場合には、前記所定の電流値に前記平均出力電圧と前記設定電圧との前記差に基づいた1より小さい倍率を乗算して前記アーク発生時の前記溶接出力電流を算出し、前記平均出力電圧が前記設定電圧より小さい場合には、前記所定の電流値に前記平均出力電圧と前記設定電圧との前記差に基づいた1より大きい倍率を乗算して前記アーク発生時の前記溶接出力電流を算出する請求項2記載のアーク溶接制御方法。
  4. 前記アーク発生直前に前記溶接出力電流を低下して前記短絡を開放する請求項1記載のアーク溶接制御方法。
  5. 溶接ワイヤが被溶接物と短絡する短絡期間とアークが発生しアーク放電するアーク期間とを交互に繰り返して前記被溶接物を溶接するアーク溶接装置であって、溶接出力電流を検出する溶接電流検出部と、溶接出力電圧を検出する溶接電圧検出部と、溶接出力を制御するスイッチング素子と、溶接状態が前記短絡期間か前記アーク期間かを判別する短絡アーク判定部と、前記短絡期間の電流または電圧のうちの少なくとも1つ、および前記アーク期間の電流または電圧のうちの少なくとも1つ、および設定電圧、および所定の電流値を設定するための設定部と、前記アークの発生初期時の前記溶接出力電流を制御するアーク初期制御部と、前記短絡アーク判定部の出力に基づいて前記スイッチング素子を制御する駆動部と、前記短絡アーク判定部の出力を入力とし前記アーク発生時からの所定時間を計時して前記駆動部に出力する計時部と、前記溶接電圧検出部の検出結果に基づいて前記溶接電圧の平均である平均出力電圧を算出する平均電圧算出部と、前記設定部で設定された設定電圧と前記平均電圧算出部で算出された平均出力電圧を比較する電圧比較部とを備え、前記アーク初期制御部は、前記電圧比較部での比較結果に基づいて、前記アーク発生時の溶接出力電流を制御するアーク溶接制御装置。
  6. 前記アーク初期制御部は、前記電圧比較部での比較結果が、前記平均出力電圧が前記設定電圧より大きい場合には、前記アーク発生時の溶接出力電流が、前記平均出力電圧と前記設定電圧との差に基づいた、予め設定された所定の電流値よりも小さい前記溶接出力電流となるように制御し、前記平均出力電圧が前記設定電圧より小さい場合には、前記アーク発生時の前記溶接出力電流が、前記平均出力電圧と前記設定電圧との前記差に基づいた、前記所定の電流値よりも大きい前記溶接出力電流となるように制御する請求項5記載のアーク溶接制御装置。
  7. 前記アーク発生時の前記溶接出力電流を算出する溶接出力電流演算部をさらに備え、前記平均出力電圧が前記設定電圧より大きい場合には、前記所定の電流値に前記平均出力電圧と前記設定電圧との前記差に基づいた1より小さい倍率を乗算して前記アーク発生時の前記溶接出力電流を算出し、前記平均出力電圧が前記設定電圧より小さい場合には、前記所定の電流値に前記平均出力電圧と前記設定電圧との前記差に基づいた1より大きい倍率を乗算して前記アーク発生時の前記溶接出力電流を算出する請求項6記載のアーク溶接制御装置。
PCT/JP2010/002435 2009-04-17 2010-04-02 アーク溶接制御方法およびアーク溶接制御装置 WO2010119634A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/130,068 US8933370B2 (en) 2009-04-17 2010-04-02 Arc welding control method and arc welding control system
CN201080004021.0A CN102271854B (zh) 2009-04-17 2010-04-02 电弧焊接控制方法和电弧焊接控制装置
JP2011509195A JP5278542B2 (ja) 2009-04-17 2010-04-02 アーク溶接制御方法およびアーク溶接制御装置
EP10764221.7A EP2368661B1 (en) 2009-04-17 2010-04-02 Arc welding control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009100533 2009-04-17
JP2009-100533 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010119634A1 true WO2010119634A1 (ja) 2010-10-21

Family

ID=42982309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002435 WO2010119634A1 (ja) 2009-04-17 2010-04-02 アーク溶接制御方法およびアーク溶接制御装置

Country Status (5)

Country Link
US (1) US8933370B2 (ja)
EP (1) EP2368661B1 (ja)
JP (1) JP5278542B2 (ja)
CN (1) CN102271854B (ja)
WO (1) WO2010119634A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018831A (ja) * 2012-07-18 2014-02-03 Daihen Corp 溶接用電源装置及び溶接用電源装置の制御方法
US8933370B2 (en) 2009-04-17 2015-01-13 Panasonic Corporation Arc welding control method and arc welding control system
JP2018051624A (ja) * 2016-09-26 2018-04-05 パナソニックIpマネジメント株式会社 アーク溶接制御方法
WO2021153011A1 (ja) * 2020-01-29 2021-08-05 株式会社神戸製鋼所 ガスシールドアーク溶接の出力制御方法、溶接システム、溶接電源及び溶接制御装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801058B2 (ja) 2011-02-07 2015-10-28 株式会社ダイヘン 溶接装置および炭酸ガスアーク溶接方法
WO2015163101A1 (ja) * 2014-04-22 2015-10-29 株式会社ダイヘン アーク溶接制御方法
US11541475B2 (en) 2015-06-15 2023-01-03 Illinois Tool Works Inc. Method and system for short-arc welding
CA3010814A1 (en) 2016-01-08 2017-07-13 Illinois Tool Works Inc. Systems and methods to provide weld training
US10427237B2 (en) * 2016-02-10 2019-10-01 Illinois Tool Works Inc. Methods and apparatus to control a weld current amperage
CN106425026B (zh) * 2016-11-30 2018-02-27 唐山松下产业机器有限公司 电弧焊接设备、电弧焊接控制方法及装置
CN108031952B (zh) * 2017-12-21 2019-08-20 唐山松下产业机器有限公司 熔化极气体保护焊的控制方法、装置、介质及电子设备
US20190291201A1 (en) * 2018-03-23 2019-09-26 Illinois Tool Works Inc. Welding power supplies having dynamic current responses
CN110912418B (zh) * 2019-11-25 2021-01-15 中冶京诚工程技术有限公司 基于强励梯形波信号的电弧供电系统及电弧供电电源
CN111531251B (zh) * 2020-05-23 2022-09-27 上海沪工焊接集团股份有限公司 弧焊电源短路过渡控制方法、系统、装置及其存储介质
US20220055140A1 (en) * 2020-08-19 2022-02-24 Illinois Tool Works Inc. Welding power supplies having dynamic current responses

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182961A (ja) * 1995-12-28 1997-07-15 Kobe Steel Ltd 炭酸ガスシールドパルスアーク溶接方法
JPH09277044A (ja) * 1996-04-10 1997-10-28 Daihen Corp パルスアーク溶接のアーク長復帰制御方法及び溶接装置
JP2002361417A (ja) * 2001-06-06 2002-12-18 Daihen Corp パルスアーク溶接電源装置の出力制御方法
JP2003230958A (ja) * 2002-02-12 2003-08-19 Daihen Corp パルスアーク溶接のアーク長制御方法
JP2003290924A (ja) * 2002-01-29 2003-10-14 Daihen Corp パルスアーク溶接のアーク長制御方法
JP2004082152A (ja) * 2002-08-26 2004-03-18 Daihen Corp パルスアーク溶接の倣い制御方法
JP2005271042A (ja) * 2004-03-25 2005-10-06 Daihen Corp 定電流特性による消耗電極ガスシールドアーク溶接方法
JP2006021227A (ja) 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd アーク溶接制御方法及びアーク溶接装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202171A (ja) 1983-04-28 1984-11-15 Kobe Steel Ltd 短絡移行を伴なう溶接の電流制御方法
WO1991001842A1 (en) * 1989-08-02 1991-02-21 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus
US6248976B1 (en) 2000-03-14 2001-06-19 Lincoln Global, Inc. Method of controlling arc welding processes and welder using same
JP4373804B2 (ja) 2004-01-28 2009-11-25 株式会社日本Aeパワーシステムズ 静止誘導電器
EP2368661B1 (en) 2009-04-17 2017-07-12 Panasonic Intellectual Property Management Co., Ltd. Arc welding control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182961A (ja) * 1995-12-28 1997-07-15 Kobe Steel Ltd 炭酸ガスシールドパルスアーク溶接方法
JPH09277044A (ja) * 1996-04-10 1997-10-28 Daihen Corp パルスアーク溶接のアーク長復帰制御方法及び溶接装置
JP2002361417A (ja) * 2001-06-06 2002-12-18 Daihen Corp パルスアーク溶接電源装置の出力制御方法
JP2003290924A (ja) * 2002-01-29 2003-10-14 Daihen Corp パルスアーク溶接のアーク長制御方法
JP2003230958A (ja) * 2002-02-12 2003-08-19 Daihen Corp パルスアーク溶接のアーク長制御方法
JP2004082152A (ja) * 2002-08-26 2004-03-18 Daihen Corp パルスアーク溶接の倣い制御方法
JP2005271042A (ja) * 2004-03-25 2005-10-06 Daihen Corp 定電流特性による消耗電極ガスシールドアーク溶接方法
JP2006021227A (ja) 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd アーク溶接制御方法及びアーク溶接装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933370B2 (en) 2009-04-17 2015-01-13 Panasonic Corporation Arc welding control method and arc welding control system
JP2014018831A (ja) * 2012-07-18 2014-02-03 Daihen Corp 溶接用電源装置及び溶接用電源装置の制御方法
JP2018051624A (ja) * 2016-09-26 2018-04-05 パナソニックIpマネジメント株式会社 アーク溶接制御方法
WO2021153011A1 (ja) * 2020-01-29 2021-08-05 株式会社神戸製鋼所 ガスシールドアーク溶接の出力制御方法、溶接システム、溶接電源及び溶接制御装置
JP2021115623A (ja) * 2020-01-29 2021-08-10 株式会社神戸製鋼所 ガスシールドアーク溶接の出力制御方法、溶接システム、溶接電源及び溶接制御装置
JP7376377B2 (ja) 2020-01-29 2023-11-08 株式会社神戸製鋼所 ガスシールドアーク溶接の出力制御方法、溶接システム、溶接電源及び溶接制御装置

Also Published As

Publication number Publication date
CN102271854A (zh) 2011-12-07
EP2368661B1 (en) 2017-07-12
EP2368661A1 (en) 2011-09-28
CN102271854B (zh) 2015-03-25
JPWO2010119634A1 (ja) 2012-10-22
US8933370B2 (en) 2015-01-13
JP5278542B2 (ja) 2013-09-04
US20110226749A1 (en) 2011-09-22
EP2368661A4 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5278542B2 (ja) アーク溶接制御方法およびアーク溶接制御装置
WO2006006350A1 (ja) アーク溶接制御方法及びアーク溶接装置
JP5083415B2 (ja) アーク溶接方法およびアーク溶接装置
CN107008998B (zh) 电弧焊接控制方法及电弧焊接装置
US8809736B2 (en) Arc welding method and arc welding apparatus
CN108883486B (zh) 电弧焊接控制方法
US20130299476A1 (en) Arc welding control method and arc welding device
EP3744460B1 (en) Arc welding controlling method
US8859936B2 (en) Method of controlling welding
CN111989182B (zh) 电弧焊接控制方法
CN108883485B (zh) 电弧焊接控制方法
JP4702375B2 (ja) アーク溶接制御方法およびアーク溶接装置
EP3345710B1 (en) Arc welding method and arc welding device
JP6245734B2 (ja) 短絡期間の溶接電流制御方法
JP2015030017A (ja) アーク溶接制御方法およびアーク溶接装置
JP5349152B2 (ja) 交流パルスアーク溶接制御方法
JP2015217409A (ja) アーク溶接制御方法およびアーク溶接装置
JP2018051624A (ja) アーク溶接制御方法
JP2010142824A (ja) 交流アーク溶接方法
JP6516285B2 (ja) 2ワイヤ溶接制御方法
JP5499472B2 (ja) アーク溶接制御方法およびアーク溶接装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004021.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509195

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13130068

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010764221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010764221

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE