WO2010116454A1 - 流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法 - Google Patents

流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法 Download PDF

Info

Publication number
WO2010116454A1
WO2010116454A1 PCT/JP2009/056514 JP2009056514W WO2010116454A1 WO 2010116454 A1 WO2010116454 A1 WO 2010116454A1 JP 2009056514 W JP2009056514 W JP 2009056514W WO 2010116454 A1 WO2010116454 A1 WO 2010116454A1
Authority
WO
WIPO (PCT)
Prior art keywords
heaters
fluid
heating capacity
heating
capacity
Prior art date
Application number
PCT/JP2009/056514
Other languages
English (en)
French (fr)
Inventor
博和 南迫
進一 内野
建吾 高橋
亮 大矢
和樹 岡田
崇大 牛島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/056514 priority Critical patent/WO2010116454A1/ja
Priority to US13/255,689 priority patent/US9500376B2/en
Priority to JP2011508097A priority patent/JP5132813B2/ja
Priority to EP09842964.0A priority patent/EP2416083B1/en
Publication of WO2010116454A1 publication Critical patent/WO2010116454A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/296Information from neighbouring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/32Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • F25B2400/061Several compression cycles arranged in parallel the capacity of the first system being different from the second
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7737Thermal responsive

Definitions

  • the present invention relates to a fluid heating system, a fluid heating method, a fluid heating control system, a control device, and a control method.
  • the present invention particularly relates to high-efficiency operation control of a heat pump unit.
  • Patent Document 1 A hot water supply system using a plurality of heat pump units has been proposed (see, for example, Patent Document 1).
  • the number of heat pump units to be operated is determined according to the hot water supply load. Priorities for starting the operation are determined for each heat pump unit. This priority order is changed every predetermined time.
  • JP 2005-134062 A JP 2005-134062 A
  • each heat pump unit the compressor and heat exchanger, which are functional parts of the heat pump cycle, have the capacity band to operate most efficiently.
  • the heat pump unit is operated in a state of deviating from the capacity band, there is a risk that the COP (coefficient of performance) is greatly reduced.
  • the priority order is determined regardless of the capacity zone in which individual heat pump units can be operated efficiently, a sufficient COP cannot be obtained.
  • the minimum operating capacity is set for each heat pump unit. It is impossible in principle to operate the heat pump unit with a capacity below the minimum operating capacity. For this reason, when a capacity below a certain level is required, the heat pump unit is stopped, and when the capacity exceeding the minimum operation capacity is required, the heat pump unit must be restarted. In the conventional hot water supply system, since the priority order is determined regardless of the minimum operation capability of each heat pump unit, a heat pump unit having a low minimum operation capability cannot be used.
  • the present invention enables high-efficiency operation of a fluid heating system such as a hot water supply system by performing appropriate capacity distribution according to the required capacity when using a plurality of heaters such as a heat pump unit, for example. To do. Further, the present invention uses a heat pump unit having a low minimum operating capacity according to a required capacity when using a plurality of heaters such as a heat pump unit, for example, so that a fluid heating system such as a hot water supply system can be used. Allows flexible configuration.
  • a fluid heating system includes: A plurality of heaters for heating a fluid, wherein the heating capacity varies depending on the flow rate of the fluid, and the COP (coefficient of performance) varies depending on the heating capacity;
  • a facility comprising at least one of a tank for storing the fluid and a device using the fluid as a heat source;
  • a fluid circuit for circulating the fluid between the plurality of heaters and the facility;
  • a plurality of control valves for adjusting the flow rate of the fluid to each of the plurality of heaters;
  • the heating capacity of each of the plurality of heaters is determined so that the total heating capacity of the plurality of heaters becomes a heating capacity required by the equipment, and the total COP of the plurality of heaters satisfies a predetermined condition.
  • a control device that controls each of the plurality of control valves such that the heating capacity of each of the plurality of heaters becomes the determined heating capacity.
  • the control device heats each of the plurality of heaters such that a total heating capacity of the plurality of heaters becomes a heating capacity required by the facility, and a total COP of the plurality of heaters is maximized. It is characterized by determining ability.
  • the plurality of heaters include two or more heaters having different characteristics.
  • the plurality of heaters include two or more heaters having different minimum heating capacities.
  • the plurality of heaters include two or more heat pump units that use different types of refrigerants.
  • the plurality of heaters include a heat pump unit and a heater other than the heat pump unit.
  • the fluid heating system further includes: A power meter for measuring the power consumption of each of the plurality of heaters; An outside temperature sensor for measuring the outside temperature, Based on the determined heating capacity, the power consumption measured by the wattmeter, and the outside air temperature measured by the outside air temperature sensor, each of the plurality of heaters according to the outside air temperature is controlled by the control device. A relationship with the heating capacity is obtained, and the heating ability of each of the plurality of heaters is determined with reference to the obtained relation.
  • the control device pre-defines a heating capacity that maximizes the COP of each of the plurality of heaters as an optimum capacity, and is a heater group including at least one heater among the plurality of heaters, A heater group in which the total optimum capacity of the at least one heater corresponds to the heating capacity required by the equipment is selected, and the total heating capacity of the heaters constituting the selected heater group is required by the equipment.
  • Each of the plurality of control valves is controlled to have a heating capacity.
  • the control device predefines a heating capacity that maximizes the COP of each of the plurality of heaters as an optimum capacity, and among the plurality of heaters, the optimum capacity is equal to or less than a heating capacity required by the facility,
  • the heater is selected in order from the heater whose optimum capacity is closest to the heating capacity required by the equipment, and the total heating capacity of the selected heater becomes the heating capacity required by the equipment.
  • Each of the plurality of control valves is controlled.
  • a fluid heating method includes: A plurality of heaters for heating a fluid, the plurality of heaters having a characteristic that a heating capacity changes according to a flow rate of the fluid, and a COP (coefficient of performance) changes according to the heating capacity; a tank for storing the fluid; Circulating the fluid between equipment including at least one of an appliance that uses the fluid as a heat source; Adjusting the flow rate of the fluid to each of the plurality of heaters; The heating capacity of each of the plurality of heaters is determined so that the total heating capacity of the plurality of heaters becomes a heating capacity required by the equipment, and the total COP of the plurality of heaters satisfies a predetermined condition. And a step of controlling each of the plurality of control valves such that the heating capacity of each of the plurality of heaters becomes the determined heating capacity.
  • a fluid heating control system includes: A plurality of heaters for heating a fluid, the plurality of heaters having a characteristic that a heating capacity changes depending on a flow rate of the fluid, and a COP (coefficient of performance) changes depending on the heating capacity; a tank for storing the fluid; A fluid circuit that circulates the fluid between a facility that includes at least one of an instrument that uses the fluid as a heat source, and A plurality of control valves for adjusting the flow rate of the fluid to each of the plurality of heaters; The heating capacity of each of the plurality of heaters is determined so that the total heating capacity of the plurality of heaters becomes a heating capacity required by the equipment, and the total COP of the plurality of heaters satisfies a predetermined condition. And a control device that controls each of the plurality of control valves such that the heating capacity of each of the plurality of heaters becomes the determined heating capacity.
  • a control device includes: A plurality of heaters for heating a fluid, the plurality of heaters having a characteristic that a heating capacity changes depending on a flow rate of the fluid, and a COP (coefficient of performance) changes depending on the heating capacity; a tank for storing the fluid; A control measure connected to a plurality of control valves attached to a fluid circuit for circulating the fluid to and from an equipment including at least one of an instrument that uses the fluid as a heat source, The heating capacity of each of the plurality of heaters is determined so that the total heating capacity of the plurality of heaters becomes a heating capacity required by the equipment, and the total COP of the plurality of heaters satisfies a predetermined condition. A decision unit to And a controller that controls each of the plurality of control valves such that the heating capacity of each of the plurality of heaters is equal to the determined heating capacity.
  • a control method includes: A plurality of heaters for heating a fluid, the plurality of heaters having a characteristic that a heating capacity changes depending on a flow rate of the fluid, and a COP (coefficient of performance) changes depending on the heating capacity; a tank for storing the fluid; A control device connected to a plurality of control valves attached to a fluid circuit that circulates the fluid between a facility that includes at least one of an appliance that uses the fluid as a heat source, and a total heating capacity of the plurality of heaters Determining the heating capacity of each of the plurality of heaters such that the heating capacity required by the facility is satisfied, and the total COP of the plurality of heaters satisfies a predetermined condition; And a step of controlling each of the plurality of control valves such that the heating capacity of each of the plurality of heaters becomes the determined heating capacity.
  • the control device has a heating capacity that requires a total heating capacity of a plurality of heaters, and the total COP of the plurality of heaters satisfies a predetermined condition.
  • the heating capacity of each of the plurality of heaters is determined, and each of the plurality of control valves is controlled so that the heating capacity of each of the plurality of heaters becomes the determined heating capacity. Therefore, highly efficient operation of a fluid heating system such as a hot water supply system becomes possible.
  • FIG. 1 is a configuration diagram of a hot water supply system 10 according to the present embodiment.
  • a hot water supply system 10 includes a fluid circuit 10a through which water circulates and three heat pump cycles 10b through which a refrigerant (for example, R410A) circulates.
  • the hot water supply system 10 is an example of a fluid heating system.
  • Water is an example of a fluid.
  • the water circulation circuit side i.e., fluid circuit 10a mainly includes a hot water storage tank (i.e., tank 11), a water circulation pump (i.e., pump 12), and three water amount control valves (i.e., control valves 13a, 13b, and 13c). ) And. Three units (that is, heat pump units 14a, 14b, and 14c) are connected in parallel to the fluid circuit 10a.
  • the heat pump units 14a, 14b, and 14c are examples of a plurality of heaters that heat a fluid.
  • the tank 11 stores heated water supplied to a sanitary facility (for example, a shower) in the upper portion, and stores unheated water returning from the sanitary facility in the lower portion.
  • the pump 12 supplies the unheated water to the heat pump units 14a, 14b, and 14c.
  • the control valves 13a, 13b, and 13c adjust the flow rates of water for the heat pump units 14a, 14b, and 14c, respectively.
  • the heating capacity of each of the heat pump units 14a, 14b, and 14c varies depending on the flow rate of water with respect to each.
  • Each of the heat pump units 14a, 14b, and 14c has a characteristic that COP (coefficient of performance or power consumption coefficient) changes depending on the heating capacity. This characteristic varies from unit to unit.
  • the water supplied to the heat pump units 14 a, 14 b and 14 c by the pump 12 is heated by the heat pump units 14 a, 14 b and 14 c, and then merges and returns to the tank 11.
  • the heating circuit side (that is, the heat pump cycle 10b) is provided inside each unit.
  • the heat pump cycle 10b is mainly configured by an expansion valve 15, a compressor 16, an air heat exchanger 17, and a water heat exchanger 18.
  • the compressor 16 compresses and heats the refrigerant.
  • the water heat exchanger 18 uses the refrigerant heated by the compressor 16 to heat the water flowing through the fluid circuit 10a.
  • the expansion valve 15 cools the refrigerant by expansion cooling.
  • the air heat exchanger 17 recovers heat from the outside air to the refrigerant after the refrigerant is cooled by the expansion valve 15.
  • the tank 11, the pump 12, each water amount adjusting valve, and each unit are connected to a system control unit (that is, a control device 19) that controls their operation and detects their state.
  • the control device 19 includes a detection unit 19a, a determination unit 19b, and a control unit 19c.
  • the detection unit 19 a measures the temperature of water stored in the upper and lower parts of the tank 11 by the thermometer 20.
  • the determination unit 19b compares the temperature of the water measured by the detection unit 19a with the temperature requested by the user through an operation panel or the like (not shown), and the heating capacity necessary for the entire hot water supply system 10 (that is, the tank 11 is calculated.
  • the determining unit 19b sets the heating capacity of each unit so that the total heating capacity of the heat pump units 14a, 14b, and 14c becomes a required heating capacity, and the total COP of the heat pump units 14a, 14b, and 14c satisfies a predetermined condition. decide.
  • the control unit 19c controls each water amount adjustment valve so that the heating capability of each unit becomes the heating capability determined by the determination unit 19b.
  • the above condition is defined as the maximum total COP of all units. Therefore, when there are several types of heating capacity that require the total heating capacity of all units as a setting pattern of the heating capacity of each unit, the determination unit 19b determines that the total COP of all the units is the maximum. Select the setting pattern.
  • the above condition may be defined as the total COP of all units being within a predetermined range.
  • the condition may be defined as the total COP of all units being greater than a predetermined threshold. In any case, the above condition is defined such that the total COP of all units is at least greater than the minimum value of the total COP of all units.
  • three heat pump cycles 10b are connected in parallel with the fluid circuit 10a. That is, three units having the heat pump cycle 10b are connected in parallel.
  • two or more than three units may be connected in parallel.
  • some of the plurality of units may be connected in series.
  • some of the plurality of units may be heaters (for example, boilers) that heat water by means other than the heat pump cycle 10b.
  • the heater which heats water by means other than the heat pump cycle 10b may be sufficient as all the units.
  • the heat pump units 14a, 14b, and 14c have different characteristics.
  • two of the heat pump units 14a, 14b, and 14c may have the same characteristics.
  • all units may have the same characteristics.
  • the heat pump units 14a, 14b, 14c have a heat pump cycle 10b using the same type of refrigerant (for example, R410A).
  • the heat pump units 14a, 14b, and 14c may have a heat pump cycle 10b that uses different types of refrigerants (for example, R410A and CO2).
  • the heat pump units 14a, 14b, 14c have a heat pump cycle 10b using the same type of refrigerant (for example, R410A).
  • the heat pump units 14a, 14b, and 14c may have a heat pump cycle 10b that uses different types of refrigerants (for example, R410A and CO2).
  • the hot water supply system 10 may include a floor heating, a radiator, or the like instead of the tank 11 or together with the tank 11.
  • Floor heating and radiators are examples of appliances that use fluid as a heat source.
  • the tank 11 and appliances such as floor heating and a radiator are examples of facilities.
  • the fluid circuit 10a circulates water between each unit and the facility. However, when the facility is a floor heater, a radiator, or the like, the fluid circuit 10a is disposed between each unit and the facility. A fluid other than water may be circulated.
  • the detection unit 19 a obtains the water temperature in the tank 11 measured by the thermometer 20.
  • the determination part 19b determines the capability which should be achieved as the hot water supply system 10 whole based on the water temperature obtained by the detection part 19a, and the request
  • the required capacity is small.
  • the determination unit 19b comprehensively determines these matters, calculates the ideal speed of temperature rise in the tank 11, and determines the necessary capacity per time.
  • the determination unit 19b calculates the necessary capacity per hour from the temperature and time set by the user (for example, when the user can set the “rapid” mode) and the inlet temperature and outlet temperature of the tank 11. To do.
  • the determination unit 19b calculates the necessary capacity per time in consideration of the heat radiation amount in such equipment.
  • the determination unit 19b selects a unit to be used among the heat pump units 14a, 14b, and 14c with respect to the determined ability, and determines the ability that each unit bears.
  • FIG. 2 is a graph showing an example of the relationship between unit capability and COP in the present embodiment.
  • the heat pump units 14a, 14b, and 14c are represented as “unit A”, “unit B”, and “unit C”, respectively.
  • the horizontal axis of the graph represents the capacity.
  • the vertical axis of the graph represents the size of COP.
  • the COP of the heat pump unit 14a is maximized when the heat pump unit 14a exhibits the ability of Q, which is an arbitrary ability value.
  • the heat pump unit 14b exhibits the 2Q capability that is twice Q
  • the COP of the heat pump unit 14b is maximized.
  • the heat pump unit 14c exhibits a 4Q capability that is four times the Q, the COP of the heat pump unit 14c is maximized.
  • the determination unit 19b uses the COP value for the capacity value stored in advance in the storage medium as shown in FIG. That is, the determination unit 19b obtains the ability to be achieved by adding the ability to be output by each unit, and the combination of the units to be used and the individual unit of each unit so that the hot water supply system 10 can be operated most efficiently as a whole. Determine ability.
  • FIG. 3 is a table showing an example of selecting operation units in the present embodiment.
  • the determination unit 19b has the capability of peaking the COP to the closest unit below the required capability (ie, the heating capability required by the tank 11 and / or equipment including equipment such as floor heating and a radiator).
  • the determination unit 19b may store data indicating the required capacity and the corresponding unit combination in advance in a storage medium, and refer to this data when determining the capacity of each unit.
  • control unit 19c instructs each unit to operate so that each unit operates with the capability determined by the determination unit 19b, and only the unit that operates with each water amount adjustment valve is not yet used.
  • Pour heated water The water heated in each unit joins in front of the pump 12 and returns to the tank 11.
  • the heating capacity that maximizes the COP of each unit can be defined in advance as the optimum capacity.
  • the determination unit 19b selects units in order from the heat pump units 14a, 14b, and 14c in order from the unit having the optimum capacity equal to or less than the requested ability and the optimum ability closest to the requested ability.
  • the units selected by the determination unit 19b constitute one heater group.
  • the control unit 19c controls each water amount adjustment valve so that the total heating capacity of the units constituting the heater group selected by the determination unit 19b becomes the required capacity.
  • the control unit 19c controls each water amount adjustment valve so that the heating capacity of the unit becomes the optimum capacity.
  • the control unit 19c selects the heater group selected by the determination unit 19b. For example, the heating capacity of one unit is adjusted so that the total heating capacity of the constituent units becomes the heating capacity required by the tank 11.
  • appropriate capacity allocation is performed according to the required capacity. Therefore, high efficiency operation of the hot water supply system 10 becomes possible.
  • At least two of the heat pump units 14a, 14b, and 14c have different minimum heating capacities, and a unit having a low minimum operating capability can be used according to the required capability. Therefore, a flexible configuration of the hot water supply system 10 is possible.
  • the overall efficiency of the hot water supply system 10 can be improved by operating each unit with the optimum capacity. Further, when compared with the case where the units are connected individually, by incorporating a small capacity unit, it is possible to operate even when the required capacity is small. Therefore, high efficiency operation is possible.
  • the high efficiency operation of the hot water supply system 10 is performed by selecting the use unit and distributing its capacity. Is possible. According to the present embodiment, it is possible to deal with a wide range of required capabilities. Specifically, it is possible to always maintain high-efficiency operation over a wide range of required capacities by appropriately determining the units to be used according to the respective capacity bands. Further, according to the present embodiment, it is possible to operate efficiently even at a low capacity where it is difficult to operate with one large capacity unit.
  • a water circulation hot water supply system (that is, hot water supply system 10) according to the present embodiment includes a plurality of heat pump units 14a, 14b, and 14c, a hot water storage tank (that is, tank 11), a water circuit (that is, fluid circuit 10a), and the like.
  • the pump 12 and the control device 19 are included.
  • the fluid circuit 10a has heat pump units 14a, 14b, and 14c connected in parallel to the tank 11, and has valves that can adjust the flow rate (that is, control valves 13a, 13b, and 13c).
  • the pump 12 circulates water.
  • the control device 19 is connected to the heat pump units 14a, 14b, 14c and the pump 12, and can manage individual outputs.
  • the hot water supply system 10 has means (that is, the control device 19) for grasping in advance the power consumption coefficient of each heat pump unit 14a, 14b, 14c connected in parallel to the fluid circuit 10a.
  • the control device 19 controls the individual heat pump units 14a, 14b, and 14c so that the capacity power consumption coefficient becomes the maximum with respect to the required capacity of the entire system.
  • the hot water supply system 10 is connected to heat pump units 14a, 14b, and 14c having different minimum operating capacities and maximum capacities of power consumption coefficients, and the individual heat pump units 14a, 14b, and 14c are operated efficiently in a wide capacity range. To control.
  • the hot water supply system 10 includes a hot water storage tank (that is, the tank 11), a water circuit (that is, the fluid circuit 10a), a plurality of heat pump units 14a, 14b, and 14c, and a mechanism that controls the operation of these units (that is, control).
  • the fluid circuit 10 a takes out the unheated water from the tank 11 when the decrease of the hot water in the tank 11, a temperature drop or the like occurs, and heats it back to the tank 11.
  • the heat pump units 14a, 14b, and 14c are used for heating unheated water.
  • the control device 19 controls the operation of the heat pump units 14a, 14b, and 14c having different capability bands that can be operated most efficiently.
  • the control device 19 can improve the COP of the entire system by operating an appropriate unit corresponding to the required capacity.
  • Embodiment 2 FIG. In the present embodiment, differences from the first embodiment will be mainly described.
  • the control device 19 knows in advance the relationship between the capability of each unit and the COP, and determines the optimum combination of units according to the required capability. On the other hand, in the present embodiment, the control device 19 measures the capability and COP of each unit, obtains the relationship between the capability and COP of each unit, and optimally combines the units according to the required capability. Is determined dynamically. Therefore, according to the present embodiment, it is possible to prevent the performance from being lowered when a failure occurs and to improve the performance when the unit is strengthened.
  • FIG. 4 is a configuration diagram of the hot water supply system 10 according to the present embodiment.
  • thermometer 21 is attached to the outlet of each unit to the fluid circuit 10a and measures the water temperature.
  • the flow rate sensor 22 is attached to each water amount adjustment valve, and measures the flow rate of water flowing into each unit.
  • the wattmeter 23 is attached to each unit and measures the power consumption of each unit.
  • the outside air temperature sensor 24 measures the outside air temperature.
  • the determination unit 19b calculates the capacity and COP of each unit from the data collected by the detection unit 19a from the temperature detector 21, the flow sensor 22, and the wattmeter 23. In addition, the determination unit 19b holds the measured value of the outside temperature sensor 24 obtained by the detection unit 19a in a storage medium in order to record the outside temperature when the capability and COP of each unit are calculated.
  • the COP of the heat pump units 14a, 14b, and 14c depends on the outside air temperature, the tapping temperature, and the capacity in principle, and hardly fluctuates due to other factors. Therefore, the determination unit 19b stores the data once collected by the detection unit 19a as a database in a storage medium with the outside air temperature, the hot water temperature, and the capacity at that time as keys. The determining unit 19b refers to this database and selects an operating unit in the same manner as in the first embodiment.
  • FIG. 5 is a table showing a calculation example of the COP of the unit in the present embodiment.
  • the determination unit 19b repeats the calculation of the COP of each unit, thereby enriching the database and enabling control with higher accuracy.
  • the determination unit 19b calculates an expected COP based on data having similar conditions.
  • the determining unit 19b determines the heating capacity of each unit
  • the determining unit 19b determines the outside air based on the determined heating capacity, the power consumption measured by the power meter 23, and the outside air temperature measured by the outside temperature sensor 24.
  • the relationship between COP and heating capacity of each unit according to temperature is obtained.
  • the determination unit 19b determines the heating capacity of each unit with reference to the previously obtained relationship.
  • the COP of each unit is calculated and held, and the COP when the next operation is performed is predicted to determine the operation unit. Therefore, the COP is unknown.
  • These units can also be controlled.
  • the heater is powered by electricity, such as a heat pump using a different kind of refrigerant, an electric heater boiler, a solar water heater, etc.
  • the COP is calculated for each heater.
  • the combination of heaters that can be operated efficiently can be determined.
  • a unit failure can be detected.
  • the water circulation type hot water supply system (that is, the hot water supply system 10) according to the present embodiment includes means for grasping the water temperature at the outlets of the individual heat pump units 14a, 14b, and 14c (that is, the thermometer 21), and the individual heat pump units 14a. , 14b, and 14c (that is, a power meter 23).
  • the hot water supply system 10 dynamically determines the operating state of the individual heat pump units 14a, 14b, 14c, and the individual heat pump units 14a, 14b so that the capacity power consumption coefficient is maximized with respect to the required capacity of the entire system. , 14c.
  • a plurality of heat pump units 14a, 14b, and 14c are connected in parallel.
  • Each unit can be individually capacity controlled.
  • the control device 19 efficiently operates each unit in consideration of the achievement capability of the entire system. For that purpose, the control device 19 determines the required capability, measures the current surrounding environment, and grasps or predicts in advance the COP when each unit operates from the information. The control device 19 selects a unit so that the power consumption is minimized with respect to the required capacity, and suppresses the power consumption of the entire system by performing the respective capacity control.
  • the hot water supply system 10 can be efficiently used even when a device fails or when the number of units is increased to increase capacity (that is, when the number of units increases or decreases). You can drive. In other words, in a system consisting of multiple units, maintenance can be performed by flexibly responding to system changes such as an increase in the number of units or a temporary decrease in units due to a failure. Can be made easier.
  • FIG. 1 is a configuration diagram of a hot water supply system according to Embodiment 1.
  • FIG. 6 is a graph showing an example of the relationship between the capability of a unit and COP in the first embodiment. 6 is a table showing an example of selecting operation units in the first embodiment. It is a block diagram of the hot water supply system which concerns on Embodiment 2.
  • FIG. 10 is a table illustrating an example of calculating a COP of a unit according to the second embodiment.
  • 10 hot water supply system 10a fluid circuit, 10b heat pump cycle, 11 tank, 12 pump, 13a, 13b, 13c control valve, 14a, 14b, 14c heat pump unit, 15 expansion valve, 16 compressor, 17 air heat exchanger, 18 water Heat exchanger, 19 control device, 19a detection unit, 19b determination unit, 19c control unit, 20 thermometer, 21 thermometer, 22 flow sensor, 23 wattmeter, 24 outside air temperature sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 ヒートポンプユニット14a,14b,14c等の複数の加熱器を利用する際に、要求された能力に応じて適切な能力配分を行うことで、給湯システム10の高効率運転を可能とする。そのため、制御装置19は、ヒートポンプユニット14a,14b,14cの合計加熱能力が給湯システム10全体で要求される加熱能力となり、かつ、ヒートポンプユニット14a,14b,14cの合計COP(成績係数)が所定の条件を満たすように、ヒートポンプユニット14a,14b,14cそれぞれの加熱能力を決定する。制御装置19は、ヒートポンプユニット14a,14b,14cそれぞれの加熱能力が上記決定した加熱能力となるように調節弁13a,13b,13cそれぞれを制御する。

Description

流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法
 本発明は、流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法に関するものである。本発明は、特に、ヒートポンプユニットの高効率運転制御に関するものである。
 従来から、ヒートポンプユニットによって水を加熱し、タンクに貯湯する給湯システムが使用されている。
 複数のヒートポンプユニットを利用した給湯システムが提案されている(例えば、特許文献1参照)。従来の給湯システムでは、給湯負荷に応じて、運転するヒートポンプユニットの台数が決定される。各ヒートポンプユニットに対しては、運転を開始する優先順位が定められている。この優先順位は、所定時間ごとに変更される。
特開2005-134062号公報
 個々のヒートポンプユニットにおいて、そのヒートポンプサイクルの機能部品である圧縮機や熱交換器には、最も効率よく運転する能力帯が存在する。その能力帯から逸脱した状態でヒートポンプユニットを運転した場合には、COP(成績係数)の大幅な低下を招くおそれがある。従来の給湯システムでは、個々のヒートポンプユニットが効率よく運転できる能力帯に関係なく優先順位が定められていたので、十分なCOPが得られなかった。
 個々のヒートポンプユニットには、最低動作能力が定められている。最低動作能力を下回る能力でヒートポンプユニットを運転することは原理的に不可能である。そのため、ある一定以下の能力が要求されたときは、ヒートポンプユニットを停止し、最低動作能力を超える能力が要求されたときに、その再起動を行わざるを得ない。従来の給湯システムでは、個々のヒートポンプユニットの最低動作能力に関係なく優先順位が定められていたので、最低動作能力が低いヒートポンプユニットは使用できなかった。
 本発明は、例えば、ヒートポンプユニット等の複数の加熱器を利用する際に、要求された能力に応じて適切な能力配分を行うことで、給湯システム等の流体加熱システムの高効率運転を可能とする。また、本発明は、例えば、ヒートポンプユニット等の複数の加熱器を利用する際に、要求された能力に応じて最低動作能力が低いヒートポンプユニットも利用することで、給湯システム等の流体加熱システムの柔軟な構成を可能とする。
 本発明の一の態様に係る流体加熱システムは、
 流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、
 前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備と、
 前記複数の加熱器と前記設備との間で前記流体を循環させる流体回路と、
 前記複数の加熱器それぞれに対する前記流体の流量を調節する複数の調節弁と、
 前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定し、前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する制御装置とを備えることを特徴とする。
 前記制御装置は、前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが最大となるように、前記複数の加熱器それぞれの加熱能力を決定することを特徴とする。
 前記複数の加熱器には、異なる特性を有する2つ以上の加熱器が含まれることを特徴とする。
 前記複数の加熱器には、異なる最低加熱能力をもつ2つ以上の加熱器が含まれることを特徴とする。
 前記複数の加熱器には、異なる種類の冷媒を用いる2つ以上のヒートポンプユニットが含まれることを特徴とする。
 前記複数の加熱器には、ヒートポンプユニットとヒートポンプユニット以外の加熱器が含まれることを特徴とする。
 前記流体加熱システムは、さらに、
 前記複数の加熱器それぞれの消費電力を測定する電力計と、
 外気温度を測定する外気温度センサとを備え、
 前記制御装置は、前記決定した加熱能力と前記電力計により測定された消費電力と前記外気温度センサにより測定された外気温度とに基づいて、外気温度に応じた前記複数の加熱器それぞれのCOPと加熱能力との関係を求め、求めた関係を参照して前記複数の加熱器それぞれの加熱能力を決定することを特徴とする。
 前記制御装置は、前記複数の加熱器それぞれのCOPが最大となる加熱能力を最適能力として予め定義し、前記複数の加熱器のうち少なくとも1つの加熱器で構成される加熱器群であって、前記少なくとも1つの加熱器の合計最適能力が前記設備により要求される加熱能力に対応する加熱器群を選択し、選択した加熱器群を構成する加熱器の合計加熱能力が前記設備により要求される加熱能力となるように前記複数の調節弁それぞれを制御することを特徴とする。
 前記制御装置は、前記複数の加熱器それぞれのCOPが最大となる加熱能力を最適能力として予め定義し、前記複数の加熱器のうち、前記最適能力が前記設備により要求される加熱能力以下で、かつ、前記最適能力が前記設備により要求される加熱能力に最も近い加熱器から順番に加熱器を選択し、選択した加熱器の合計加熱能力が前記設備により要求される加熱能力となるように前記複数の調節弁それぞれを制御することを特徴とする。
 本発明の一の態様に係る流体加熱方法は、
 流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる工程と、
 前記複数の加熱器それぞれに対する前記流体の流量を調節する工程と、
 前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定し、前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する工程とを備えることを特徴とする。
 本発明の一の態様に係る流体加熱制御システムは、
 流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる流体回路と、
 前記複数の加熱器それぞれに対する前記流体の流量を調節する複数の調節弁と、
 前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定し、前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する制御装置とを備えることを特徴とする。
 本発明の一の態様に係る制御装置は、
 流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる流体回路に取り付けられる複数の調節弁と接続する制御措置であって、
 前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定する決定部と、
 前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する制御部とを備えることを特徴とする。
 本発明の一の態様に係る制御方法は、
 流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる流体回路に取り付けられる複数の調節弁と接続する制御装置により、前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定する工程と、
 前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する工程とを備えることを特徴とする。
 本発明の一の態様によれば、制御装置が、複数の加熱器の合計加熱能力が要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定し、前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように複数の調節弁それぞれを制御する。そのため、給湯システム等の流体加熱システムの高効率運転が可能となる。
 以下、本発明の実施の形態について、図を用いて説明する。
 実施の形態1.
 図1は、本実施の形態に係る給湯システム10の構成図である。
 図1において、給湯システム10は、水が循環する流体回路10aと、冷媒(例えば、R410A)が循環する3つのヒートポンプサイクル10bとを備えている。給湯システム10は、流体加熱システムの例である。水は、流体の例である。
 水の循環回路側(即ち、流体回路10a)は、主に、貯湯タンク(即ち、タンク11)と水循環ポンプ(即ち、ポンプ12)と3つの水量調節弁(即ち、調節弁13a,13b,13c)とによって構成されている。流体回路10aには、3つのユニット(即ち、ヒートポンプユニット14a,14b,14c)が並列接続されている。ヒートポンプユニット14a,14b,14cは、流体を加熱する複数の加熱器の例である。タンク11は、上部に、サニタリ設備(例えば、シャワー)へ供給する加熱水を貯め、下部に、サニタリ設備から戻ってくる未加熱水を貯める。ポンプ12は、その未加熱水をヒートポンプユニット14a,14b,14cに供給する。調節弁13a,13b,13cは、ヒートポンプユニット14a,14b,14cそれぞれに対する水の流量を調節する。ヒートポンプユニット14a,14b,14cそれぞれの加熱能力は、それぞれに対する水の流量によって変化する。ヒートポンプユニット14a,14b,14cは、それぞれ加熱能力によってCOP(成績係数、あるいは、能力消費電力係数)が変化する特性を有する。この特性は、ユニットごとに異なる。ポンプ12によってヒートポンプユニット14a,14b,14cに供給された水は、ヒートポンプユニット14a,14b,14cにより加熱され、その後合流してタンク11へと返流する。
 加熱回路側(即ち、ヒートポンプサイクル10b)は、各ユニットの内部に設けられている。ヒートポンプサイクル10bは、主に、膨張弁15と圧縮機16と空気熱交換器17と水熱交換器18とによって構成されている。圧縮機16は、冷媒を圧縮して加熱する。水熱交換器18は、圧縮機16によって加熱された冷媒を利用して、流体回路10aを流れる水を加熱する。膨張弁15は、膨張冷却により冷媒を冷却する。空気熱交換器17は、膨張弁15によって冷媒が冷却された後、外気から冷媒に熱を回収する。
 タンク11とポンプ12と各水量調節弁と各ユニットとには、それらの動作を制御したり、それらの状態を検知したりするシステム制御部(即ち、制御装置19)が接続されている。制御装置19は、検知部19aと決定部19bと制御部19cとを備えている。検知部19aは、検温器20によってタンク11の上部及び下部に貯められている水の温度を測定する。決定部19bは、検知部19aにより測定された水の温度と、ユーザから操作パネル等(不図示)により要求された温度とを比較して、給湯システム10全体で必要な加熱能力(即ち、タンク11により要求される加熱能力)を算出する。決定部19bは、ヒートポンプユニット14a,14b,14cの合計加熱能力が必要な加熱能力となり、かつ、ヒートポンプユニット14a,14b,14cの合計COPが所定の条件を満たすように、各ユニットの加熱能力を決定する。制御部19cは、各ユニットの加熱能力が決定部19bにより決定された加熱能力となるように各水量調節弁を制御する。
 本実施の形態では、上記条件は、全ユニットの合計COPが最大となることと定義する。したがって、各ユニットの加熱能力の設定パターンとして、全ユニットの合計加熱能力が必要な加熱能力となるものが何通りかある場合、決定部19bは、それらのうち、全ユニットの合計COPが最大となる設定パターンを選択する。本実施の形態の変形例として、上記条件に別の定義を与えてもよい。例えば、上記条件は、全ユニットの合計COPが予め定められた範囲内となることと定義してもよい。例えば、上記条件は、全ユニットの合計COPが予め定められた閾値より大きくなることと定義してもよい。いずれの場合にも、上記条件は、全ユニットの合計COPが少なくとも全ユニットの合計COPの最小値より大きくなるように定義される。従来の給湯システムでは、個々のユニットが効率よく運転できる能力帯に関係なく優先順位が定められていたので、全ユニットの合計COPが最小値となる可能性があった。これに対し、本実施の形態では、上記条件が設けられたことにより、そのような可能性がなくなるため、給湯システム10の高効率運転が保証される。
 本実施の形態では、ヒートポンプサイクル10bが流体回路10aと並列に3つ接続されている。つまり、ヒートポンプサイクル10bを有する3つのユニットが並列に接続されている。本実施の形態の変形例として、2つ、又は、3つより多くのユニットが並列に接続されていてもよい。別の変形例として、複数のユニットのうち、いくつかは直列に接続されていてもよい。別の変形例として、複数のユニットのうち、いくつかはヒートポンプサイクル10b以外の手段で水を加熱する加熱器(例えば、ボイラ)であってもよい。別の変形例として、全ユニットが、ヒートポンプサイクル10b以外の手段で水を加熱する加熱器であってもよい。
 本実施の形態では、ヒートポンプユニット14a,14b,14cは、互いに異なる特性を有している。本実施の形態の変形例として、ヒートポンプユニット14a,14b,14cのうち、2つが同じ特性を有していてもよい。別の変形例として、全ユニットが同じ特性を有していてもよい。
 本実施の形態では、ヒートポンプユニット14a,14b,14cは、同じ種類の冷媒(例えば、R410A)を用いたヒートポンプサイクル10bを有している。本実施の形態の変形例として、ヒートポンプユニット14a,14b,14cのうち、少なくとも2つが互いに異なる種類の冷媒(例えば、R410A及びCO2)を用いたヒートポンプサイクル10bを有していてもよい。
 本実施の形態では、ヒートポンプユニット14a,14b,14cは、同じ種類の冷媒(例えば、R410A)を用いたヒートポンプサイクル10bを有している。本実施の形態の変形例として、ヒートポンプユニット14a,14b,14cのうち、少なくとも2つが互いに異なる種類の冷媒(例えば、R410A及びCO2)を用いたヒートポンプサイクル10bを有していてもよい。
 給湯システム10は、タンク11の代わりに、あるいは、タンク11とともに、床暖房やラジエータ等を備えていてもよい。床暖房やラジエータは、流体を熱源として利用する器具の例である。タンク11、及び、床暖房やラジエータといった器具は、設備の例である。本実施の形態では、流体回路10aは、各ユニットと設備との間で水を循環させているが、設備が床暖房やラジエータ等である場合、流体回路10aは、各ユニットと設備との間で水以外の流体を循環させてもよい。
 次に、給湯システム10の動作について説明する。
 制御装置19にて、検知部19aは、検温器20で測定されたタンク11内の水温を得る。
 制御装置19にて、決定部19bは、検知部19aによって得られた水温とユーザからの要求に基づき、給湯システム10全体として、達成すべき能力を決定する。タンク11内の水温とユーザ側で設定した温度との差が小さい場合は、必要な能力が小さくなる。しかし、逆に、温度差が大きく短時間で加熱する必要がある場合は、大能力が必要となる。温度差が小さい場合でも、使用湯量が過渡的に増加した際には、タンク11の水温が急激に低下するため、大能力で温度低下を防止しなければならない。決定部19bは、これらの事項を総合的に判断して、タンク11内の温度の理想上昇スピードを計算し、時間当たりの必要な能力を決定する。例えば、決定部19bは、ユーザにより設定された温度と時間(例えば、ユーザが「急速」モードを設定できる場合)と、タンク11の入口温度と出口温度とから、時間当たりの必要な能力を算出する。タンク11以外の設備(例えば、床暖房やラジエータといった器具)がある場合、決定部19bは、そのような設備における放熱量も考慮して、時間当たりの必要な能力を算出する。決定部19bは、決定した能力に対し、ヒートポンプユニット14a,14b,14cのうち、使用するユニットを選定し、それらのユニットが個々に担う能力を決定する。
 図2は、本実施の形態におけるユニットの能力とCOPとの関係の例を示すグラフである。
 図2の例では、ヒートポンプユニット14a,14b,14cをそれぞれ「ユニットA」、「ユニットB」、「ユニットC」と表す。グラフの横軸は、能力の大きさを表す。グラフの縦軸は、COPの大きさを表す。図2の例では、ヒートポンプユニット14aが任意の能力値であるQの能力を発揮したときに、ヒートポンプユニット14aのCOPが最大となる。ヒートポンプユニット14bがQの2倍である2Qの能力を発揮したときに、ヒートポンプユニット14bのCOPが最大となる。ヒートポンプユニット14cがQの4倍である4Qの能力を発揮したときに、ヒートポンプユニット14cのCOPが最大となる。
 決定部19bは、各ユニットの能力を決定する際に、図2に示すような予め記憶媒体に保存された能力値に対してのCOPの値を使用する。つまり、決定部19bは、各ユニットが出す能力を加算すると達成すべき能力が得られ、かつ、給湯システム10が全体として最も効率よく運転できるように、使用するユニットの組み合わせとそれぞれのユニットの個別能力を決定する。
 図3は、本実施の形態における稼動ユニットの選定例を示す表である。
 図3の例では、図2の例のように、能力が2の累乗でCOPがピークとなる複数のユニットが存在した場合を考える。具体的には、給湯システム10において、ヒートポンプユニット14a,14b,14cのほかに、ユニットがもう1つ存在し、各ユニットのCOPがピークとなる能力が、それぞれ1Q、2Q、4Q、8Qであると仮定する。図3において、決定部19bは、COPがピークとなる能力が要求能力(即ち、タンク11、及び/又は、床暖房やラジエータといった器具を含む設備により要求される加熱能力)以下で最も近いユニットに、COPがピークとなる能力が残りの要求能力以下で最も近いユニットを、順番に組み合わせていくことで、それぞれのユニットが最適な能力を発揮できる組み合わせを決定する。能力が2の累乗でCOPがピークとなるユニットの代わりに、様々な特性を有するユニットを組み合わせる場合でも、各ユニットについて、COPがピークとなる能力を把握しておけば、決定部19bは、各ユニットの能力を瞬時に計算することができる。決定部19bは、要求能力と、対応するユニットの組み合わせとを示すデータを予め記憶媒体に記憶しておき、各ユニットの能力を決定する際に、このデータを参照してもよい。
 制御装置19にて、制御部19cは、決定部19bによって決定された能力で各ユニットが動作するように、各ユニットに動作指示を行うとともに、各水量調節弁にて、動作するユニットにのみ未加熱水を流す。各ユニットで加熱された水は、ポンプ12の前で合流し、タンク11へと返流する。
 各ユニットのCOPが最大となる加熱能力は最適能力として予め定義できる。上記のように、決定部19bは、ヒートポンプユニット14a,14b,14cのうち、最適能力が要求能力以下で、かつ、最適能力が要求能力に最も近いユニットから順番にユニットを選択する。決定部19bによって選択されるユニットは、1つの加熱器群を構成する。ヒートポンプユニット14a,14b,14cのうち少なくとも1つのユニットで構成される加熱器群は、7種類あるが、これらのうち、加熱器群を構成するユニットの合計最適能力が要求能力に対応するものが決定部19bによって選択される。つまり、決定部19bによって選択されるユニットの合計最適能力は要求能力に対応する。具体的には、決定部19bによって選択されるユニットの合計最適能力は要求能力に一致するか、又は、近い値となる。制御部19cは、決定部19bによって選択された加熱器群を構成するユニットの合計加熱能力が要求能力となるように各水量調節弁を制御する。選択された加熱器群を構成するユニットの合計最適能力が要求能力に一致する場合、制御部19cは、当該ユニットの加熱能力が最適能力となるように各水量調節弁を制御する。一方、決定部19bによって選択された加熱器群を構成するユニットの合計最適能力がタンク11により要求される加熱能力に一致しない場合、制御部19cは、決定部19bによって選択された加熱器群を構成するユニットの合計加熱能力がタンク11により要求される加熱能力となるように、例えば、1つのユニットの加熱能力を調整する。このように、本実施の形態では、要求能力に応じて適切な能力配分を行っている。そのため、給湯システム10の高効率運転が可能となる。
 本実施の形態では、ヒートポンプユニット14a,14b,14cのうち、少なくとも2つは、互いに異なる最低加熱能力をもっており、要求能力に応じて最低動作能力が低いユニットも利用することができる。そのため、給湯システム10の柔軟な構成が可能となる。
 以上説明したように、本実施の形態では、それぞれのユニットを最適能力で動作させることによって、給湯システム10の全体的な効率を向上させることができる。また、ユニットが単独で接続されている場合と比較した場合、小能力ユニットを組み込むことによって、要求能力が小さい場合においても運転可能となる。したがって、高効率運転が可能となる。
 上記のように、本実施の形態によれば、ヒートポンプサイクルを有した複数のユニットを備える給湯システム10を利用する際に、使用ユニットの選定と、その能力配分によって、給湯システム10の高効率運転を可能とする。本実施の形態によれば、要求される能力に対して、幅広く対応可能である。具体的には、それぞれの能力帯によって適切に使用するユニットを決定することによって、幅広い要求能力に対して、常に高効率運転を持続することが可能となる。また、本実施の形態によれば、1台の大能力ユニットで動作し難い低能力時においても、効率よく運転可能となる。
 本実施の形態に係る水循環型給湯システム(即ち、給湯システム10)は、複数のヒートポンプユニット14a,14b,14cと、貯湯タンク(即ち、タンク11)と、水回路(即ち、流体回路10a)と、ポンプ12と、制御装置19とを有する。流体回路10aは、タンク11に対し、ヒートポンプユニット14a,14b,14cを並列につなぎ、それぞれに流量調整可能な弁(即ち、調節弁13a,13b,13c)をもつ。ポンプ12は、水を循環させる。制御装置19は、ヒートポンプユニット14a,14b,14cとポンプ12に接続され、個々の出力を管理できる。
 給湯システム10は、流体回路10aに並列に接続された個々のヒートポンプユニット14a,14b,14cの能力消費電力係数を事前に把握する手段(即ち、制御装置19)を有する。制御装置19は、系全体の要求能力に対して能力消費電力係数が最大となるように個々のヒートポンプユニット14a,14b,14cを制御する。
 給湯システム10は、最低動作能力、能力消費電力係数最大時の能力が異なったヒートポンプユニット14a,14b,14cを接続し、幅広い能力帯で効率よく動作するように個々のヒートポンプユニット14a,14b,14cを制御する。
 給湯システム10は、貯湯タンク(即ち、タンク11)と、水回路(即ち、流体回路10a)と、複数のヒートポンプユニット14a,14b,14cと、これらのユニットの動作をコントロールする機構(即ち、制御装置19)とを有する。流体回路10aは、タンク11内の湯の減少、温度低下等が起きた場合にタンク11から未加熱水を取り出し、加熱してタンク11に戻す。ヒートポンプユニット14a,14b,14cは、未加熱水の加熱に用いられる。制御装置19は、最も効率よく運転できる能力帯が異なるヒートポンプユニット14a,14b,14cの動作をコントロールする。制御装置19は、要求能力に見合った適切なユニットを動作させることで、システム全体のCOP向上を図ることができる。
 実施の形態2.
 本実施の形態について、主に実施の形態1との差異を説明する。
 実施の形態1では、制御装置19は、それぞれのユニットの能力とCOPとの関係を事前に把握しており、要求能力に応じてユニットの最適な組み合わせを決定する。これに対し、本実施の形態では、制御装置19は、それぞれのユニットの能力とCOPとを計測し、それぞれのユニットの能力とCOPとの関係を求め、要求能力に応じてユニットの最適な組み合わせを動的に決定する。そのため、本実施の形態によれば、障害発生時の性能低下の防止や、ユニットを増強した際の性能向上を図ることができる。
 図4は、本実施の形態に係る給湯システム10の構成図である。
 図4において、給湯システム10には、検温器21、流量センサ22、電力計23、外気温度センサ24が取り付けられている。検温器21は、各ユニットの流体回路10aへの出口に取り付けられ、水温を測定する。流量センサ22は、各水量調節弁に取り付けられ、各ユニットに流入する水の流量を測定する。電力計23は、各ユニットに取り付けられ、各ユニットの消費電力を測定する。外気温度センサ24は、外気温度を測定する。
 制御装置19にて、決定部19bは、検知部19aが検温器21、流量センサ22、電力計23から収集したデータより、それぞれのユニットの能力とCOPとを算出する。また、決定部19bは、それぞれのユニットの能力とCOPとを算出したときの外気温度を記録するため、検知部19aが得た外気温度センサ24の測定値を記憶媒体に保持する。
 ヒートポンプユニット14a,14b,14cのCOPは、原理的に外気温度、出湯温度、能力によって左右され、そのほかの因子で変動することは少ない。そのため、決定部19bは、検知部19aが一度収集したデータは、そのときの外気温度、出湯温度、能力を鍵に、記憶媒体にてデータベース化して保存する。決定部19bは、このデータベースを参照して、実施の形態1と同様に稼動ユニットを選択する。
 図5は、本実施の形態におけるユニットのCOPの算出例を示す表である。
 図5の例では、外気温度が2℃のときの「ユニットA」の能力と出湯温度とに対するCOPを示している。決定部19bは、各ユニットのCOPの算出を繰り返すことにより、データベースを充実化していき、より精度の高い制御を可能とする。ある外気温度のときのあるユニットのある能力とある出湯温度との組み合わせが、まだ測定されていない条件のときは、決定部19bは、条件が近いデータを基に予想COPを算出する。
 上記のように、決定部19bは、各ユニットの加熱能力を決定すると、決定した加熱能力と電力計23により測定された消費電力と外気温度センサ24により測定された外気温度とに基づいて、外気温度に応じた各ユニットのCOPと加熱能力との関係を求める。決定部19bは、次に各ユニットの加熱能力を決定する際には、前回求めた関係を参照して各ユニットの加熱能力を決定する。
 以上説明したように、本実施の形態では、それぞれのユニットのCOPを算出して保持しておき、次に稼動させたときのCOPを予測して稼動ユニットを決定しているため、COPが未知のユニットも制御の対象とすることができる。このような制御を行うことで、異種冷媒を使用したヒートポンプ、電気ヒータ式ボイラ、太陽熱温水器等、電気を動力とする加熱器であれば、それぞれの加熱器ごとにCOPを算出して、最も効率よく運転できる加熱器の組み合わせを決定することができる。また、各ユニットの能力とCOPとを監視しているため、ユニットの故障を検出することができる。
 本実施の形態に係る水循環型給湯システム(即ち、給湯システム10)は、個々のヒートポンプユニット14a,14b,14cの出口の水温を把握する手段(即ち、検温器21)と、個々のヒートポンプユニット14a,14b,14cの消費電力を把握する手段(即ち、電力計23)を備える。給湯システム10は、個々のヒートポンプユニット14a,14b,14cの稼動状態を動的に判断して、系全体の要求能力に対して能力消費電力係数が最大となるように個々のヒートポンプユニット14a,14b,14cを制御する。
 以上説明したように、本実施の形態では、複数のヒートポンプユニット14a,14b,14cを並列に接続する。それぞれのユニットは、個別に容量制御可能である。制御装置19は、システム全体での達成能力を考慮し、各ユニットを効率よく運転する。そのために、制御装置19は、要求されている能力を判断し、現在の周囲の環境を測定し、それらの情報から各ユニットが動作する際のCOPを事前に把握、もしくは、予測する。制御装置19は、その要求能力に対し最も消費電力が少なくなるようユニットを選定し、それぞれの容量制御を行うことでシステム全体の消費電力を抑える。
 上記のように、本実施の形態によれば、機器が故障したり、容量増加のためにユニットを増加したりするとき(即ち、ユニットの数が増減した場合)も、給湯システム10を効率よく運転することができる。つまり、複数のユニットで構成されたシステムにおいて、ユニット数の増加や、故障による一時的なユニットの減少等のシステム変更に対して、既存システムの変更を少なくし、柔軟に対応することによって、メンテナンスを容易にすることができる。
 以上、本発明の実施の形態について説明したが、これらのうち、2つ以上の実施の形態を組み合わせて実施しても構わない。あるいは、これらのうち、1つの実施の形態を部分的に実施しても構わない。あるいは、これらのうち、2つ以上の実施の形態を部分的に組み合わせて実施しても構わない。
実施の形態1に係る給湯システムの構成図である。 実施の形態1におけるユニットの能力とCOPとの関係の例を示すグラフである。 実施の形態1における稼動ユニットの選定例を示す表である。 実施の形態2に係る給湯システムの構成図である。 実施の形態2におけるユニットのCOPの算出例を示す表である。
符号の説明
 10 給湯システム、10a 流体回路、10b ヒートポンプサイクル、11 タンク、12 ポンプ、13a,13b,13c 調節弁、14a,14b,14c ヒートポンプユニット、15 膨張弁、16 圧縮機、17 空気熱交換器、18 水熱交換器、19 制御装置、19a 検知部、19b 決定部、19c 制御部、20 検温器、21 検温器、22 流量センサ、23 電力計、24 外気温度センサ。

Claims (13)

  1.  流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、
     前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備と、
     前記複数の加熱器と前記設備との間で前記流体を循環させる流体回路と、
     前記複数の加熱器それぞれに対する前記流体の流量を調節する複数の調節弁と、
     前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定し、前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する制御装置とを備えることを特徴とする流体加熱システム。
  2.  前記制御装置は、前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが最大となるように、前記複数の加熱器それぞれの加熱能力を決定することを特徴とする請求項1に記載の流体加熱システム。
  3.  前記複数の加熱器には、異なる特性を有する2つ以上の加熱器が含まれることを特徴とする請求項1又は2に記載の流体加熱システム。
  4.  前記複数の加熱器には、異なる最低加熱能力をもつ2つ以上の加熱器が含まれることを特徴とする請求項1から3までのいずれかに記載の流体加熱システム。
  5.  前記複数の加熱器には、異なる種類の冷媒を用いる2つ以上のヒートポンプユニットが含まれることを特徴とする請求項1から4までのいずれかに記載の流体加熱システム。
  6.  前記複数の加熱器には、ヒートポンプユニットとヒートポンプユニット以外の加熱器が含まれることを特徴とする請求項1から5までのいずれかに記載の流体加熱システム。
  7.  前記流体加熱システムは、さらに、
     前記複数の加熱器それぞれの消費電力を測定する電力計と、
     外気温度を測定する外気温度センサとを備え、
     前記制御装置は、前記決定した加熱能力と前記電力計により測定された消費電力と前記外気温度センサにより測定された外気温度とに基づいて、外気温度に応じた前記複数の加熱器それぞれのCOPと加熱能力との関係を求め、求めた関係を参照して前記複数の加熱器それぞれの加熱能力を決定することを特徴とする請求項1から6までのいずれかに記載の流体加熱システム。
  8.  前記制御装置は、前記複数の加熱器それぞれのCOPが最大となる加熱能力を最適能力として予め定義し、前記複数の加熱器のうち少なくとも1つの加熱器で構成される加熱器群であって、前記少なくとも1つの加熱器の合計最適能力が前記設備により要求される加熱能力に対応する加熱器群を選択し、選択した加熱器群を構成する加熱器の合計加熱能力が前記設備により要求される加熱能力となるように前記複数の調節弁それぞれを制御することを特徴とする請求項1から7までのいずれかに記載の流体加熱システム。
  9.  前記制御装置は、前記複数の加熱器それぞれのCOPが最大となる加熱能力を最適能力として予め定義し、前記複数の加熱器のうち、前記最適能力が前記設備により要求される加熱能力以下で、かつ、前記最適能力が前記設備により要求される加熱能力に最も近い加熱器から順番に加熱器を選択し、選択した加熱器の合計加熱能力が前記設備により要求される加熱能力となるように前記複数の調節弁それぞれを制御することを特徴とする請求項1から7までのいずれかに記載の流体加熱システム。
  10.  流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる工程と、
     前記複数の加熱器それぞれに対する前記流体の流量を調節する工程と、
     前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定し、前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する工程とを備えることを特徴とする流体加熱方法。
  11.  流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる流体回路と、
     前記複数の加熱器それぞれに対する前記流体の流量を調節する複数の調節弁と、
     前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定し、前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する制御装置とを備えることを特徴とする流体加熱制御システム。
  12.  流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる流体回路に取り付けられる複数の調節弁と接続する制御装置であって、
     前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定する決定部と、
     前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する制御部とを備えることを特徴とする制御装置。
  13.  流体を加熱する複数の加熱器であって、前記流体の流量によって加熱能力が変化し、加熱能力によってCOP(成績係数)が変化する特性を有する複数の加熱器と、前記流体を貯めるタンクと前記流体を熱源として利用する器具との少なくともいずれかを含む設備との間で前記流体を循環させる流体回路に取り付けられる複数の調節弁と接続する制御装置により、前記複数の加熱器の合計加熱能力が前記設備により要求される加熱能力となり、かつ、前記複数の加熱器の合計COPが所定の条件を満たすように、前記複数の加熱器それぞれの加熱能力を決定する工程と、
     前記複数の加熱器それぞれの加熱能力が前記決定した加熱能力となるように前記複数の調節弁それぞれを制御する工程とを備えることを特徴とする制御方法。
PCT/JP2009/056514 2009-03-30 2009-03-30 流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法 WO2010116454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/056514 WO2010116454A1 (ja) 2009-03-30 2009-03-30 流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法
US13/255,689 US9500376B2 (en) 2009-03-30 2009-03-30 Fluid heating system, fluid heating method, fluid heating control system, control apparatus, and control method
JP2011508097A JP5132813B2 (ja) 2009-03-30 2009-03-30 流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法
EP09842964.0A EP2416083B1 (en) 2009-03-30 2009-03-30 Fluid heating system and method, and fluid heating control system, control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056514 WO2010116454A1 (ja) 2009-03-30 2009-03-30 流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2010116454A1 true WO2010116454A1 (ja) 2010-10-14

Family

ID=42935766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056514 WO2010116454A1 (ja) 2009-03-30 2009-03-30 流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法

Country Status (4)

Country Link
US (1) US9500376B2 (ja)
EP (1) EP2416083B1 (ja)
JP (1) JP5132813B2 (ja)
WO (1) WO2010116454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165425A1 (ja) * 2011-05-31 2012-12-06 東芝キヤリア株式会社 加温システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506519B (zh) * 2011-10-23 2013-12-11 重庆市电力公司电力科学研究院 热电联产机组与风力发电联合供热系统及调度方法
GB2510547B (en) * 2012-03-01 2016-04-27 Waste Heat Recovery Ltd Heat recovery
JP5447627B1 (ja) * 2012-09-26 2014-03-19 ダイキン工業株式会社 熱源システム制御装置
US9719687B2 (en) * 2014-01-21 2017-08-01 Intellihot, Inc. Multi-temperature output fluid heating system
JP6261724B2 (ja) * 2014-04-25 2018-01-17 三菱電機株式会社 ヒートポンプチリングシステム及びその制御方法
JP6109119B2 (ja) * 2014-07-10 2017-04-05 三菱電機株式会社 ヒートポンプ給湯システム
CN104676902B (zh) * 2015-03-11 2017-06-30 广东美的暖通设备有限公司 热泵热水器及其控制方法
KR20210108246A (ko) * 2020-02-25 2021-09-02 엘지전자 주식회사 히트펌프 및 그 동작방법
US20220003447A1 (en) * 2020-07-01 2022-01-06 Haier Us Appliance Solutions, Inc. Air conditioning system with improved coordination between a plurality of units
WO2024084000A1 (de) * 2022-10-20 2024-04-25 Peter Brecklinghaus Nachrüstsatz für ein bereits vorhandenes zentralheizungssystem und ein verfahren zum nachrüsten eines bereits vorhandenen zentralheizungssystems mittels eines nachrüstsatzes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134062A (ja) 2003-10-31 2005-05-26 Daikin Ind Ltd ヒートポンプ式給湯装置及び分岐ユニット
JP2005337626A (ja) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc ヒートポンプ給湯機システム
JP2007192432A (ja) * 2006-01-17 2007-08-02 Rinnai Corp 貯湯システム
JP2007303755A (ja) * 2006-05-12 2007-11-22 Sharp Corp ヒートポンプ式給湯機

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906557C2 (de) * 1979-02-17 1984-07-12 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Verfahren und Vorrichtung zum Regeln einer Heizungsanlage mit zwei Wärmequellen
JPS60243450A (ja) 1984-05-17 1985-12-03 三菱電機株式会社 給湯・冷暖房ヒ−トポンプ装置
CH667717A5 (de) * 1985-04-23 1988-10-31 Landis & Gyr Ag Verfahren zur leistungsmaessig gesteuerten inbetriebnahme bzw. abschaltung von heizkesseln.
EP0445310A1 (de) * 1990-02-09 1991-09-11 Viessmann Werke GmbH & Co. Verfahren und Vorrichtung zur Regelung der Vorlauftemperatur in Mehrkessel-Heizungssystemen.
EP0900988A1 (de) * 1997-09-06 1999-03-10 Electrowatt Technology Innovation AG Verfahren zur Regelung einer Heizungsanlage mit mehreren Wärmeerzeugern
JP3758627B2 (ja) * 2001-11-13 2006-03-22 ダイキン工業株式会社 ヒートポンプ式給湯装置
JP2003166750A (ja) 2001-11-30 2003-06-13 Denso Corp ヒートポンプ式給湯装置
JP3932913B2 (ja) * 2002-01-29 2007-06-20 ダイキン工業株式会社 ヒートポンプ式給湯機
JP3742356B2 (ja) * 2002-03-20 2006-02-01 株式会社日立製作所 ヒートポンプ給湯機
JP4305052B2 (ja) 2003-05-19 2009-07-29 パナソニック株式会社 ヒートポンプ給湯空調装置
JP4077766B2 (ja) 2003-06-03 2008-04-23 松下電器産業株式会社 ヒートポンプ給湯装置
JP2005090815A (ja) 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯機
JP4114613B2 (ja) 2004-01-27 2008-07-09 松下電工株式会社 ヒートポンプ式給湯システム
JP2006138493A (ja) * 2004-11-10 2006-06-01 Hanshin Electric Co Ltd 貯湯式給湯装置
JP2006283989A (ja) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd 冷暖房システム
JP2006292281A (ja) 2005-04-11 2006-10-26 Denso Corp ヒートポンプ式給湯装置
US8733429B2 (en) * 2006-02-13 2014-05-27 The H.L. Turner Group, Inc. Hybrid heating and/or cooling system
JP2007322084A (ja) 2006-06-02 2007-12-13 Hitachi Appliances Inc ヒートポンプ給湯機
AT503582B1 (de) * 2006-09-04 2007-11-15 Vaillant Austria Gmbh Verfahren zum betreiben mehrerer durchlauferhitzer
DE202007002733U1 (de) * 2007-02-24 2007-06-06 Gross, Hermann Anlage zur Erzeugung, Speicherung und Verteilung von Wärmeenergie zwischen wärmetechnischen Betriebsmitteln mit abgestuften Temperaturniveaus in einem Gebäude und Steigerung zum Betrieb einer solchen Anlage
EP2098791A1 (de) * 2008-03-05 2009-09-09 Roth Werke GmbH Vorrichtung zur Erwärmung von Wasser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134062A (ja) 2003-10-31 2005-05-26 Daikin Ind Ltd ヒートポンプ式給湯装置及び分岐ユニット
JP2005337626A (ja) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc ヒートポンプ給湯機システム
JP2007192432A (ja) * 2006-01-17 2007-08-02 Rinnai Corp 貯湯システム
JP2007303755A (ja) * 2006-05-12 2007-11-22 Sharp Corp ヒートポンプ式給湯機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416083A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165425A1 (ja) * 2011-05-31 2012-12-06 東芝キヤリア株式会社 加温システム

Also Published As

Publication number Publication date
US9500376B2 (en) 2016-11-22
US20110315093A1 (en) 2011-12-29
EP2416083A1 (en) 2012-02-08
EP2416083A4 (en) 2015-11-04
JP5132813B2 (ja) 2013-01-30
EP2416083B1 (en) 2017-05-31
JPWO2010116454A1 (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5132813B2 (ja) 流体加熱システム及び流体加熱方法及び流体加熱制御システム及び制御装置及び制御方法
EP2749820B1 (en) Heating system control method and heating system
JP5597767B2 (ja) 暖房装置および暖房装置の制御方法
JP6381362B2 (ja) 太陽光発電装置連携ヒートポンプ貯湯式給湯システム
US8538597B2 (en) System and method for regulating temperature in a hot water heater
US10181725B2 (en) Method for operating at least one distributed energy resource comprising a refrigeration system
EP2508806B1 (en) Heat pump system and heat pump unit controlling method
KR101621168B1 (ko) 온수공급시스템
JP2019027740A (ja) 給湯システム
EP3412985A1 (en) Method for controlling water-heating system, and water-heating system
Underwood Fuzzy multivariable control of domestic heat pumps
JP2016044849A (ja) 太陽光発電装置連携ヒートポンプ貯湯式給湯システム
JP5820998B2 (ja) 暖房システムの制御方法及び暖房システム
JP2012237515A (ja) 貯湯式ヒートポンプ給湯器
JP6672982B2 (ja) 貯湯式給湯装置
WO2018066037A1 (ja) 貯湯式給湯機、給湯方法及びプログラム
WO2020225905A1 (ja) 貯湯式給湯システム
JP7094186B2 (ja) 熱交換制御装置
EP4160121B1 (en) Efficiency control algorithm for a cascade system of heat pumps
JP2024135510A (ja) ヒートポンプ式給湯システム
JP6522948B2 (ja) 貯湯式給湯システム
WO2022119436A1 (en) An apparatus for heating water
JP2024081469A (ja) 貯湯式給湯機
CA2756336C (en) System and method for regulating temperature in a hot water heater
JP2005134064A (ja) ヒートポンプ式給湯装置及びヒートポンプ式給湯装置の運転条件設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508097

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13255689

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009842964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009842964

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE