WO2010119483A1 - 多相交流電動機、その駆動装置および駆動方法 - Google Patents

多相交流電動機、その駆動装置および駆動方法 Download PDF

Info

Publication number
WO2010119483A1
WO2010119483A1 PCT/JP2009/001762 JP2009001762W WO2010119483A1 WO 2010119483 A1 WO2010119483 A1 WO 2010119483A1 JP 2009001762 W JP2009001762 W JP 2009001762W WO 2010119483 A1 WO2010119483 A1 WO 2010119483A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
motor
magnetic pole
stator
voltage
Prior art date
Application number
PCT/JP2009/001762
Other languages
English (en)
French (fr)
Inventor
岩崎則久
中津川潤之介
岩路善尚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN200980158720.8A priority Critical patent/CN102396149B/zh
Priority to PCT/JP2009/001762 priority patent/WO2010119483A1/ja
Priority to JP2011509090A priority patent/JP5358679B2/ja
Priority to US13/264,076 priority patent/US8664902B2/en
Publication of WO2010119483A1 publication Critical patent/WO2010119483A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/12Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets
    • H02K37/14Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Definitions

  • the present invention relates to a multiphase AC motor in an unbalanced state, a driving apparatus and a driving method thereof.
  • Multiphase AC motors are expanding their application in home appliances, industries, automobiles, etc., taking advantage of their small size and high efficiency.
  • the number of products in which the drive system of an electric motor is replaced from a rectangular wave energization type to a sine wave energization type has increased, and resistance, inductance, and induced voltage are used for applications such as rotor position estimation in position sensorless control and high-accuracy torque control.
  • An increasing number of controllers require the input of electric constant setting values of electric motors such as constants. Therefore, unless the electric constant of the motor is accurately identified and input, the control performance is greatly affected.
  • the inductance is strongly influenced by the magnetic nonlinearity of the core, and the influence of magnetic saturation appears greatly.
  • Patent Document 1 an annular claw magnetic core stator formed of a powder magnetic core and a ring of the stator A Crotice type motor composed of a rotor was developed.
  • this claw teeth motor has three-phase independent stators stacked in the axial direction, so the intermediate phase has a smaller magnetoresistance than the other phases, and the principle It has the characteristics of upper three-phase unbalance. For this reason, magnetic pulsation of electrical angle secondary (2 cycles per electrical angle cycle) is generated, and torque pulsation of the same order is further generated.
  • Patent Document 1 The technology for reducing the magnetic flux pulsation and torque pulsation of the Crotice type motor is disclosed in Patent Document 1 and Patent Document 2.
  • Patent Document 1 due to the structure in which the phases are adjacent to each other in the axial direction, the magnetic resistance of the Crotice type electric motor which is a three-phase imbalance is balanced by applying a magnetic insulating material made of a non-magnetic material between the phases.
  • the three-phase independent stators are axially adjacent to each other so that the intermediate phase has a small magnetic resistance and causes a three-phase unbalance. Therefore, in this prior art 1, magnetic insulation is performed by inserting a magnetic insulating material between the phases, and the three phases are balanced to reduce the magnetic angle secondary magnetic flux pulsation and the torque pulsation of the same order. ing.
  • Patent Document 2 discloses a technique for calculating torque pulsation in advance in a torque pulsation calculating means, adding a waveform having a phase opposite to that of the calculated torque pulsation component to a command value, and reducing the pulsation component. Yes.
  • torque pulsation is reduced by obtaining pulsation characteristics in advance using the torque pulsation calculating means of the electric motor and adding it to the torque pulsation command during driving.
  • the torque pulsation calculation means calculates the torque pulsation in advance and adds the opposite phase to the command value, it is difficult to calculate the torque pulsation and the number of measurement / analysis operations increases. become.
  • the present invention has been made in consideration of the above points, and a multiphase AC motor, a driving device thereof, and a multiphase AC motor that can be used for AC motor control by simply correcting a command value of an originally necessary current or voltage.
  • An object is to provide a driving method.
  • a multi-phase AC motor including a multi-phase stator magnetic pole in which the stator magnetic pole is configured independently for each phase, and a variable voltage / variable frequency multi-phase by pulse width modulation in the motor.
  • the control device is configured to change the amplitude and / or phase of the alternating current applied to at least one phase of the stator magnetic pole, It is characterized by comprising a correction unit that makes an unbalanced state with an alternating current applied to another phase.
  • the correcting unit is connected to a stator coil of at least one phase in which the magnitude of the magnetic resistance of the stator magnetic pole of the multiphase AC motor is different from that of the other phase, It is configured to apply alternating currents having different amplitudes.
  • the multiphase AC motor most suitable for applying the present invention is configured by sandwiching a plurality of upper and lower claw magnetic poles provided on the inner side of a stator core, and a ring coil between the upper and lower claw magnetic poles.
  • a stator magnetic pole for one phase, a stator magnetic pole for m phase configured by axially shifting the stator magnetic pole for one phase at an electrical angle of 2 ⁇ / m intervals, and the claw magnetic pole This is a claw teeth type m-phase AC motor provided with a rotor rotatably supported by a predetermined gap on the inner peripheral side of the motor.
  • the correction unit inputs an output of a correction amount calculation unit that calculates a correction amount based on a result of a prior analysis or measurement, and corrects to an unbalanced state according to the input. Configured as follows.
  • a voltage measuring device for measuring a voltage applied from the inverter to the multi-phase AC motor, and an output of the voltage measuring device are input to be in an unbalanced state.
  • a command value calculation unit that calculates a command value for the purpose.
  • pulsation reduction can be realized by an approach from the control surface without increasing the size of the motor and without using complicated torque pulsation calculation means.
  • a command value for generating an alternating current that reduces pulsation is expressed by a simple expression and incorporated into the control to easily reduce secondary pulsation of electrical angle and torque pulsation of the same order. can do.
  • FIG. 1 is a block diagram showing a system configuration of a first embodiment in a driving apparatus for a multiphase AC motor according to the present invention.
  • a current command generator 101 that generates a command value of a current that flows to the motor, and a pulse width modulation signal (hereinafter abbreviated as a PWM signal) are generated from the current command value.
  • a controller 100 is provided.
  • an inverter 106 driven by a PWM signal, a converter 107 for supplying a DC voltage to the inverter 106, and a crotice motor 108 to be controlled are provided.
  • U and V phase current detectors 109 and 110 for detecting U and V phase currents supplied from the inverter 106 to the clottis motor 108, and voltages for detecting the input voltage Edc of the inverter 106 It has a detector.
  • a correction unit 102 for correcting the current value of the intermediate phase (V phase) and a current correction part calculation unit 103 for calculating the current value to be corrected are added.
  • the original control unit converts a voltage command calculation unit 104 that calculates an AC applied voltage command value to be applied to the motor from the current command value, and converts the AC applied voltage command value into a pulse width modulation signal (hereinafter abbreviated as PWM signal). Output from the PWM generator 105.
  • current command values for the U, V, and W phases are generated by the current command generator 101 of FIG.
  • the correction unit 102 corrects the intermediate phase (V-phase) current command value.
  • the corrected current command value is calculated by the current correction calculation unit 103.
  • the voltage command calculation unit 104 calculates the voltage command value from the current command values of the three phases including the corrected intermediate phase current command value.
  • the calculated voltage command value is converted into a PWM signal by the PWM generator 105.
  • a DC voltage Edc is applied to the inverter 106 through the converter 107, and a PWM signal from the PWM generator 105 is applied to supply a three-phase AC of variable voltage / variable frequency to the Crotice type motor 108.
  • the U-phase current value Icu is detected by the U-phase current detector 109
  • the W-phase current value Icw is detected by the W-phase current detector 110, and fed back to the voltage command calculation unit 104 to calculate the voltage command value. Used for.
  • the magnetic resistance of the intermediate phase (V phase) is small, and in principle, a magnetic three-phase imbalance occurs, and a magnetic flux pulsation with a secondary electrical angle is generated, causing torque pulsation of the same order.
  • the correction unit 102 is installed. Setting is made so that the amplitude of the current command value is changed by the current command correction amount ⁇ I of the intermediate phase. ⁇ I is calculated by the current correction calculation unit 103 based on the analysis and measurement results obtained in advance by simulation, and is given to the correction unit 102, thereby realizing a reduction in electrical angle secondary magnetic flux pulsation and torque pulsation of the same order. To do.
  • V-phase current command value is reduced using the following equation (1).
  • ⁇ d shown in the equation (1) indicates an angle from the reference to the d-axis with respect to the U-phase winding axis.
  • ⁇ d shown in the equation (1) indicates an angle from the reference to the d-axis with respect to the U-phase winding axis.
  • minus plus in the formula, “minus” is used when the magnetic resistance of the intermediate phase is small, and “plus” is used when the magnetoresistance of the intermediate phase is large.
  • Equation (2) is used.
  • formula (3) is used for the case of an electric motor having a structure in which the magnetic resistance of the W phase is different (when the magnetic resistance is small or large).
  • each phase in which each phase is configured independently, such as a Crotice motor, the phase relationship of each phase may not be balanced due to an installation position error of each phase. In this case, it can be dealt with by changing the phase of the equations (1) to (3). For example, when the U-phase attachment position is a phase advanced by ⁇ degrees in electrical angle, pulsation can be reduced by using the equation (4).
  • ⁇ I may be calculated by the expression (5) as a ratio of the current amplitude I 1 , for example, as a percentage n [%], based on the analysis and measurement results by a prior simulation.
  • the percentage n [%] at this time can be considered to be two cases: a case where the percentage at a certain current amplitude I 1 is constant, and a case where the percentage n [%] is changed in accordance with the change of the current amplitude I 1. .
  • FIG. 2 is a block diagram showing a system configuration of the second embodiment in the driving apparatus for a multiphase AC motor according to the present invention.
  • the controller of the drive device of the second embodiment generates a speed command generator 201 that generates a speed command value that determines the speed of the rotor of the motor, and generates d-axis, q-axis, and zero-phase current command values.
  • the main circuit includes a converter 209 for supplying a direct current voltage to the inverter 208, an inverter 208 driven by a PWM signal, and a claw teeth motor 210 to be controlled.
  • U to W phase current detectors 211 to 213 for detecting U to W phase current supplied to the electric motor 210 by the inverter 208, a position sensor 215 for detecting the position of the rotor of the electric motor, and A voltage detector 216 for detecting the inverter input voltage Edc is provided.
  • the controller 200 includes a correction unit 203 that corrects each of the d-axis current, the q-axis current, and the zero-phase current, and a current correction calculation unit 204 that calculates a current value to be corrected. .
  • a voltage command calculation unit 205 that calculates voltage command values in the d-axis, q-axis, and zero phase from each command value, and the calculated voltage command value as a value on a three-phase AC axis
  • a dq coordinate conversion unit 214 for converting into components on the dc-qc axis, which is the coordinate axis, is provided.
  • a speed command is generated by the speed command generator 201 of FIG. 2, and d-axis, q-axis, and zero-phase current command values are generated by the current command generator 202.
  • the generated command value is corrected through the correction unit 203.
  • a value used for correction is calculated by the current correction calculation unit 204.
  • the current command value and the speed command value corrected by the correction unit 203 are calculated to a voltage command value by the voltage command calculation unit 205.
  • the calculated voltage command value is converted by the dq inverse conversion unit 206 from the value of the rotational coordinate axis to the value on the three-phase AC axis.
  • the converted voltage command values for the three phases are converted into PWM signals by the PWM generator 207.
  • a DC voltage is applied to the inverter 208 through the converter 209, and the inverter 208 is driven by applying a PWM signal from the PWM generator 207 to supply a three-phase AC of variable voltage / variable frequency to the Crotice type motor 210. To do.
  • U-W phase current values are detected by U-W phase current detectors 211-212.
  • a detector is required for each of the three phases.
  • the detected current value is converted by the dq coordinate conversion unit 214 from a value on the three-phase AC coordinate axis to a value on the rotation coordinate axis.
  • Each converted current value is fed back and used for voltage command calculation.
  • the position of the rotor is detected by the position sensor 215, and these are used for calculation at the time of dq coordinate conversion or dq reverse conversion.
  • the magnetic resistance of the intermediate phase (V phase) is small, and in principle, a magnetic three-phase unbalance occurs, and a secondary magnetic angle magnetic flux pulsation is generated, causing a torque pulsation of the same order.
  • amendment part 203 was installed.
  • the command value is converted from the value on the three-phase AC coordinate axis to the value on the rotation coordinate axis, the d-axis current command value, the q-axis current command value, and zero A correction calculation is required for each phase current value.
  • the value of ⁇ I necessary at that time is calculated by the current correction amount calculation unit 204 based on the analysis and measurement result by the prior simulation. By giving this calculated value to the correction unit 203, reduction of magnetic angle secondary magnetic flux pulsation and the same order torque pulsation is realized.
  • ⁇ d shown in equation (6) indicates the angle from the reference to the d-axis with respect to the U-phase winding axis.
  • a method of superimposing alternating currents with different amplitudes on the intermediate phase in order to reduce the secondary pulsation of the electrical angle that is characteristic of the Crotice type motor 210 will be described.
  • “minus plus” in the formula is “minus” when the intermediate phase magnetic resistance is small, and conversely, “plus” is used when the intermediate phase magnetic resistance is large.
  • Equation (7) is used.
  • a secondary electrical angle AC is superimposed on at least one of the d-axis and q-axis command values of the d-axis, q-axis, and zero phase.
  • a primary AC is superimposed in the zero phase.
  • phase relationship between the phases may not be balanced due to an attachment position error of each phase.
  • a secondary pulsation of the electrical angle occurs, and this can be dealt with by changing the phase in the equations (6) to (8) based on the same concept as the equation (4).
  • correction amount ⁇ I in the cases of the expressions (6) to (8) is also calculated in the same manner as the expression (5).
  • FIG. 3 is a block diagram showing a system configuration of a third embodiment in the driving apparatus for a multiphase AC motor according to the present invention.
  • the control unit of the driving apparatus of the third embodiment includes a current command generator 301 that generates d-axis and q-axis current command values, a speed command generator 302 that generates speed command values, and a PWM signal from the command values.
  • a controller 300 for adjusting the above is provided.
  • a converter 309 for supplying a DC voltage to the inverter 308, an inverter 308 driven by a PWM signal, and a Crotice type electric motor 310 to be controlled are provided.
  • U and W phase current detectors 311 and 312 that detect U and W phase currents supplied to the motor 310 by the inverter 308, and a position sensor 314 that detects the position of the rotating motor.
  • a voltage detector 315 for detecting the inverter input voltage Edc.
  • the controller 300 includes a correction unit 303 that corrects the q-axis current command value and a current correction amount calculation unit 304 that calculates a current correction amount to be superimposed on the correction device.
  • a voltage command calculation unit 305 that calculates a voltage command value from the current command value and speed command value of the d-axis and q-axis, and a voltage command value of the d-axis and q-axis on the three-phase AC coordinate axis
  • a dq inverse conversion unit 306 that converts the current value detected by the electric motor into a value on the rotation coordinate axis
  • a dq coordinate conversion unit 313 that converts each current value detected by the motor into a value on the rotation coordinate axis.
  • d-axis and q-axis current command values are generated by the d-axis current command generator 301 in FIG. 3, and a speed command value is generated by the speed command generator 302.
  • the q-axis current command value is corrected by the correction unit 303.
  • the value used for correction is calculated by the current correction calculation unit 304.
  • the current command value and the speed command value are calculated into voltage command values by the voltage command calculation unit 305, and the calculated voltage command values are calculated on the three-phase AC coordinate axes from the values on the rotation coordinate axes by the dq inverse conversion unit 306. Converted to a value.
  • the converted voltage command values for the three phases are converted into PWM signals by the PWM generator 307.
  • a DC voltage is applied to the inverter 308 through the converter 309, and the inverter 308 is driven by applying a PWM signal from the PWM generator 307, and supplies a three-phase AC of variable voltage / variable frequency to the Crotice type motor 310. To do.
  • the U-phase current value is detected by the U-phase current detector 311, and the W-phase current value is detected by the W-phase current detector 312. If the motor is Y-connected, the third detector is not necessary because the remaining one can be calculated if two currents can be detected in the three phases. Further, the detected three-phase current is converted by the dq coordinate conversion unit 313 from a value on the three-phase AC coordinate axis to a value on the rotational coordinate axis. The converted d-axis and q-axis current values are fed back and used for voltage command calculation. Further, the position of the rotor is detected by the position sensor 314, and these are used for calculation at the time of dq coordinate conversion or dq reverse conversion.
  • the magnetic resistance of the intermediate phase (V phase) is small, and in principle, it becomes a magnetic three-phase unbalance, generates a secondary magnetic angle magnetic flux pulsation, and a torque pulsation of the same order.
  • amendment part 303 was installed.
  • FIG. 3 since it is converted to a value on the rotational coordinate axis as in FIG. 2, it is necessary to correct the d-axis current command value, the q-axis current command value, and the zero-phase current value.
  • the current command value to be corrected is q Only the shaft current command value is required.
  • the value of ⁇ Iq required at that time is calculated by the current correction amount calculation unit 304 based on the analysis and measurement results obtained in advance by simulation. By giving this calculated value to the correction unit 303, it is possible to reduce the magnetic angle secondary magnetic flux pulsation and the torque pulsation of the same order.
  • (Theta) d shown in Formula (9) has shown the angle from the reference
  • a method of superimposing command values having different amplitudes on the intermediate phase current in order to reduce the secondary pulsation of the electrical angle unique to the Crotice type motor 310 will be described.
  • minus plus in the formula, “minus” is used when the magnetoresistance of the intermediate phase is small, and conversely, “plus” is used when the magnetoresistance of the intermediate phase is large. Use.
  • Equation (10) is used.
  • each phase in which each phase is configured independently, such as a Crotice motor, the phase relationship of each phase may not be balanced due to an installation position error of each phase. In this case as well, a secondary pulsation of the electrical angle occurs, and this can be dealt with by changing the phase in the equations (9) to (11) according to the equation (4).
  • correction amount ⁇ i q in this case is also calculated using the equation (12) as in the equation (5).
  • FIGS. 10 to 13 are simulation results for a clotice type motor having a small intermediate phase magnetic resistance.
  • the actually generated torque pulsation amplitude tends to increase with the magnitude of the q-axis current, as shown in FIG.
  • the secondary magnetic flux pulsation and torque pulsation do not change in phase depending on the magnitude of the q-axis current, and can be said to be substantially constant. Therefore, the secondary magnetic flux pulsation and the torque pulsation of the same order can be reduced by superimposing the electric angle secondary alternating current at a fixed phase.
  • FIG. 13 shows simulation data as a result of performing pulsation reduction correction using the equation (12).
  • n in the equations (5) and (12) should be increased according to the magnitude of the current command iq *.
  • the desired torque pulsation can be reduced even in a large q-axis current region.
  • FIG. 4 is a block diagram showing a system configuration of the fourth embodiment of the driving apparatus for a multiphase AC motor according to the present invention.
  • the control unit of the drive device of the fourth embodiment includes a command value generator 401 that generates a command value for calculating a voltage command value, and a controller 400 that adjusts a PWM signal from the command value.
  • a converter 407 for applying a DC voltage to the inverter 406, an inverter 406 driven by a PWM signal, and a claw teeth motor 408 to be controlled are provided.
  • U and W phase current detectors 409 and 410 for detecting the U phase current supplied from the inverter 406 to the electric motor 408 and a voltage detector 411 for detecting the inverter input voltage Edc are provided.
  • the controller 400 includes a voltage command calculation unit 402 that calculates a voltage command value from an original command value, and a PWM generation unit 405 that generates a PWM signal from the voltage command value. Further, according to the present invention, a correction unit 403 for correcting the intermediate phase (V-phase) voltage command value and a voltage correction amount calculation unit 404 for calculating a value used for correction are added.
  • a command value for calculating a voltage command value is generated by the command value generator 401 of FIG.
  • the generated command value is calculated into a voltage command value by the voltage command calculation unit 402.
  • the voltage command value of the intermediate phase (V phase) is corrected by the correction unit 403.
  • the value used for correction is calculated by the voltage correction calculation unit 404.
  • the voltage command values for the three phases are converted into PWM signals by the PWM generator 405.
  • a DC voltage is applied to the inverter 406 through the converter 407.
  • the inverter 406 is driven to supply a three-phase AC of variable voltage / variable frequency to the Crotice type motor 408. To do.
  • the U-phase current value is detected by the U-phase current detector 409, and the W-phase current value is detected by the W-phase current detector 410.
  • the motor is Y-connected, if the current for two phases out of the three phases can be detected, the remaining one phase can be calculated, and each detected current value is fed back to the voltage command calculation unit and used for voltage command value calculation. .
  • the intermediate phase (V phase) magnetic resistance is small, and in principle, a magnetic three-phase unbalance occurs, a secondary magnetic angle magnetic flux pulsation is generated, and the torque pulsation of the same order is caused.
  • amendment part 403 was installed.
  • the current command value is not corrected as in the previous embodiments, but the amplitude of the voltage command value with respect to the output voltage of the inverter 406 applied to the electric motor 408 is corrected.
  • the voltage correction amount necessary at that time is calculated by the voltage correction amount calculation unit 404 based on the analysis and measurement result by the prior simulation. By providing this calculated value to the correction unit 403, reduction of the magnetic angle secondary magnetic flux pulsation and the same order torque pulsation is realized.
  • FIG. 5 is a block diagram showing a system configuration of a fifth embodiment of the driving apparatus for a multiphase AC motor according to the present invention.
  • the control unit of the drive device of the fifth embodiment includes a current command generator 501 that generates a current command value for driving an electric motor, and a controller 500 that adjusts a PWM signal from the command value.
  • the main circuit includes an inverter 505 driven by a PWM signal, a converter 506 for supplying a DC voltage to the inverter 505, and a claw teeth motor 507 to be controlled.
  • a U to W phase voltage detectors 508 to 510 for detecting the U to W phase voltage supplied to the electric motor by the inverter 505 and a voltage detector 511 for detecting the inverter input voltage Edc are provided. .
  • the controller 500 includes a voltage command calculation unit 503 that calculates a voltage command value from an original current command value, and a PWM generation unit 504 that generates a PWM signal from the voltage command value.
  • the value used for correction is calculated by the correction current command value calculation unit 511 during operation.
  • the correction current command value calculation unit 511 inputs the outputs Vcu to Vcw of the U to W phase voltage detectors 508 to 510 for detecting the U to W phase voltage applied to the electric motor 507 by the inverter 505, and performs necessary current correction. Calculate the quantity.
  • the relationship between the detected voltage and the necessary current correction amount is set in advance in the corrected current command value calculation unit 511 based on the analysis and measurement results obtained in advance by simulation.
  • the current command value for each of the three phases is calculated to a voltage command value by the voltage command calculation unit 503.
  • the calculated voltage command value is converted into a PWM signal by the PWM generator 504.
  • a DC voltage is applied to the inverter 505 through the converter 506, and the inverter 505 is driven by applying a PWM signal from the PWM generator 504, and a three-phase AC of variable voltage / variable frequency is supplied to the Crotice type electric motor 507. Supply.
  • FIG. 6 is a process flowchart for explaining the fifth embodiment of the present invention.
  • the intermediate phase (V phase) has a small magnetic resistance, and in principle, a magnetic three-phase imbalance occurs, causing a secondary magnetic angle magnetic flux pulsation and a torque pulsation of the same order.
  • amendment part 502 was installed.
  • step 601 the motor is driven with an arbitrary current, and after a predetermined time, the voltage is set to 0 in step 602. After the voltage is set to 0, the induced voltage is calculated from the voltage value in step 603 using the U to W phase voltage detectors 508 to 510 in the idling state.
  • step 604 a current command value for amplitude correction is calculated by the correction current command value calculation unit 511 from the calculated induced voltage.
  • the torque pulsation of the motor can be reduced in the normal operation mode of step 605.
  • step 610 in the normal operation state, the motor is driven with the current corrected in step 611, the induced voltage is calculated in step 612, and the correction current is calculated in step 612. Both can be supported.
  • FIG. 7 is a cross-sectional perspective view which shows the outline of the stator structure of the claw teeth motor which shows the 6th Embodiment of this invention.
  • the sixth embodiment is an embodiment related to a pulsation reduction method viewed from the structural aspect of a crotice motor, which has been given as an example of a control target.
  • a U-phase stator 701 is configured by aligning a claw magnetic pole 701a on the upper side of the U phase and a claw magnetic pole 701b on the lower side of the U phase so that the claws are adjacent to each other.
  • This structure is substantially the same as the exploded perspective view shown in FIG.
  • the V phase and the W phase have the same structure, and are superposed while being shifted in the rotation direction by an electrical angle of 2 ⁇ / 3 to form a three-phase stator magnetic pole. That is, in the V phase, the upper claw magnetic pole 702a and the lower V-phase claw magnetic pole 702b are configured in the same manner as the U phase, and the electrical angle is shifted by 2 ⁇ / 3 in the circumferential direction from the U phase stator 701.
  • V-phase stator 702 superposed on each other.
  • the upper pawl magnetic pole 703a and the lower pawl magnetic pole 703b of the W phase are configured in the same manner as the U phase and V phase, and the electrical angle is shifted by 2 ⁇ / 3 in the circumferential direction from the V phase stator 701.
  • a W-phase stator 703 superimposed in the axial direction.
  • a U-phase winding 704 applied to the U-phase stator 701 in the circumferential direction
  • V-phase winding 705 applied to the V-phase stator in the circumferential direction
  • a W-phase winding applied to the W-phase stator in the circumferential direction.
  • the Crotice type electric motor has such a structure, the magnetic resistance of the V-phase stator 702 not facing the air is reduced. For this reason, in principle, a three-phase unbalanced characteristic is brought about, and magnetic flux pulsation and torque pulsation are caused. Therefore, the magnetic resistance is increased by using a material having a lower magnetic permeability than the other phases as a material for the V-phase core 702.
  • FIG. 8 is a cross-sectional perspective view which shows the outline of the stator structure of the claw teeth motor which shows the 7th Embodiment of this invention.
  • the seventh embodiment is also an embodiment related to a pulsation reduction method as viewed from the structural surface of the crotice motor, similarly to the sixth embodiment described in FIG.
  • the magnitude of the magnetic resistance can be increased, and the same effects as in the first to fifth embodiments can be obtained.
  • FIG. 9 is a cross-sectional perspective view showing an outline of the stator structure of the crotice motor showing the eighth embodiment of the present invention.
  • the eighth embodiment is also an embodiment related to a pulsation reduction method as viewed from the structural aspect of the crotice motor, similarly to the sixth and seventh embodiments described with reference to FIGS. 7 and 8.
  • the number of turns of the V-phase core coil 905 is less than that of the U-phase coil 904 and the W-phase coil 906, thereby uniformizing the three-phase generated magnetic flux, and the same as in the first to fifth embodiments. Can have an effect.
  • FIG. 14 is a schematic structural diagram showing a ninth embodiment of the driving apparatus for a multiphase AC motor according to the present invention.
  • the electric motor 1401 includes a stator 1405, a rotor 1406, a coil 1407, and an output shaft 1408, and an AC voltage is supplied from the control device 1403 to the electric motor 1401 through the wiring 1404.
  • the supplied voltage causes an alternating current to flow through the coil 1407, a rotating magnetic field is generated in the stator 1405, the rotor 1406 rotates in synchronization with the rotating magnetic field, and a rotating force is generated in the output shaft 1408.
  • FIG. 15 is a schematic structural diagram showing a tenth embodiment of the driving apparatus for a multiphase AC motor according to the present invention.
  • the electric motor 1501 includes a stator 1504, a rotor 1505, a coil 1506, and an output shaft 1507.
  • the multiphase AC motor 1501 includes a plurality of upper and lower claw magnetic poles provided on the inner side of the stator core, and the upper and lower claw magnetic poles.
  • a stator magnetic pole for one phase constructed by sandwiching a ring coil, and the m magnetic phase for the m phase are arranged in the axial direction while shifting the stator magnetic pole for one phase by an electrical angle of 2 ⁇ / m in the rotational direction.
  • the m-phase stator magnetic pole is provided.
  • it is a clotice type multiphase alternating current motor provided with the rotor 1505 rotatably supported through the predetermined space
  • an inverter housed integrally in a casing 1502 of the multiphase AC motor 1501 and applying a variable voltage / variable frequency multiphase AC by pulse width modulation to the multiphase AC motor, and the stator magnetic poles
  • a control device 1503 for controlling the inverter including a correction unit that unbalances the amplitude of the alternating current applied to at least one phase with the alternating current applied to the other phase.
  • W phase voltage detector 110, 213, 312, 410 ... W phase current detector, 201, 30 ... speed command generator, 206, 306 ... dq inverse converter (coordinate corresponding value converter: two-phase rotating coordinate system ⁇ three-phase fixed coordinate system), 214, 313 ... dq coordinate converter (coordinate corresponding value converter: three (Phase-fixed coordinate system ⁇ two-phase rotational coordinate system), 215, 314 ... rotor position sensor, 401 ... command value generator, 404 ... voltage correction component calculation unit, 511 ... correction current command value calculation unit, 701, 801, 901 ... Crotice type motor U-phase core, 701a, 801a, 901a ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 クローティース型交流電動機108のように、三相不平衡の状態にある交流電動機の磁束脈動及びトルク脈動を低減することを目的とし、電動機に可変電圧・可変周波数の三相交流を供給するインバータ106に対して、本来与える各相の電流指令値のうち、固定子コアの磁気抵抗が他の相より小さい中間相(V相)の電流指令を、電流補正分計算部103で計算した補正分に基いて補正部102により減少補正を加え、電動機108に不平衡な三相交流を供給して、電気角2次の磁束脈動と、同次数のトルク脈動を低減する。

Description

多相交流電動機、その駆動装置および駆動方法
 本発明は、不平衡状態における多相交流電動機、その駆動装置および駆動方法に関する。
 多相交流電動機、特に永久磁石同期電動機は、小形・高効率という特長を活かし、家電、産業、自動車等、適用用途を拡大している。特に近年では、電動機の駆動方式が矩形波通電型から正弦波通電型に置き換わる製品が増え、位置センサレス制御での回転子位置推定や、高精度トルク制御等の用途に、抵抗やインダクタンス、誘起電圧定数など、電動機の電気定数設定値の入力を必須とするコントローラが増えてきた。そのため、電動機の電気定数を正確に同定して入力しないと制御性能に大きく影響する。中でも、インダクタンスは、コアの磁気的な非線形性が強く影響し磁気飽和の影響が大きく現れる。
 このような背景から、電動機の小型化・低コスト化を目指し、例えば特許文献1に開示されているように、圧粉磁心で形成された環状爪磁心の固定子とその固定子の環内にある回転子とで構成されるクローティース型電動機が開発された。しかし、特許文献1にも述べられているように、このクローティース型電動機は、三相独立した固定子が軸方向に重ねられているため、中間相の磁気抵抗が他相よりも小さく、原理上三相不平衡の特性を有する。このため、電気角2次(電気角一周期あたり2周期)の磁束脈動を生じ、さらに同次数のトルク脈動を引き起こす。
 クローティース型電動機の磁束脈動やトルク脈動を低減させる技術は、特許文献1や特許文献2に開示されている。
 まず、特許文献1では、各相が軸方向に隣接されている構造上、三相アンバランスであるクローティース型電動機の磁気抵抗を、相間に非磁性体からなる磁気絶縁材を施すことによってバランスさせる技術である。クローティース型電動機の特徴として、三相独立した固定子が軸方向に隣接されていることで中間相の磁気抵抗が小さく、三相不平衡を引き起こす構造となっている。そこで、この従来技術1では、相間に磁気絶縁材を挿入することで磁気的な絶縁を施し、三相をバランスさせることで、電気角2次の磁束脈動、さらに同次数のトルク脈動を低減している。
 また、特許文献2には、あらかじめトルク脈動算出手段において、トルク脈動を算出しておき、算出したトルク脈動成分と逆位相の波形を指令値に加算し、脈動成分を低減する技術が開示されている。この従来技術2では、電動機のトルク脈動算出手段を用いて、あらかじめ脈動特性を求めておき、駆動時にトルク脈動指令に加算することで、トルク脈動を低減している。
特開2008-29142号公報 特開2006-246601号公報
 従来技術の問題点を挙げると、相間に磁気的な絶縁を施す手法では、軸方向の長さが長くなり、結果として電動機のサイズが大きくなってしまう。
 また、トルク脈動算出手段によって、あらかじめトルク脈動を算出しておき、その逆位相を指令値に加算する手法では、トルク脈動の算出が困難であることや、計測・解析作業の回数が増え、煩雑になる。
 本発明は上記の点を考慮してなされたものであり、本来必要な電流または電圧の指令値を簡単に補正し、交流電動機制御に用いることを可能とした多相交流電動機、その駆動装置および駆動方法を提供することを目的とする。
 本発明はその一面において、固定子磁極が各相毎に独立して構成された多相固定子磁極を備えた多相交流電動機と、該電動機にパルス幅変調による可変電圧・可変周波数の多相交流を印加するインバータと、前記インバータを制御する制御装置を備えた交流電動機の駆動装置において、前記制御装置は、前記固定子磁極の少なくとも1つの相に印加する交流の振幅および/または位相を、他の相に印加する交流との間で不平衡状態にする補正部を備えたことを特徴とする。
 本発明の望ましい実施態様においては、前記補正部を、前記多相交流電動機の固定子磁極の磁気抵抗の大きさが他相と異なる少なくとも1相の固定子コイルに、他相の固定子コイルと異なる振幅の交流を印加するように構成する。
 本発明を適用するに最もふさわしい多相交流電動機は、固定子コアの内側部に設けた複数の上側及び下側の爪磁極、前記上側及び下側の爪磁極間にリング状コイルを挟み込んで構成された1相分の固定子磁極、この1相分の固定子磁極を電気角で2π/m間隔でずらして軸方向に配置して構成されたm相分の固定子磁極、および前記爪磁極の内周側に所定の空隙を介して回転可能に支持された回転子を備えたクローティース型のm相交流電動機である。
 本発明の望ましい実施態様においては、前記補正部を、事前の解析又は計測の結果に基いて補正分を計算する補正分計算部の出力を入力し、その入力に応じて不平衡状態に補正するように構成される。
 本発明の他の望ましい実施態様においては、運転中に、前記インバータから前記多相交流電動機に印加される電圧を測定する電圧測定器と、この電圧測定器の出力を入力して、不平衡状態にするための指令値を演算する指令値演算部とを備えている。
 本発明において、開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
 本発明の望ましい実施態様によれば、電動機をサイズアップさせることなく、また、複雑なトルク脈動算出手段を用いることなく、制御面からのアプローチにより、脈動低減を実現できる。
 具体的な手法としては、脈動を低減するような交流を発生する指令値を単純な式で表し、制御に組み込むことにより、簡単に電気角2次の磁束脈動、さらに同次数のトルク脈動を低減することができる。
 本発明のその他の目的と特徴は、以下に述べる実施形態の中で明らかにする。
本発明による多相交流電動機の駆動装置における第1の実施形態の系統構成を示すブロック図である。 本発明による多相交流電動機の駆動装置における第2の実施形態の系統構成を示すブロック図である。 本発明による多相交流電動機の駆動装置における第3の実施形態の系統構成を示すブロック図である。 本発明による多相交流電動機の駆動装置における第4の実施形態の系統構成を示すブロック図である。 本発明による多相交流電動機の駆動装置における第5の実施形態の系統構成を示すブロック図である。 本発明の第5の実施形態を説明する処理フローチャートである。 本発明の第6の実施形態を示すクローティース電動機の固定子構造の概略を示す断面斜視図である。 本発明の第7の実施形態を示すクローティース電動機の固定子構造の概略を示す断面斜視図である。 本発明の第8の実施形態を示すクローティース電動機の固定子構造の概略を示す断面斜視図である。 クローティース型三相交流電動機のq軸電流に対するトルク脈動特性図である。 クローティース型三相交流電動機のq軸電流に対する磁束脈動位相特性図である。 クローティース型三相交流電動機のq軸電流に対するトルク脈動位相特性図である。 本発明の一実施形態によるクローティース型三相交流電動機のq軸電流に対するトルク脈動振幅の低減効果を示す特性図である。 本発明による多相交流電動機の駆動装置における第9の実施形態を示す概略構造図である。 本発明による多相交流電動機の駆動装置における第10の実施形態を示す概略構造図である。
 次に、図1~図14を参照して、本発明による交流電動機の駆動装置の実施形態を説明する。尚、以下の実施形態では、交流電動機としてクローティース型電動機を用いて説明するが、他の電動機(原理上磁気的な不平衡を引き起こすような電動機)に関しても、同様に実現可能である。
 (第1の実施形態)
 図1は、本発明による多相交流電動機の駆動装置における第1の実施形態の系統構成を示すブロック図である。第1の実施形態の駆動装置の制御部としては、電動機に流す電流の指令値を発生する電流指令発生器101と、電流指令値からパルス幅変調信号(以下、PWM信号と略)を発生する制御器100を備えている。主回路としては、PWM信号により駆動されるインバータ106と、インバータ106に直流電圧を供給するためのコンバータ107と、制御対象であるクローティース型電動機108を備えている。また、制御用の補助機器として、インバータ106がクローティース型電動機108へ供給するU,V相電流を検出するU,V相電流検出器109,110と、インバータ106の入力電圧Edcを検出する電圧検出器を備えている。
 制御装置100には、本発明により、中間相(V相)の電流値を補正するための補正部102と、補正する電流値を計算する電流補正分計算部103とを追加している。本来の制御部は、電流指令値から電動機に印加する交流印加電圧指令値を演算する電圧指令演算部104と、交流印加電圧指令値をパルス幅変調信号(以下,PWM信号と略)に変換して出力するPWM発生部105から成り立っている。
 次に、図1のドライブシステムについて、その動作を説明する。
 まず、図1の電流指令発生器101によって、U,V,W相それぞれの電流指令値が発生させられる。次に、補正部102により中間相(V相)の電流指令値が補正される。補正される電流指令値は電流補正分計算部103によって計算される。補正された中間相の電流指令値を含む三相それぞれの電流指令値から電圧指令演算部104によって電圧指令値が演算される。演算された電圧指令値はPWM発生部105によりPWM信号へと変換される。インバータ106には、コンバータ107を通して直流電圧Edcが印加されており、PWM発生部105によるPWM信号が与えられることによって、可変電圧・可変周波数の三相交流をクローティース型電動機108へ供給し、これを駆動する。ここで、U相の電流値IcuはU相電流検出器109によって検出され、W相の電流値IcwはW相電流検出器110によって検出され、電圧指令演算部104にフィードバックされ、電圧指令値演算に用いられる。
 ここで、本発明の要部である補正部102の効果について説明する。
 クローティース型電動機108では、中間相(V相)の磁気抵抗が小さく、原理上磁気的な三相不平衡となり、電気角2次の磁束脈動を生じ、同次数のトルク脈動を引き起こす。それら磁束脈動及びトルク脈動を低減するために、補正部102を設置した。中間相の電流指令補正分ΔI分だけ、電流指令値の振幅を変化させるように設定する。ΔIは、事前のシミュレーションによる解析や測定結果に基いて、電流補正分計算部103によって計算され、補正部102に与えることにより、電気角2次の磁束脈動および同次数のトルク脈動の低減を実現する。
 具体的には、次の(1)式を用いてV相電流指令値を低減する。
Figure JPOXMLDOC01-appb-M000001
 ここでは、電流基本波ベクトルがq軸方向にある場合について、(1)式を用いて電流値を低減する。(1)式に示すθdは、U相巻線軸を基準とし、その基準からd軸までの角度を示している。ここでは、クローティース型電動機特有の電気角2次の脈動を低減させるために、中間相に異なる振幅の交流を印加させる手法として説明する。数式中の「マイナスプラス」については、中間相の磁気抵抗が小さい場合に、「マイナス」を用い、逆に、中間相の磁気抵抗が大きい場合には、「プラス」を用いる。
 また、U相の磁気抵抗が異なる構造(磁気抵抗が小さい場合・大きい場合)である電動機制御の場合については、(2)式を用いる。
Figure JPOXMLDOC01-appb-M000002
 同様に、W相の磁気抵抗が異なる構造(磁気抵抗が小さい場合・大きい場合)である電動機の場合については、(3)式を用いる。
Figure JPOXMLDOC01-appb-M000003
 なお、クローティース電動機のように、各相が独立に構成される電動機の場合、各相の取り付け位置誤差によって各相の位相関係が平衡しない場合がある。その場合には、(1)~(3)式の位相を変化させることで対応できる。例えば、U相の取り付け位置が電気角でα度進んだ位相である場合、(4)式を用いることで、脈動を低減できる。
Figure JPOXMLDOC01-appb-M000004
 ここで、ΔIについては、事前のシミュレーションによる解析や測定結果に基いて、電流振幅Iの割合い、例えば百分率n[%]として、(5)式で計算すれば良い。
Figure JPOXMLDOC01-appb-M000005
 このときの百分率n[%]は、ある電流振幅Iのときの百分率で一定とする場合と、電流振幅Iの変化に伴って百分率n[%]を変化させる場合と二通りが考えられる。
 (第2の実施形態)
 図2は、本発明による多相交流電動機の駆動装置における第2の実施形態の系統構成を示すブロック図である。第2の実施形態の駆動装置の制御部は、電動機の回転子の速度を決定する速度指令値を発生させる速度指令発生器201と、d軸,q軸,および零相の電流指令値を発生させる電流指令発生器202と、指令値からPWM信号を調整する制御器200を備えている。主回路としては、インバータ208に直流電圧を供給するためのコンバータ209と、PWM信号により駆動されるインバータ208と、制御対象であるクローティース型電動機210を備えている。また、制御用の補助機器として、インバータ208が電動機210へ供給するU~W相電流を検出するU~W相電流検出器211~213と、電動機の回転子の位置を検出する位置センサ215およびインバータ入力電圧Edcを検出する電圧検出器216を備えている。
 制御器200には、本発明により、d軸電流,q軸電流,および零相電流のそれぞれを補正する補正部203と、補正する電流値を演算する電流補正分計算部204を付加している。また、本来の制御部として、それぞれの指令値からd軸,q軸,および零相における電圧指令値を演算する電圧指令演算部205と、演算された電圧指令値を三相交流軸上の値に変換するdq逆変換部206と、dq逆変換部206によって変換された電圧指令値からPWM信号を発生させるPWM発生部207と、電動機より検出したそれぞれの三相交流軸上の電流値を回転座標軸であるdc-qc軸上の成分に変換するdq座標変換部214を備えている。
 図2のドライブシステムについて、その動作を説明する。
 まず、図2の速度指令発生器201によって速度指令が発生され、電流指令発生器202によってd軸,q軸,および零相の電流指令値が発生される。発生された指令値は、補正部203を通して補正される。補正に用いられる値は、電流補正分計算部204によって計算される。補正部203によって補正された電流指令値と、速度指令値は、電圧指令演算部205によって電圧指令値に演算される。演算された電圧指令値は、dq逆変換部206により、回転座標軸の値から三相交流軸上の値へと変換される。変換された三相それぞれの電圧指令値はPWM発生部207によりPWM信号へと変換される。
 インバータ208には、コンバータ209を通して直流電圧が印加されており、PWM発生部207からPWM信号を与えることによりインバータ208が駆動され、クローティース型電動機210へ可変電圧・可変周波数の三相交流を供給する。
 U~W相の電流値は、U~W相電流検出器211~212によって検出される。この場合は、電動機がY結線ではないと仮定しているため、三相それぞれに検出器が必要である。検出された電流値はdq座標変換部214によって三相交流座標軸上の値から回転座標軸上の値へと変換される。変換されたそれぞれの電流値はフィードバックされ、電圧指令演算に用いられる。また、位置センサ215によって回転子の位置が検出され、これらはdq座標変換又はdq逆変換時の計算に用いられる。
 ここで、本発明の要部である補正部203の効果について説明する。
 クローティース型電動機210では、中間相(V相)の磁気抵抗が小さく、原理上磁気的な三相不平衡となり、電気角2次の磁束脈動を生じ、同次数のトルク脈動を引き起こす。それら磁束脈動及びトルク脈動を低減するために、補正部203を設置した。ただし、図2の場合は、図1と異なり、指令値を三相交流座標軸上の値から回転座標軸上の値に変換しているため、d軸電流指令値,q軸電流指令値,および零相電流値に、それぞれ補正計算が必要となる。その際に必要なΔIの値は、事前のシミュレーションによる解析や測定結果に基いて、電流補正分計算部204によって計算される。この計算された値を補正部203に与えることにより、電気角2次の磁束脈動および同次数のトルク脈動の低減を実現する。
 ここでは、電流基本波ベクトルがq軸方向にある場合について、(6)式を用いて電流指令値を低減する。
Figure JPOXMLDOC01-appb-M000006
 (6)式中に示すθdは、U相巻線軸を基準とし、その基準からd軸までの角度を示している。ここでは、クローティース型電動機210に特有の電気角2次の脈動を低減させるために、中間相に異なる振幅の交流を重畳させる手法について説明する。前述同様に、数式中の「マイナスプラス」については、中間相の磁気抵抗が小さい場合に、「マイナス」を用い、逆に、中間相の磁気抵抗が大きい場合には、「プラス」を用いる。
 また、U相の磁気抵抗が他相と異なる構造である電動機制御の場合については、(7)式を用いる。
Figure JPOXMLDOC01-appb-M000007
 同様に、W相の磁気抵抗が他相と異なる構造である電動機の場合については、(8)式を用いる。
Figure JPOXMLDOC01-appb-M000008
 これら(6)-(8)式による補正では、d軸,q軸,および零相のうち、d軸とq軸のうちの少なくとも一方の指令値に、電気角2次の交流を重畳しており、零相には1次の交流を重畳している。
 なお、前述したように、クローティース電動機のような各相が独立に構成される電動機の場合、各相の取り付け位置誤差によって各相の位相関係が平衡しない場合がある。その場合、電気角2次の脈動が発生するため、(4)式と同様の考え方で、(6)~(8)式中の位相を変化させることで対応できる。
 また、(6)~(8)式の場合の補正量ΔIも、(5)式と同様に計算される。
 
 (第3の実施形態)
 図3は、本発明による多相交流電動機の駆動装置における第3の実施形態の系統構成を示すブロック図である。第3の実施形態の駆動装置の制御部は、d軸,q軸の電流指令値を発生させる電流指令発生器301と、速度指令値を発生させる速度指令発生器302と、指令値からPWM信号を調整する制御器300を備えている。主回路としては、インバータ308に直流電圧を供給するためのコンバータ309と、PWM信号により駆動されるインバータ308と、制御対象であるクローティース型電動機310を備えている。また、制御用の補助機器として、インバータ308が電動機310へ供給するU,W相電流を検出するU,W相電流検出器311,312と、回転している電動機の位置を検出する位置センサ314およびインバータ入力電圧Edcを検出する電圧検出器315を備えている。
 制御器300には、本発明により、q軸電流指令値を補正する補正部303と、その補正器に重畳させる電流補正分を計算する電流補正分計算部304を付加している。また、本来の制御部として、d軸,q軸の電流指令値と速度指令値から電圧指令値を演算する電圧指令演算部305と、d軸,q軸の電圧指令値を三相交流座標軸上の値に変換するdq逆変換部306と、電圧指令値からPWM信号を発生させるPWM発生部307と、電動機より検出したそれぞれの電流値を回転座標軸上の値に変換するdq座標変換部313を備えている。
 図3のドライブシステムについて、その動作を説明する。
 まず、図3のd軸電流指令発生器301によって、d軸,q軸の電流指令値が発生され、速度指令発生器302によって速度指令値が発生される。補正部303によって、q軸電流指令値が補正される。補正に用いる値は、電流補正分計算部304によって計算される。それぞれの電流指令値と速度指令値は、電圧指令演算部305によって電圧指令値に演算され、演算された電圧指令値は、dq逆変換部306によって回転座標軸上の値から三相交流座標軸上の値に変換される。変換された三相それぞれの電圧指令値は、PWM発生部307によりPWM信号へと変換される。
 インバータ308には、コンバータ309を通して直流電圧が印加されており、PWM発生部307からPWM信号を与えることによりインバータ308が駆動され、クローティース型電動機310へ可変電圧・可変周波数の三相交流を供給する。
 ここで、U相の電流値はU相電流検出器311によって検出され、W相の電流値はW相電流検出器312によって検出される。電動機がY結線の場合、三相のうち二つの電流が検出できれば残り一つは計算可能なので、三つめの検出器は必要ない。さらに、検出された三相電流はdq座標変換部313によって三相交流座標軸上の値から回転座標軸上の値へと変換される。変換されたd軸,q軸の電流値はフィードバックされ、電圧指令演算に用いられる。また、位置センサ314によって回転子の位置が検出され、これらはdq座標変換又はdq逆変換時の計算に用いられる。
 ここで、本発明の要部である補正部303の効果について説明する。
 クローティース型回転機310では、中間相(V相)の磁気抵抗が小さく、原理上磁気的な三相不平衡となり、電気角2次の磁束脈動を生じ、同次数のトルク脈動を引き起こす。それら磁束脈動及びトルク脈動を低減するために、補正部303を設置した。ただし、図3の場合は、図2と同様に、回転座標軸上の値に変換しているため、d軸電流指令値,q軸電流指令値,および零相電流値を補正する必要がある。しかし、実際には、制御を複雑化したくない場合、d軸電流を0に制御すれば、電動機の結線がY結線であるため零相電流は0であることから、補正する電流指令値はq軸電流指令値のみでよいことになる。その際に必要なΔIqの値は、事前のシミュレーションによる解析や測定結果に基いて、電流補正分計算部304によって計算される。この計算された値を補正部303に与えることにより、電気角2次の磁束脈動および同次数のトルク脈動の低減を実現する。
 ここでは、電流基本波ベクトルがq軸方向にある場合について、(9)式を用いて電流値を低減する。
Figure JPOXMLDOC01-appb-M000009
 (9)式中に示すθdは、U相巻線軸を基準とし、その基準からd軸までの角度を示している。ここでは、クローティース型電動機310に特有の電気角2次の脈動を低減させるために、中間相電流に異なる振幅の指令値を重畳させる手法について説明する。しかし、前述同様に、数式中の「マイナスプラス」については、中間相の磁気抵抗が小さい場合に、「マイナス」を用い、逆に、中間相の磁気抵抗が大きい場合には、「プラス」を用いる。
 また、U相の磁気抵抗が他相と異なる構造である電動機制御の場合については、(10)式を用いる。
Figure JPOXMLDOC01-appb-M000010
 同様に、W相の磁気抵抗が他相と異なる構造である電動機の場合については、(11)式を用いる。
Figure JPOXMLDOC01-appb-M000011
 なお、クローティース電動機のような各相が独立に構成される電動機の場合、各相の取り付け位置誤差によって各相の位相関係が平衡しない場合がある。その場合も電気角2次の脈動が発生するため、(9)~(11)式中の位相を、(4)式に倣って変化させることで対応できる。
 また、この場合の補正量Δiも、(5)式と同様に、(12)式を用いて算出される。
Figure JPOXMLDOC01-appb-M000012
 次に、図10~図13を用いて、制御の結果を説明する。
 図10~図13は中間相の磁気抵抗が小さいクローティース型電動機を対象としたシミュレーション結果である。
 ここで、実際に生じるトルク脈動振幅は、図10に示すように、q軸電流の大きさによって増加する傾向にある。しかし、図11,図12に示すように、2次の磁束脈動及びトルク脈動は、q軸電流の大きさによっては位相が変化せず、概ね一定であると言える。そこで、決まった位相で電気角2次の交流を重畳することによって、2次の磁束脈動及び同次数のトルク脈動を低減できる。
 図13は、(12)式を用いて、脈動低減補正を行った結果のシミュレーションデータを示している。
 図に破線で示す結果が脈動低減補正を行う前であり、実線で示す結果が脈動低減補正を行った後の結果である。図13から、2次の脈動振幅を十分に低減できると言える。
 また、q軸電流Iqが大きな領域でのトルク脈動を低減したい場合には、(5)式や(12)式におけるnの値を電流指令iqの大きさに応じて増大させるようにすれば、大きなq軸電流領域においても、所望のトルク脈動の低減を図ることができる。
 (第4の実施形態)
 図4は、本発明による多相交流電動機の駆動装置における第4の実施形態の系統構成を示すブロック図である。
 第4の実施形態の駆動装置の制御部は、電圧指令値を演算するための指令値を発生する指令値発生器401と、指令値からPWM信号を調整する制御器400を備えている。
 主回路としては、インバータ406に直流電圧を印加するためのコンバータ407と、PWM信号により駆動されるインバータ406と、制御対象であるクローティース型電動機408を備えている。
 また、制御用の補助機器として、インバータ406が電動機408へ供給するU相電流を検出するU,W相電流検出器409,410およびインバータ入力電圧Edcを検出する電圧検出器411を備えている。
 制御器400には、まず本来の、指令値から電圧指令値を演算する電圧指令演算部402と、電圧指令値からPWM信号を発生させるPWM発生部405を備えている。また、本発明により、中間相(V相)電圧指令値を補正するための補正部403と、補正に用いる値を計算する電圧補正分計算部404とを付加している。
 図4のドライブシステムについて、その動作を説明する。
 まず、図4の指令値発生器401によって、電圧指令値を演算するための指令値を発生する。発生された指令値は、電圧指令演算部402によって電圧指令値に演算される。そのうち、中間相(V相)の電圧指令値は補正部403によって補正される。補正に用いる値は電圧補正分計算部404によって計算される。三相それぞれの電圧指令値は、PWM発生部405によりPWM信号へと変換される。
 インバータ406には、コンバータ407を通して直流電圧が印加されており、PWM発生部405からPWM信号を与えることによりインバータ406が駆動され、クローティース型電動機408へ可変電圧・可変周波数の三相交流を供給する。
 ここで、U相の電流値はU相電流検出器409によって検出され、W相の電流値はW相電流検出器410によって検出される。前述同様、電動機がY結線の場合、三相のうち二相分の電流が検出できれば残り一相は計算でき、それぞれの検出電流値は電圧指令演算部にフィードバックされ、電圧指令値演算に用いられる。
 ここで、本発明の要部である補正部403の効果について説明する。
 クローティース型電動機408では、中間相(V相)の磁気抵抗が小さく、原理上磁気的な三相不平衡となり、電気角2次の磁束脈動を生じ、同次数のトルク脈動を引き起こす。それら磁束脈動及びトルク脈動を低減するために、補正部403を設置した。ただし、図4の場合は、これまでの実施形態のように、電流指令値を補正するのではなく、電動機408に印加するインバータ406の出力電圧に対する電圧指令値の振幅を補正するものである。
 その際に必要な電圧補正量は、事前のシミュレーションによる解析や測定結果に基いて、電圧補正分計算部404によって計算される。この計算された値を補正部403に与えることにより、電気角2次の磁束脈動および同次数のトルク脈動の低減を実現する。
 (第5の実施形態)
 図5は、本発明による多相交流電動機の駆動装置における第5の実施形態の系統構成を示すブロック図である。
 第5の実施形態の駆動装置の制御部は、電動機を駆動するための電流指令値を発生させる電流指令発生器501と、指令値からPWM信号を調整する制御器500を備えている。
 主回路としては、PWM信号により駆動されるインバータ505と、インバータ505に直流電圧を供給するためのコンバータ506と、制御対象であるクローティース型電動機507を備えている。
 また、制御用の補助機器として、インバータ505が電動機に供給するU~W相電圧を検出するU~W相電圧検出器508~510およびインバータ入力電圧Edcを検出する電圧検出器511を備えている。
 制御器500には、まず、本来の電流指令値から電圧指令値を演算する電圧指令演算部503と、電圧指令値からPWM信号を発生させるPWM発生部504を備えている。
 ここで、本発明により、電流指令値のうち中間相(V相)電流を補正するための補正部502と、補正部502に用いる補正値を、運転中に演算する補正電流指令値演算部511とを付加している。
 図5のドライブシステムについて、その動作を説明する。
 まず、図5の電流指令発生器501によって、三相それぞれの電流指令値を発生する。発生した電流指令値のうち、中間相(V相)電流が補正部502によって補正される。
 この実施形態では、これまでの実施形態とは異なり、補正に用いられる値は、運転中に補正電流指令値演算部511によって計算される。補正電流指令値演算部511は、インバータ505が電動機507に印加しているU~W相電圧を検出するU~W相電圧検出器508~510の出力Vcu~Vcwを入力し、必要な電流補正量を演算する。検出電圧と必要な電流補正量との関係は、事前のシミュレーションによる解析や測定結果に基いて、補正電流指令値演算部511に予め設定される。
 三相それぞれの電流指令値は、電圧指令演算部503によって電圧指令値に演算される。演算された電圧指令値は、PWM発生部504によってPWM信号へと変換される。
 インバータ505には、コンバータ506を通して直流電圧が印加されており、PWM発生部504からPWM信号を与えることにより、インバータ505が駆動され、クローティース型電動機507へ可変電圧・可変周波数の三相交流を供給する。
 ここで、図6を用いて、本発明の要部である補正部502の効果について説明する。
 図6は、本発明の第5の実施形態を説明する処理フローチャートである。
 クローティース型電動機507では、中間相(V相)の磁気抵抗が小さく、原理上磁気的な三相不平衡となり、電気角2次の磁束脈動を生じ、同次数のトルク脈動を引き起こす。それら磁束脈動及びトルク脈動を低減するために、補正部502を設置した。図6に示すように、まず、ステップ601で、任意の電流で電動機を駆動し、一定時間後、ステップ602で電圧を0にする。電圧を0にした後、空運転状態でU~W相電圧検出器508~510を用いてステップ603により電圧値から誘起電圧を演算する。さらに、ステップ604では、演算した誘起電圧から、補正電流指令値演算部511によって振幅補正する電流指令値が演算される。演算された電流指令値を補正部502に取り込むことにより、ステップ605の通常運転モードにおいて、電動機のトルク脈動を低減することができる。
 一方、ステップ610において、通常運転状態で、ステップ611で補正した電流で電動機を駆動しながら、ステップ612で誘起電圧を演算し、ステップ612で補正電流を演算しながら、随時更新していくモードのどちらにも対応できる。
 (第6の実施形態)
 図7は、本発明の第6の実施形態を示すクローティース電動機の固定子構造の概略を示す断面斜視図である。第6の実施形態は、これまで、制御対象の例として挙げてきた、クローティース電動機の構造面から見た脈動低減手法に関する実施形態である。
 図7において、U相上側の爪磁極701aと、U相下側の爪磁極701bを互いの爪が隣り合わせになるように合わせてU相固定子701が構成されている。この構造は、前記特許文献の図4に示された分解斜視図とほぼ同じ構造である。また、V相およびW相も同様の構造であり、電気角2π/3づつ回転方向にずらして重ね合わせて、三相の固定子磁極を形成している。すなわち、V相は、その上側の爪磁極702aと、V相下側の爪磁極702bをU相と同じように構成し、U相固定子701から周方向に電気角2π/3ずらし、軸方向に重ね合わせたV相固定子702である。また、W相は、その上側の爪磁極703aと、W相下側の爪磁極703bをU相,V相と同じように構成し、V相固定子701から周方向に電気角2π/3ずらし、軸方向に重ね合わせたW相固定子703である。さらに、U相固定子701に周方向に施したU相巻線704と、V相固定子に周方向に施したV相巻線705と、W相固定子に周方向に施したW相巻線706とを備えている。
 クローティース型電動機は、このような構造となっているため、空気に面していないV相固定子702の磁気抵抗が小さくなってしまう。このため、原理上、三相不平衡の特性をもたらし、磁束脈動やトルク脈動を引き起こす。そこで、V相コア702における材料として、他相よりも透磁率の低い材料を用いて磁気抵抗を増大させる。
 これにより、実施形態1~5と同じ効果をもたらすことができる。
 (第7の実施形態)
 図8は、本発明の第7の実施形態を示すクローティース電動機の固定子構造の概略を示す断面斜視図である。第7の実施形態も、図7で説明した第6の実施形態と同様に、クローティース電動機の構造面から見た脈動低減手法に関する実施形態である。
 第7の実施形態は、V相コア802における軸方向寸法を短くすることで、磁気抵抗の大きさ増大させ、実施形態1~5と同じ効果をもたらすことができる。
 (第8の実施形態)
 図9は、本発明の第8の実施形態を示すクローティース電動機の固定子構造の概略を示す断面斜視図である。第8の実施形態も、図7および図8で説明した第6および第7の実施形態と同様に、クローティース電動機の構造面から見た脈動低減手法に関する実施形態である。
 第8の実施形態は、V相コアのコイル905の巻数を、U相コイル904やW相コイル906に比べて少なくすることで、三相の発生磁束を均一化し、実施形態1~5と同じ効果をもたらすことができる。
 (第9の実施形態)
 図14は、本発明による多相交流電動機の駆動装置における第9の実施形態を示す概略構造図である。
 図14のシステムは、三相交流電動機1401,電動機1401の筐体1402,制御装置1403および、電動機1401と制御装置1403を接続する配線1404で構成されている。電動機1401は、固定子1405,回転子1406,コイル1407,および出力軸1408から成り、制御装置1403から配線1404を通して電動機1401に交流電圧が供給される。供給された電圧により、コイル1407に交流電流が流れ、固定子1405に回転磁界が発生し、その回転磁界に同期して回転子1406が回転し、出力軸1408に回転力が発生する。
 (第10の実施形態)
 図15は、本発明による多相交流電動機の駆動装置における第10の実施形態を示す概略構造図である。
 図15のシステムは、多相交流電動機1501,電動機1501の筐体1502,および筐体1502内に一体的に収納された制御装置1503から構成されている。電動機1501は、固定子1504,回転子1505,コイル1506,および出力軸1507から成る。
 制御装置1503からコイル1506へ交流電圧が供給されることにより、コイル1506に交流電流が流れ、固定子1504に回転磁界が発生し、その回転磁界に同期して回転子1505が回転し、出力軸1507を通して被駆動物体へと回転力が供給される。
 この実施形態を要約すると次の通りである。まず、多相交流電動機1501は、これまでの実施形態で詳述したように、固定子コアの内側部に設けた複数の上側及び下側の爪磁極、前記上側及び下側の爪磁極間にリング状コイルを挟み込んで構成された1相分の固定子磁極、この1相分の固定子磁極を回転方向に電気角で2π/m間隔づつずらしながら、軸方向にm相分を重ねて配置したm相の固定子磁極を備えている。そして、前記爪磁極の内周側に所定の空隙を介して回転可能に支持された回転子1505を備えたクローティース型の多相交流電動機である。また、前記多相交流電動機1501の筐体1502内に一体的に収納され、前記多相交流電動機にパルス幅変調による可変電圧・可変周波数の多相交流を印加するインバータと、前記固定子磁極の少なくとも1つの相に印加する交流の振幅を、他の相に印加する交流との間で不平衡状態にする補正部を含んで前記インバータを制御する制御装置1503とを備えている。
 このシステムでは、電動機1501と制御装置1503をつなぐ配線がなく、一体形成されているため、配線によって生じるノイズがなくなり、配線を施すためのスペースを必要としない。
 100~500…制御器、101,202,301,501…電流指令発生器、102,203,303,403,502…補正部、103,204,304…電流補正分計算部、104,205,305,402,503…電圧指令演算部、105,207,307,405,504…PWM発生部、106,208,308,406,505…インバータ、107,209,309,407,506…コンバータ、108,210,310,408,507…電動機(クローティース型回転電機)、109,211,311,409,508…U相電流検出器、212…V相電流検出器、508…U相電圧検出器、509…V相電圧検出器、510…W相電圧検出器、110,213,312,410…W相電流検出器、201,302…速度指令発生器、206,306…dq逆変換部(座標対応値変換器:二相回転座標系→三相固定座標系)、214,313…dq座標変換部(座標対応値変換器:三相固定座標系→二相回転座標系)、215,314…回転子位置センサ、401…指令値発生器、404…電圧補正分計算部、511…補正電流指令値演算部、701,801,901…クローティース型電動機U相コア、701a,801a,901a…クローティース型電動機U相上側爪磁極、701b,801b,901b…クローティース型電動機U相下側爪磁極、702,802,902…クローティース型電動機V相コア、702a,802a,902a…クローティース型電動機V相上側爪磁極、702b,802b,902b…クローティース型電動機V相下側爪磁極、703,803,903…クローティース型電動機W相コア、703a,803a,903a…クローティース型電動機W相上側爪磁極、703b,803b,903b…クローティース型電動機W相下側爪磁極、704,804,904…クローティース型電動機U相コイル、705,805,905…クローティース型電動機V相コイル、706,806,906…クローティース型電動機W相コイル。

Claims (18)

  1.  固定子磁極が各相毎に独立して構成された多相固定子磁極を備えた多相交流電動機と、該電動機にパルス幅変調による可変電圧・可変周波数の多相交流を印加するインバータと、前記インバータを制御する制御装置を備えた交流電動機の駆動装置において、
     前記制御装置は、前記固定子磁極の少なくとも1つの相に印加する交流の振幅および/または位相を、他の相に印加する交流との間で不平衡状態にする補正部を備えたことを特徴とする交流電動機の駆動装置。
  2.  請求項1において、前記補正部を、前記多相交流電動機の固定子磁極の磁気抵抗の大きさが他相と異なる少なくとも1相の固定子コイルに、他相の固定子コイルと異なる振幅の交流を印加するように構成したことを特徴とする交流電動機の駆動装置。
  3.  請求項1または2において、前記多相交流電動機は、
     固定子コアの内側部に設けた複数の上側及び下側の爪磁極、
     前記上側及び下側の爪磁極間にリング状コイルを挟み込んで構成された1相分の固定子磁極、
     この1相分の固定子磁極を電気角で2π/m間隔でずらして軸方向に配置して構成されたm相分の固定子磁極、および
     前記爪磁極の内周側に所定の空隙を介して回転可能に支持された回転子を備えたクローティース型のm相交流電動機であることを特徴とする交流電動機の駆動装置。
  4.  請求項1~3のいずれかにおいて、前記補正部を、前記多相交流電動機の固定子磁極の取り付け位置が他相と不平衡である少なくとも1相の固定子コイルに、他相の固定子コイルとは不平衡な位相の交流を印加するように構成したことを特徴とする交流電動機の駆動装置。
  5.  請求項1~4のいずれかにおいて、前記補正部を、前記多相交流電動機の回転座標系におけるd軸,q軸の電流または電圧指令値のうち、少なくとも1つの指令値に、電気角2次の交流を重畳するように構成したことを特徴とする交流電動機の駆動装置。
  6.  請求項1~4のいずれかにおいて、前記補正部を、前記多相交流電動機の回転座標系における零相の電流または電圧指令値に、電気角1次の交流を重畳するように構成したことを特徴とする交流電動機の駆動装置。
  7.  請求項1~6のいずれかにおいて、前記補正部を、事前の解析又は計測の結果に基いて補正分を計算する補正分計算部の出力を入力し、その入力に応じて不平衡状態に補正するように構成したことを特徴とする交流電動機の駆動装置。
  8.  請求項1~7のいずれかにおいて、前記多相交流電動機の回転中に誘起される電圧を測定する電圧測定器と、この電圧測定器の出力を入力して、不平衡状態にするための指令値を演算する指令値演算部とを備えたことを特徴とする交流電動機の駆動装置。
  9.  請求項1~8のいずれかにおいて、前記補正部は、前記固定子磁極の少なくとも1つの相に印加する交流の振幅を、その指令値の大きさに係らず、実質的に指令値の一定の割合いだけ補正するように構成されていることを特徴とする交流電動機の駆動装置。
  10.  請求項1~8のいずれかにおいて、前記補正部は、前記固定子磁極の少なくとも1つの相に印加する交流の振幅を、その指令値に対し、その指令値の大きさに応じて変化する割合いだけ補正するように構成されていることを特徴とする交流電動機の駆動装置。
  11.  固定子磁極が各相毎に独立して構成された多相固定子磁極を備えた多相交流電動機に、インバータからパルス幅変調による可変電圧・可変周波数の多相交流を印加する交流電動機の駆動方法において、
     前記固定子磁極の少なくとも1つの相に印加する交流の振幅および/または位相を、他の相に印加する交流との間で不平衡状態にする補正ステップを備えたことを特徴とする交流電動機の駆動方法。
  12.  請求項11において、事前の解析又は計測の結果に基いて、補正分を計算する補正分計算ステップと、計算したその補正分に応じて前記不平衡状態に補正するステップとを備えたことを特徴とする交流電動機の駆動方法。
  13.  請求項11において、運転中に、前記インバータから前記多相交流電動機に印加される電圧を測定するステップと、この電圧測定の結果を入力し、前記不平衡状態にするための指令値を演算する指令値演算ステップとを備えたことを特徴とする交流電動機の駆動方法。
  14.  固定子コアの内側部に設けた複数の上側及び下側の爪磁極、
     前記上側及び下側の爪磁極間にリング状コイルを挟み込んで構成された1相分の固定子磁極、
     この1相分の固定子磁極を回転方向に電気角で2π/m間隔づつずらしながら、軸方向にm相分を重ねて配置したm相の固定子磁極、および
     前記爪磁極の内周側に所定の空隙を介して回転可能に支持された回転子を備えたクローティース型の多相交流電動機において、
     前記m相分の磁極のうち、軸方向中間部に位置する中間相磁極の磁気抵抗を増大させる手段を備えたことを特徴とする多相交流電動機。
  15.  請求項14において、前記中間相磁極のコアを、前記軸端相磁極のコアに比べて透磁率の低い材料で形成したことを特徴とする多相交流電動機。
  16.  請求項14において、前記中間相磁極のコアの軸方向寸法を、前記軸端相磁極のコアの軸方向寸法に比べて短くしたことを特徴とする多相交流電動機。
  17.  固定子コアの内側部に設けた複数の上側及び下側の爪磁極、
     前記上側及び下側の爪磁極間にリング状コイルを挟み込んで構成された1相分の固定子磁極、
     この1相分の固定子磁極を回転方向に電気角で2π/m間隔づつずらしながら、軸方向にm相分を重ねて配置したm相の固定子磁極、および
     前記爪磁極の内周側に所定の空隙を介して回転可能に支持された回転子を備えたクローティース型の多相交流電動機において、
     前記m相分の磁極のうち、軸方向中間部に位置する中間相の磁極に巻かれた前記リング状コイルの巻数を、軸端部に位置する軸端相の磁極に巻かれた前記リング状コイルの巻数に比べて少くしたことを特徴とする多相交流電動機。
  18.  固定子コアの内側部に設けた複数の上側及び下側の爪磁極、
     前記上側及び下側の爪磁極間にリング状コイルを挟み込んで構成された1相分の固定子磁極、
     この1相分の固定子磁極を回転方向に電気角で2π/m間隔づつずらしながら、軸方向にm相分を重ねて配置したm相の固定子磁極、および
     前記爪磁極の内周側に所定の空隙を介して回転可能に支持された回転子を備えたクローティース型の多相交流電動機と、
     前記多相交流電動機のケーシング内に一体的に収納され、前記多相交流電動機にパルス幅変調による可変電圧・可変周波数の多相交流を印加するインバータと、前記固定子磁極の少なくとも1つの相に印加する交流の振幅を、他の相に印加する交流との間で不平衡状態にする補正部を含んで前記インバータを制御する制御装置とを備えたことを特徴とする多相交流電動機の駆動装置。
PCT/JP2009/001762 2009-04-16 2009-04-16 多相交流電動機、その駆動装置および駆動方法 WO2010119483A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980158720.8A CN102396149B (zh) 2009-04-16 2009-04-16 多相交流电动机、其驱动装置以及驱动方法
PCT/JP2009/001762 WO2010119483A1 (ja) 2009-04-16 2009-04-16 多相交流電動機、その駆動装置および駆動方法
JP2011509090A JP5358679B2 (ja) 2009-04-16 2009-04-16 三相交流電動機の駆動装置、駆動方法、三相交流電動機、および制御装置
US13/264,076 US8664902B2 (en) 2009-04-16 2009-04-16 Polyphase AC motor, driving device and driving method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001762 WO2010119483A1 (ja) 2009-04-16 2009-04-16 多相交流電動機、その駆動装置および駆動方法

Publications (1)

Publication Number Publication Date
WO2010119483A1 true WO2010119483A1 (ja) 2010-10-21

Family

ID=42982168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001762 WO2010119483A1 (ja) 2009-04-16 2009-04-16 多相交流電動機、その駆動装置および駆動方法

Country Status (4)

Country Link
US (1) US8664902B2 (ja)
JP (1) JP5358679B2 (ja)
CN (1) CN102396149B (ja)
WO (1) WO2010119483A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109777A (ja) * 2013-12-05 2015-06-11 シンフォニアテクノロジー株式会社 モータ制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772843B2 (ja) * 2013-02-08 2015-09-02 株式会社デンソー 交流電動機の制御装置
CN103269196B (zh) * 2013-06-14 2015-11-18 中国船舶重工集团公司第七一二研究所 一种抑制五相电机输出电流不平衡的方法
CN108138762B (zh) * 2015-09-11 2019-08-02 日立江森自控空调有限公司 具备压缩机的故障预知、检测单元的空调机及其故障预知、检测方法
WO2019093300A1 (ja) * 2017-11-09 2019-05-16 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
CN113037172B (zh) * 2021-04-30 2022-03-18 华中科技大学 多相永磁同步电机的转子初始位置角检测方法及检测装置
JP2023007592A (ja) * 2021-07-02 2023-01-19 トヨタ自動車株式会社 モータ制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157685A (ja) * 1986-12-22 1988-06-30 Hitachi Ltd 交流電動機の制御装置
JPH02136096A (ja) * 1988-11-15 1990-05-24 Fuji Electric Co Ltd 巻線形三相誘導電動機の運転方式
JPH10191677A (ja) * 1996-12-25 1998-07-21 Toshiba Corp 交流電動機速度制御装置
JP2001037282A (ja) * 1999-07-15 2001-02-09 Toyota Motor Corp 多相交流モータの電気制御装置
JP2008029142A (ja) * 2006-07-24 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd クローティース型回転電機、および、固定子製造方法
JP2008148397A (ja) * 2006-12-07 2008-06-26 Hitachi Ltd 回転電機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219014A4 (en) * 1999-09-16 2007-08-15 Delphi Tech Inc METHOD FOR MINIMALLY REDUCING THE TORQUE OF THE MOTOR TORQUE DUE TO IMBALANCES
JP3888272B2 (ja) * 2002-09-25 2007-02-28 株式会社日立製作所 交流電動機の制御装置及び半導体装置
JP4552466B2 (ja) * 2004-03-12 2010-09-29 株式会社日立製作所 交流モータの制御装置,2チップインバータ及びワンチップインバータ。
JP4615333B2 (ja) 2005-03-03 2011-01-19 日立オートモティブシステムズ株式会社 パワーステアリング装置
WO2006118219A1 (ja) * 2005-04-28 2006-11-09 Denso Corporation モータ及びその制御装置
JP4968089B2 (ja) * 2008-01-28 2012-07-04 アイシン・エィ・ダブリュ株式会社 電動機制御装置および駆動装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157685A (ja) * 1986-12-22 1988-06-30 Hitachi Ltd 交流電動機の制御装置
JPH02136096A (ja) * 1988-11-15 1990-05-24 Fuji Electric Co Ltd 巻線形三相誘導電動機の運転方式
JPH10191677A (ja) * 1996-12-25 1998-07-21 Toshiba Corp 交流電動機速度制御装置
JP2001037282A (ja) * 1999-07-15 2001-02-09 Toyota Motor Corp 多相交流モータの電気制御装置
JP2008029142A (ja) * 2006-07-24 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd クローティース型回転電機、および、固定子製造方法
JP2008148397A (ja) * 2006-12-07 2008-06-26 Hitachi Ltd 回転電機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109777A (ja) * 2013-12-05 2015-06-11 シンフォニアテクノロジー株式会社 モータ制御装置

Also Published As

Publication number Publication date
CN102396149B (zh) 2014-09-17
CN102396149A (zh) 2012-03-28
US8664902B2 (en) 2014-03-04
JP5358679B2 (ja) 2013-12-04
US20120038301A1 (en) 2012-02-16
JPWO2010119483A1 (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4909797B2 (ja) モータ制御装置
US9819289B2 (en) Control apparatus for rotating electric machine
JP5358679B2 (ja) 三相交流電動機の駆動装置、駆動方法、三相交流電動機、および制御装置
EP1876702B1 (en) Motor control device
KR101046802B1 (ko) 교류 회전기의 제어 장치 및 이 제어 장치를 사용한 교류회전기의 전기적 정수 측정 방법
JP6529614B2 (ja) 電力変換装置
JP2007300780A (ja) 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム
JP6536479B2 (ja) 回転機の制御装置
JP6657418B2 (ja) 電流整形による最適なトルクリプル低減
JP2015507910A (ja) 電気モーター又は発電機
US11152875B2 (en) Multigroup-multiphase rotary electrical machine control device and multigroup-multiphase rotary electrical machine drive device
JP2017139945A (ja) 回転電機の制御装置
JP2018093695A (ja) モータとその制御装置
JP6536473B2 (ja) 回転電機の制御装置
JP4811145B2 (ja) 多相電動機の回転角検出装置
JP4397889B2 (ja) 同期電動機の磁極位置推定装置
CN114977945A (zh) 马达控制装置
JPH10191677A (ja) 交流電動機速度制御装置
WO2019026145A1 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP6848680B2 (ja) 同期電動機の制御装置
JP5671920B2 (ja) モータ駆動装置
JP7321385B2 (ja) 回転機の制御装置
JP7186846B1 (ja) 角度検出装置及び交流回転機の制御システム
JP2005039891A (ja) 同期機の制御装置
WO2022201344A1 (ja) 磁気ギャップ長推定装置、磁気ギャップ長推定方法および回転電機の駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158720.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011509090

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13264076

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843265

Country of ref document: EP

Kind code of ref document: A1