WO2010116865A1 - インダイレクトマトリクスコンバータ、作業機械の旋回制御装置及び作業機械 - Google Patents
インダイレクトマトリクスコンバータ、作業機械の旋回制御装置及び作業機械 Download PDFInfo
- Publication number
- WO2010116865A1 WO2010116865A1 PCT/JP2010/054398 JP2010054398W WO2010116865A1 WO 2010116865 A1 WO2010116865 A1 WO 2010116865A1 JP 2010054398 W JP2010054398 W JP 2010054398W WO 2010116865 A1 WO2010116865 A1 WO 2010116865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power conversion
- matrix converter
- converter
- indirect matrix
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2062—Control of propulsion units
- E02F9/2075—Control of propulsion units of the hybrid type
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2095—Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
Definitions
- the present invention relates to an indirect matrix converter, a control device for a work machine including the indirect matrix converter, and a work machine including the control device.
- WORKING MACHINES eg, CONSTRUCTION MACHINES, HYBRID CONSTRUCTION MACHINES, WHEREIN A Swivel Body Attached to a Boom or Arm is Turned by an Electric Motor.
- a generator is also driven to drive the electric motor.
- This generator is driven by an engine that drives a hydraulic pump for driving a boom and an arm.
- AC power generated by a generator is converted into DC power by a converter and a smoothing capacitor, and the DC power is converted into AC power by an inverter and supplied to an electric motor.
- direct AC power is directly converted into predetermined AC power without generating DC power at all. It is also conceivable to use a matrix converter.
- the direct matrix converter does not have a smoothing energy storage element like a chemical capacitor, it is set to prevent the dead time of the IGBT (Insulated Gate Bipolar Transistor) provided in the direct matrix converter (short circuit current from flowing through the IGBT). It is necessary to determine the IGBT drive pulse pattern in consideration of the influence of the switching delay time of the switching performed.
- Patent Document 1 discloses a technique for reducing distortion of input current and output voltage by correcting a drive pulse pattern of a direct matrix converter.
- An object of the present invention is to make it possible to easily reduce distortion of input current and output voltage in an indirect matrix converter. Another object of the present invention is to provide a work machine control device provided with such an indirect matrix converter and a work machine provided with this control device.
- the indirect matrix converter includes a first power conversion unit.
- the input AC power is converted into DC power by a plurality of switching means and output.
- the indirect matrix converter also includes a second power conversion unit.
- the second power converter the DC power is converted into AC power by a plurality of switching means and output.
- the first power conversion unit for example, a plurality of arms (number corresponding to the number of phases of supplied AC power) having two switching means connected in series are connected in parallel to each other.
- the interconnection point of the switching means in each arm is a power input terminal of the AC power supply. Both ends of the arms connected in parallel are used as output terminals of the first power converter. This output terminal is connected to the second power converter.
- a plurality of arms (number corresponding to the number of phases of AC power to be output) having two switching means connected in series are connected in parallel to each other. Between both ends of the arms connected in parallel is a power input terminal connected to the output terminal of the first power converter. An interconnection point of the switching means in each arm is an output terminal.
- This indirect matrix converter includes a command correction unit.
- the command correction unit controls a signal serving as a reference for control of the plurality of switching means so as to prevent all the plurality of switching means of the first power conversion unit and the second power conversion unit from being simultaneously turned off. to correct. For example, a period for turning on and off the switching means constituting the second power conversion unit belonging to the same arm is determined by a signal serving as a reference for controlling the plurality of switching means.
- a signal for controlling the plurality of switching units of the second power conversion unit is generated based on a signal for controlling the plurality of switching units of the first power conversion unit.
- the reference signal is a signal for controlling the switching means of the second power converter.
- any of the plurality of switching means of the first power conversion unit is in a dead time, for example, one switching means of the first power conversion unit is switched from on to off, and complementarily, that is, reversely.
- another switching means is switched from OFF to ON, when both the switching means are turned OFF until the switching is completed, the second power conversion related to the switching means of the first power conversion unit.
- the period of the reference signal is adjusted so that the switching means of the unit is turned on. For example, the period is lengthened or shortened. Specifically, the reference signal changes between the first level state and the second level, changes from the first level state to the second level state, and again the first level state. When changing to the level state, the two timings of the change are made faster or slower.
- the length of the period is corrected instead of newly creating a reference signal, so that the correction amount is small and the influence of the correction can be suppressed to a very low level.
- a control device for a working machine includes a generator driven by an engine that drives a hydraulic pump, and the input AC power is converted to DC power by a plurality of switching means.
- An indirect matrix converter including a first power conversion unit that is converted and output; and a second power conversion unit that converts the DC power into AC power by a plurality of switching means, and outputs the AC power by the indirect matrix converter. And a swivel motor to be controlled.
- the indirect matrix converter is the above-described aspect.
- the switching means of the first power conversion unit and the second power conversion unit of the indirect matrix converter can be bidirectional switching means.
- the DC link between the first power conversion unit and the second power conversion unit accumulates the power from the generator and the regenerative power from the swing motor, as well as the swing motor and the drive
- a capacitor for supplying the accumulated electric power for operating the generator as a motor and a charge / discharge circuit for charging / discharging the capacitor are provided.
- the iron loss of the generator can be suppressed in the control device, so that the energy consumption of the work machine can be suppressed.
- an electric hydraulic pump driven by electric power of the generator may be used instead of the method in which the hydraulic pump is driven by the engine. Since the iron loss of the generator can be suppressed in the control device, the energy consumption of the work machine can be suppressed.
- FIG. 1 is a block diagram of a hybrid construction machine according to an embodiment of the present invention.
- FIG. 2 is a circuit diagram of an indirect matrix converter used in the hybrid construction machine of FIG. 1.
- FIG. 3 is a waveform diagram before and after correction of an inverter PWM signal in a certain state of the inverter of the indirect matrix converter of FIG. 2. It is a wave form diagram before and behind correction
- a working machine for example, a hybrid construction machine has an engine 2 as shown in FIG.
- the engine 2 drives the hydraulic pump 4 and the generator 6.
- the hydraulic pump 4 functions as a drive source for a hydraulic actuator 8 such as an arm cylinder, a boom cylinder, a bucket cylinder, and a traveling hydraulic motor of a hybrid construction machine.
- the arm driven by the arm cylinder, the boom driven by the boom cylinder, and the bucket driven by the bucket cylinder are attached to the upper swing body of the hybrid construction machine.
- a traveling hydraulic motor (not shown) drives the traveling body provided with the upper swinging body so as to be able to swing.
- an electric motor of the turning control device 10 for example, a turning motor 12 is coupled to the upper turning body via a turning mechanism (not shown).
- the turning motor 12 is, for example, a three-phase electric motor. Electric power for rotating the turning motor 12 is generated by the generator 6.
- the generator 6 is, for example, a three-phase AC generator that generates three-phase AC power, and can also operate as an electric motor, for example, a three-phase motor. When functioning as a three-phase motor, the generator 6 drives the hydraulic pump 4 together with the engine 2.
- the electric power generated by the generator 6 is supplied to the indirect matrix converter 14 of the turning control device 10, and the frequency and voltage of the electric power are converted by the indirect matrix converter 14 and supplied to the turning motor 12.
- the indirect matrix converter 14 includes a first power conversion unit 16 and a second power conversion unit 18 as shown in FIG.
- the first power conversion unit 16 has three-phase AC power supply input terminals 20r, 20s, and 20t, and further has two intermediate DC terminals 22p and 22n.
- a switching element such as a bidirectional switching circuit 24 is connected between the three-phase AC power supply input terminal 20r and the intermediate DC output terminal 22p.
- the bidirectional switching circuit 24 has an IGBT 26 whose collector is connected to the three-phase AC power supply input terminal 20r, and an IGBT 28 whose collector is also connected to the intermediate DC output terminal 22p, and these emitters are connected to each other. .
- a diode 30 is connected in antiparallel between the collector and emitter of the IGBT 26, and a diode 32 is connected in antiparallel between the collector and emitter of the IGBT 28.
- the IGBT 26 When the IGBT 26 is conducting, the current from the three-phase AC power supply input terminal 20r flows to the intermediate DC output terminal 22p via the IGBT 26 and the diode 32.
- the IGBT 28 When the IGBT 28 is conducting, a current from the intermediate DC output terminal 22p flows to the three-phase AC power supply input terminal 20r via the IGBT 28 and the diode 30.
- Bidirectional switching circuits 34 and 36 are connected between the three-phase AC power input terminals 20s and 20t and the intermediate DC output terminal 22p, respectively. Similarly to the bidirectional switching circuit 24, the bidirectional switching circuits 34 and 36 are each composed of two IGBTs 36, 38, 40 and 42 and antiparallel diodes 44, 46, 48 and 50.
- bidirectional switching circuits 52, 54, 56 are connected between the power input terminals 20r, 20s, 20t and the intermediate DC output terminal 22n. These bidirectional switching circuits 52, 54, and 56 are also composed of two IGBTs 58, 60, 62, 64, 66, and 68 and anti-parallel diodes 70, 72, 74, 76, 78, and 80, respectively.
- the first power conversion unit 16 includes 12 IGBTs and 12 diodes.
- the first power conversion unit 16 generates an intermediate DC voltage between the intermediate output terminals 22p and 22n.
- the second power converter 18 includes an intermediate DC input terminal 84p connected to the intermediate output terminal 22p via an intermediate DC power supply line 82p, and an intermediate DC connected to the intermediate DC output terminal 22n via an intermediate DC power supply line 82n. And an input terminal 84n. Further, the second power converter 18 also has AC output terminals 86 u, 86 v, 86 w connected to each phase of the turning motor 12.
- a semiconductor switching element for example, IGBT 88 is connected between the intermediate DC input terminal 84p and the AC output terminal 86u.
- the collector of the IGBT 88 is connected to the intermediate DC input terminal 84p, and the emitter is connected to the AC output terminal 86u.
- a diode 90 is connected in antiparallel between the collector and emitter of the IGBT 88.
- IGBTs 92 and 94 are connected between the intermediate DC input terminal 84p and the AC output terminals 86v and 86w, respectively.
- Diodes 96 and 98 are connected in antiparallel between the collectors and emitters of the IGBTs 92 and 94.
- the IGBTs 100, 102, 104 are also connected between the AC output terminals 86u, 86v, 86w and the intermediate DC input terminal 84n.
- the IGBTs 100, 102, and 104 have their collectors connected to AC output terminals 86u, 86v, and 86w, and their emitters connected to the intermediate DC input terminal 84n.
- Diodes 106, 108, and 110 are connected in antiparallel between the collectors and emitters of the IGBTs 100, 102, and 104, respectively.
- the second power conversion unit 18 is composed of six IGBTs and six diodes.
- a charge / discharge circuit 112 is provided between the intermediate DC power supply lines 82p and 82n.
- the charge / discharge circuit 112 includes an IGBT 114.
- the collector of the IGBT 114 is connected to the intermediate DC power supply line 82p.
- the emitter of the IGBT 114 is connected to the intermediate DC power supply line 82n through a series circuit of a resistor 116 and a capacitor 118.
- As the capacitor 118 in addition to an electric double layer capacitor (EDLC), a hybrid capacitor such as a Li (lithium) ion capacitor can be used.
- An IGBT 120 is connected in parallel with the series circuit of the resistor 116 and the capacitor 118.
- the collector is located on the resistor 116 side, and the emitter is located on the intermediate DC input terminal 84n side.
- Diodes 122 and 124 are connected in antiparallel between the collectors and emitters of the IGBTs 114 and 120, respectively.
- the IGBT 114 and the IGBT 120 can be changed to MOSFETs (Metal Oxide Semiconductor Field Effect Transistors).
- the IGBTs of the first power conversion unit 16 and the second power conversion unit 18 are on / off controlled by the PWM signal generated by the PWM generation unit 126 for the first power conversion and the second power conversion shown in FIG. .
- AC power having a desired frequency and voltage is supplied to the turning motor 12.
- the PWM generator 126 generates a first power conversion PWM signal in accordance with the first power conversion command from the first power conversion command generator 128.
- the first power conversion command generation unit 128 generates a first power conversion command in accordance with an instruction from the control unit of the work machine, for example, the control unit 129 of the hybrid construction machine.
- the second power conversion command generation unit 130 Based on the first power conversion command, the second power conversion command generation unit 130 generates a second power conversion command.
- the command correction unit 132 corrects the second power conversion command, the corrected second power conversion command is supplied to the PWM generation unit 126, and the PWM generation unit 126 generates a PWM signal for the second power conversion. .
- the second power conversion command is directly supplied to the PWM generation unit 126, and the PWM generation unit 126 generates a PWM signal for the second power conversion based on the directly supplied second power conversion command.
- this causes a disadvantage that all the IGBTs existing in the current flowing path in the indirect matrix converter 14 are turned off.
- this point will be described with reference to FIGS. 3 and 4.
- FIG. 3 shows a case where the PWM signal is generated by the carrier comparison method, and the IGBT is switched by the PWM signal only in the 120-degree section for one phase of the three-phase alternating current.
- the other two phases may be considered by shifting the phase by 120 degrees, and are therefore omitted.
- CC indicates a first power conversion carrier which is a triangular wave for controlling the converter 16.
- Sr, Rr, and Tr indicate three reference values generated according to instructions from the control device 129.
- the rectifier commands SC, RC, and TC are in the first state, for example, the H level during a period in which the value of the triangular wave carrier CC is smaller than the reference values Sr, Rr, and Tr.
- Sr is equal to the maximum value of the triangular wave carrier SC
- Tr is equal to the minimum value of the triangular wave carrier CC
- Rr takes a value between Sr and Tr, and in particular, the period during which the rectifier command RC is at the H level is the first. It is assumed that Rr is determined to be equal to the minimum on-time Tonrec of the switching element of the 1 power conversion unit 16. Therefore, the rectifier command RC is at the H level during the period when the value of the triangular wave carrier CC is smaller than the reference value Rr, the rectifier command SC is continuously at the H level, and the rectifier command TC is continuously in the second state, for example L level.
- the control signals Rp, Sp, Tp, Rn, Sn, and Tn of the bidirectional switching circuits 24, 34, 36, 52, 54, and 56 are generated by dual conversion of the rectifier commands SC, RC, and TC. That is, the control signal Rp for the bidirectional switching circuit 24 is continuously at L level (the bidirectional switching circuit 24 is off), and the rectifier command RC is at H level in the control signal Rn for the bidirectional switching circuit 52.
- the period is L level (bidirectional switching circuit 52 is off) obtained by extending the period by dead time Td, and the H level (bidirectional switching circuit 52 is on) in other periods.
- the control signal Sp for the bidirectional switching circuit 34 is continuously at the H level (the bidirectional switching circuit 34 is on), and the control signal Sn for the bidirectional switching circuit 54 is continuously at the L level (bidirectional switching circuit). 54 is off).
- the control signal Tp for the bidirectional switching circuit 36 is continuously at the L level (the bidirectional switching circuit 36 is off), and the control signal Tn for the bidirectional switching circuit 56 is from the time when the rectifier command RC rises to the H level. It is at the H level (bidirectional switching circuit 56 is on) from the time when it is delayed by the dead time Td to the time when the rectifier command RC falls to the L level, and at the L level (bidirectional switching circuit 56 is off) during other periods. is there.
- the dead time Td is set in order to prevent the bidirectional switch circuits existing in the same arm from being turned on at the same time in consideration of variations in turning on and off of the bidirectional switching circuits.
- the PWM signal of the inverter 18 is generated by the inverter command generation unit 130.
- the carrier IC for the second power conversion in the second power conversion unit 18 that is a triangular wave has a maximum value when the carrier CC for the first power conversion is the minimum value, and the rise and fall times of the rectifier command RC to the H level And has a portion where the value decreases toward the same time as the rising time of the rectifier command RC, and a portion where the value increases from the same time as the falling time of the rectifier command RC. Generated.
- the second power conversion command UC is at the H level.
- the PWM signal Up for the IGBT 88 of the second power conversion unit 18 rises with a delay by the dead time Td from the rise of the second power conversion command UC, and falls in synchronization with the fall of the second power conversion command UC.
- the PWM signal Un for the IGBT 100 of the second power conversion unit 18 becomes L level from the rising edge of the second power conversion command UC, and maintains the L level until the time delayed by the dead time Td from the falling edge of the second power conversion command UC.
- the H level is maintained during other periods. Therefore, as shown in FIG. 3, the period T1 after the portion where the PWM signal Up preceded the H level has fallen from the H level to the L level, and the period before the subsequent H level portion of the PWM signal Un rises.
- T2 there is a period in which the bidirectional switching circuits 52 and 56 and the IGBTs 88 and 100 are all turned off. That is, in the indirect matrix converter, the bidirectional switching circuits 52 and 56 and the IGBTs 88 and 100 existing in one path through which the current flows are all turned off. Therefore, during these periods T1 and T2, the waveforms of the input current and the output voltage are distorted.
- Tonrec / 2 the period T3 before the rising of the portion that has become H level prior to the PWM signal Up, and the falling from the portion that has become H level after the PWM signal Up.
- T4 a period in which the bidirectional switching circuits 52 and 56 and the IGBTs 88 and 100 are all turned off occurs, and the waveforms of the input current and the output voltage are distorted.
- the period in which the rectifier command RC in FIG. 3 is at the H level and the period in which the rectifier command RC in FIG. 4 is at the H level are variously generated. Are different, but those corresponding to T1, T2, T3, and T4 are generated.
- a correction command unit 132 is provided.
- the correction command unit 132 corrects the second power conversion command UC to the corrected second power conversion command UCC as shown in FIG. The correction is performed as shown in the flowchart of FIG.
- the correction command unit 32 measures time D1, time D2, time D3, and time D4 (step S2).
- the time D1 is the minimum time point (first power conversion command) at which the second power conversion carrier IC changes from the lowered state to the increased state from the rising point of the portion that is previously at the H level in the second power conversion command UC. Time until the rise of RC).
- the time D2 is the time from the time when the minimum value of the carrier IC for second power conversion (the time when the first power conversion command RC rises) to the time when the preceding one of the first power conversion command UC falls.
- the time D3 is the time (minimum value of the first power conversion command RC when the carrier IC for second power conversion changes from the lowered state to the increased state from the rising point of the subsequent H-level portion in the second power conversion command UC.
- the time D4 follows the second power conversion command UC from the time of the minimum value at which the second power conversion carrier IC changes from the lowered state to the increased state (the falling time of the first power conversion command RC) and subsequently becomes the H level. This is the time until the falling point of the part.
- the correction command unit 32 determines whether the time D1 is shorter than the dead time Td (step S4). If the answer to this determination is yes, if the PWM signal Up is generated as it is, the rising edge of the PWM signal Up is the same as that of the first power conversion PWM signals Rn and Tn as shown by the period T3 in FIG. It becomes H level for the first time after the time when the first power conversion command R in the dead time period rises. As a result, during the period T3, the bidirectional switching circuits 52 and 56 and the IGBTs 88 and 100 are all turned off.
- the correction command unit 32 makes the correction time D1C equal to the dead time Td so that the PWM signal UpC for correction second power conversion becomes H level when the first power conversion command R rises (step S6).
- the correction command unit 36 determines that the sum of the correction time D2C and the correction time D1C is equal to the sum of the original times D1 and D2. ).
- the portion of the corrected second power conversion command UCC that precedes the H level rises faster than the rise of the portion of the original second power conversion command UC that precedes the H level and the original fall. Even fall quickly.
- the length of the period that is at the H level does not change, and the time that is the reference for this correction is the time at which the first power conversion command RC becomes the H level.
- step S4 determines whether the time D2 is shorter than the dead time Td (step S8). If the answer to this determination is yes, if the time D2 is not corrected, there is a period in which all of the bidirectional switching circuits 52 and 56 and the IGBTs 88 and 100 are turned off as shown by the period T1 in FIG. Therefore, the correction command unit 32 waits until the first power conversion PWM signal Tn changes to the H level after the dead time Td elapses after the first power conversion PWM signal Rp changes to the L level.
- the correction time D2C is made equal to the dead time Td so that the second power conversion PWM signal UpC is maintained at the H level (step S10).
- the correction command unit 36 sets the correction time D1C to D1- (Td-D2) in step S10 so that the sum of the correction time D1C and the correction time D2C is equal to the sum of the original time D1 and D2. to correct.
- the portion of the corrected second power conversion command UCC that is H level in advance rises later than the rise of the portion that is H level in the original second power conversion command UC, and rises later than the original fall. Go down.
- the time that is the reference for this correction is the time when the first power conversion command RC becomes H level.
- step S12 determines whether the time D3 is shorter than the dead time Td (step S12). If the answer to this determination is yes, if the second power conversion PWM signal Up is generated as it is, the bidirectional switching circuits 52 and 56 and the IGBTs 88 and 100 are all turned off as shown in the period T2 of FIG. A period occurs. Therefore, the correction command unit 36 sets the correction time D3C so that when the first power conversion PWM signals Rn and Tn are both at the L level, the subsequent portion of the correction PWM signal UpC rises. It is made equal to the dead time Td (step S14).
- the correction command unit 36 sets the correction time D4C to D4- (Td ⁇ D3) in step S14 so that the sum of the correction time D3C and the correction time D4C is equal to the sum of the original time D3 and D4. to correct.
- the corrected second power conversion command UCC rises faster than the rise of the portion that becomes the H level following the original second power conversion command UC, and falls faster than the original fall.
- the length of the period at the H level does not change.
- the time that is the reference for this correction is the time when the first power conversion command RC becomes L level.
- step S12 determines whether the time D4 is shorter than the dead time Td (step S16). If the answer to this determination is yes, if the PWM signal Up for second power conversion is generated as it is, the bidirectional switching circuits 52 and 56 and the IGBTs 88 and 100 are all turned off as indicated by the period T4 in FIG. A period occurs. Therefore, the correction command unit 36 sets the correction time D4C so that the correction PWM signal UpC is still maintained at the H level when the first power conversion PWM signals Rn and Tn are both at the L level. Is made equal to the dead time Td (step S18).
- step S18 the correction command unit 36 sets D3- (Td-D4) so that the sum of the correction time D3C and the correction time D4C is equal to the sum of the original time D3 and D4. to correct.
- the corrected second power conversion command UCC rises later than the rise of the portion that subsequently becomes the H level in the original second power conversion command UC, and falls later than the original fall.
- the length of the period at the H level does not change.
- the time that is the reference for this correction is the time when the first power conversion command RC becomes L level.
- the corrected second power conversion command UCC rises at the portion where the corrected PWM signal UpC becomes the H level after being delayed by the dead time from the portion that becomes the H level.
- the correction PWM signal UpC falls in synchronization with the fall of the H level portion of the correction second power conversion command UCC.
- the correction PWM signal UnC falls to the L level in synchronization with the rise of the portion that becomes the H level in the corrected second power conversion command UCC, and the fall of the portion that becomes the H level in the corrected second power conversion command UCC After the dead time Td elapses, the correction PWM signal UnC rises to the H level.
- the IGBTs of the first power converter 16 and the second power converter 18 are controlled. Then, AC power having a desired frequency and a desired voltage is supplied to the turning motor 12. In particular, since the three-phase AC power is directly converted into desired AC power by the first power converter 16 and the second power converter 18, a large capacity for smoothing is provided between the intermediate DC power lines 82p and 82n. There is no need to provide a capacitor.
- the bidirectional switch circuit and the IGBT corresponding to the converter 16 and the inverter 18 are not all turned off at the same time as described above, the waveform of the input current and the output voltage is not distorted.
- the correction PWM signals UpC and UnC are performed by correcting the second power conversion command UC, which is a reference for control, to the corrected second power conversion command UCC. Therefore, the corrected corrected second power conversion command UCC
- the correction PWM signals UpC and UnC are generated based on the above. Therefore, the correction PWM signals UpC and UnC can be easily generated.
- the turning motor 12 has a desired frequency and a desired voltage to turn the upper turning body based on a command (not shown) from the operator of the hybrid construction machine via the control unit 129.
- the indirect matrix converter 14 is controlled so as to supply AC power.
- the electric power from the generator 6 is preferentially supplied to the turning motor 12. That is, as shown in FIG. 7, the control unit 129 determines whether or not the turning power is insufficient (step S20).
- the capacitor 118 is charged by the first power converter 16 when there is a margin in the power required for turning by the turning motor 12.
- the control unit 129 discharges the capacitor 118 and adds the power of the capacitor 118 to the power supplied to the turning motor 12 ( Step S22).
- diodes 30, 32, 44 to 50, and 70 to 80 are provided in antiparallel to the IGBTs 26, 28, 36 to 42, and 58 to 68, and the first power conversion unit 16 includes Since the bidirectional switch circuits 24, 34, 36, 52 to 56 are configured, the regenerative control of the swing motor 12 is performed by controlling these with the PWM control unit 126, and AC is applied to the power input terminals 20 r, 20 s, and 20 t. Electric power can be generated.
- step S20 determines whether the turning motor 12 is in regenerative braking (step S24). If the answer to this determination is no, the control unit 129 determines whether the power of the hydraulic pump 4 is insufficient (step S26). If the answer to this determination is no, the control unit 129 charges the capacitor 118 with the surplus power of the first power conversion unit 16 (step S28). When the answer to the determination in step S26 is yes, that is, when the power of the hydraulic pump 4 is insufficient, the control unit 129 uses the power of the capacitor 118 supplied via the first power conversion unit 16 to The driving of the generator 6 is assisted (step S30). That is, the generator 6 is operated as a three-phase motor.
- step S24 determines whether the power of the hydraulic pump 4 is insufficient (step S32). If the answer to this determination is yes, the control unit 129 causes the generator 6 to supply AC power generated by the regeneration of the swing motor 12 via the indirect matrix converter 22 to operate the generator 6 as a three-phase motor. 2 assists in driving the hydraulic pump 4 (step S34). Note that when the regenerative power alone is insufficient, the power of the capacitor 118 is also supplied. As described above, the charging / discharging capacitor 118 is charged only when surplus power is generated, and is discharged only when the regenerative power is insufficient.
- step S32 If the answer to the determination in step S32 is no, that is, if the power of the hydraulic pump 4 is not insufficient, the control unit 129 charges the capacitor 118 with the regenerative power of the swing motor 12 (step S36).
- the IGBT is used as the bidirectional switching circuits 24, 34, 36 and other semiconductor switching elements, but the present invention is not limited to this, and a bipolar power transistor or power MOSFET may be used.
- the second power conversion command is corrected to simplify the correction process.
- the first power conversion command may be corrected.
- the signal generated by the first power conversion command generation unit 128 is corrected by the command correction unit 132 and input to the PWM generation unit 126.
- the signal generated by the first power conversion command generator 128 is also input to the second power conversion generator, and the signal generated by the second power conversion generator is input to the PWM generator 126.
- the basic processing concept is the same as that for correcting the second power conversion command.
- the generator 6 can operate as an electric motor.
- an electric motor for auxiliary driving of the hydraulic pump 4 is provided separately, and this electric motor is driven by regenerative electric power from the indirect matrix converter 14. It can also be configured.
- an electric motor and a hydraulic pump can be provided for each arm cylinder, boom cylinder, bucket cylinder, and traveling hydraulic motor of the hydraulic actuator 8, and the power distribution to each electric motor can be adjusted.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Power Engineering (AREA)
- Ac-Ac Conversion (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
【課題】 インダイレクトマトリクスコンバータにおいて入力電流や出力電圧の歪みを容易に低減可能とする。 【解決手段】 第1電力変換部(16)と第2電力変換部(18)とを備えたインダイレクトマトリクスコンバータ(14)において、第1電力変換指令生成部(128)からの第1電力変換指令に基づいてPWM発生部(126)が第1電力変換用のPWM信号を発生する。第1電力変換指令に基づいて第2電力変換指令生成部(130)が第2電力変換指令を生成する。指令補正部132が第2電力変換指令を補正してPWM発生部126に供給する。PWM発生部126が、第1電力変換部16及び第2電力変換部18の全スイッチが同時にオフとならないように、インバータ用のPWM信号を発生する。
Description
本発明は、インダイレクトマトリクスコンバータ、このインダイレクトマトリクスコンバータを備えた作業機械の制御装置及びこの制御装置を備えた作業機械に関する。
作業機械、例えば建設機械には、ブームやアームが取り付けられている旋回体を、電気モータで旋回させるハイブリッド建設機械がある。電気モータを駆動するために発電機も駆動する。この発電機は、ブームやアームを駆動するための油圧ポンプを駆動するエンジンによって駆動される。従来、発電機が発生した交流電力は、コンバータ及び平滑用のキャパシタによって直流電力に変換され、この直流電力がインバータによって交流電力に変換されて、電気モータに供給されていた。このようにな交流電力から直流電力に変換し、さらに直流電力を交流電力に変換する電力変換の代わりに、一切直流電力を発生させずに、交流電力を所定の交流電力に直接に変換するダイレクトマトリクスコンバータを使用することも考えられる。ダイレクトマトリクスコンバータはケミカルコンデンサのような平滑用のエネルギ蓄積要素を備えていないので、ダイレクトマトリクスコンバータが備えるIGBT(Insulated Gate Bipolar Transistor)のデッドタイム(IGBTに短絡電流が流れるのを防止するために設定されるスイッチングの切換え遅延時間)の影響を考慮して、IGBTの駆動パルスパターンを決定する必要がある。特許文献1には、ダイレクトマトリクスコンバータの駆動パルスパターンを補正することにより、入力電流や出力電圧の歪みを低減させる技術が開示されている。
ダイレクトマトリクスコンバータに代えて、回路上直流電力が現れる直流部を有するインダイレクトマトリクスコンバータを使用することが考えられている。ダイレクトマトリクスコンバータとインダイレクトマトリクスコンバータとでは、駆動パルスパターンの生成方法が異なるため、特許文献1に開示された技術を、そのままインダイレクトマトリクスコンバータに適用することは困難である。
本発明は、インダイレクトマトリクスコンバータにおいて入力電流や出力電圧の歪みを容易に低減可能とすることを目的とする。また、本発明は、このようなインダイレクトマトリクスコンバータを備えた作業機械の制御装置及びこの制御装置を備えた作業機械を提供することも目的とする。
本発明の一態様のインダイレクトマトリクスコンバータは、第1電力変換部を備えている。第1電力変換部では、入力された交流電力が複数のスイッチング手段によって直流電力に変換されて出力される。また、インダイレクトマトリクスコンバータは、第2電力変換部も備えている。第2電力変換部では、前記直流電力が複数のスイッチング手段によって交流電力に変換され出力される。第1電力変換部では、例えば直列に接続された2つのスイッチング手段を有する複数(供給される交流電力の相数に対応した数)のアームが互いに並列に接続されている。各アームにおけるスイッチング手段の相互接続点が、それぞれ交流電源の電源入力端子とされている。並列に接続されたアームの両端が第1電力変換部の出力端子とされ手いる。この出力端子が第2電力変換部に接続されている。第2電力変換部でも、例えば直列に接続された2つのスイッチング手段を有する複数(出力する交流電力の相数に対応した数)のアームが互いに並列に接続されている。並列に接続されたアームの両端間が、第1電力変換部の出力端子に接続された電源入力端子とされている。各アームにおけるスイッチング手段の相互接続点が、出力端子とされている。このインダイレクトマトリクスコンバータは、指令補正部を備えている。この指令補正部は、第1電力変換部及び第2電力変換部の全ての前記複数のスイッチング手段が同時にオフとならないように制御するために、前記複数のスイッチング手段の制御の基準となる信号を補正する。前記複数のスイッチング手段の制御の基準となる信号によって、例えば第2電力変換部を構成するスイッチング手段のうち、同じアームに属するものをオン、オフさせる期間が定められる。
このように構成すると、第1電力変換部及び第2電力変換部の全ての前記複数のスイッチング手段が同時にオフとならないので、入力電流や出力電圧の歪みを低減させることができる。しかも、第1電力変換部及び第2電力変換部の全ての前記複数のスイッチング手段が同時にオフとならないように制御するために、前記複数のスイッチング手段の制御の基準となる信号を補正しているので、入力電流や出力電圧の歪みを検知して、この歪をなくすようにフィードバック制御する場合に比べ、フィードバック制御用の特別なセンサを設ける必要がない。従って、インダイレクトマトリクスコンバータのコストを低減させることができる。
上記の態様のインダイレクトマトリクスコンバータにおいて、前記第1電力変換部の前記複数のスイッチング手段を制御する信号を基に、前記第2電力変換部の前記複数のスイッチング手段を制御する信号が生成することができる。即ち、第1電力変換部と第2電力変換部との複数のスイッチング手段は、互いに関連づけられて制御されている。この場合、前記基準となる信号は、前記第2電力変換部のスイッチング手段を制御する信号である。
このように構成すると、制御状態が変更されるのは、第2電力変換部のスイッチング手段のみであり、第1電力変換部のスイッチング手段を制御する信号については補正が不要であり、補正のための処理が簡素化される。
さらに、前記第1電力変換部のいずれかの前記複数のスイッチング手段がデッドタイムにあるとき、例えば第1電力変換部の1つのスイッチング手段がオンからオフに切り換え、これと相補に、即ち逆にオフからオンに別のスイッチング手段が切り換えられる場合に、これら切換が完了するまでの間に両スイッチング手段が共にオフになるとき、この第1電力変換部のスイッチング手段に関連する前記第2電力変換部のスイッチング手段がオンとなるように、前記基準となる信号の期間を調整する。例えば、期間を長くしたり、短くしたりする。具体的には、基準となる信号が、第1のレベル状態と第2のレベルとの間で変化するものであり、第1のレベル状態から第2のレベル状態に変化し、再び第1のレベル状態に変化するとき、この変化する2つのタイミングを速くしたり、遅くしたりする。
このように構成すると、基準となる信号を新たに作るのではなく、その期間の長さを修正するので、補正量が少なく、補正の影響を極めて低く抑えることができる。
本発明の他の態様の作業用機械の制御装置は、油圧ポンプを駆動するエンジンにより駆動される発電機と、この発電機に接続され、入力された交流電力が複数のスイッチング手段によって直流電力に変換されて出力される第1電力変換部と、前記直流電力が複数のスイッチング手段によって交流電力に変換され出力される第2電力変換部とを備えるインダイレクトマトリクスコンバータと、 このインダイレクトマトリクスコンバータによって制御される旋回モータとを、備えている。そして、インダイレクトマトリクスコンバータが、上述した態様のものである。
このように構成すると、第1電力変換部及び第2電力変換部の全ての前記複数のスイッチング手段が同時にオフとならないので、入力電流や出力電圧の歪みを低減させることができ、第1電力変換部に電力を供給する発電機の鉄損を抑えることができる。従って、作業機械の旋回制御装置でのエネルギ消費を抑えることができる。しかも、第1電力変換部及び第2電力変換部の全ての前記複数のスイッチング手段が同時にオフとならないように制御するために、前記複数のスイッチング手段の制御の基準となる信号を補正しているので、入力電流や出力電圧の歪みを検知して、この歪をなくすようにフィードバック制御する場合に比べ、フィードバック制御用の特別なセンサを設ける必要がない。従って、インダイレクトマトリクスコンバータを使用した作業機械の旋回制御装置のコストを低減させることができる。
この態様において、前記インダイレクトマトリクスコンバータの第1電力変換部及び前記第2電力変換部の各スイッチング手段を、双方向スイッチング手段とすることができる。この場合、前記第1電力変換部と前記第2電力変換部との間の直流リンクには、前記発電機からの電力及び前記旋回モータからの回生電力を蓄積するとともに、前記旋回モータ及び駆動用モータとしての前記発電機を作動させるために蓄積された電力を供給するためのキャパシタと、このキャパシタに充放電する充放電回路が設けられている。
このように構成すると、電気モータを回生制動することが可能となり、この回生によって発生した電力を、充放電回路を介して前記キャパシタに蓄積することができ、この蓄積された電力と第1電力変換部からの電力とによってブームやアームが取り付けられている旋回体を旋回させるための旋回モータを駆動することもできるし、キャパシタに蓄積された電力と旋回モータが発生した電力とを第1電力変換部第を介して発電機側に供給し、油圧ポンプを駆動するエンジンをアシストして、エンジンの燃料消費量を減らすことができる。従って、作業機械のエネルギ消費を抑えることができると共に、エネルギの利用効率を高めることができる。
この制御装置を備えた作業機械では、制御装置において発電機の鉄損を抑えることができるので、作業機械のエネルギ消費を抑えることができる。
また、この制御装置を備えた作業機械では、前記油圧ポンプが前記エンジンに駆動される方式に代わって、前記発電機の電力によって駆動される電動油圧ポンプであってもよい。制御装置において発電機の鉄損を抑えることができるので、作業機械のエネルギ消費を抑えることができる。
以上のように、本発明によれば、インダイレクトマトリクスコンバータの入力電流や出力電圧の歪みを容易に低減可能とすることができる。また、このようなインダイレクトマトリクスコンバータを作業機械の制御装置に適用することや、この制御装置を作業機械に備えることにより、作業機械のエネルギ消費を抑えることができる。
本発明の1実施形態の作業機械、例えばハイブリッド建設機械は、図1に示すように、エンジン2を有している。エンジン2は、油圧ポンプ4及び発電機6を駆動する。油圧ポンプ4は、油圧アクチュエータ8、例えばハイブリッド建設機械のアームシリンダ、ブームシリンダ、バケットシリンダ、走行油圧モータ等の駆動源として機能する。
アームシリンダが駆動するアームと、ブームシリンダが駆動するブームと、バケットシリンダが駆動するバケットとは、ハイブリッド建設機械の上部旋回体に取り付けられ手いる。この上部旋回体が旋回可能に設けられている走行体を走行油圧モータ(図示せず)が駆動する。
上部旋回体を旋回させるために、上部旋回体に旋回機構(図示せず)を介して旋回制御装置10の電気モータ、例えば旋回モータ12が結合されている。旋回モータ12は、例えば三相電動機である。旋回モータ12を回転させるための電力が発電機6によって発電されている。発電機6は、例えば三相交流電力を発生する三相交流発電機であって、また電気モータ、例えば三相電動機としても動作可能なものである。三相電動機として機能する場合には、発電機6はエンジン2と共に油圧ポンプ4を駆動する。
発電機6が発生した電力は、旋回制御装置10のインダイレクトマトリクスコンバータ14に供給され、その電力の周波数及び電圧がインダイレクトマトリクスコンバータ14によって変換されて、旋回モータ12に供給される。
インダイレクトマトリクスコンバータ14は、図2に示すように、第1電力変換部16と、第2電力変換部18とを有している。
第1電力変換部16は、三相交流電源入力端子20r、20s、20tを有し、さらに2つの中間直流端子22p、22nを有している。三相交流電源入力端子20rと中間直流出力端子22pとの間に、スイッチング素子、例えば双方向スイッチング回路24が接続されている。双方向スイッチング回路24は、コレクタが三相交流電源入力端子20rに接続されたIGBT26と、同じくコレクタが中間直流出力端子22pに接続されたIGBT28とを有し、これらのエミッタ同士が接続されている。IGBT26のコレクタ・エミッタ間に逆並列にダイオード30が接続され、IGBT28のコレクタ・エミッタ間に逆並列にダイオード32が接続されている。IGBT26が導通しているとき、三相交流電源入力端子20rからの電流が、IGBT26、ダイオード32を介して中間直流出力端子22pに流れる。IGBT28が導通しているとき、中間直流出力端子22pからの電流が、IGB28、ダイオード30を介して三相交流電源入力端子20rに流れる。
双方向スイッチング回路34、36が三相交流電源入力端子20s、20tと、中間直流出力端子22pとの間に、それぞれ接続されている。双方向スイッチング回路34、36も、双方向スイッチング回路24と同様に、2つのIGBT36、38、40、42と逆並列ダイオード44、46、48、50とから、それぞれ構成されている。
同様に、電源入力端子20r、20s、20tと中間直流出力端子22nとの間に、双方向スイッチング回路52、54、56が接続されている。これら双方向スイッチング回路52、54、56も、それぞれ2つのIGBT58、60、62、64、66、68と逆並列ダイオード70、72、74、76、78、80とから、それぞれ構成されている。
このように第1電力変換部16は、12個のIGBTと12個のダイオードとによって構成されている。この第1電力変換部16によって、中間出力端子22p、22n間に中間直流電圧が生成される。
第2電力変換部18は、中間出力端子22pに中間直流電源ライン82pを介して接続された中間直流入力端子84pと、中間直流出力端子22nに中間直流電源ライン82nを介して接続された中間直流入力端子84nとを、有している。さらに、第2電力変換部18は、旋回モータ12の各相に接続された交流出力端子86u、86v、86wも有している。
中間直流入力端子84pと交流出力端子86uとの間に、半導体スイッチング素子、例えばIGBT88が接続されている。IGBT88では、IGBT88のコレクタが中間直流入力端子84pに接続され、エミッタが交流出力端子86uに接続されている。IGBT88のコレクタ・エミッタ間に逆並列にダイオード90が接続されている。同様に、中間直流入力端子84pと交流出力端子86v、86wとの間に、それぞれIGBT92、94が接続されている。IGBT92、94のコレクタ・エミッタ間に逆並列にダイオード96、98が接続されている。
同様に、交流出力端子86u、86v、86wと中間直流入力端子84nとの間にも、IGBT100、102、104が接続されている。IGBT100、102、104は、それらのコレクタが交流出力端子86u、86v、86wに接続され、それらのエミッタが中間直流入力端子84nにそ接続されている。これらIGBT100、102、104のコレクタ・エミッタ間に逆並列にダイオード106、108、110がそれぞれ接続されている。
このように第2電力変換部18は、6個のIGBTと6個のダイオードとによって構成されている。
中間直流電源ライン82p、82n間に充放電回路112が設けられている。充放電回路112は、IGBT114を有している。IGBT114のコレクタが中間直流電源ライン82pに接続されている。IGBT114のエミッタは、抵抗器116及びキャパシタ118の直列回路を介して中間直流電源ライン82nに接続されている。キャパシタ118としては、電気二重層コンデンサ(EDLC)の他、ハイブリッド・キャパシタ、例えば、Li(リチウム)イオン・キャパシタなどを用いることができる。抵抗器116及びキャパシタ118の直列回路と並列に、IGBT120が接続されている。IGBT120では、コレクタが抵抗器116側に位置し、エミッタが中間直流入力端子84n側に位置している。IGBT114、120のコレクタ・エミッタ間には逆並列にダイオード122、124がそれぞれ接続されている。なお、IGBT114やIGBT120はMOSFET(Metal Oxide Semiconductor Field Effect Transistor)に変更可能である。
これら第1電力変換部16及び第2電力変換部18の各IGBTは、図1に示す第1電力変換及び第2電力変換用のPWM発生部126が発生するPWM信号によってオン、オフ制御される。その結果、旋回モータ12に所望の周波数及び電圧を持つ交流電力が供給される。
PWM発生部126は、第1電力変換指令生成部128からの第1電力変換指令に従って第1電力変換用のPWM信号を発生する。第1電力変換指令生成部128は、作業機械の制御部、例えばハイブリッド建設機械の制御部129からの指示に従って、第1電力変換指令を生成する。第1電力変換指令に基づいて第2電力変換指令生成部130が第2電力変換指令を生成する。この第2電力変換指令を指令補正部132が補正して、補正された第2電力変換指令が、PWM発生部126に供給され、PWM発生部126が第2電力変換用のPWM信号を発生する。従来、第2電力変換指令が直接にPWM発生部126に供給され、直接供給された第2電力変換指令に基づいて、PWM発生部126が第2電力変換用のPWM信号を発生していた。しかし、これでは、インダイレクトマトリクスコンバータ14において電流が流れている経路に存在する全てのIGBTがオフになることが発生するという不都合が発生していた。以下、図3及び図4を参照して、この点について説明する。
図3は、キャリア比較方式によってPWM信号を発生する場合であって、三相交流の一相について120度区間だけPWM信号でIGBTをスイッチングする場合を示している。他の二相は、120度位相をずらせて考えればよいので省略する。同図においてCCはコンバータ16の制御用の三角波である第1電力変換用のキャリアを示す。Sr、Rr、Trは、制御装置129からの指示に従って生成された3つの基準値を示す。三角波キャリアCCの値が基準値Sr、Rr、Trよりも小さい期間に整流器指令SC、RC、TCが第1の状態、例えばHレベルとなる。ここでは、Srが三角波キャリアSCの最大値に等しく、Trが三角波キャリアCCの最小値に等しく、RrがSr、Trとの間の値をとり、特に整流器指令RCのHレベルとなる期間が第1電力変換部16のスイッチング素子の最小オン時間Tonrecに等しくなるようにRrが定められているとする。従って、整流器指令RCは、三角波キャリアCCの値が基準値Rrよりも小さい期間Hレベルとなり、整流器指令SCは、継続してHレベルであり、整流器指令TCは継続して第2の状態、例えばLレベルである。
これら整流器指令SC、RC、TCを双対変換することにより、双方向スイッチング回路24、34、36、52、54、56の制御信号Rp、Sp、Tp、Rn、Sn、Tnが生成される。即ち、双方向スイッチング回路24用の制御信号Rpは継続してLレベル(双方向スイッチング回路24がオフ)であり、双方向スイッチング回路52用の制御信号Rnは、整流器指令RCがHレベルである期間をデッドタイムTdだけ延長した期間Lレベル(双方向スイッチング回路52がオフ)であり、他の期間はHレベル(双方向スイッチング回路52がオン)となる。双方向スイッチング回路34用の制御信号Spは、継続してHレベル(双方向スイッチング回路34がオン)であり、双方向スイッチング回路54用の制御信号Snは継続してLレベル(双方向スイッチング回路54がオフ)である。双方向スイッチング回路36用制御信号Tpは継続してLレベル(双方向スイッチング回路36がオフ)であり、双方向スイッチング回路56用の制御信号Tnは、整流器指令RCがHレベルに立ち上がった時点からデッドタイムTdだけ遅れた時点から整流器指令RCがLレベルに立ち下がった時点までHレベル(双方向スイッチング回路56がオン)であり、他の期間はLレベル(双方向スイッチング回路56がオフ)である。デッドタイムTdは、各双方向スイッチング回路のオン、オフにはばらつきが生じることを考慮して、同じアームに存在する双方向スイッチ回路が同時にオンすることが生じなくするために設定されている。
整流器指令RCを基にインバータ18のPWM信号がインバータ指令生成部130で生成される。三角波である第2電力変換部18における第2電力変換用のキャリアICは、第1電力変換用のキャリアCCが最小値のとき最大値となり、整流器指令RCのHレベルへの立ち上がり及び立ち下がり時点で最小値をとり、整流器指令RCの立ち上がり時点と同じ時点に向かって値が低下してくる部分と、整流器指令RCの立ち下がり時点と同じ時点から値が増加していく部分とを有するように生成される。第2電力変換用の3つの基準値よりも第2電力変換用のキャリアICの値が小さい期間、第2電力変換指令UCがHレベルとなる。第2電力変換部18のIGBT88用のPWM信号Upは、第2電力変換指令UCの立ち上がりからデッドタイムTdだけ遅延して立ち上がり、第2電力変換指令UCの立ち下がりに同期して立ち下がる。第2電力変換部18のIGBT100用のPWM信号Unは、第2電力変換指令UCの立ち上がりからLレベルとなり、第2電力変換指令UCの立ち下がりからデッドタイムTdだけ遅れた時間までLレベルを維持し、他の期間はHレベルを維持する。従って、図3に示すようにPWM信号Upにおいて先行してHレベルとなった部分がHレベルからLレベルに立ち下がった後の期間T1、PWM信号Unにおける後続のHレベル部分が立ち上がる前の期間T2には、双方向スイッチング回路52、56、IGBT88、100が全てオフとなる期間が存在する。即ち、インダイレクトマトリクスコンバータにおいて、電流が流れている1つの経路に存在する双方向スイッチング回路52、56、IGBT88、100が全てオフとなる。そのため、これら期間T1、T2には、入力電流や出力電圧の波形が歪む。
同様に、図4に示すように120度の位相期間の開始から基準指令RCが立ち上がるまでのLレベルの期間及び整流器指令RCが立ち下がってから120度の位相期間が終了するまでのLレベルの期間がそれぞれTonrec/2の場合にも、PWM信号Upに先行してHレベルとなった部分の立ち上がりの前側の期間T3、PWM信号Upに後続してHレベルとなった部分の立ち下がりからの期間T4に、それぞれ示すように双方向スイッチング回路52、56、IGBT88、100が全てオフとなる期間が生じ、入力電流や出力電圧の波形が歪む。図3における整流器指令RCのHレベルとなる期間と、図4における整流器指令RCがHレベルとなる期間とので種々に整流器指令RCのHレベルとなる期間が発生するが、これらにおいても同様に期間の長さが異なるが、T1、T2、T3、T4に対応するものが発生する。
これら期間T1、T2、T3、T4の発生を防止するために、補正指令部132が設けられている。補正指令部132は、図5に示すように第2電力変換指令UCを補正第2電力変換指令UCCに補正している。補正は、図6にフローチャートで示すように行われる。
図5に示すように、補正指令部32は、時間D1と、時間D2と、時間D3と、時間D4とを測定する(ステップS2)。時間D1は、第2電力変換指令UCにおいて先行してHレベルとなる部分の立ち上がり時点から第2電力変換用のキャリアICが低下状態から増加状態へ変化する最小値の時点(第1電力変換指令RCの立ち上がり時点)までの時間である。時間D2は、第2電力変換用のキャリアICの最小値の時点(第1電力変換指令RCの立ち上がり時点)から第1電力変換指令UCの先行するものの立ち下がりまでの時間である。時間D3は、第2電力変換指令UCにおいて後続するHレベルとなる部分の立ち上がり時点から第2電力変換用のキャリアICが低下状態から増加状態へ変化する最小値の時点(第1電力変換指令RCの立ち下がり時点)までの時間である。時間D4は第2電力変換用のキャリアICが低下状態から増加状態へ変化する最小値の時点(第1電力変換指令RCの立ち下がり時点)から第2電力変換指令UCにおける後続してHレベルとなった部分の立ち下がり時点までの時間である。
次に、補正指令部32は、時間D1がデッドタイムTdよりも短いか判断する(ステップS4)。この判断の答えがイエスの場合、もし、このままPWM信号Upを発生させたなら、図4に期間T3で示すようにPWM信号Upの立ち上がりは、第1電力変換用のPWM信号Rn、Tnが共にデッドタイム期間にある第1電力変換指令Rが立ち上がった時点よりも後の時点で初めてHレベルとなる。その結果、期間T3の間、双方向スイッチング回路52、56、IGBT88、100が全てオフとなる。そこで、補正指令部32は、第1電力変換指令Rが立ち上がった時点で補正第2電力変換用のPWM信号UpCがHレベルとなるように補正時間D1CをデッドタイムTdに等しくする(ステップS6)。さらに、補正時間D2Cは、補正時間D2Cと補正時間D1Cとの和が、元の時間D1とD2との和と等しくなるように、補正指令部36は、ステップS6において、D2-(Td-D1)に補正する。この結果、補正第2電力変換指令UCCにおける先行してHレベルとなる部分は、元の第2電力変換指令UCにおける先行してHレベルとなる部分の立ち上がりよりも速く立ち上がり、元の立ち下がりよりも速く立ち下がる。但し、Hレベルである期間の長さは変化しないし、この補正の基準となっている時点は、第1電力変換指令RCがHレベルになった時点である。
ステップS4の判断の答えがノーの場合、即ち、時間D1がデッドタイムTdよりも長い場合、補正指令部32は、時間D2がデッドタイムTdよりも短いか判断する(ステップS8)。この判断の答えがイエスの場合、時間D2の補正を行わなければ、図3に期間T1で示したように双方向スイッチング回路52、56、IGBT88、100が全てオフとなる期間ができる。そこで、補正指令部32は、第1電力変換用のPWM信号RpがLレベルに変化してからデッドタイムTdが経過して、第1電力変換用のPWM信号TnがHレベルに変化するまでの間、第2電力変換用のPWM信号UpCがHレベルを維持するように、補正時間D2CをデッドタイムTdに等しくする(ステップS10)。補正時間D1Cは、補正時間D1Cと補正時間D2Cとの和が、元の時間D1とD2との和と等しくなるように、補正指令部36は、ステップS10において、D1-(Td-D2)に補正する。この結果、補正第2電力変換指令UCCにおける先行してHレベルとなる部分は、元の第2電力変換指令UCにおけるHレベルとなる部分の立ち上がりよりも遅く立ち上がり、元の立ち下がりよりも遅く立ち下がる。但し、Hレベルである期間の長さは変化しない。この補正の基準となっている時点は、第1電力変換指令RCがHレベルになった時点である。
ステップS8の判断の答えがノーの場合、補正指令部36は、時間D3がデッドタイムTdよりも短いか判断する(ステップS12)。この判断の答えがイエスの場合、このまま第2電力変換用のPWM信号Upを発生させると、図3の期間T2で示したように双方向スイッチング回路52、56、IGBT88、100が全てオフとなる期間が発生する。そこで、補正時間D3Cは、第1電力変換用のPWM信号Rn及びTnが共にLレベルとなったとき、補正PWM信号UpCの後続する部分が立ち上がるように、補正指令部36は、補正時間D3CをデッドタイムTdに等しくする(ステップS14)。補正時間D4Cは、補正時間D3Cと補正時間D4Cとの和が、元の時間D3とD4との和と等しくなるように、補正指令部36は、ステップS14において、D4-(Td-D3)に補正する。この結果、補正第2電力変換指令UCCは、元の第2電力変換指令UCに後続してHレベルとなる部分の立ち上がりよりも速く立ち上がり、元の立ち下がりよりも速く立ち下がる。但し、Hレベルである期間の長さは変化しない。この補正の基準となっている時点は、第1電力変換指令RCがLレベルになった時点である。
ステップS12の判断の答えがノー場合、補正指令部36は、時間D4がデッドタイムTdよりも短いか判断する(ステップS16)。この判断の答えがイエスの場合、このまま第2電力変換用のPWM信号Upを発生させると、図4の期間T4で示したように双方向スイッチング回路52、56、IGBT88、100が全てオフとなる期間が発生する。そこで、補正時間D4Cは、第1電力変換用のPWM信号Rn及びTnが共にLレベルとなったとき、補正PWM信号UpCがまだHレベルを維持するように、補正指令部36は、補正時間D4CをデッドタイムTdに等しくする(ステップS18)。補正時間D3Cは、補正時間D3Cと補正時間D4Cとの和が、元の時間D3とD4との和と等しくなるように、補正指令部36は、ステップS18において、D3-(Td-D4)に補正する。この結果、補正第2電力変換指令UCCは、元の第2電力変換指令UCにおける後続してHレベルとなる部分の立ち上がりよりも遅く立ち上がり、元の立ち下がりよりも遅く立ち下がる。但し、Hレベルである期間の長さは変化しない。この補正の基準となっている時点は、第1電力変換指令RCがLレベルになった時点である。
このように補正された補正第2電力変換指令UCCに基づいて、補正第2電力変換指令UCCにおいてそれぞれHレベルとなる部分からデッドタイムだけ遅延させて補正PWM信号UpCのHレベルとなる部分が立ち上がり、補正第2電力変換指令UCCにおけるHレベルとなる部分の立ち下がりに同期して、補正PWM信号UpCが立ち下がる。同様に、補正第2電力変換指令UCCにおけるHレベルとなる部分の立ち上がりに同期して、補正PWM信号UnCがLレベルに立ち下がり、補正第2電力変換指令UCCにおけるHレベルとなる部分の立ち下がりからデッドタイムTdの経過後に補正PWM信号UnCがHレベルに立ち上がる。この補正PWM信号UpC、UnC及び同様に生成された補正PWM信号VpC、VnC、WpC、WnC(図示せず)に基づいて、第1電力変換部16及び第2電力変換部18の各IGBTは制御され、旋回用モータ12に所望の周波数及び所望の電圧を持つ交流電力を供給する。特に、三相交流電力を、第1電力変換部16及び第2電力変換部18によって直接に所望の交流電力に変換しているので、中間直流電源ライン82p、82n間に平滑用の大容量のキャパシタを設ける必要がない。しかも、上述したようにコンバータ16及びインバータ18の対応する双方向スイッチ回路及びIGBTが同時に全てオフとなることがないので、入力電流や出力電圧の波形に歪みが生じない。また、補正PWM信号UpC、UnCは、制御の基準となる第2電力変換指令UCを補正第2電力変換指令UCCに補正することによって行っているので、この補正された補正第2電力変換指令UCCに基づいて補正PWM信号UpC、UnCを発生する。従って、補正PWM信号UpC、UnCの発生が容易に行える。
このように、ハイブリッド建設機械の操縦者からの制御部129を介しての指令(図示せず)に基づき、上部旋回体を旋回させるため、旋回用モータ12に所望の周波数及び所望の電圧を持つ交流電力を供給するように、インダイレクトマトリクスコンバータ14が制御される。このとき、発電機6からの電力を優先して旋回モータ12に供給する。すなわち、図7に示すように、制御部129は、旋回パワーが不足しているか判断する(ステップS20)。後述するように旋回モータ12での旋回のための必要電力に余裕があるときに、キャパシタ118が第1電力変換部16によって充電されている。ステップS20において旋回モータ12における旋回のための必要電力が不足すると判断された場合、制御部129は、キャパシタ118を放電させて、キャパシタ118の電力を、旋回モータ12に供給される電力に加える(ステップS22)。
また、第1電力変換部16では、各IGBT26、28、36乃至42、58乃至68に逆並列にダイオード30、32、44乃至50、70乃至80が設けられ、第1電力変換部16はそれぞれ双方向スイッチ回路24、34、36、52乃至56によって構成されているので、これらをPWM制御部126で制御することによって旋回モータ12の回生制御を行い、電源入力端子20r、20s、20tに交流電力を発生することができる。
従って、ステップS20の判断の答えがノーの場合、旋回モータ12が回生ブレーキ中であるか制御部129が判断する(ステップS24)。この判断の答えがノーの場合、制御部129は油圧ポンプ4のパワーが不足しているか判断する(ステップS26)。この判断の答えがノーの場合には、制御部129は、第1電力変換部16の余剰電力でキャパシタ118を充電する(ステップS28)。また、ステップS26の判断の答えがイエスの場合、即ち油圧ポンプ4のパワーが不足している場合には、制御部129は、第1電力変換部16を介して供給するキャパシタ118の電力によって、発電機6の駆動を補助する(ステップS30)。即ち、発電機6を三相電動機として動作させる。
ステップS24の判断の答えがイエスの場合、即ち旋回モータ12が回生ブレーキ中の場合、制御部129は油圧ポンプ4のパワーが不足しているか判断する(ステップS32)。この判断の答えがイエスの場合、制御部129は、インダイレクトマトリクスコンバータ22を介して旋回モータ12の回生による交流電力を発電機6に供給させ、発電機6を三相電動機として動作させ、エンジン2が油圧ポンプ4を駆動するのを補助する(ステップS34)。なお、回生電力のみでは不足の場合には、キャパシタ118の電力も供給される。このように充放電用のキャパシタ118は、余剰電力が発生したときのみ充電され、回生電力が不足するときのみ放電されるので、頻繁に充放電されることが無く、充放電に伴う損失の発生が少ない。ステップS32の判断の答えがノーの場合、即ち、油圧ポンプ4のパワーが不足していない場合、制御部129は、旋回モータ12の回生電力でキャパシタ118を充電させる(ステップS36)。
上記の実施形態では、双方向スイッチング回路24、34、36やその他の半導体スイッチング素子としてIGBTを用いたが、これに限らず、バイポーラ型パワートランジスタやパワーMOSFETを用いても構わない。更に上記の実施形態では、補正処理を簡素化するため第2電力変換指令を補正するように構成したが、第1電力変換指令を補正するように構成することもできる。この場合、第1電力変換指令生成部128で生成された信号は、指令補正部132によって補正され、PWM発生部126に入力される。更に、第1電力変換指令生成部128で生成された信号は、第2電力変換生成部にも入力され、第2電力変換生成部で生成された信号はPWM発生部126に入力される。基本的な処理の考え方は第2電力変換指令を補正する場合と同様である。また上記の実施形態では、発電機6が電動機として作動可能としたが、別途、油圧ポンプ4を補助駆動するための電動機を設け、この電動機をインダイレクトマトリクスコンバータ14からの回生電力で駆動するように構成することもできる。さらに、油圧アクチュエータ8のアームシリンダ、ブームシリンダ、バケットシリンダ、走行油圧モータ毎に電動機と油圧ポンプを設け、各電動機への電力配分を調節することもできる。
Claims (7)
- 入力された交流電力が複数のスイッチング手段によって、直流電力に変換されて、出力される第1電力変換部と、
前記直流電力が複数のスイッチング手段によって、交流電力に変換されて、出力される第2電力変換部と、
を備えたインダイレクトマトリクスコンバータであって、
全ての前記複数のスイッチング手段が同時にオフとならないように、前記複数のスイッチング手段の制御の基準となる信号を補正する指令補正部を、備えたインダイレクトマトリクスコンバータ。 - 請求項1記載のインダイレクトマトリクスコンバータにおいて、前記第1電力変換部の前記複数のスイッチング手段を制御する信号を基に、前記第2電力変換部の前記複数のスイッチング手段を制御する信号が生成され、前記基準となる信号は、前記第2電力変換部の前記複数のスイッチング手段を制御する信号であるインダイレクトマトリクスコンバータ。
- 請求項2記載のインダイレクトマトリクスコンバータにおいて、前記スイッチング手段が短絡することを防止するために設けられているスイッチング間隔であるデッドタイムに、前記第1電力変換部のいずれかの前記複数のスイッチング手段があるとき、このスイッチング手段に関連する前記第2電力変換部のいずれかの前記複数のスイッチング手段がオンとなるように、前記基準となる信号の期間を調整するインダイレクトマトリクスコンバータ。
- 油圧ポンプを駆動するエンジンにより駆動される発電機と、
この発電機に接続され、入力された交流電力が複数のスイッチング手段によって直流電力に変換されて出力される第1電力変換部と、前記直流電力が複数のスイッチング手段によって交流電力に変換され出力される第2電力変換部とを備えるインダイレクトマトリクスコンバータと、
このインダイレクトマトリクスコンバータによって制御される旋回モータとを、
備え、前記インダイレクトマトリクスコンバータは、更に全ての前記複数のスイッチング手段がオフとならないように、前記複数のスイッチング手段の制御の基準となる信号を補正する指令補正部を、備えている
作業機械の旋回制御装置。 - 請求項4記載の作業機械の旋回制御装置において、前記インダイレクトマトリクスコンバータの前記第1電力変換部及び前記第2電力変換部の前記複数のスイッチング手段は、双方向スイッチング手段であり、前記第1電力変換部と前記第2電力変換部との間の直流リンクには、前記発電機からの電力及び前記旋回モータからの回生電力を蓄積するとともに、前記旋回モータ及び駆動用モータとしての前記発電機を作動させるために蓄積された電力を供給するためのキャパシタと、このキャパシタに充放電する充放電回路が設けられている作業機械の旋回制御装置。
- 請求項4記載の作業機械の旋回制御装置を備えた作業機械。
- 請求項4記載の作業機械の旋回制御装置において、前記油圧ポンプが前記エンジンに駆動される方式に代わって、前記発電機の電力によって駆動される電動油圧ポンプである作業機械の旋回制御装置を備えた作業機械。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011508306A JPWO2010116865A1 (ja) | 2009-04-06 | 2010-03-16 | インダイレクトマトリクスコンバータ、作業機械の旋回制御装置及び作業機械 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-091976 | 2009-04-06 | ||
JP2009091976 | 2009-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010116865A1 true WO2010116865A1 (ja) | 2010-10-14 |
Family
ID=42936152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054398 WO2010116865A1 (ja) | 2009-04-06 | 2010-03-16 | インダイレクトマトリクスコンバータ、作業機械の旋回制御装置及び作業機械 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010116865A1 (ja) |
WO (1) | WO2010116865A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015208202A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社デンソー | スイッチング制御装置 |
JP2015208203A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社デンソー | スイッチング制御装置 |
EP2565333A4 (en) * | 2010-04-28 | 2016-03-02 | Nabtesco Corp | CONTROL DEVICE FOR HYBRID CONSTRUCTION MACHINE |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112564566B (zh) * | 2020-12-21 | 2022-04-05 | 浙江大学 | 一种拓展imc-spmsm系统高速运行范围的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488884A (ja) * | 1990-07-30 | 1992-03-23 | Fuji Electric Co Ltd | 電圧形インバータ |
JP2001061276A (ja) * | 1999-08-20 | 2001-03-06 | Yaskawa Electric Corp | Pwmサイクロコンバータおよびその遮断回路と遮断方法 |
JP2003102106A (ja) * | 2001-09-21 | 2003-04-04 | Hitachi Constr Mach Co Ltd | ハイブリッド建設機械の駆動制御装置、ハイブリッド建設機械及びその駆動制御プログラム |
JP2006020384A (ja) * | 2004-06-30 | 2006-01-19 | Fuji Electric Holdings Co Ltd | 電力変換器の制御装置 |
WO2008087689A1 (ja) * | 2007-01-16 | 2008-07-24 | Mitsubishi Electric Corporation | 電力変換装置 |
WO2008123368A1 (ja) * | 2007-03-28 | 2008-10-16 | Komatsu Ltd. | ハイブリッド建設機械の制御方法およびハイブリッド建設機械 |
-
2010
- 2010-03-16 WO PCT/JP2010/054398 patent/WO2010116865A1/ja active Application Filing
- 2010-03-16 JP JP2011508306A patent/JPWO2010116865A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488884A (ja) * | 1990-07-30 | 1992-03-23 | Fuji Electric Co Ltd | 電圧形インバータ |
JP2001061276A (ja) * | 1999-08-20 | 2001-03-06 | Yaskawa Electric Corp | Pwmサイクロコンバータおよびその遮断回路と遮断方法 |
JP2003102106A (ja) * | 2001-09-21 | 2003-04-04 | Hitachi Constr Mach Co Ltd | ハイブリッド建設機械の駆動制御装置、ハイブリッド建設機械及びその駆動制御プログラム |
JP2006020384A (ja) * | 2004-06-30 | 2006-01-19 | Fuji Electric Holdings Co Ltd | 電力変換器の制御装置 |
WO2008087689A1 (ja) * | 2007-01-16 | 2008-07-24 | Mitsubishi Electric Corporation | 電力変換装置 |
WO2008123368A1 (ja) * | 2007-03-28 | 2008-10-16 | Komatsu Ltd. | ハイブリッド建設機械の制御方法およびハイブリッド建設機械 |
Non-Patent Citations (1)
Title |
---|
J.W. KOLAR ET AL.: "Novel Three-Phase AC-DC-AC Sparse Matrix Converter, Applied Power Electronics Conference and Exposition, 2002. APEC 2002.", SEVENTEENTH ANNUAL IEEE, vol. 2, 2002, pages 777 - 791 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2565333A4 (en) * | 2010-04-28 | 2016-03-02 | Nabtesco Corp | CONTROL DEVICE FOR HYBRID CONSTRUCTION MACHINE |
JP2015208202A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社デンソー | スイッチング制御装置 |
JP2015208203A (ja) * | 2014-04-23 | 2015-11-19 | 株式会社デンソー | スイッチング制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010116865A1 (ja) | 2012-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5780914B2 (ja) | 電力変換器の制御装置および制御方法 | |
EP2728724A1 (en) | Power source system | |
US20160190971A1 (en) | Motor controller | |
EP1817840B1 (en) | Power converter and control method for a power converter | |
JP6185860B2 (ja) | 双方向コンバータ | |
KR20100108460A (ko) | 전동기 구동 장치 및 그 제어 방법 | |
CN107547019A (zh) | 一种开关磁阻发电机主动型升压变换器及其控制方法 | |
US20060091833A1 (en) | Motor drive system and process | |
TW200924366A (en) | Matrix converter | |
WO2018117084A1 (ja) | 電力変換装置 | |
WO2010116865A1 (ja) | インダイレクトマトリクスコンバータ、作業機械の旋回制御装置及び作業機械 | |
CN110768235A (zh) | 直流微电网多模式双向dc-dc变流器控制方法 | |
JP5515800B2 (ja) | スイッチング制御装置 | |
JP2020078109A (ja) | 駆動システム | |
JP7192889B2 (ja) | 電力変換装置及びその制御方法 | |
JP2006074932A (ja) | 電動機制御装置 | |
JP4919229B2 (ja) | インバータ装置 | |
JP5879495B2 (ja) | 電力変換装置 | |
JP2023148810A (ja) | 電力変換システム | |
KR20130088606A (ko) | 3-레벨 인버터 제어 장치와, 3-레벨 인버터를 구비한 전원 공급 장치 및 모터 구동 장치 | |
JP2010104076A (ja) | 電力変換回路 | |
JP5402093B2 (ja) | 電力変換装置 | |
JP6880866B2 (ja) | インバータ制御装置及びインバータ制御方法 | |
JP4549124B2 (ja) | モータ制御装置 | |
CN110829471A (zh) | 电动机驱动系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761566 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011508306 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10761566 Country of ref document: EP Kind code of ref document: A1 |