WO2010118697A1 - 电磁笔、电磁信号发射方法和处理方法、装置及设备 - Google Patents

电磁笔、电磁信号发射方法和处理方法、装置及设备 Download PDF

Info

Publication number
WO2010118697A1
WO2010118697A1 PCT/CN2010/071810 CN2010071810W WO2010118697A1 WO 2010118697 A1 WO2010118697 A1 WO 2010118697A1 CN 2010071810 W CN2010071810 W CN 2010071810W WO 2010118697 A1 WO2010118697 A1 WO 2010118697A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
electromagnetic
frequency
electromagnetic signal
input
Prior art date
Application number
PCT/CN2010/071810
Other languages
English (en)
French (fr)
Inventor
魏江力
施宣明
Original Assignee
台均科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41123026&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010118697(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 台均科技(深圳)有限公司 filed Critical 台均科技(深圳)有限公司
Priority to JP2012505038A priority Critical patent/JP2012524308A/ja
Priority to KR1020117027061A priority patent/KR101325183B1/ko
Publication of WO2010118697A1 publication Critical patent/WO2010118697A1/zh
Priority to US13/274,923 priority patent/US8773404B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus

Definitions

  • Electromagnetic pen electromagnetic signal transmitting method and processing method, device and device
  • the invention relates to an electromagnetic induction input technology, in particular to an electromagnetic pen, an electromagnetic signal transmitting method and a processing method, device and device. Background technique
  • Touch screen technology has become one of the most convenient input technologies for human-computer interaction.
  • the main touch screen technologies are mainly the following: resistive, capacitive, infrared and inductive.
  • the handwriting input of the inductive touch screen is completed by a touch pen, an antenna array board, and a corresponding identification processing circuit.
  • the touch pen also known as an electromagnetic pen, is equipped with an inductor-capacitor (LC) oscillator for transmitting a fixed frequency electromagnetic signal.
  • the display panel is overlapped with the antenna array board.
  • the antenna array is composed of a plurality of antennas covering the entire display panel, and has at least two layers for detecting coordinate positions in the horizontal direction and the vertical direction, respectively.
  • the electromagnetic signal in the electromagnetic pen causes some antennas of the antenna array plate to resonate to generate an oscillating wave of the same frequency, and analyzes the amplitude and frequency of the oscillating wave to calculate the coordinates of the electromagnetic pen relative to the display panel. position.
  • a passive input pen using LC resonance is proposed in U.S. Patent Application Serial No. 6,693,231, which is based on the principle of electromagnetic induction.
  • the object of the present invention is to provide an electromagnetic pen, an electromagnetic signal transmitting method and a processing method, device and device, which enrich the function of electromagnetic induction input, and improve the controllability and convenience of handwriting input.
  • an electromagnetic pen comprising:
  • a reference inductor and a reference capacitor disposed in the electromagnetic pen housing and connected in parallel for transmitting an electromagnetic signal of a handwriting frequency
  • At least one control capacitor in parallel with the reference capacitor
  • the control capacitor is connected in series with a control switch, and the closing or opening of the control switch is used to connect or disconnect the connection of the control capacitor and the reference capacitor, thereby transmitting an electromagnetic signal of a control frequency.
  • the present invention also provides an electromagnetic signal transmitting method, comprising: an electromagnetic pen transmitting an electromagnetic signal of a handwritten frequency by means of a reference inductor and a reference capacitor connected in parallel;
  • the electromagnetic pen emits an electromagnetic signal that controls the frequency.
  • the present invention further provides an electromagnetic signal processing apparatus, including: a receiving and identifying module, configured to receive an electromagnetic signal emitted by an electromagnetic pen through an antenna array, and identify a frequency of the electromagnetic signal;
  • a handwriting input module configured to input a handwritten symbol when the frequency of the electromagnetic signal is recognized within a range of handwritten frequencies
  • a control input module configured to input a control symbol when the frequency of the electromagnetic signal is recognized to be within a range of the control frequency.
  • the present invention also provides an electromagnetic signal processing method, including: receiving an electromagnetic signal through an antenna array, and identifying a frequency of the electromagnetic signal;
  • the present invention further provides an electromagnetic induction device including the electromagnetic pen of the present invention and the electromagnetic signal processing device of the present invention, further comprising an antenna array, a display panel and a control processor; the antenna array and the electromagnetic signal
  • the processing device is connected to receive the electricity emitted by the electromagnetic pen
  • the magnetic signal is transmitted to the electromagnetic signal processing device for identification; the electromagnetic signal processing device is coupled to the control processor for inputting the recognized handwritten symbol or control symbol to the control processor.
  • the present invention uses an electromagnetic pen to emit electromagnetic signals of different frequencies to switch the technical means of inputting handwritten symbols and control symbols, thereby achieving the effect of using the electromagnetic pen for quick control, and enriching the input of the electromagnetic induction input technology.
  • Mode rich input function.
  • FIG. 1 is a circuit schematic diagram of an electromagnetic pen according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of an electromagnetic pen according to a first embodiment of the present invention
  • FIG. 3 is a circuit schematic diagram of an electromagnetic pen according to a second embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for transmitting electromagnetic signals according to a third embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an electromagnetic signal processing device according to a fourth embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an electromagnetic signal processing apparatus according to a sixth embodiment of the present invention
  • FIG. 8 is a flowchart of a method for processing electromagnetic signals according to a seventh embodiment of the present invention
  • FIG. 10 is a flowchart of a method for processing electromagnetic signals according to a ninth embodiment of the present invention.
  • FIG. 1 is a circuit schematic diagram of an electromagnetic pen according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of an electromagnetic pen according to a first embodiment of the present invention.
  • the electromagnetic pen comprises: a reference inductor L1 and a reference capacitor C1 disposed in the electromagnetic pen housing and connected in parallel for transmitting an electromagnetic signal of a handwritten frequency, which can be input according to a sliding track of the electromagnetic pen Handwritten symbol.
  • Handwriting Frequency which is the frequency used by the electromagnetic pen to input handwritten symbols.
  • the reference inductor L1 and the reference capacitor C1 are connected to the power supply circuit of the power supply (Power), and the electromagnetic signal of the handwriting frequency is transmitted when the power supply (Power) is powered off.
  • the electromagnetic pen further includes at least one control capacitor.
  • three control capacitors C8, C9, and Cn are specifically included.
  • the control capacitor may also be one or more.
  • the control capacitors C8, C9 and Cn are respectively connected in parallel with the reference capacitor C1, and each of the control capacitors C8, C9 and Cn is connected in series with a control switch, namely S8, S9 and Sn, and the control switches S8, S9 and Sn are closed or opened. It is used to connect or cut off the connection of the corresponding control capacitors C8, C9 and Cn with the reference capacitor C1, thereby changing the frequency of the electromagnetic signal, and transmitting the electromagnetic signal of the control frequency to input the control symbol.
  • control frequency that is, the frequency used when the electromagnetic pen inputs the control symbol
  • the electromagnetic pen can represent different control symbols by changing the frequency value within the range of the control frequency, and can also input the control symbols by changing the sliding trajectory of the electromagnetic pen at the control frequency and identifying the different sliding trajectories by the corresponding software.
  • the electromagnetic pen of the embodiment can emit electromagnetic signals of different frequencies by connecting different control capacitors in parallel, and the difference of the frequency of the electromagnetic signals can be used as a mark for distinguishing handwriting input and control input, and can distinguish electromagnetic signals of different input modes, thereby switching and identifying program.
  • the electromagnetic pen includes a casing 1 which is generally cylindrical.
  • the circuit structure shown in FIG. 1 is disposed in the cylindrical casing 1.
  • the tubular casing 1 can be further embedded with one or more.
  • the control buttons 2 and the control buttons 2 are respectively connected to the respective control switches, and can be used to close the control switch when the control button 2 is pressed, and to disconnect the control switch when the control button 2 is raised, the control button 2 is preferably It is disposed at the front end of the electromagnetic pen housing 1 to facilitate the pressing operation.
  • the reference inductor L 1 includes a magnetic core 3 and an inductive coil 4, and the shape of the magnetic core 3 is preferably a strip body, a magnetic core 3 and an inductive coil 4 Both are disposed inside the cylindrical casing 1.
  • the inductor coil 4 is wound around the magnetic core 3 to form a bushing, and the inductor coil 4 is connected in parallel with the reference capacitor C1 to form an LC oscillation, and is connected in parallel in a power supply circuit.
  • the magnetic core 3 is elastically held by a resilient device 6 and protrudes from the pen tip 5 of the electromagnetic pen housing 1.
  • the device 6 may be a spring disposed on the front portion of the magnetic core 3.
  • the rear portion of the magnetic core 3 may be provided with a printed circuit board (hereinafter referred to as PCB) and other accessories such as a battery.
  • PCB printed circuit board
  • variable inductance parameters can be designed to control the frequency range of the electromagnetic signal under pressure.
  • the frequency variation range under the pressure is limited between the difference between the control frequency and the handwriting frequency, so that the frequency of the electromagnetic signal can be changed within a certain range on the basis of the handwritten frequency, and can also be used as a cornerstone of the control frequency. Changes within a certain range, but the range of frequency variation does not overlap, and the frequency of the electromagnetic signal can still be identified.
  • the working principle of the electromagnetic pen of the embodiment is: after the power is turned on, the LC oscillation formed by the reference inductance and the reference capacitance continuously emits an electromagnetic signal of a certain frequency, and the frequency of the electromagnetic signal emitted when the control switch is not closed is a handwritten frequency;
  • the electromagnetic magnetic line passes through the electromagnetic antenna array attached to the display screen, and the corresponding coil in the touch sensing layer induces an induced current, and the magnitude of the induced current varies according to the distance between the pen and the antenna array.
  • the movement of the refill causes the magnetic core to move, thereby changing the value of the reference inductance, so that the frequency of the LC oscillation changes.
  • the control capacitor and the reference capacitor may be connected in parallel to change the LC resonance frequency.
  • the control capacitor and the reference capacitor may be connected in parallel to change the LC resonance frequency.
  • a larger number of antenna coil positions and by receiving the electromagnetic signal of such amplitude and frequency variation, the precise position of the electromagnetic pen and the pressure on the screen can be calculated, and the sliding of the electromagnetic pen on the display screen can be recognized.
  • USB Universal Serial Bus
  • RS232 Universal Serial Bus
  • the interface and the like are sent to the host, and after the recognition program on the host senses the input information, they can be converted into corresponding various types. Control symbols to achieve control and manipulation of the host, such as text or shape recognition, drawing And shortcut key calls, etc.
  • the electromagnetic pen can not only output the electromagnetic signal according to the handwriting frequency for handwriting input, but also characterize the contact pressure of the electromagnetic pen and the display screen by the frequency of the electromagnetic signal, thereby further embodying the characteristics of the thickness of the handwritten stroke.
  • the adjusting capacitor C2 can be used to adjust the LC resonant frequency to an appropriate, difficult At the natural frequency that is disturbed by the external noise frequency.
  • the electromagnetic pen provided by the embodiment of the invention belongs to a coordinate input pen and is a multi-function coordinate input pen with variable frequency capability, which can not only indicate the coordinate position of the input pen by frequency, but also realize special functions by changing the frequency.
  • the control provides information other than coordinate and pen pressure information to the antenna array board, the identification circuit, and the like. Different frequency electromagnetic signals can be converted into different input commands.
  • an application software such as gesture software, drawing software, etc. can be activated by a button, or a function in the application software can be started by a button, for example, in a drawing software. Change ink, change handwriting, etc.
  • the electromagnetic pen has a frequency conversion function, and can further support the simultaneous operation of multiple electromagnetic pens.
  • the electromagnetic pen can be used to emit electromagnetic signals of different frequencies through the button, so that the electromagnetic signals can be distinguished, and the phenomenon of control disorder can be avoided to meet multiple electromagnetic waves.
  • the pen operates simultaneously and controls the functions of the system.
  • FIG. 3 is a circuit schematic diagram of an electromagnetic pen according to a second embodiment of the present invention.
  • the power source can use a battery, such as a common dry battery or a rechargeable battery.
  • the reference inductor L1 and the reference capacitor C1 connected in parallel are connected to the power supply circuit of the battery, and a power supply control circuit is further connected to the power supply circuit of the electromagnetic pen, as shown by the dotted line in FIG.
  • a power supply control circuit is further connected to the power supply circuit of the electromagnetic pen, as shown by the dotted line in FIG.
  • the basic structure of the power control loop includes a boosting unit, a first transistor Q3, a second transistor Q2, and a charge and discharge capacitor.
  • the charge and discharge capacitors are three capacitors C21, C22, and C23 connected in parallel.
  • the boosting unit is connected to the reference inductor L1 and the reference capacitor C1 and the power supply circuit, and may not have a rise
  • the conduction between the battery and the power supply circuit is realized when the function is pressed.
  • An enable terminal (ENB) is connected to the boosting unit, and the boosting function of the boosting unit starts to work when the enable signal is input to the enable terminal (ENB).
  • the first transistor Q3 is connected to the boosting unit for generating an enable signal to the boosting unit when turned on to turn on the boosting function of the boosting unit.
  • the collector c of the first transistor Q3 is connected to the anode of the battery, and the emitter e thereof is connected to the enable terminal of the boosting unit.
  • the second transistor Q2 is connected to the first transistor Q3 for turning on the first transistor Q3 when the second transistor Q2 is turned on.
  • the collector c and the emitter e of the second transistor Q2 are connected between the base b of the first transistor Q3 and the ground, and the base b of the second transistor Q2 passes through a diode D1 and each of the control switches S8 and S9. And Sn are respectively connected in the power supply circuit.
  • the charge and discharge capacitors C21, C22 and C23 are connected in the power supply circuit through control switches S8, S9 and Sn for charging by the power supply circuit when any one of the control switches S8, S9 and Sn is closed, and when the control switches S8, S9 When both Sn and S are off, power is supplied to the second transistor Q2 to maintain the second transistor Q2 on.
  • the positive pole of the reference inductor L1 and the reference capacitor C1 may be referred to as an operating voltage pole (VCC), and is connected to the anode of the battery through the boosting unit. Specifically, it can be turned on by a diode in the boosting unit. At this time, the base b and the emitter e of the second transistor Q2 are both at a low potential, so that the second transistor Q2 is turned off, and the collector c of the second transistor Q2 is at a high potential. At the same time, the collector c of the first transistor Q3 is at a high potential, and the emitter e is grounded through a capacitor C24. Therefore, the first transistor Q3 is turned off, the enable terminal is at a low level, and the boosting unit does not have a boost function, so The drive reference inductor L1 and the reference capacitor C1 emit electromagnetic signals.
  • VCC operating voltage pole
  • the voltage of the battery is coupled to the second transistor Q2 through the resistor R5 and the resistor R6, so that the second transistor Q2 is turned on, thereby the base of the first transistor Q3.
  • the potential of the pole b is pulled low, the first transistor Q3 is turned on, so that a high level is generated at the emitter e of the first transistor Q3, so that the signal of the enable terminal is at a high level, that is, an input enable signal is turned on, thereby turning on the boosting unit.
  • Boost function.
  • the control switch After the electromagnetic pen operation is turned on, when the control button is not pressed, the control switch is turned off, and the charging and discharging capacitors C21, C22, and C23 are discharged to keep the second transistor Q2 turned on.
  • This holding time can be selected by charging and discharging capacitor C21,
  • the capacitance values of C22 and C23 are determined, for example, the hold time can last for 20 minutes, or other set length of time.
  • the control switch After this period of time, if the control switch is not connected at all times, when the charging and discharging capacitors C21, C22 and C23 are discharged, the second transistor Q2 is turned off, that is, the electromagnetic pen has stopped working, and then the first Transistor Q3 is turned off, the enable terminal is low, the boost function of the boost unit is turned off, and the reference inductor L1 and the reference voltage C1 no longer emit electromagnetic signals, thereby achieving power saving.
  • the power control loop may further include a low voltage detecting unit connected to the power supply circuit, specifically integrated with the boosting unit, for detecting the power supply circuit, especially the voltage of the battery, when the voltage of the power supply circuit is less than A prompt signal is issued when the voltage value is set. For example, when it is detected that the battery voltage drops below 0.9 V, the low voltage detecting unit can detect the low voltage, and then light a light emitting diode (L i ght Emi tt ing Diode; hereinafter referred to as LED), prompting the user to replace the battery. .
  • a light emitting diode Li i ght Emi tt ing Diode
  • a power control loop is added to the electromagnetic pen, and an active input pen is used, which can solve the passive input pen mode, and the antenna array coil has high intensive cost, and the antenna array board needs to continuously emit electromagnetic waves and consume excessive electric energy.
  • the electromagnetic pen can automatically turn off the power when it is not working, avoiding waste of power, making the working power consumption less than 1 milliamperes (mA), and for an alkaline battery, it can be used continuously for 400 hours. Above, to avoid the problem of frequent battery replacement.
  • the above circuit structure is simple in design, low in cost, and can reduce the power consumption required on one side of the antenna array board, and can reduce the power consumption equipment for the portable product, and make the product light and thin.
  • the power control loop of the present invention may also use other means to control the power supply, for example, a vibration switch is provided in series in the power supply circuit.
  • a vibration switch is provided in series in the power supply circuit.
  • the vibration switch can detect the vibration of the electromagnetic pen and remain closed. Therefore, the power supply circuit is turned on, and when the electromagnetic pen is placed unused, the vibration switch turns off the power supply circuit to save power when the vibration is not recognized.
  • FIG. 4 is a flowchart of a method for transmitting electromagnetic signals according to a third embodiment of the present invention.
  • the embodiment can be implemented by the electromagnetic pen of the present invention, and specifically includes the following steps:
  • Step A10 The electromagnetic pen transmits an electromagnetic signal of a handwritten frequency by means of a reference inductor and a reference capacitor connected in parallel to input a handwritten symbol;
  • Step A20 The electromagnetic pen emits an electromagnetic signal of a control frequency to input a control symbol.
  • the input mode of the electromagnetic pen on the antenna array board can be switched by changing the frequency of the electromagnetic signal emitted by the electromagnetic pen.
  • the method is simple and easy, and the electromagnetic pen can be conveniently provided with multiple input modes, at least Includes modes for entering handwritten symbols and entering control symbols.
  • the sliding track of the electromagnetic pen or the frequency of the electromagnetic signal can have different meanings, which enriches the handwriting input function of the electromagnetic pen.
  • the electromagnetic signal emitted by the electromagnetic pen is radiated by the reference inductor and the reference capacitor.
  • the frequency can be changed by changing the parameters of the reference inductor and the reference capacitor.
  • the electromagnetic pen can transmit the electromagnetic signal of the handwritten frequency.
  • At least one control capacitor is connected in parallel with the reference inductor and the reference capacitor to emit an electromagnetic signal of a control frequency determined by the reference inductor, the reference capacitor, and the control capacitor.
  • the frequency of the electromagnetic signal can be changed by reducing the capacitance value, increasing or decreasing the inductance value, and adding a control resistor.
  • the electromagnetic pen emits an electromagnetic signal of a control frequency, and the manner of inputting the control symbol can be specifically as follows:
  • the electromagnetic pen emits an electromagnetic signal of a control frequency, and the control symbol is input by changing the frequency value of the electromagnetic signal within a set range of the control frequency, different
  • the control frequency values represent different control symbols.
  • the electromagnetic pen inputs a control symbol by changing the sliding trajectory of the electromagnetic pen at the control frequency.
  • the electromagnetic pen can also input control symbols in combination with the control frequency and the sliding trajectory.
  • FIG. 5 is a schematic structural diagram of an electromagnetic signal processing apparatus according to a fourth embodiment of the present invention.
  • the electromagnetic signal processing device of the present embodiment can be used as a device for receiving and recognizing an electromagnetic signal connected to the antenna array, and specifically includes a receiving and identifying module 10, a handwriting input module 20, and a control input module 30.
  • the receiving and identifying module 10 is configured to receive an electromagnetic signal emitted by the electromagnetic pen through the antenna array to identify the frequency of the electromagnetic signal; and the handwriting input module 20 is configured to receive the identification result of the receiving and identifying module 10 as electricity.
  • the control input module 30 is configured to input the control symbol when the recognition result of the recognition module 10 is that the frequency of the electromagnetic signal is within the range of the control frequency.
  • the receiving identification module after receiving the electromagnetic signal, the receiving identification module first identifies the frequency of the electromagnetic signal, and by comparison, it can be determined in which set frequency range the frequency of the electromagnetic signal is determined according to the frequency identification result.
  • the current input mode of the electromagnetic pen After receiving the electromagnetic signal, the receiving identification module first identifies the frequency of the electromagnetic signal, and by comparison, it can be determined in which set frequency range the frequency of the electromagnetic signal is determined according to the frequency identification result.
  • the receiving and identifying module 10 may specifically include a receiving unit 11 and a frequency identifying unit 12.
  • the receiving unit 11 is for receiving an electromagnetic signal emitted by the electromagnetic pen through the antenna array;
  • the frequency identifying unit 12 is for identifying the frequency of the electromagnetic signal.
  • the reception recognition module 10 may further include a trajectory recognition unit 13.
  • the trajectory identifying unit 1 3 is for recognizing the sliding trajectory of the electromagnetic pen, and provides the sliding trajectory to the handwriting input module 20 and/or the control input module 30 as a basis for converting the handwritten symbol or the control symbol.
  • the electromagnetic signal processing device can accordingly input the sliding trajectory of the electromagnetic pen on the display screen into a handwritten symbol or a control symbol to input.
  • the technical solution of the embodiment can enrich the function of the electromagnetic induction type handwriting input, and conveniently switch the input mode of the electromagnetic pen by frequency conversion.
  • the handwriting input module 20 may specifically include a pressure recognition unit 21 and a handwriting input unit 22.
  • the pressure recognition unit 21 is configured to calculate a difference between the frequency of the electromagnetic signal and the handwritten reference frequency when the frequency of the electromagnetic signal is recognized within the range of the handwritten frequency, and identify the handwriting pressure of the electromagnetic pen according to the difference;
  • the unit 22 is operative to generate handwritten symbols for input based on the sliding trajectory and handwriting pressure.
  • the frequency of the electromagnetic signal may be superimposed on the cornerstone of the handwritten reference frequency by the handwriting pressure frequency.
  • the handwriting pressure frequency is further recognized, that is, the pressure of the electromagnetic pen to touch the display screen is recognized, and the handwritten symbol is generated according to the sliding track and the handwriting pressure, and the input information of the handwritten symbol can be enriched.
  • the control input module 30 specifically includes a symbol matching unit 31, The program identification unit 32 and the control input unit 33.
  • the symbol matching unit 31 is configured to match the sliding track with the preset shortcut symbol when the frequency of the electromagnetic signal is recognized within the range of the control frequency, and the shortcut symbol may be pre-stored, for example, “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “>” and ")", etc., according to the technique of fuzzy recognition, the input sliding track can be matched with the shortcut symbol.
  • the sliding track as the input of the control function can be composed of simple and easy-to-remember strokes, which can be clicked or Sliding to input, generally setting at least 10 mm to slide;
  • the program identification unit 32 is configured to identify the identifier of the currently running program when matching the shortcut symbol consistent with the sliding track, that is, identify the PC connected to the electromagnetic signal processing device Or the identifier of the currently running program on the controller;
  • the control input unit 33 is configured to query and acquire the corresponding control symbol according to the identifier and the shortcut symbol of the currently running program, and transmit the corresponding control symbol to the currently running program to perform the control operation.
  • Different shortcut symbols can have different control meanings for different running programs. For example, when the current running program is a "Word" word processing program,
  • the electromagnetic signal processing apparatus of this embodiment can directly convert the handwritten input symbols Controlling the input of the corresponding control symbols to the application, no need to improve the existing application.
  • the number of commands can be extended by enriching the pre-stored library of shortcut symbols and control symbols, and the expansion performance is good.
  • FIG. 6 is a schematic structural diagram of an electromagnetic signal processing apparatus according to a fifth embodiment of the present invention.
  • the control input module 30 specifically includes a symbol matching unit 31 and a keyboard input unit 34.
  • the symbol matching unit 31 is configured to match the sliding track with the preset shortcut symbol when the frequency of the electromagnetic signal is within the range of the control frequency;
  • the keyboard input unit 34 is configured to match the shortcut to the sliding track.
  • Corresponding keyboard input when generating symbols The signal is used as a control symbol, and the keyboard input signal can be transmitted to the currently running program to perform control operations.
  • the handwritten input symbol can be directly converted into a keyboard input symbol, for example,
  • This embodiment can facilitate the user's input control, and is easy to remember, which is advantageous for operation.
  • control input module may further include: a mouse input unit.
  • the mouse input unit is configured to generate a corresponding mouse input signal according to the electromagnetic signal when the frequency of the electromagnetic signal is recognized within the range of the control frequency, and input the mouse input signal as a control symbol.
  • input signals such as left-click, right-click, and left-click of the mouse can be input according to different control frequency values.
  • the control frequency and the sliding track of the electromagnetic pen can be combined to input different mouse input signals.
  • control input module may further include: a security control unit.
  • the safety control unit is configured to generate a corresponding safety signal such as an encrypted signal, a decryption signal, a screen protection signal or a disk lock signal according to the electromagnetic signal when the frequency of the electromagnetic signal is within the range of the control frequency, and use the control signal as a control symbol.
  • Different security control signals such as an encrypted signal, a decrypted signal, a screen saver signal, or a disk lock signal, may be input according to different control frequency values. Or it is determined by combining the control frequency with the sliding trajectory of the electromagnetic pen.
  • the safety control signal can be set by the user or it can be a security control operation unique to the computer.
  • the computer's basic input/output system (BIOS) information can be modified as needed to enable the computer to receive a wide variety of control symbols that the electromagnetic pen converts and inputs through the electromagnetic signal processing device, thereby enabling rich computer control functions.
  • BIOS basic input/output system
  • FIG. 7 is a schematic structural diagram of an electromagnetic signal processing apparatus according to a sixth embodiment of the present invention.
  • the control input module 30 specifically includes: a priority identification unit 35 and a sequence input unit 36.
  • the priority identifying unit 35 is configured to identify the priority of the frequency range to which the frequency of each electromagnetic signal belongs when the frequency of the electromagnetic signal is within the range of the control frequency and the plurality of electromagnetic signals are received; Based on the identified priority The sliding track is converted into a control symbol and input to the currently running program or controller in order of priority.
  • the technical solution of this embodiment is applicable to a case where multiple electromagnetic pens are used to simultaneously transmit electromagnetic signals for input.
  • the priority recognition unit first identifies the sliding trajectory and frequency of each electromagnetic signal, and determines the priority to which the frequency belongs. Different priority levels can correspond to different pre-stored shortcut symbols, corresponding to different processing methods.
  • the sequential input unit will convert the control symbols according to the priority of the electromagnetic signal.
  • the technical solution of the embodiment can support the simultaneous input of multiple electromagnetic pens, and the electromagnetic pen can be used to emit electromagnetic signals of different frequencies through buttons, thereby distinguishing the priorities of the electromagnetic signals to avoid the occurrence of repeated control or contradiction control phenomena.
  • the electromagnetic pen simulates the mouse input function
  • the cursor should move with the tip of the electromagnetic pen, but when multiple electromagnetic pens are used, the cursor moves randomly.
  • the electromagnetic signal processing device can identify the priority of the electromagnetic pen according to the frequency, select one of the electromagnetic signals of the frequency as the main function pen, and the other pens are the function pens, when the control symbols are simultaneously input, First, input the action of the main function pen. When the main function pen is not active, input the control symbol of the next priority electromagnetic signal.
  • the electromagnetic signals of the respective electromagnetic pens can be used intermittently. This can distinguish the control sequence to meet the functions of multiple electromagnetic pens simultaneously operating and controlling the system.
  • FIG. 8 is a flowchart of a method for processing an electromagnetic signal according to a seventh embodiment of the present invention.
  • the embodiment may be specifically implemented by the electromagnetic signal processing apparatus, and includes the following steps:
  • Step B1 The electromagnetic signal processing device receives the electromagnetic signal through the antenna array to identify the frequency of the electromagnetic signal;
  • Step B20 When the electromagnetic signal processing device recognizes that the frequency of the electromagnetic signal is within the range of the handwriting frequency, inputting a handwritten symbol;
  • Step B30 When the electromagnetic signal processing device recognizes that the frequency of the electromagnetic signal is within the range of the control frequency, inputting the control symbol.
  • the above technical solution can switch the input mode by changing the frequency of the electromagnetic signal, in the control frequency Within the range of the rate, the electromagnetic signals of different frequency values can correspond to different control symbols, and the control function can be changed by changing the transmission frequency.
  • the input control symbol may be specifically configured to obtain a corresponding control symbol according to the frequency value of the electromagnetic signal for input.
  • the electromagnetic signal may be emitted by the electromagnetic pen, and after receiving the electromagnetic signal emitted by the electromagnetic pen, may further include an operation of identifying a sliding track of the electromagnetic pen that emits the electromagnetic signal, combining the frequency of the electromagnetic signal and the sliding of the electromagnetic pen Track to determine handwritten symbols or control symbols.
  • the content of the control symbol can be more abundant.
  • step B20 can be specifically:
  • Step B21 When the electromagnetic signal processing device recognizes that the frequency of the electromagnetic signal is within the range of the handwriting frequency, calculates a difference between the frequency of the electromagnetic signal and the handwritten reference frequency, and identifies the handwriting pressure of the electromagnetic pen according to the difference;
  • Step B22 The electromagnetic signal processing device generates a handwritten symbol according to the sliding track and the handwriting pressure to input.
  • the above solution can further enrich the information of the input handwritten symbols, including not only the sliding track of the electromagnetic pen, but also the pressure information of the electromagnetic pen pressing the display screen.
  • step B30 can be specifically:
  • Step B31 a When the electromagnetic signal processing device recognizes that the frequency of the electromagnetic signal is within the range of the control frequency, the electromagnetic signal processing device matches the sliding track with the preset shortcut symbol;
  • Step B32a When the electromagnetic signal processing device matches the shortcut symbol consistent with the sliding track, identify the identifier of the currently running program;
  • Step B33a The electromagnetic signal processing device queries and acquires the corresponding control symbol according to the identifier and the shortcut symbol of the currently running program, and transmits the corresponding control symbol to the currently running program to perform the control operation.
  • the program can be controlled according to the currently running program to convert the corresponding control symbols, enriching the control function of the electromagnetic induction type input, and improving the convenience of the handwriting input control.
  • the control symbol can be generated according to the current running program. It is not necessary to improve the application. It only needs to improve the pre-stored control symbol pre-stored library, and the expansion is simple.
  • FIG. 9 is a flowchart of a method for processing an electromagnetic signal according to an eighth embodiment of the present invention.
  • the embodiment is based on the seventh embodiment, and the step B30 specifically includes the following steps:
  • Step B31b When the electromagnetic signal processing device recognizes that the frequency of the electromagnetic signal is within the range of the control frequency, the electromagnetic signal processing device matches the sliding track with the preset shortcut symbol;
  • Step B32b When the electromagnetic signal processing device matches the shortcut symbol consistent with the sliding track, the corresponding keyboard input signal is generated as a control symbol for input.
  • the keyboard input signal can be transmitted to the currently running program to perform control operations.
  • generating a corresponding keyboard input signal as a control symbol for input may specifically include:
  • the electromagnetic signal processing device generates a corresponding keyboard input signal as a control symbol, and transmits the control symbol to the currently running program;
  • the current running program When the current running program receives the control symbol, it performs matching in the preset shortcut control table. When it matches the consistent control symbol, it performs the corresponding operation.
  • the sliding track of the electromagnetic pen input can be directly converted into a keyboard input, which is equivalent to using a keyboard input to control the currently running application, and is convenient for implementing a quick operation.
  • the input control symbol may further include the following steps: generating a corresponding mouse input signal according to the electromagnetic signal, and inputting the mouse input signal as a control symbol.
  • the input control symbol may be specifically: generating a corresponding security signal such as an encrypted signal, a decryption signal, a screen protection signal or a disk lock signal according to the electromagnetic signal, and inputting it as a control symbol.
  • a corresponding security signal such as an encrypted signal, a decryption signal, a screen protection signal or a disk lock signal according to the electromagnetic signal
  • Input signals such as left-click, right-click, and left-click of the mouse can be input according to different control frequency values, or various safety control signals. It is also possible to input different mouse input signals or safety control signals in combination with the control frequency and the sliding trajectory of the electromagnetic pen.
  • the safety control signal can be set by the user or it can be a safety control operation unique to the computer.
  • the basic input/output system (BIOS) information of the computer can be modified as needed, so that the computer can receive a variety of control symbols converted and input by the electromagnetic pen through the electromagnetic signal processing device, thereby realizing rich control functions for the computer.
  • BIOS basic input/output system
  • Step B30 specifically includes the following steps:
  • Step B31 c When the electromagnetic signal processing device recognizes that the frequency of the electromagnetic signal is within the range of the control frequency, identifying the priority of the frequency range to which the frequency of each electromagnetic signal belongs;
  • Step B32c The electromagnetic signal processing device converts the electromagnetic signals of the respective electromagnetic pens into control symbols according to the recognized priorities, for example, converting the control symbols according to the frequency values and the sliding trajectories, and then inputting them in order of priority.
  • the technical solution of the embodiment can support the simultaneous operation of multiple electromagnetic pens, distinguish the control priority of each electromagnetic pen by the frequency of the electromagnetic signal, convert the control symbols according to the priority and sequentially input, thereby avoiding multiple electromagnetic pen control The phenomenon of conflict.
  • a tenth embodiment of the present invention provides an electromagnetic induction apparatus comprising the electromagnetic pen of any one of the embodiments of the present invention and the electromagnetic signal processing apparatus of any of the embodiments of the present invention, and further comprising an antenna array, a display panel, and a control processor.
  • the antenna array is connected to the electromagnetic signal processing device for receiving the electromagnetic signal emitted by the electromagnetic pen and transmitting the electromagnetic signal to the electromagnetic signal processing device for identification.
  • the electromagnetic signal processing device is connected to the control processor for inputting the recognized handwritten symbol or control symbol.
  • the control processor may be a processing device such as a CPU.
  • the antenna array can be superimposed on the display panel as a touch screen structure.
  • the antenna array used in the embodiment of the present invention may be stacked on any control panel, and may be integrated into a terminal having a display screen such as a tablet, a professional tablet, a computer, a PDA, a mobile phone, etc., and may be disposed on the display as needed.
  • the electromagnetic signal processing device may be disposed in the terminal in the form of hardware and/or software, and may be connected to an operating system in the terminal, and transmit control symbols and handwritten symbols, and the form of the operating system is not limited, for example, may be " Windows " , "Linux " , " Mac “ , etc.
  • the electromagnetic induction device of the embodiment of the invention may be specifically a device such as a notebook or a desktop computer.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)
  • Near-Field Transmission Systems (AREA)
  • User Interface Of Digital Computer (AREA)

Description

电磁笔、 电磁信号发射方法和处理方法、 装置及设备 技术领域
本发明涉及电磁感应式输入技术, 尤其涉及一种电磁笔、 电磁信号发射 方法和处理方法、 装置及设备。 背景技术
随着手机、 个人数码助理 ( Persona l Dig i ta l As s i s tant ; 以下简称: PDA ), 笔记本电脑等便携式设备的日益普及, 其输入方式变得越来越人性化。 触摸屏技术已经成为当前最简便的人机交互的输入技术之一。 目前主流的触 摸屏技术主要有以下几种: 电阻式、 电容式、 红外线式和电感式。
其中, 电感式触摸屏的手写输入由触摸笔、 天线阵列板和相应的识别处 理电路完成。 触摸笔又可称为电磁笔, 其中安装有电感电容(LC )振荡器, 用于发射固定频率的电磁信号。 显示面板与天线阵列板叠合在一起, 天线阵 列由覆盖整个显示面板的多个天线组成, 其至少有两层, 分别用来检测水平 方向和垂直方向的坐标位置。 当电磁笔接近或接触显示面板时, 电磁笔中的 电磁信号使天线阵列板的一些天线谐振而产生相同频率的振荡波, 分析振荡 波的幅度和频率可以计算出电磁笔相对于显示面板的坐标位置。 例如, 文档 号为 US6937231的美国专利申请中提出了一种采用 LC谐振的无源输入笔,即 基于电磁感应原理实现手写输入。
目前, 随着手写输入技术的发展, 人们对手写输入的可控性和操作便捷 性等方面提出了更高的要求。 然而, 由于输入信息的丰富性, 使得这种现有 的电磁笔不能配合人性化输入软件及其界面的操作, 限制了业界开发具有更 丰富输入手段的触摸式输入产品。 发明内容 本发明的目的是提供一种电磁笔、 电磁信号发射方法和处理方法、 装置 及设备, 以丰富电磁感应式输入的功能, 提高其可控性和手写输入的便捷性。
为实现上述目的, 本发明提供了一种电磁笔, 包括:
设置在电磁笔壳体中, 且并联连接的基准电感和基准电容, 用于发射手 写频率的电磁信号;
至少一个控制电容, 与所述基准电容并联;
所述控制电容串联一控制开关, 所述控制开关的闭合或断开用于连通或 切断所述控制电容与所述基准电容的连接, 从而发射控制频率的电磁信号。
为实现上述目的, 本发明还提供了一种电磁信号发射方法, 包括: 电磁笔借助于并联连接的基准电感和基准电容发射手写频率的电磁信 号;
所述电磁笔发射控制频率的电磁信号。
为实现上述目的, 本发明还提供了一种电磁信号处理装置, 包括: 接收识别模块, 用于通过天线阵列接收电磁笔发射的电磁信号, 识别所 述电磁信号的频率;
手写输入模块, 用于当识别到所述电磁信号的频率在手写频率的范围内 时, 输入手写符号;
控制输入模块, 用于当识别到所述电磁信号的频率在控制频率的范围内 时, 输入控制符号。
为实现上述目的, 本发明还提供了一种电磁信号处理方法, 包括: 通过天线阵列接收电磁信号, 识别所述电磁信号的频率;
当识别到所述电磁信号的频率在手写频率的范围内时, 输入手写符号; 当识别到所述电磁信号的频率在控制频率的范围内时, 输入控制符号。 为实现上述目的, 本发明又提供了一种包括本发明电磁笔和本发明电磁 信号处理装置的电磁感应设备, 还包括天线阵列、 显示面板和控制处理器; 所述天线阵列与所述电磁信号处理装置相连, 用于接收所述电磁笔发射的电 磁信号并传输给所述电磁信号处理装置进行识别; 所述电磁信号处理装置与 所述控制处理器相连, 用于将识别到的手写符号或控制符号输入给所述控制 处理器。
由以上技术方案可知, 本发明采用电磁笔发射不同频率电磁信号来切换 输入手写符号和控制符号的技术手段, 达到了简便地利用电磁笔进行快捷控 制的效果, 可以丰富电磁感应式输入技术的输入模式, 丰富输入功能。 附图说明
图 1为本发明第一实施例提供的电磁笔的电路原理图;
图 2为本发明第一实施例提供的电磁笔的结构示意图;
图 3为本发明第二实施例提供的电磁笔的电路原理图;
图 4为本发明第三实施例提供的电磁信号发射方法的流程图; 图 5为本发明第四实施例提供的电磁信号处理装置的结构示意图; 图 6为本发明第五实施例提供的电磁信号处理装置的结构示意图; 图 7为本发明第六实施例提供的电磁信号处理装置的结构示意图; 图 8为本发明第七实施例提供的电磁信号处理方法的流程图; 图 9为本发明第八实施例提供的电磁信号处理方法的流程图; 图 10为本发明第九实施例提供的电磁信号处理方法的流程图。 具体实施方式 下面通过具体实施例并结合附图对本发明做进一步的详细描述。
第一实施例
图 1为本发明第一实施例提供的电磁笔的电路原理图, 图 2为本发明第 一实施例提供的电磁笔的结构示意图。 如图 1所示, 该电磁笔包括: 设置在 电磁笔壳体中, 且并联连接的基准电感 L1 和基准电容 C1 , 用于发射手写频 率的电磁信号, 可以按照电磁笔的滑动轨迹输入相应的手写符号。 所谓手写 频率, 即电磁笔输入手写符号时所采用的频率。 基准电感 L1 和基准电容 C1 连接在电源 (Power ) 的供电电路之中, 当电源 (Power ) 闭合供电时即发射 手写频率的电磁信号。 电磁笔中还包括至少一个控制电容, 本实施例中具体 包括三个控制电容 C8、 C9和 Cn , 具体应用中控制电容也可以为一个或更多 个。 控制电容 C8、 C9和 Cn分别与基准电容 C1并联连接, 且各控制电容 C8、 C9和 Cn分别串联一控制开关, 即 S8、 S 9和 Sn , 控制开关 S8、 S9和 Sn的闭 合或断开用于连通或切断相应的控制电容 C8、C9和 Cn与基准电容 C1的连接, 从而改变电磁信号的频率, 发射控制频率的电磁信号, 以输入控制符号。 所 谓控制频率, 即电磁笔输入控制符号时所采用的频率, 通过不同的电容组合, 可以得到多个不同值的控制频率。 电磁笔可以通过在控制频率的范围内改变 频率值来代表不同的控制符号, 也可以在控制频率下通过改变电磁笔的滑动 轨迹, 由相应软件识别不同滑动轨迹来输入控制符号。
本实施例的电磁笔可以通过并联连接不同的控制电容来发出不同频率的 电磁信号, 电磁信号频率的差异可以作为区分手写输入和控制输入的标志, 可以区分不同输入模式的电磁信号, 从而切换识别程序。
如图 2所示, 该电磁笔包括一壳体 1 , 一般可以为筒状, 图 1所示电路 结构设置在筒状壳体 1之中, 筒状壳体 1上可以进一步嵌设一个或多个控制 按钮 2 , 控制按钮 2分别与各控制开关相连, 可以用于在控制按钮 2按下时 使控制开关闭合, 且在控制按钮 2抬起时使控制开关断开, 控制按钮 2较佳 的是设置在电磁笔壳体 1的前端, 以方便按动操作为宜。 实现本实施例电磁 笔电路设计的方式有很多,一种具体实现方式是基准电感 L 1包括磁芯 3和电 感线圈 4 , 磁芯 3的形状优选为条状体, 磁芯 3和电感线圈 4均设置在筒状 壳体 1内部。 电感线圈 4缠绕在磁芯 3之外形成套管, 电感线圈 4与基准电 容 C1相并联而形成 LC振荡, 且并联连接在电源(Power )供电电路之中。 磁 芯 3借助于一弹性装置 6弹性顶持伸出电磁笔壳体 1的笔尖 5 , 当笔尖 5接 触显示屏被按压时, 磁芯 3会在笔尖 5带动下沿电感线圈 4的轴线运动, 此 时将改变电感参数, 进而能够改变电磁信号的频率。 在筒状壳体 1 中, 弹性 装置 6可以为弹簧, 设置在磁芯 3的前部, 磁芯 3的后部可以装设印刷电路 板 ( Pr inted Ci rcui t Board; 以下简称: PCB )和电池等其他配件。
通过设置电感线圈和磁芯的相对位置、 电感线圈的圈数以及弹性装置的 弹性系数等, 可以设计可变的电感参数, 从而控制压力作用下的电磁信号频 率变化范围。 将压力作用下的频率变化范围限定在控制频率与手写频率的差 值之间, 从而使电磁信号的频率可以在手写频率的基础上作一定范围内的变 化, 也可以在控制频率的基石出上作一定范围内的变化, 但是频率的变化范围 并不交叠, 依然可以识别出电磁信号的频率。
本实施例电磁笔的工作原理是: 在电源开启后, 基准电感和基准电容形 成的 LC振荡不断发射一定频率的电磁信号,在未闭合控制开关时所发出的电 磁信号频率为手写频率; 当电磁笔接近显示屏时, 电磁磁力线穿过附着于显 示屏后的电磁天线阵列, 在触控感应层中的对应线圈引起感应电流, 这种感 应电流的大小随着笔与天线阵列的距离变化而变化, 并且, 当电磁笔笔尖按 压在显示屏上后, 由于笔芯有移动, 导致磁芯移动, 从而改变基准电感的值, 使 LC振荡的频率发生变化。 另外, 当电磁笔上设置的连接到控制电容的特殊 功能控制按钮被按压时, 可以并联连接控制电容和基准电容, 从而改变 LC谐 振频率。 当电磁笔接近天线阵列时, 根据法拉第电磁感应定律, 当穿过回路 的磁通量发生变化时,回路中的感生电动势 ε感的大小和穿过回路的磁通量变 化率 A ( / A t 等成正比, 即 ε ΐ=_ Δ φ/ Δ , 不同的天线由于与电磁笔的距离 不同, 在临近电磁笔的天线上会感应到幅度较大的电磁波。 控制电路通过扫 描各个天线, 确定产生感应电磁波幅度较大的几个天线线圈位置, 并且通过接 收这种幅度、 频率变化的电磁信号, 可以计算出电磁笔所处的精确位置和对屏 的压力大小, 即可识别电磁笔在显示屏上的滑动轨迹, 以及是否有控制按钮被 按下。 然后将这些信息通过 PC或其他嵌入式设备的外设接口, 例如通用串行 总线 ( Universa l Ser ia l BUS; 以下简称: USB )接口、 "RS232" 接口等发送 到主机, 在主机上的识别程序感知这些输入信息后, 可以将它们转换为相应 的各种控制符号, 从而实现对主机的控制和操作, 如文字或形状识别、 绘图 和快捷键调用等。
采用上述技术方案, 电磁笔不仅可以按照手写频率输出电磁信号以进行 手写输入, 还可以电磁信号的频率表征电磁笔与显示屏的接触压力, 从而可 以进一步体现手写笔画的粗细等特征。
为优化电磁笔发射电磁信号的性能, 在电磁笔中还可以设置其他电阻、 电容和晶体管等电气元件, 例如图 1所示, 调节电容 C2可以用于将 LC谐振 频率调整到一个适当的、 不易受到外界噪声频率干扰的固有频率上。
本发明实施例所提供的电磁笔, 属于一种坐标输入笔, 且是具有变频能 力的多功能坐标输入笔, 不仅能够通过频率来指示输入笔的坐标位置, 而且 还能够通过变化频率实现特殊功能的控制, 向天线阵列板、 识别电路等提供 除坐标和笔压信息以外的其他控制信息。 不同频率的电磁信号可以转换为不 同的输入命令, 例如, 可以通过按钮启动某个应用软件, 例如笔势软件、 绘 图软件等, 也可能通过按钮启动应用软件中的某个功能, 例如在绘图软件中 换墨水、 换笔迹等。
电磁笔具备变频功能, 也可以进一步支持多根电磁笔同时操作的情况, 可以通过按钮使电磁笔发射不同频率的电磁信号, 使电磁信号得以区分, 避 免控制混乱的现象发生, 以满足多根电磁笔同时操作、 控制系统的功能。
第二实施例
图 3为本发明第二实施例提供的电磁笔的电路原理图, 本实施例可以第 一实施例为基石出, 电源( Power )可以采用电池, 例如常见的干电池或充电电 池。 并联连接的基准电感 L1和基准电容 C 1连接在电池的供电电路之中, 且 进一步在电磁笔的供电电路中连接有电源控制回路, 如图 3 中虚线框所示。 为获取电磁笔的正常工作电压, 例如 5伏(V ), 通常需对电池电压作升压处 理。 该电源控制回路的基本结构包括升压单元、 第一晶体管 Q 3、 第二晶体管 Q2以及充放电电容, 本实施例中充放电电容为并联连接的三个电容 C21、 C22 和 C23。
升压单元连通基准电感 L1和基准电容 C1与供电电路, 可以在不具有升 压功能时实现电池与供电电路的导通。 该升压单元上连有一使能端 (ENB ), 在使能端 (ENB )输入使能信号时升压单元的升压功能开始工作。
第一晶体管 Q3与升压单元相连,用于在导通时产生使能信号传输给升压 单元, 以开启升压单元的升压功能。 具体的, 第一晶体管 Q3的集电极 c连接 电池的正极, 其发射极 e连接升压单元的使能端。 当第一晶体管 Q3导通时, 其发射极 e的电位升高, 即使能端产生了高电平的使能信号。
第二晶体管 Q2与第一晶体管 Q3相连,用于在第二晶体管 Q2导通时将第 一晶体管 Q3导通。 具体的, 第二晶体管 Q2的集电极 c和发射极 e连接在第 一晶体管 Q3的基极 b和地线之间, 第二晶体管 Q2的基极 b通过一个二极管 D1和各个控制开关 S8、 S9和 Sn分别连接在供电电路中。
充放电电容 C21、 C22和 C23通过控制开关 S8、 S9和 Sn连接在供电电路 中, 用于当控制开关 S8、 S9和 Sn中任一个闭合时由供电电路进行充电, 且 当控制开关 S8、 S9和 Sn均断开时向第二晶体管 Q2供电以维持第二晶体管 Q2导通。
下面具体介绍电源控制回路的工作原理:
当电磁笔处于未工作的状态时, 基准电感 L1和基准电容 C1的正极, 可 称为工作电压极( VCC ), 通过升压单元与电池的正极连通。 具体可以通过升 压单元中的一个二极管导通。此时第二晶体管 Q2的基极 b和发射极 e均为低 电位, 因此第二晶体管 Q2断开, 则第二晶体管 Q2的集电极 c处于高电位。 同时, 第一晶体管 Q3的集电极 c为高电位, 发射极 e通过一电容 C24接地, 因此第一晶体管 Q3断开, 使能端为低电平, 升压单元不具有升压功能, 所以 不能驱动基准电感 L1和基准电容 C1发射电磁信号。
当有任意控制按钮被按下, 对应的控制开关闭合的时候, 电池的电压会 通过电阻 R5和电阻 R6耦合到第二晶体管 Q2 , 使第二晶体管 Q2导通, 从而 将第一晶体管 Q3的基极 b电位拉低, 使第一晶体管 Q3导通, 从而在第一晶 体管 Q3的发射极 e产生高电平,使使能端的信号为高电平,即输入使能信号, 从而开启升压单元的升压功能。 与此同时, 三个充放电电容 C21、 C22和 C23 被充电。
在开启电磁笔操作以后, 当不按控制按钮时, 控制开关断开, 由充放电 电容 C21、 C22和 C23放电来保持第二晶体管 Q2的导通, 此保持时间可以通 过选择充放电电容 C21、 C22和 C23的电容值而确定, 例如保持时间可以持续 20分钟, 或者其他设定的时间长度。 在此段时间过后, 如果始终未按动控制 按钮来连接控制开关, 当充放电电容 C21、 C22和 C23放电完毕时, 第二晶体 管 Q2断开, 即视为电磁笔已经停止工作, 随即第一晶体管 Q3断开, 使能端 为低电平, 升压单元的升压功能被关闭, 基准电感 L1和基准电压 C1不再发 射电磁信号, 从而达到省电的目的。
在上述电源控制回路中还可以包括一低电压检测单元, 连接在供电电路 中, 具体可以与升压单元集成在一起, 用于检测供电电路, 尤其是电池的电 压, 当供电电路的电压小于设定电压值时即发出提示信号。 例如当检测到电 池电压下降到 0. 9V以下, 低电压检测单元可以检测到此低电压, 随后会点亮 一个发光二极管 (L i ght Emi t t ing Diode; 以下简称: LED ), 提示用户更换 电池。
本实施例在电磁笔中加入了电源控制回路, 采用有源输入笔的方式, 可 以解决无源输入笔方式时, 天线阵列线圈密集成本高, 且天线阵列板需不断 发射电磁波而消耗过多电能的问题。 通过设置电源控制回路, 可以使电磁笔 在不工作时自动关断电源, 避免电能浪费, 使工作耗电低于 1毫安(mA ), 对 于一节碱性电池而言, 可以连续使用 400小时以上, 避免用户频繁换用电池 的问题。 上述电路结构设计简单, 成本低, 并且可以对应减小天线阵列板一 侧所需的耗电量, 对于便携式产品而言可以减小耗电设备, 使产品轻薄化。
或者, 本发明中电源控制回路也可以采用其他方式来控制电源, 例如设 置一个振动开关, 串联在供电电路中, 在电磁笔被使用的时候, 振动开关能 够检测到电磁笔的振动而保持闭合状态, 从而使供电电路导通供电, 当电磁 笔被放置不使用时,则振动开关在无法识别到振动时即关断供电电路来节电。
第三实施例 图 4为本发明第三实施例提供的电磁信号发射方法的流程图, 本实施例 可以由本发明的电磁笔来实施, 具体包括如下步骤:
步骤 A10、 电磁笔借助于并联连接的基准电感和基准电容发射手写频率 的电磁信号, 以输入手写符号;
步骤 A20、 电磁笔发射控制频率的电磁信号, 以输入控制符号。
采用本实施例的技术方案, 可以通过改变电磁笔发射电磁信号的频率来 切换电磁笔在天线阵列板上的输入方式, 该方法简单易行, 可以方便的使电 磁笔具有多种输入模式, 至少包括输入手写符号和输入控制符号的模式。 在 不同模式下, 电磁笔的滑动轨迹或者电磁信号的频率可以具有不同的含义, 则丰富了电磁笔的手写输入功能。
电磁笔所发射的电磁信号是由基准电感和基准电容谐振发射的, 通过改 变基准电感和基准电容的参数即可以改变频率, 具体方式有多种, 例如, 电 磁笔可以在发射手写频率电磁信号的基准电感和基准电容上并联至少一个控 制电容, 以发射由基准电感、 基准电容以及控制电容确定的控制频率的电磁 信号。 或者也可以通过减小电容值、 增大或减小电感值、 增设控制电阻等方 式来改变电磁信号的频率。
电磁笔发射控制频率的电磁信号, 以输入控制符号的方式可以具体为: 电磁笔发射控制频率的电磁信号, 通过在控制频率的设定范围内改变电 磁信号的频率值来输入控制符号, 不同的控制频率值代表不同的控制符号。
或者, 电磁笔通过在控制频率下改变电磁笔的滑动轨迹来输入控制符号。 电磁笔也可以结合控制频率和滑动轨迹来输入控制符号。
第四实施例
图 5为本发明第四实施例提供的电磁信号处理装置的结构示意图。 本实 施例的电磁信号处理装置即可以作为连接到天线阵列上接收并识别电磁信号 的装置, 具体包括接收识别模块 10、 手写输入模块 20和控制输入模块 30。 其中,接收识别模块 10用于通过天线阵列接收电磁笔发射的电磁信号, 识别 电磁信号的频率; 手写输入模块 20用于当接收识别模块 10的识别结果为电 磁信号的频率在手写频率的范围内时, 输入手写符号; 控制输入模块 30用于 当接收识别模块 10的识别结果为电磁信号的频率在控制频率的范围内时,输 入控制符号。
采用本实施例的技术方案, 当接收到电磁信号之后, 由接收识别模块首 先识别电磁信号的频率, 通过比较可以确定电磁信号的频率在哪个设定的频 率范围内, 根据频率识别结果即可以确定目前电磁笔的输入模式。
在上述技术方案的基础上, 接收识别模块 10可以具体包括接收单元 11 和频率识别单元 12。 接收单元 11 用于通过天线阵列接收电磁笔发射的电磁 信号; 频率识别单元 12用于识别电磁信号的频率。 接收识别模块 10还可以 包括轨迹识别单元 1 3。 轨迹识别单元 1 3用于识别电磁笔的滑动轨迹, 将滑 动轨迹提供给手写输入模块 20和 /或控制输入模块 30作为转换手写符号或控 制符号的依据。 进而, 电磁信号处理装置可以相应地将电磁笔在显示屏上的 滑动轨迹转换为手写符号或控制符号来输入。
本实施例的技术方案可以丰富电磁感应式手写输入的功能, 以频率转换 来方便地切换电磁笔的输入模式。
在上述技术方案的基 上,该手写输入模块 20可以具体包括压力识别单 元 21和手写输入单元 22。 其中, 压力识别单元 21用于当识别到电磁信号的 频率在手写频率的范围内时, 计算电磁信号的频率与手写基准频率之间的差 值, 根据差值识别电磁笔的手写压力; 手写输入单元 22用于根据滑动轨迹和 手写压力生成手写符号以输入。
上述方案中, 电磁信号的频率可以在手写基准频率的基石出上叠加了手写 压力频率, 例如上述实施例所述, 当电磁笔的笔尖按触显示屏时, 通过改变 磁芯的位置而改变了基准电感值, 从而改变了电磁信号的频率。 在识别到电 磁信号的频率属于手写频率的范围后, 进一步识别手写压力频率, 即识别电 磁笔按触显示屏的压力, 进而根据滑动轨迹和手写压力生成手写符号, 可以 丰富手写符号的输入信息。
在上述技术方案的基石出上, 控制输入模块 30具体包括符号匹配单元 31、 程序识别单元 32和控制输入单元 33。 其中, 符号匹配单元 31用于当识别到 电磁信号的频率在控制频率的范围内时, 将滑动轨迹与预设的快捷符号进行 匹配, 快捷符号可以预先存储, 例如 "―"、 "†"、 "→"、 ">" 和 ")" 等, 按照模糊识别等技术可以将输入的滑动轨迹与快捷符号进行匹配, 作为 控制功能输入的滑动轨迹可以由简单易记的笔画组成, 可以通过点击或滑动 来输入, 一般设置至少移动 10毫米为滑动; 程序识别单元 32用于当匹配到 与滑动轨迹一致的快捷符号时, 识别当前运行程序的标识, 即识别与该电磁 信号处理装置相连的 PC机或控制器上当前运行程序的标识; 控制输入单元 33用于根据当前运行程序的标识和快捷符号, 查询获取对应的控制符号并传 输给当前运行程序以执行控制操作。 不同的快捷符号对应不同的运行程序可 以具有不同的控制意义, 例如, 当前运行程序为 "Word" 文字处理程序时,
"†"和 " ,可以代表上下滚动页面。当前运行程序为 "Windows Media Player" 媒体播放器时, "―"和 "→"可以代表上一首歌曲, 下一首歌曲, "†"和 "丄" 可以控制音量的增大和减小, ">" 和 ")" 可以用来控制播放的开始和暂停。 目前已有多种应用程序具备快捷键输入控制程序的功能, 例如, "Windows Media Player "、 图像和传真查看器、 " Windows Internet Explorer " ,
" Out look Expres s "、 "Microsof t Off ice - PowerPoint,,、 "Mi crosof t Off i ce - Word" , "Adobe Reader" 等。 本实施例的电磁信号处理装置可以 直接将手写输入的符号转换为相应的控制符号输入给应用程序进行控制, 无 须对现有应用程序进行改进。 通过丰富快捷符号、 控制符号的预存库即可扩 展命令的数量, 扩展性能良好。
第五实施例
图 6为本发明第五实施例提供的电磁信号处理装置的结构示意图, 本实 施例与上述第四实施例的区别在于,控制输入模块 30具体包括符号匹配单元 31和键盘输入单元 34。 其中, 符号匹配单元 31用于当识别到电磁信号的频 率在控制频率的范围内时, 将滑动轨迹与预设的快捷符号进行匹配; 键盘输 入单元 34用于当匹配到与滑动轨迹一致的快捷符号时,产生对应的键盘输入 信号作为控制符号,键盘输入信号可以传输给当前运行程序以执行控制操作。 本实施例可以直接将手写输入的符号转换为键盘输入的符号, 例如将与
"―"、 "†"、 "4" 和 "→" 快捷符号匹配一致的滑动轨迹转换为键盘上的上、 下、 左、 右键输入, 相当于按动键盘输入, 产生键盘输入对当前运行程序的 控制。
本实施例可以方便用户的输入控制, 且便于记忆, 有利于操作。
类似的, 控制输入模块具体还可以包括: 鼠标输入单元。 鼠标输入单元 用于当识别到电磁信号的频率在控制频率的范围内时, 根据电磁信号产生对 应的鼠标输入信号, 将鼠标输入信号作为控制符号进行输入。 例如, 可以根 据不同的控制频率值来对应输入鼠标的左键单击、 右键单击、 左键双击等输 入信号。 或者可以结合控制频率与电磁笔的滑动轨迹来对应输入不同的鼠标 输入信号。
或者, 该控制输入模块还可以包括: 安全控制单元。 安全控制单元用于 当识别到电磁信号的频率在控制频率的范围内时, 根据电磁信号产生对应的 加密信号、 解密信号、 屏幕保护信号或磁盘锁定信号等安全控制信号, 将其 作为控制符号进行输入。 可以根据不同的控制频率值来对应输入不同的安全 控制信号, 例如加密信号、 解密信号、 屏幕保护信号或磁盘锁定信号等。 或 者结合控制频率与电磁笔的滑动轨迹来确定。 安全控制信号可以是用户设定 的, 也可以是计算机内部特有的安全控制操作。 可以根据需要来修改计算机的 基本输入输出系统 ( BIOS )信息, 从而使计算机能够接收电磁笔经电磁信号处 理装置转换输入的丰富多样的控制符号, 进而实现对计算机丰富的控制功能。
第六实施例
图 7为本发明第六实施例提供的电磁信号处理装置的结构示意图, 本实 施例与上述第四实施例的区别在于, 控制输入模块 30具体包括: 优先级识别 单元 35和顺序输入单元 36。 其中, 优先级识别单元 35用于当识别到电磁信 号的频率在控制频率的范围内, 且接收到多个电磁信号时, 识别各电磁信号 的频率所属频率范围的优先级;顺序输入单元 36用于根据识别到的优先级将 滑动轨迹转换为控制符号, 并按照优先级顺序输入给当前运行程序或控制器 等。
本实施例的技术方案适用于采用多根电磁笔同时发射电磁信号进行输入 的情况。 多根电磁笔同时发射不同频率的电磁信号, 则优先级识别单元首先 识别各电磁信号的滑动轨迹和频率, 而且确定频率所属的优先级。 不同的优 先级可以对应不同的预存快捷符号, 对应不同的处理方式。 顺序输入单元将 根据电磁信号的优先级转换控制符号。
本实施例的技术方案可以支持多电磁笔同时输入的情况, 可以通过按钮 使电磁笔发射不同频率的电磁信号, 进而对电磁信号的优先级加以区分, 避 免重复控制或矛盾控制现象的发生。 例如, 当电磁笔模拟鼠标输入功能时, 光标应随电磁笔的笔尖一同移动, 但是当使用多根电磁笔时, 就会出现光标 随机移动的现象。 采用本实施例的变频技术, 电磁信号处理装置可以根据频 率识别电磁笔的优先级, 选择其中一种频率的电磁信号作为主功能笔, 其他 笔为从功能笔, 当同时输入控制符号时, 会首先输入主功能笔的动作, 当主 功能笔无动作时再输入下一优先级的电磁信号的控制符号。 或者可以间歇式 采用各根电磁笔的电磁信号。 这样可以区别控制顺序, 以满足多根电磁笔同 时操作、 控制系统的功能。
第七实施例
图 8为本发明第七实施例提供的电磁信号处理方法的流程图, 本实施例 具体可以由上述电磁信号处理装置来执行, 包括如下步骤:
步骤 B1 0、 电磁信号处理装置通过天线阵列接收电磁信号, 识别电磁信 号的频率;
步骤 B20、 当电磁信号处理装置识别到电磁信号的频率在手写频率的范 围内时, 输入手写符号;
步骤 B30、 当电磁信号处理装置识别到电磁信号的频率在控制频率的范 围内时, 输入控制符号。
上述技术方案可以通过改变电磁信号的频率来切换输入模式, 在控制频 率的范围内, 不同频率值的电磁信号可以对应不同的控制符号, 改变发射频 率即可以改变控制功能。 则输入控制符号具体可以为根据电磁信号的频率值 查询获取对应的控制符号以输入。
进一步的, 电磁信号可以是由电磁笔发射的, 在接收到电磁笔发射的电 磁信号之后, 还可以包括识别发射电磁信号的电磁笔的滑动轨迹的操作, 结 合电磁信号的频率和电磁笔的滑动轨迹来确定手写符号或控制符号。 控制符 号的内容可以更为丰富。
在上述方案的基石出上, 步骤 B20可以具体为:
步骤 B21、 当电磁信号处理装置识别到电磁信号的频率在手写频率的范 围内时, 计算电磁信号的频率与手写基准频率之间的差值, 根据差值识别电 磁笔的手写压力;
步骤 B22、 电磁信号处理装置根据滑动轨迹和手写压力生成手写符号以 输入。
上述方案可以进一步丰富输入手写符号的信息, 不仅包括电磁笔的滑动 轨迹, 还包括电磁笔按触显示屏的压力信息。
在上述方案的基石出上, 步骤 B30可以具体为:
步骤 B31 a、 当电磁信号处理装置识别到电磁信号的频率在控制频率的范 围内时, 电磁信号处理装置将滑动轨迹与预设的快捷符号进行匹配;
步骤 B32a、 当电磁信号处理装置匹配到与滑动轨迹一致的快捷符号时, 识别当前运行程序的标识;
步骤 B33a、 电磁信号处理装置根据当前运行程序的标识和快捷符号, 查 询获取对应的控制符号并传输给当前运行程序以执行控制操作。
采用上述技术方案, 可以根据当前所运行程序转换对应的控制符号对程 序进行控制, 丰富了电磁感应式输入的控制功能, 提高了手写输入控制的便 捷性。控制符号可以根据当前运行程序对应生成, 不必对应用程序进行改进, 仅需改进预存的控制符号预存库即可, 扩展简便。
第八实施例 图 9为本发明第八实施例提供的电磁信号处理方法的流程图, 本实施例 可以上述第七实施例为基础, 且步骤 B30具体包括下述步骤:
步骤 B31b、 当电磁信号处理装置识别到电磁信号的频率在控制频率的范 围内时, 电磁信号处理装置将滑动轨迹与预设的快捷符号进行匹配;
步骤 B32b、 当电磁信号处理装置匹配到与滑动轨迹一致的快捷符号时, 产生对应的键盘输入信号作为控制符号进行输入。 键盘输入信号可以传输给 当前运行程序以执行控制操作。
在上述方案的基础上, 产生对应的键盘输入信号作为控制符号进行输入 具体可以包括:
电磁信号处理装置产生对应的键盘输入信号作为控制符号, 将控制符号 传输给当前运行程序;
当前运行程序接收到控制符号时, 在预设快捷控制表中进行匹配, 当匹 配到一致的控制符号时, 执行相应的操作。
本实施例可以将电磁笔输入的滑动轨迹直接转换为键盘输入, 相当于用 键盘输入来控制当前运行的应用程序, 便于实施快捷操作。
与上述方案类似, 输入控制符号还可以具体包括下述步骤: 根据电磁信 号产生对应的鼠标输入信号, 将鼠标输入信号作为控制符号进行输入。
或者, 输入控制符号还可以具体为: 根据电磁信号产生对应的加密信号、 解密信号、 屏幕保护信号或磁盘锁定信号等安全控制信号, 将其作为控制符 号进行输入。
可以根据不同的控制频率值来对应输入鼠标的左键单击、 右键单击、 左 键双击等输入信号, 或者是各种安全控制信号。 也可以结合控制频率与电磁 笔的滑动轨迹来对应输入不同的鼠标输入信号或安全控制信号。
安全控制信号可以是用户设定的, 也可以是计算机内部特有的安全控制 操作。 可以根据需要来修改计算机的基本输入输出系统(BIOS )信息, 从而 使计算机能够接收电磁笔经电磁信号处理装置转换输入的丰富多样的控制符 号, 进而实现对计算机丰富的控制功能。 第九实施例
图 10为本发明第九实施例提供的电磁信号处理方法的流程图,本实施例 可以上述第七实施例为基石出, 且步骤 B10中通过天线阵列接收多根电磁笔分 别发射的电磁信号, 则步骤 B30具体包括下述步骤:
步骤 B31 c、 当电磁信号处理装置识别到电磁信号的频率在控制频率的范 围内时, 识别各电磁信号的频率所属频率范围的优先级;
步骤 B32c、 电磁信号处理装置根据识别到的优先级将各电磁笔的电磁信 号分别转换为控制符号, 例如根据频率值和滑动轨迹来转换控制符号, 而后 可以按照优先级顺序输入。
采用本实施例的技术方案可以支持多根电磁笔的同时操作, 以电磁信号 的频率区分各电磁笔的控制优先级,按照优先级来转换控制符号并顺序输入, 从而避免多根电磁笔控制时发生的冲突现象。
第十实施例
本发明第十实施例提供一种电磁感应设备, 包括本发明任一实施例的电 磁笔以及本发明任一实施例的电磁信号处理装置, 且还包括天线阵列、 显示 面板和控制处理器。 天线阵列与电磁信号处理装置相连, 用于接收电磁笔发 射的电磁信号并传输给电磁信号处理装置进行识别, 电磁信号处理装置与控 制处理器相连, 用于将识别到的手写符号或控制符号输入控制处理器, 控制 处理器具体可以为 CPU等处理装置。 天线阵列可以叠加在显示面板上作为触 摸屏结构。
本发明实施例所使用的天线阵列可以与任何控制面板叠合在一起, 通常 可以集成在手写板、 专业绘图板、计算机、 PDA、手机等具有显示屏的终端内, 可以根据需要设置在显示屏的前面或后面, 电磁信号处理装置可以硬件和 / 或软件的形式设置在终端中, 且可以与终端内的操作系统相连, 传输控制符 号和手写符号, 操作系统的形式不限, 例如可以是 "Windows " , "Linux" , "Mac"等。 本发明实施例的电磁感应设备可以具体为笔记本、 台式计算机等 设备。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种电磁笔, 其特征在于, 包括:
设置在电磁笔壳体中, 且并联连接的基准电感和基准电容, 用于发射手 写频率的电磁信号;
至少一个控制电容, 与所述基准电容并联;
所述控制电容串联一控制开关, 所述控制开关的闭合或断开用于连通或 切断所述控制电容与所述基准电容的连接, 从而发射控制频率的电磁信号。
2、 根据权利要求 1所述的电磁笔, 其特征在于, 还包括:
至少一个控制按钮, 设置在所述电磁笔壳体上, 与所述控制开关相连, 用于使所述控制开关闭合或断开。
3、 根据权利要求 1或 2所述的电磁笔, 其特征在于:
所述基准电感包括磁芯和电感线圈, 所述电感线圈缠绕所述磁芯, 且所 述磁芯借助于一弹性装置弹性顶持伸出所述电磁笔壳体的笔尖; 当所述磁芯 沿所述电感线圈的轴线运动时改变电感参数,以改变发射的电磁信号的频率。
4、 根据权利要求 1所述的电磁笔, 其特征在于:
并联连接的基准电感和基准电容连接供电电路, 且在供电电路中连接有 电源控制回路, 所述电源控制回路包括:
升压单元, 连通所述基准电感和基准电容与供电电路;
第一晶体管, 与所述升压单元相连, 用于在导通时产生使能信号传输给 所述升压单元, 以开启所述升压单元的升压功能;
第二晶体管, 与所述第一晶体管相连, 用于在第二晶体管导通时将所述 第一晶体管导通;
充放电电容, 通过所述控制开关连接在所述供电电路中, 用于当所述控 制开关闭合时由所述供电电路进行充电, 且当所述控制开关断开时向所述第 二晶体管供电以维持所述第二晶体管导通。
5、 根据权利要求 4所述的电磁笔, 其特征在于, 所述电源控制回路还 包括:
低电压检测单元, 连接在所述供电电路中, 用于检测供电电压, 当所述 供电电路的电压小于设定电压值时发出提示信号。
6、 根据权利要求 1所述的电磁笔, 其特征在于:
并联连接的基准电感和基准电容连接在供电电路中, 且在供电电路中连 接有一振动开关,所述振动开关在检测到电磁笔的振动时连通所述供电电路。
7、 一种电磁信号发射方法, 其特征在于, 包括:
电磁笔借助于并联连接的基准电感和基准电容发射手写频率的电磁信 号;
所述电磁笔发射控制频率的电磁信号。
8、 根据权利要求 7所述的电磁信号发射方法, 其特征在于, 所述电磁 笔发射控制频率的电磁信号具体包括:
所述电磁笔在发射手写频率电磁信号的基准电感和基准电容上并联至少 一个控制电容, 发射由基准电感、 基准电容以及所述控制电容确定的控制频 率的电磁信号。
9、 根据权利要求 7所述的电磁信号发射方法, 其特征在于, 所述电磁 笔发射控制频率的电磁信号具体包括:
所述电磁笔在控制频率的设定范围内改变电磁信号的频率值, 以输入控 制符号, 或在控制频率下改变所述电磁笔的滑动轨迹来输入控制符号。
10、 一种电磁信号处理装置, 其特征在于, 包括:
接收识别模块, 用于通过天线阵列接收电磁笔发射的电磁信号, 识别所 述电磁信号的频率;
手写输入模块, 用于当识别到所述电磁信号的频率在手写频率的范围内 时, 输入手写符号;
控制输入模块, 用于当识别到所述电磁信号的频率在控制频率的范围内 时, 输入控制符号。
11、 根据权利要求 10所述的电磁信号处理装置, 其特征在于, 所述接 收识别模块包括:
接收单元, 用于通过天线阵列接收电磁笔发射的电磁信号;
频率识别单元, 用于识别所述电磁信号的频率。
12、 根据权利要求 11所述的电磁信号处理装置, 其特征在于, 所述接 收识别模块还包括:
轨迹识别单元, 用于识别所述电磁笔的滑动轨迹。
13、 根据权利要求 12所述的电磁信号处理装置, 其特征在于, 所述手 写输入模块包括:
压力识别单元, 用于当识别到所述电磁信号的频率在手写频率的范围内 时, 计算所述电磁信号的频率与手写基准频率之间的差值, 根据所述差值识 别所述电磁笔的手写压力;
手写输入单元,用于根据所述滑动轨迹和手写压力生成手写符号以输入。
14、 根据权利要求 12所述的电磁信号处理装置, 其特征在于, 所述控 制输入模块具体包括:
符号匹配单元, 用于当识别到所述电磁信号的频率在控制频率的范围内 时, 将所述滑动轨迹与预设的快捷符号进行匹配;
程序识别单元, 用于当匹配到与滑动轨迹一致的快捷符号时, 识别当前 运行程序的标识;
控制输入单元, 用于根据当前运行程序的标识和所述快捷符号, 查询获 取对应的控制符号并传输给所述当前运行程序以执行控制操作。
15、 根据权利要求 12所述的电磁信号处理装置, 其特征在于, 所述控 制输入模块具体包括:
符号匹配单元, 用于当识别到所述电磁信号的频率在控制频率的范围内 时, 将所述滑动轨迹与预设的快捷符号进行匹配;
键盘输入单元, 用于当匹配到与滑动轨迹一致的快捷符号时, 产生对应 的键盘输入信号作为控制符号进行输入。
16、 根据权利要求 10所述的电磁信号处理装置, 其特征在于, 所述控 制输入模块具体包括:
鼠标输入单元, 用于当识别到所述电磁信号的频率在控制频率的范围内 时, 根据所述电磁信号产生对应的鼠标输入信号, 将所述鼠标输入信号作为 控制符号进行输入。
17、 根据权利要求 10所述的电磁信号处理装置, 其特征在于, 所述控 制输入模块具体包括:
安全控制单元, 用于当识别到所述电磁信号的频率在控制频率的范围内 时, 根据所述电磁信号产生对应的加密信号、 解密信号、 屏幕保护信号或磁 盘锁定信号, 将其作为控制符号进行输入。
18、 根据权利要求 12所述的电磁信号处理装置, 其特征在于, 所述控 制输入模块具体包括:
优先级识别单元, 用于当识别到所述电磁信号的频率在控制频率的范围 内, 且接收到多个电磁信号时, 识别各所述电磁信号的频率所属频率范围的 优先级;
顺序输入单元, 用于根据识别到的优先级将滑动轨迹转换为控制符号, 并按照优先级顺序输入。
19、 一种电磁信号处理方法, 其特征在于, 包括:
通过天线阵列接收电磁信号, 识别所述电磁信号的频率;
当识别到所述电磁信号的频率在手写频率的范围内时, 输入手写符号; 当识别到所述电磁信号的频率在控制频率的范围内时, 输入控制符号。
20、 根据权利要求 19所述的电磁信号处理方法, 其特征在于, 接收到 电磁信号之后, 还包括:
识别发射所述电磁信号的电磁笔的滑动轨迹。
21、 根据权利要求 20所述的电磁信号处理方法, 其特征在于, 输入手 写符号具体包括:
计算所述电磁信号的频率与手写基准频率之间的差值, 根据所述差值识 别所述电磁笔的手写压力;
根据所述滑动轨迹和手写压力生成手写符号以输入。
22、 根据权利要求 19所述的电磁信号处理方法, 其特征在于, 输入控 制符号具体包括:
根据所述电磁信号的频率值查询获取对应的控制符号以输入。
23、 根据权利要求 20所述的电磁信号处理方法, 其特征在于, 输入控 制符号具体包括:
将所述滑动轨迹与预设的快捷符号进行匹配;
当匹配到与滑动轨迹一致的快捷符号时, 识别当前运行程序的标识; 根据当前运行程序的标识和所述快捷符号, 查询获取对应的控制符号并 传输给所述当前运行程序以执行控制操作。
24、 根据权利要求 20所述的电磁信号处理方法, 其特征在于, 输入控 制符号具体包括:
将所述滑动轨迹与预设的快捷符号进行匹配;
当匹配到与滑动轨迹一致的快捷符号时, 产生对应的键盘输入信号作为 控制符号进行输入。
25、 根据权利要求 24所述的电磁信号处理方法, 其特征在于, 产生对 应的键盘输入信号作为控制符号进行输入具体包括:
产生对应的键盘输入信号作为控制符号 , 将所述控制符号传输给当前运 行程序;
当前运行程序接收到所述控制符号时, 在预设快捷控制表中进行匹配, 当匹配到一致的控制符号时, 执行相应的操作。
26、 根据权利要求 19所述的电磁信号处理方法, 其特征在于, 输入控 制符号具体包括: 根据所述电磁信号产生对应的鼠标输入信号, 将所述鼠标输入信号作为 控制符号进行输入。
27、 根据权利要求 19所述的电磁信号处理方法, 其特征在于, 输入控 制符号具体包括:
根据所述电磁信号产生对应的加密信号、 解密信号、 屏幕保护信号或磁 盘锁定信号, 将其作为控制符号进行输入。
28、 根据权利要求 19所述的电磁信号处理方法, 其特征在于, 通过天 线阵列接收多根电磁笔分别发射的电磁信号, 则当识别到所述电磁信号的频 率在控制频率的范围内时, 输入控制符号具体包括:
当识别到所述电磁信号的频率在控制频率的范围内时, 识别所述电磁信 号的频率所属频率范围的优先级;
根据识别到的优先级将各电磁笔的电磁信号分别转换为控制符号, 并按 照优先级顺序输入。
29、 一种包括权利要求 1 ~ 6任一所述的电磁笔和权利要求 10 ~ 18任一 所述的电磁信号处理装置的电磁感应设备, 其特征在于: 还包括天线阵列、 显示面板和控制处理器; 所述天线阵列与所述电磁信号处理装置相连, 用于 接收所述电磁笔发射的电磁信号并传输给所述电磁信号处理装置进行识别; 所述电磁信号处理装置与所述控制处理器相连, 用于将识别到的手写符号或 控制符号输入所述控制处理器。
PCT/CN2010/071810 2009-04-16 2010-04-16 电磁笔、电磁信号发射方法和处理方法、装置及设备 WO2010118697A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012505038A JP2012524308A (ja) 2009-04-16 2010-04-16 電磁ペン、電磁信号の発信方法と処理方法、装置及び設備
KR1020117027061A KR101325183B1 (ko) 2009-04-16 2010-04-16 전자기 펜, 전자기 신호 전송 방법 및 처리 방법, 장치 및 디바이스
US13/274,923 US8773404B2 (en) 2009-04-16 2011-10-17 Electromagnetic pen, electromagnetic signal transmission method and processing method, apparatus and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910082463.6 2009-04-16
CN200910082463A CN101539816B (zh) 2009-04-16 2009-04-16 电磁笔、电磁信号处理方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/274,923 Continuation US8773404B2 (en) 2009-04-16 2011-10-17 Electromagnetic pen, electromagnetic signal transmission method and processing method, apparatus and device

Publications (1)

Publication Number Publication Date
WO2010118697A1 true WO2010118697A1 (zh) 2010-10-21

Family

ID=41123026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071810 WO2010118697A1 (zh) 2009-04-16 2010-04-16 电磁笔、电磁信号发射方法和处理方法、装置及设备

Country Status (5)

Country Link
US (1) US8773404B2 (zh)
JP (1) JP2012524308A (zh)
KR (1) KR101325183B1 (zh)
CN (1) CN101539816B (zh)
WO (1) WO2010118697A1 (zh)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539816B (zh) 2009-04-16 2012-10-17 台均科技(深圳)有限公司 电磁笔、电磁信号处理方法、装置及设备
CN102221908A (zh) * 2010-04-16 2011-10-19 太瀚科技股份有限公司 新型无电池式电磁笔
CN101894483B (zh) * 2010-07-19 2013-04-24 广东小天才科技有限公司 一种点读机及其收发信号频率校正方法
CN101957706B (zh) * 2010-09-30 2012-07-18 汉王科技股份有限公司 电磁手写设备
CN101980112A (zh) * 2010-10-15 2011-02-23 台均科技(深圳)有限公司 电磁式触控笔
CN102478974B (zh) * 2010-11-30 2014-04-16 汉王科技股份有限公司 一种用于电子白板的电磁笔及其控制方法
CN102681677B (zh) * 2011-03-08 2015-12-09 汉王科技股份有限公司 用于电子白板的电磁笔及其压感控制方法
CN102681678B (zh) * 2011-03-08 2016-03-23 汉王科技股份有限公司 具有压感擦除功能的电磁笔及其实现方法
CN102681744A (zh) * 2011-03-17 2012-09-19 太瀚科技股份有限公司 具有展频电路的数字板
CN102799335A (zh) * 2011-05-23 2012-11-28 太瀚科技股份有限公司 具锁相电路的数字板
CN102854460B (zh) * 2011-06-30 2014-12-10 汉王科技股份有限公司 电子教鞭按键状态的检测方法、电子白板及电子教鞭
US8878823B1 (en) * 2011-07-27 2014-11-04 Cypress Semiconductor Corporation Dynamic shield electrode of a stylus
CN103064577B (zh) * 2011-10-19 2015-08-26 汉王科技股份有限公司 电磁触控的输入方法及装置
TWI450135B (zh) * 2011-12-06 2014-08-21 Wistron Corp 電磁式觸控筆及其電腦設備
US8878824B2 (en) * 2012-04-11 2014-11-04 Blackberry Limited Force-sensing stylus pointing device
KR102066017B1 (ko) 2012-05-11 2020-01-14 삼성전자주식회사 좌표 표시 장치 및 좌표 표시 장치의 입력 위치를 측정하는 좌표 측정 장치
CN103425378A (zh) * 2012-05-23 2013-12-04 昆盈企业股份有限公司 轨迹输入装置
JP2013254816A (ja) * 2012-06-06 2013-12-19 Wacom Co Ltd コンデンサ
JP6008393B2 (ja) * 2012-07-28 2016-10-19 株式会社ワコム 電磁誘導方式の位置指示器及び電子インクカートリッジ
CN103577021B (zh) * 2012-07-31 2017-02-15 汉王科技股份有限公司 调整电磁输入装置灵敏度的方法及装置
JP6012069B2 (ja) 2012-09-13 2016-10-25 株式会社ワコム 電磁誘導方式の位置指示器及び電子インクカートリッジ
CN103870174B (zh) * 2012-12-11 2017-03-01 联想(北京)有限公司 一种信息处理方法以及一种电子设备
EP2743809B1 (en) * 2012-12-13 2020-02-12 BlackBerry Limited Stylus location utilizing multiple magnetometers
US9262033B2 (en) 2012-12-13 2016-02-16 Blackberry Limited Stylus location utilizing multiple magnetometers
CN104238771A (zh) * 2013-06-13 2014-12-24 宏碁股份有限公司 电子装置、触控输入装置及其热键设定方法
JP5647715B1 (ja) * 2013-06-27 2015-01-07 株式会社ワコム 位置指示器
KR102106779B1 (ko) * 2013-06-28 2020-05-06 삼성전자주식회사 펜 입력 처리 방법 및 상기 방법이 적용되는 장치
TWI492103B (zh) * 2013-06-28 2015-07-11 Teco Image Sys Co Ltd 光學觸控筆
TWI518557B (zh) * 2013-07-17 2016-01-21 恆顥科技股份有限公司 投射電容式觸控筆及其控制方法
KR20150024247A (ko) * 2013-08-26 2015-03-06 삼성전자주식회사 터치 스크린 디바이스에서 다수의 입력기구를 이용하는 애플리케이션을 실행하는 방법 및 터치 스크린 디바이스
KR102111274B1 (ko) * 2013-09-26 2020-05-15 엘지디스플레이 주식회사 터치 센싱 시스템과 그 구동 방법
KR20150049312A (ko) * 2013-10-30 2015-05-08 삼성전자주식회사 촉각 피드백을 제공하기 위한 전자 장치, 스타일러스 펜 및 방법
KR20150053172A (ko) * 2013-11-07 2015-05-15 삼성전자주식회사 전자기 유도를 이용하는 휠 회로 및 이를 구비하는 전자펜
CN104679367B (zh) * 2013-11-08 2018-05-08 禾瑞亚科技股份有限公司 发信器及其控制方法
CN104636010B (zh) * 2013-11-08 2018-07-10 禾瑞亚科技股份有限公司 发信器与其发信方法
CN104636006B (zh) * 2013-11-08 2019-01-01 禾瑞亚科技股份有限公司 同时发信的发信器组合与其发信方法及触控系统
KR102180236B1 (ko) * 2014-02-20 2020-11-18 삼성전자 주식회사 전자 장치의 입력 처리 방법 및 장치
KR102219857B1 (ko) * 2014-03-18 2021-02-24 삼성전자주식회사 전자 장치 및 그 동작 방법
US9582092B2 (en) 2014-05-13 2017-02-28 Synaptics Incorporated System and method for using passive pen with ground mass state switch
TW201601013A (zh) * 2014-06-25 2016-01-01 昆盈企業股份有限公司 主動式電容筆及其感應方法
JP6320231B2 (ja) * 2014-08-04 2018-05-09 株式会社ワコム 位置指示器及びその製造方法
US9946391B2 (en) 2014-11-26 2018-04-17 Synaptics Incorporated Sensing objects using multiple transmitter frequencies
US10088922B2 (en) 2014-11-26 2018-10-02 Synaptics Incorporated Smart resonating pen
US10180736B2 (en) 2014-11-26 2019-01-15 Synaptics Incorporated Pen with inductor
KR102299421B1 (ko) * 2015-01-30 2021-09-08 엘지디스플레이 주식회사 터치패널 표시 장치, 능동형 스타일러스 펜 및 그 제어방법
KR20160096913A (ko) * 2015-02-06 2016-08-17 주식회사 페이턴틴 디지타이저 장치
US9977519B2 (en) * 2015-02-25 2018-05-22 Synaptics Incorporated Active pen with bidirectional communication
KR102333720B1 (ko) 2015-04-09 2021-12-01 삼성전자주식회사 디지털 펜, 터치 시스템 및 이의 정보 제공 방법
US9639183B2 (en) * 2015-04-20 2017-05-02 Wacom Co., Ltd. System and method for bidirectional communication between stylus and stylus sensor controller
CN106293145B (zh) * 2015-06-26 2021-08-20 株式会社和冠 智能谐振笔
WO2017134920A1 (ja) * 2016-02-01 2017-08-10 株式会社ワコム 電子ペン
CN108369458B (zh) * 2016-02-05 2021-05-28 株式会社和冠 电子笔
WO2018081939A1 (zh) * 2016-11-02 2018-05-11 深圳市汇顶科技股份有限公司 一种确定触控笔目标工作频率的方法以及触控屏、触控笔
TWI608385B (zh) * 2016-12-16 2017-12-11 矽統科技股份有限公司 主動式觸控筆
CN106502471B (zh) * 2016-12-21 2023-05-30 深圳市精源宇科技有限公司 手写绘图屏
CN106767839B (zh) * 2016-12-27 2019-11-26 中国船舶重工集团公司第七0七研究所 一种基于主动式电磁感应笔的纸海图标绘方法
JP6908442B2 (ja) * 2017-06-06 2021-07-28 株式会社ワコム 位置指示器
CN107621895B (zh) * 2017-10-31 2024-04-09 深圳市精源宇科技有限公司 电磁输入装置
CN109976555A (zh) * 2017-12-27 2019-07-05 田雪松 一种频率校正方法及装置
CN108415600B (zh) * 2018-03-09 2021-02-26 宁波宁大教育设备有限公司 电磁笔手写笔迹位置矫正方法及装置
KR102227274B1 (ko) 2018-08-09 2021-03-15 삼성전자주식회사 버튼을 포함하는 전자 펜 장치, 전자 펜 장치에서의 동작 방법 및 시스템
KR102487632B1 (ko) * 2018-10-04 2023-01-11 주식회사 하이딥 스타일러스 펜
CN109639143B (zh) * 2018-11-29 2020-11-06 天津大学 电磁力激振装置
CN109917932A (zh) * 2019-02-03 2019-06-21 广州视源电子科技股份有限公司 交互智能设备的控制方法、装置和电磁屏的控制系统
CN110262676B (zh) * 2019-06-06 2024-04-26 深圳市优笔触控科技有限公司 一种谐振信号调节装置、电磁笔及电磁手写屏系统
CN110554814A (zh) * 2019-09-20 2019-12-10 深圳市优笔触控科技有限公司 一种用于电磁手写板的触控感应装置及方法
KR102131310B1 (ko) * 2020-01-08 2020-07-07 삼성전자주식회사 좌표 표시 장치 및 좌표 표시 장치의 입력 위치를 측정하는 좌표 측정 장치
CN111273992B (zh) * 2020-01-21 2024-04-19 维沃移动通信有限公司 一种图标显示方法及电子设备
WO2022022387A1 (zh) * 2020-07-27 2022-02-03 华为技术有限公司 信息输入设备在终端上操控的方法、装置及系统
CN112462957A (zh) * 2020-11-24 2021-03-09 深圳市绘王动漫科技有限公司 电磁手写系统及电磁手写输入方法
CN113220144B (zh) * 2021-03-15 2022-06-07 荣耀终端有限公司 触控笔

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005555A (en) * 1996-12-05 1999-12-21 Wacom Co., Ltd. Position detecting apparatus and method for detecting position pointing device
US20080150916A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered device employing tunable resonant circuit
US20080150658A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Frequency control circuit for tuning a resonant circuit of an untethered device
CN101539816A (zh) * 2009-04-16 2009-09-23 台均科技(深圳)有限公司 电磁笔、电磁信号发射方法和处理方法、装置及设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2584836B1 (fr) * 1985-07-09 1992-06-19 Farel Alain Procede de saisie informatique de donnees graphiques concomitante a leur creation
EP0432139B1 (en) * 1986-07-23 1997-05-28 Wacom Company, Ltd. Position designating device
JPH07113870B2 (ja) * 1986-11-25 1995-12-06 株式会社ワコム 反射型位置指示器
JP2608895B2 (ja) * 1987-08-24 1997-05-14 株式会社ワコム 座標入力方法及びその装置
US4806707A (en) * 1988-02-12 1989-02-21 Calcomp Inc. 3-Dimensional digitizer pen
JPH02130031U (zh) * 1989-03-31 1990-10-26
US5355100A (en) * 1993-01-11 1994-10-11 International Business Machines Corporation Battery powered magnetic pen with time out to prevent accidental battery discharge
US5528002A (en) * 1993-07-15 1996-06-18 Pentel Kabushiki Kaisha Noiseproof digitizing apparatus with low power cordless pen
JP3412240B2 (ja) * 1994-02-28 2003-06-03 ぺんてる株式会社 信号ペン回路
JPH07141085A (ja) * 1993-11-17 1995-06-02 Canon Inc ペン入力型電子機器
JPH07200131A (ja) * 1993-12-28 1995-08-04 Casio Comput Co Ltd ペン入力システム
JP3421416B2 (ja) * 1994-03-18 2003-06-30 株式会社ワコム 位置検出装置及びその位置指示器
US5736980A (en) * 1994-04-28 1998-04-07 Sharp Kabushiki Kaisha Coordinate inputting apparatus with shared line combinations of power, position and switch signals
US5793360A (en) * 1995-05-05 1998-08-11 Wacom Co., Ltd. Digitizer eraser system and method
DE19652491A1 (de) * 1996-12-17 1998-06-18 Philips Patentverwaltung Anordnung zum Eingeben von Koordinatenwerten
JP3914421B2 (ja) * 2000-12-13 2007-05-16 株式会社ワコム ペン型座標指示器
US6906703B2 (en) * 2001-03-28 2005-06-14 Microsoft Corporation Electronic module for sensing pen motion
US7292229B2 (en) * 2002-08-29 2007-11-06 N-Trig Ltd. Transparent digitiser
JP2007102369A (ja) * 2005-09-30 2007-04-19 Toshiba Corp ジェスチャ認識装置およびジェスチャ認識方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005555A (en) * 1996-12-05 1999-12-21 Wacom Co., Ltd. Position detecting apparatus and method for detecting position pointing device
US20080150916A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Untethered device employing tunable resonant circuit
US20080150658A1 (en) * 2006-12-20 2008-06-26 3M Innovative Properties Company Frequency control circuit for tuning a resonant circuit of an untethered device
CN101539816A (zh) * 2009-04-16 2009-09-23 台均科技(深圳)有限公司 电磁笔、电磁信号发射方法和处理方法、装置及设备

Also Published As

Publication number Publication date
JP2012524308A (ja) 2012-10-11
KR20120024604A (ko) 2012-03-14
KR101325183B1 (ko) 2013-11-07
CN101539816B (zh) 2012-10-17
US20120068975A1 (en) 2012-03-22
CN101539816A (zh) 2009-09-23
US8773404B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
WO2010118697A1 (zh) 电磁笔、电磁信号发射方法和处理方法、装置及设备
CN201503574U (zh) 电磁笔及电磁感应设备
US20080128180A1 (en) Position Detecting System and Apparatuses and Methods For Use and Control Thereof
KR100967316B1 (ko) 터치감지장치 및 그 터치감지장치와 연결된 전자장치
CN202050483U (zh) 一种遥控器
US20110109553A1 (en) Wireless touchpad mouse
CN104423831A (zh) 具有侧边触控组合快捷功能的电子装置
US20130091369A1 (en) Power-saving input device and power-saving method for such input device
CN201757884U (zh) 触控式无线鼠标
CN102156557A (zh) 手写笔、移动终端及利用手写笔在移动终端上操作的方法
TWM379821U (en) Eraser system
CN103823555A (zh) 一种3d手势转换为键码的系统及方法
CN202870789U (zh) 一种遥控器
CN102681678A (zh) 具有压感擦除功能的电磁笔及其实现方法
CN102478974A (zh) 一种用于电子白板的电磁笔及其控制方法
TWM523150U (zh) 電容式觸控筆與電容式觸控筆操作系統
CN102063234A (zh) 具有震动回馈功能的电容式触摸感应按键控制面板
CN101685359A (zh) 具有互动显示屏幕的电子装置及其处理方法
JP7198313B2 (ja) デジタルスタイラス、入力システムおよびその制御方法
CN116149497A (zh) 一种输入信号产生装置及电子设备
CN202008727U (zh) 一种无线触摸板遥控器
CN203055134U (zh) 一种具有手写输入功能的遥控器
CN202798060U (zh) 电池节能装置和电子设备
CN201242737Y (zh) 触摸控制装置及具有触摸控制装置的电视机
US20100079378A1 (en) Light emitting keyboard module and power saving method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012505038

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117027061

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10764110

Country of ref document: EP

Kind code of ref document: A1