WO2010116416A1 - データ中継装置、及び当該装置で用いられるデータ中継方法 - Google Patents

データ中継装置、及び当該装置で用いられるデータ中継方法 Download PDF

Info

Publication number
WO2010116416A1
WO2010116416A1 PCT/JP2009/001635 JP2009001635W WO2010116416A1 WO 2010116416 A1 WO2010116416 A1 WO 2010116416A1 JP 2009001635 W JP2009001635 W JP 2009001635W WO 2010116416 A1 WO2010116416 A1 WO 2010116416A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
data
transmission
relay
period
Prior art date
Application number
PCT/JP2009/001635
Other languages
English (en)
French (fr)
Inventor
安藤博哉
平嶋理
佐藤雄介
笹倉克友
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09842928.5A priority Critical patent/EP2418806B1/en
Priority to PCT/JP2009/001635 priority patent/WO2010116416A1/ja
Priority to JP2011508073A priority patent/JP5382472B2/ja
Priority to US13/130,987 priority patent/US8654797B2/en
Publication of WO2010116416A1 publication Critical patent/WO2010116416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40241Flexray
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines

Definitions

  • the present invention relates to a data relay device, and more particularly, to a data relay device that relays data transmitted and received with different communication protocols.
  • the conventional technology has the following problems. That is, in the above prior art, data transmitted / received on one communication line according to the CAN protocol and data transmitted / received on the other communication line according to the FlexRay protocol are relayed to each other communication line.
  • an event trigger type CAN protocol for transmitting data when a transmission node that needs to transmit to a communication line needs to transmit and a timing for transmission to the communication line are preliminarily set in each transmission node.
  • Data transmission / reception timings according to each other's protocol are not synchronized with the assigned time-triggered FlexRay protocol.
  • the conventional technology does not consider that the timing of data transmission / reception according to each other's protocol is not synchronized as described above, data is transmitted from one communication line to the other communication line using the conventional technology. There may be a significant delay when relaying.
  • an object of the present invention is to provide a data relay apparatus that does not cause a significant delay even when data transmitted and received with different protocols is relayed.
  • the present invention has the following features. According to a first aspect of the present invention, a first communication line through which first data is transmitted / received according to an event trigger type communication protocol, and a second at which second data is transmitted / received according to a time trigger type communication protocol.
  • One of the first communication line and the second communication line based on the storage means, the first transmission timing estimated by the estimation means, and the schedule stored in the schedule storage means By calculating the stay period when data is relayed to the direction, the determination means for determining the scheduled reference timing, and the second data is transmitted and received according to the schedule from the reference timing determined by the determination means, Synchronization processing means for performing synchronization processing with the second communication node connected to the second communication line.
  • each of the first communication nodes transmits one or more types of first data different from each other at a predetermined transmission period
  • the estimation unit Is the first reception timing recognition means for recognizing each type of first data as the first reception timing for each type, and when receiving the first data twice continuously for each type.
  • Period recognition means for recognizing each type as a transmission interval, the first reception timing and the transmission cycle are associated with each type, and the first reception timing for each type is used as a reference for each initial reception timing for each type.
  • Transmission timing estimation means for estimating all timings arriving at the associated transmission period as the first transmission timing.
  • each of the first communication nodes transmits one or more types of first data different from each other at a predetermined transmission cycle for each type.
  • period storage means for preliminarily storing the transmission period for each type
  • the estimation means recognizes the first reception timing of the first data for each type as the initial reception timing for each type of initial reception timing recognition means
  • the first reception timing and the transmission cycle are associated with each type, and the first reception timing for each type is used as a reference, and all the timings that arrive at the transmission cycle associated with the first reception timing for each type are first A transmission timing estimation means for estimating the transmission timing.
  • each of the first communication nodes has a predetermined type so that the first data of one or more types different from each other is transmitted first.
  • transmission is performed at a predetermined transmission cycle for each type, and the transmission cycle is determined for each type in advance.
  • Period storage means for storing and transmission start interval storage means for storing a transmission start interval predetermined for each type in each of the first communication nodes are further provided, and the estimation means is provided from each of the first nodes.
  • the determining means includes a setting means for setting the timing as an assumed timing at a predetermined time interval, and a second setting according to a schedule from the assumed timing.
  • the second data is received from the second communication line, transmitted to the first communication line as the first data, and relayed
  • the relay timing estimation means for estimating the relay timing for each assumed timing set by the setting means, the first transmission timing estimated by the estimation means, and the relay timing estimated by the relay timing estimation means overlap.
  • the overlap period generated by the relay timing estimation means is set as the residence period for each assumed timing used by the relay timing estimation means to estimate the relay timing.
  • the determining means includes a setting means for setting the timing as an assumed timing at a predetermined time interval, and a second setting according to a schedule from the assumed timing.
  • the second data is received from the second communication line, transmitted to the first communication line as the first data, and relayed
  • the relay timing estimation means for estimating the relay timing for each assumed timing set by the setting means, the first transmission timing estimated by the estimation means, and the relay timing estimated by the relay timing estimation means overlap.
  • the overlap period generated by the relay timing estimation means is set as the residence period for each assumed timing used by the relay timing estimation means to estimate the relay timing.
  • the calculation means for calculating, the standard deviation calculating means for calculating the standard deviation of the overlapping period calculated for each assumed timing by the calculating means, and the standard deviation of the overlapping period calculated for each assumed timing by the standard deviation calculating means Reference timing determining means for determining, as a reference timing, an assumed timing at which the standard deviation of the small overlap period is calculated by the standard deviation calculating means.
  • the determining means includes a setting means for setting the timing as an assumed timing at a predetermined time interval, and a second setting according to a schedule from the assumed timing.
  • the second transmission timing for transmitting the second data to the second communication line is set by the setting unit based on the schedule Transmission timing estimation means for estimating each assumed timing, and first data received at the first transmission timing estimated by the estimation means at the second transmission timing estimated by the transmission timing estimation means.
  • the transmission timing estimation means estimates the second transmission timing for the delay period until the data is transmitted as the second data to the second communication line and relayed Calculated for each hypothetical timing by the calculation means for calculating the residence period for each assumption timing used for calculating the sum, the total calculation means for calculating the sum of the delay periods calculated for each assumption timing by the calculation means, and the total calculation means.
  • Reference timing determining means for determining, as a reference timing, the hypothetical timing calculated by the total calculating means for the sum of the delay periods that is the smallest of the total delay periods.
  • the determining means includes a setting means for setting the timing as an assumed timing at a predetermined time interval, and a second setting according to a schedule from the assumed timing.
  • the second transmission timing for transmitting the second data to the second communication line is set by the setting unit based on the schedule Transmission timing estimation means for estimating each assumed timing, and first data received at the first transmission timing estimated by the estimation means at the second transmission timing estimated by the transmission timing estimation means.
  • the transmission timing estimation means estimates the second transmission timing for the delay period until the data is transmitted as the second data to the second communication line and relayed Calculating means for calculating the dwell period for each assumption timing used for the calculation, standard deviation calculating means for calculating the standard deviation of the delay period calculated for each assumption timing by the calculating means, and for each assumption timing by the standard deviation calculating means.
  • Reference timing determining means for determining, as a reference timing, an assumed timing at which the standard deviation of the smallest delay period among the calculated standard deviations of the delay periods is calculated by the standard deviation calculating means.
  • the setting means sets the assumed timing only within a predetermined time range from the time that the estimation means uses as a reference for estimation. Set.
  • a first communication line through which first data is transmitted / received in accordance with an event trigger type communication protocol, and a second in which second data is transmitted / received according to a time trigger type communication protocol.
  • a data relay method used in a data relay device connected to a first communication line based on the timing of receiving first data transmitted from a first communication node connected to the first communication line
  • the estimation step for estimating the first transmission timing of all the first data transmitted and received on the first communication line, the first transmission timing estimated in the estimation step, and the second data are time trigger types.
  • Data is relayed to either the first communication line or the second communication line based on a predetermined schedule when data is transmitted / received according to the communication protocol of A determination step for determining the scheduled reference timing by calculating the dwell period at the time, and the second communication line so as to transmit / receive the second data according to the schedule from the reference timing determined in the determination step A synchronization processing step for performing synchronization processing with the connected second communication node.
  • the reception timing of the first data transmitted / received according to the event trigger communication protocol and the second data transmitted / received using the time trigger communication protocol are predetermined. Based on the schedule, the reference timing of the schedule is determined by calculating the retention period when data is relayed to a network that transmits and receives data using either communication protocol. Even when relaying data, it is possible to prevent a significant delay from occurring.
  • the timing at which the first communication node transmits the first data to the first communication line is based on the timing at which the first data is received from the first communication line. Can be guessed.
  • the first communication node can recognize the timing of transmitting the first data to the first communication line.
  • the first communication node only by receiving first data transmitted first from each of the first communication nodes connected to the first communication line, the first communication node The timing of transmitting the first data to the first communication line can be recognized.
  • the processing load when determining the reference timing can be reduced.
  • FIG. 1 is a diagram showing an example of a network configuration in the present invention.
  • FIG. 2 is a diagram illustrating an example of data transmission timing of the first communication node.
  • FIG. 3 is a diagram for explaining the concept of communication time in the FlexRay protocol.
  • FIG. 4 is a functional block diagram illustrating a functional configuration of the data relay device according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of the first data information in the first embodiment.
  • FIG. 6 is a diagram illustrating an example of relay data information according to the first embodiment.
  • FIG. 7 is a functional block diagram illustrating a more detailed functional configuration of the estimation unit according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of an estimation result of data transmission timing in the first network.
  • FIG. 1 is a diagram showing an example of a network configuration in the present invention.
  • FIG. 2 is a diagram illustrating an example of data transmission timing of the first communication node.
  • FIG. 3 is a diagram for explaining the concept
  • FIG. 9 is a functional block diagram showing a more detailed functional configuration of the determination unit 204 according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of setting the assumed timing.
  • FIG. 11 is a diagram illustrating an example of the transmission timing of the FC relay data in the first embodiment.
  • FIG. 12 is a diagram illustrating an example of timing estimated by the relay timing estimation unit according to the first embodiment.
  • FIG. 13 is a diagram illustrating an example of the overlap period in the first embodiment.
  • FIG. 14 is a diagram illustrating another example of the overlap period in the first embodiment.
  • FIG. 15 is a functional block diagram showing a more detailed functional configuration of the relay unit 205 according to the first embodiment.
  • FIG. 16 is a flowchart illustrating the processing of the data relay device according to the first embodiment.
  • FIG. 16 is a flowchart illustrating the processing of the data relay device according to the first embodiment.
  • FIG. 17 is a functional block diagram illustrating a functional configuration of the data relay device according to the first modification of the first embodiment.
  • FIG. 18 is a diagram illustrating an example of first data information in the first modification example of the first embodiment.
  • FIG. 19 is a functional block diagram illustrating a more detailed functional configuration of the estimation unit according to the first modification of the first embodiment.
  • FIG. 20 is a functional block diagram illustrating a functional configuration of the data relay device according to the second modification of the first embodiment.
  • FIG. 21 is a diagram illustrating an example of the first data information in the second modification example of the first embodiment.
  • FIG. 22 is a functional block diagram illustrating a more detailed functional configuration of the estimation unit according to the second modification of the first embodiment.
  • FIG. 23 is a functional block diagram illustrating a functional configuration of a data relay device according to a third modification of the first embodiment.
  • FIG. 24 is a functional block diagram illustrating a more detailed functional configuration of the determination unit according to the third modification example of the first embodiment.
  • FIG. 25 is a functional block diagram illustrating a functional configuration of the data relay device according to the second embodiment.
  • FIG. 26 is a diagram illustrating an example of relay data information according to the second embodiment.
  • FIG. 27 is a functional block diagram illustrating a more detailed functional configuration of the determination unit according to the second embodiment.
  • FIG. 28 is a diagram illustrating an example of the transmission timing of the CF relay data in the second embodiment.
  • FIG. 29 is a diagram illustrating an example of transmission timing in the second network of the data relay device according to the second embodiment.
  • FIG. 30 is a diagram illustrating an example of timing estimated by the relay timing estimation unit according to the second embodiment.
  • FIG. 31 is a diagram illustrating an example of a delay period in the second embodiment.
  • FIG. 32 is a flowchart illustrating processing of the data relay device according to the second embodiment.
  • FIG. 1 is a block diagram showing a schematic configuration of a network 1 that relays data by the data relay device 20 according to the present embodiment.
  • the network 1 includes a first network configured by connecting the first communication nodes 10a to 10d and the data relay device 20 to the first communication line A, the second communication nodes 30a to 30d, and the data relay.
  • Each of the devices 20 includes a second network configured by connecting to the second communication line B.
  • the data relay device 20 according to the present embodiment is connected to each of the first communication line A and the second communication line B, and relays data between the first network and the second network.
  • each of the first communication nodes 10a to 10d and the data relay device 20 performs the first according to an event-triggered communication protocol that transmits and receives data at an arbitrary timing when transmission is necessary. Send and receive data.
  • each of the second communication nodes 30a to 30d and the data relay device 20 transmits and receives data that needs to be transmitted according to a predetermined schedule. 2nd data is transmitted / received according to.
  • a CAN (Controller (Area Network) protocol is used as an example of an event trigger type communication protocol
  • a FlexRay (registered trademark) protocol is used as an example of a time trigger type communication protocol.
  • the first communication nodes 10a to 10d mutually transmit and receive a frame of a format defined by a protocol used in the first network (CAN protocol in this embodiment) as first data.
  • Each of the first communication nodes 10 a to 10 d also receives data addressed to the own node among the data relayed by the data relay device 20.
  • Each of the first communication nodes 10a to 10d transmits one or more types of first data. Also, the first communication nodes 10a to 10d transmit different types of first data.
  • the first data type is a type divided by an identifier (CAN-ID in this embodiment) indicated by a frame transmitted as the first data.
  • each of the first communication nodes 10a to 10d is pre-assigned with one or more different CAN-IDs as identifiers.
  • each of the first communication nodes 10a to 10d has a predetermined information class included in the frame transmitted as the first data in association with the CAN-ID.
  • each of the first communication nodes 10a to 10d includes a frame including any CAN-ID pre-assigned to the own node and one piece of information corresponding to the CAN-ID. Is transmitted as the first data.
  • Each of the first communication nodes 10a to 10d according to the present embodiment starts the operation after the power is turned on, and completes the preparation process for starting the process of generating the first data. It is assumed that transmission of data 1 is started.
  • the first data of the type that starts the transmission first is stored in advance as the initial transmission data. It has been established.
  • each of the first communication nodes 10a to 10d according to the present embodiment includes a transmission start interval until transmission of other types of first data is started based on the initial transmission timing of the initial transmission data. The transmission cycle for repeated transmission after the start of transmission is determined in advance in association with each type of first data.
  • FIG. 2 is a diagram showing, as an example, transmission start intervals SD1 to SD2 and transmission periods TD1 to TD3 that are respectively predetermined for the first communication node 10a.
  • the first communication node 10a starts transmission of first data of type A (hereinafter referred to as first data A) predetermined as initial transmission data.
  • 1 data A is determined in advance to be transmitted in the transmission cycle TD1.
  • the first communication node 10a starts transmission of the first data A, and when the transmission start interval SD1 elapses, the first data of type B (hereinafter referred to as the first data) 1 is referred to as data B) in a transmission cycle TD2 in parallel with the transmission of the first data A.
  • data B the first data of type B
  • the first communication node 10a starts transmission of the first data A, and when the transmission start interval SD2 elapses, the first data of type C (hereinafter referred to as the first data) 1 is referred to as “data C”) in a transmission cycle TD3 in parallel with the transmission of the first data A and B.
  • data C the first data of type C
  • the type of the first data to be transmitted as the first transmission data and the transmission cycle of the first transmission data are determined in advance. Furthermore, in the first communication node 10a, a transmission start interval and a transmission cycle when transmitting types of first data other than the first transmission data are determined in advance in association with each type.
  • the first communication node 10a receives the first data at the transmission timing (hereinafter referred to as the first transmission timing) that periodically arrives for each type as described above with a predetermined transmission start interval and transmission cycle. Send.
  • the type of the first data to be transmitted as the initial transmission data and the transmission cycle of the initial transmission data are determined in advance.
  • a transmission start interval and a transmission cycle when transmitting first data of a type other than the above are determined in advance for each type, and arrive periodically for each type as in the first communication node 10a.
  • the first data is transmitted at the first transmission timing.
  • the transmission start interval and the transmission period predetermined for the first communication nodes 10a to 10d may be the same or different from each other.
  • the first transmission timing may overlap with each other. As a result, the first transmission timing of the first data for all types transmitted from all the first communication nodes to the first communication line A becomes periodic.
  • the data relay device 20 has a first type of data (hereinafter referred to as “CF relay data”) that is predetermined to relay to the second network among the first data transmitted by the first communication nodes 10a to 10d. Is converted into a frame of a format according to a protocol used in the second network (in this embodiment, the FlexRay protocol), and the converted frame is converted from the first communication line A to the second communication line B. Is transmitted as the second data and relayed.
  • the data relay device 20 has second data of a type determined to be relayed to the first network among the second data transmitted by the second communication nodes 30a to 30d (hereinafter referred to as FC relay). Data) is converted into a frame of a format according to a protocol used in the first network (CAN protocol in the present embodiment), and the first communication line A is changed to the first communication line A. Send as data and relay.
  • Each of the second communication nodes 30a to 30d transmits / receives a frame of a format defined by the FlexRay protocol as second data according to a schedule determined in advance based on the specification of the FlexRay protocol.
  • Each of the second communication nodes 30a to 30d also receives data addressed to itself among data relayed as second data by the data relay device 20. The outline of the FlexRay protocol will be described below.
  • FIG. 3 is a diagram for explaining a hierarchical division of communication time in the FlexRay protocol.
  • the communication time in the FlexRay protocol is divided into 0 to 63 communication cycles as shown in FIG.
  • Each of the data relay device 20 and the second communication nodes 30a to 30d configuring the second network sequentially sends the second data to the second communication line B at the time allotted in one communication cycle. Send to.
  • the second data node 20 When transmission / reception is started and transmission / reception of the second data in the communication cycle from 0 to 63 is completed, transmission / reception of the second data is repeated from the communication cycle of 0.
  • the time in one communication cycle is divided into a static segment, a dynamic segment, a symbol window, and NIT (Network Idle Time). Further, as shown in FIG. 3, the time in the static segment is divided into time units called static slots in which the numbers increase in order from 1 to n.
  • the transmission time of a FlexRay-ID frame having the same number as the static slot number is assigned to the time of one static slot.
  • different FlexRay-IDs are assigned in advance to all communication nodes and data relay devices (in this embodiment, the data relay device 20 and the second communication nodes 30a to 30d) that constitute the second network.
  • the FlexRay-ID frame assigned to each frame is transmitted as second data. In the present embodiment, it is assumed that the type of second data transmitted to the second communication line B is divided by FlexRay-ID.
  • each of the data relay device 20 and the second communication nodes 30a to 30d constituting the second network uses the start timing of the 0 communication cycle as the reference timing KJT, and the time elapsed with respect to the reference timing KJT. Synchronize processing to recognize in common.
  • Each of the data relay device 20 and the second communication nodes 30a to 30d configuring the second network performs a synchronization process, and then assigns a static slot number that increases with the passage of time from the reference timing KJT, respectively. Recognize in common by measuring the time using a timer provided inside.
  • Each of the data relay device 20 and the second communication nodes 30a to 30d configuring the second network corresponds to a static slot having the same number as the FlexRay-ID of the frame to be transmitted based on the uniquely recognized time. By transmitting a frame when it is determined that the period has arrived, the frames can be transmitted without colliding with each other.
  • the FlexRay-ID having the same number as that of an arbitrary static slot different from each other is assigned in advance to the data relay device 20 and the second communication nodes 30a to 30d constituting the second network.
  • the timing at which the relay device 20 and each of the second communication nodes 30a to 30d transmit the second data can be determined in advance as a schedule based on the reference timing KJT.
  • each of the data relay device 20 and the second communication nodes 30a to 30d according to the present embodiment transmits and receives the second data according to the FlexRay protocol according to the schedule based on the reference timing KJT.
  • the second data is sequentially transmitted to the second communication line B.
  • the dynamic segment that comes after the static segment is a frame that is transmitted by the data relay device 20 and the second communication nodes 30a to 30d constituting the second network at any timing as necessary. It is a period when can be transmitted.
  • the symbol window that comes after the dynamic segment is not necessarily provided.
  • the NIT that comes after the symbol window is a common time that each of the data relay device 20 and the second communication nodes 30a to 30d constituting the second network independently recognizes as described above. This is a period for correction or error correction.
  • the above is the description of the schematic configuration of the network 1 according to the present embodiment.
  • a case where four first communication nodes of the first communication nodes 10 a to 10 d are connected to the first communication line A is illustrated as an example.
  • the first communication node connected to the first communication line A may be 3 or less, or 5 or more.
  • a case where four second communication nodes of the second communication nodes 30 a to 30 d are connected to the second communication line B is illustrated as an example.
  • the second communication node connected to the second communication line B may be 3 or less, or 5 or more.
  • FC relay timing Relay timing
  • first transmission timings of the communication nodes in the present embodiment, the first communication nodes 10a to 10d
  • FC relay timing Relay timing
  • first transmission timings of the communication nodes in the present embodiment, the first communication nodes 10a to 10d
  • the overlap period which overlaps arises. This is because the first transmission timing for every type of first data transmitted / received in the first network and the transmission timing for every type of second data transmitted / received in the second network ( This is because it is difficult to design the second transmission timing so as not to overlap in consideration of the time required for relaying by the data relay device 20.
  • a communication node having a relatively low priority or a data relay device has a predetermined priority. It is defined to perform so-called arbitration processing in which data is transmitted at a timing when the relatively high communication node or data relay device does not transmit data.
  • this arbitration process a communication node or data relay device having a relatively low priority is transmitted to a communication node or data relay device having a relatively high priority. It waits for the transmission of data until the timing to disappear. Therefore, when the priority of the data relay device 20 according to the present embodiment in the first network is relatively low, the data relay device 20 receives the FC relay data from the second communication line B and then receives the data.
  • the relay delay time until the relayed FC relay data is transmitted as the first data to the first communication line A and relayed may be significantly increased by performing the arbitration process.
  • the first transmission timing at which all the first communication nodes connected to the first communication line A respectively transmit the first data is as described above.
  • the transmission start interval and the transmission cycle are determined in advance, respectively.
  • the second transmission timing at which all the second communication nodes connected to the second communication line B respectively transmit the second data is based on the schedule based on the reference timing KJT as described above. It is predetermined.
  • the time until the FC relay data is received by the data relay device 20 changes, and the FC relay data is sent to the first communication line A as the first data.
  • the aforementioned FC relay timing for transmission and relaying also changes. Therefore, in the network 1, when the reference timing KJT changes, the length of the period in which the above-described FC relay timing and the above-described first transmission timing overlap, that is, the length of the overlapping period changes. When the length of the overlap period changes, the length of the relay delay time generated by the above-described arbitration process changes.
  • the data relay device 20 has all the connections connected to the first communication line A so that the above-described relay delay time is not significantly increased regardless of a predetermined priority order. Based on the first transmission timing for each type of first data, the reference timing KJT in the second network described above is determined.
  • FIG. 4 is a functional block diagram showing a more detailed functional configuration of the data relay device 20 according to the present embodiment.
  • the data relay device 20 according to the present embodiment includes a receiving unit 201, a storage unit 202, an estimation unit 203, a determination unit 204, and a relay unit 205.
  • the reception unit 201 When the first data is transmitted from the first communication nodes 10a to 10d to the first communication line A, the reception unit 201 receives the transmitted first data. When receiving the first data from the first communication line A, the reception unit 201 causes the estimation unit 203 to acquire the received first data.
  • the storage unit 202 is configured so that each of all the first communication nodes connected to the first communication line A, the CAN-ID, the information category, and each of the first communication nodes are as described above.
  • the first data information indicating the transmission start interval when transmitting the first data and the transmission period in association with each type is stored.
  • FIG. 5 is a diagram illustrating a specific example of the first data information stored in the storage unit 202.
  • CAN-IDs 1 to 9 assigned in advance to the first communication nodes 10a to 10d and information categories (message categories) D1 to D1 shown by the first data, respectively.
  • D9, transmission cycles TD1 to TD9, and transmission start intervals SD1 to SD5 are associated with each type A to I and stored in the storage unit 202 as first data information.
  • the transmission start associated with the first data of the type predetermined for the first transmission data for each first communication node as described above. The interval is assumed to be 0.
  • the storage unit 202 has a predetermined schedule as described above, and the types of the second data transmitted from the second communication nodes 30a to 30d to the second communication line B, respectively.
  • relay data information indicating the type of second data relayed as FC relay data is also stored.
  • FIG. 6 is a diagram illustrating an example of relay data information stored in the storage unit 202. As shown as an example in FIG. 6, in this embodiment, the relay data information indicating the second data of FlexRay-ID relayed from the second communication line B to the first communication line A as FC relay data is stored in the storage unit. 202. Further, the information stored in the storage unit 202 according to the present embodiment includes information stored by the estimation unit 203 and the determination unit 204 as described later.
  • the estimation unit 203 transmits / receives the first communication line A based on the time when the reception unit 201 receives the first data transmitted from the first communication node connected to the first communication line A.
  • the first transmission timing is estimated for every type.
  • FIG. 7 is a block diagram showing a more detailed functional configuration of the estimation unit 203 according to the present embodiment.
  • the estimation unit 203 according to the present embodiment includes a transmission timing estimation unit 2031.
  • the transmission timing estimation unit 2031 corresponds to the time when the first data is acquired as the reception time every time the reception unit 201 acquires the first data after the data relay device 20 starts operating. In addition, it is stored in the storage unit 202. Note that the reception time associated with the first data by the transmission timing estimation unit 2031 is measured by a timer (not shown) or the like.
  • the transmission timing estimation unit 2031 is connected to the first communication line A every time the receiving unit 201 acquires the first data after the data relay device 20 starts operating. It is determined whether or not all the initial transmission data of one communication node has been received.
  • the transmission timing estimation unit 2031 causes the storage unit 202 to store the first data acquired by the reception unit 201 in association with the reception time after the data relay device 20 starts operating. Each time, the first data information stored in the storage unit 202 is compared with each type of first data acquired from the reception unit 201 and stored in the storage unit 202. The transmission timing estimation unit 2031 compares the first data type stored in the storage unit 202 with the first data information, thereby corresponding to the transmission start interval of 0 according to the first data information. It is determined whether all types of attached first data are stored in the storage unit 202.
  • the transmission timing estimation unit 2031 determines that all types of first data associated with the transmission start interval of 0 are stored in the storage unit 202 based on the first data information, It is determined that all the initial transmission data of all the first communication nodes connected to the communication line A have been received.
  • the transmission timing estimation unit 2031 stores the initial transmission data stored in the storage unit 202.
  • the first transmission timing is estimated based on the reception time of the transmission data.
  • the transmission timing estimation unit 2031 When estimating the first transmission timing, the transmission timing estimation unit 2031 first transmits a first communication node (hereinafter referred to as the fastest initial transmission data) having the earliest reception time (hereinafter referred to as the fastest initial transmission data). A first transmission timing is estimated for each type of all first data transmitted from a node). A method in which the transmission timing estimation unit 2031 estimates the first transmission timing for each type of all the first data transmitted from the fastest communication node, and the case where the first communication node 10a is the fastest communication node. Assume that description will be given with reference to FIG. 2 again.
  • the transmission timing estimation unit 2031 receives the reception time of the first data of the type received as the fastest initial transmission data. Is set as the estimated reference time as shown in FIG. When the estimated reference time is set, the transmission timing estimating unit 2031 uses the set estimated reference time as a reference, and the first data information is assigned to the CAN-ID (here, CAN-ID 1 to 3) assigned to the fastest communication node. From the transmission start interval (here, 0, SD1, and SD2) for each of the types associated with each other, the transmission cycle (here, TD1) associated with the first data information for each transmission start interval. Thru TD3) for every type of data (here, A thru C) (transmission timing f1 in the example shown in FIG. 2) for every type of all first data transmitted from the fastest communication node. The first transmission timing is estimated.
  • the transmission timing estimation unit 2031 transmits the first transmission data of the next earliest reception time.
  • the first transmission timing is estimated for each type of all the first data transmitted from.
  • the transmission timing estimation unit 2031 determines the reception time of the first transmission data as the above-described estimation criterion. Convert to time based on time.
  • the transmission timing estimation unit 2031 converts the reception time of the next earliest initial transmission data
  • the transmission timing estimation unit 2031 uses the converted reception time as a reference to set the CAN-ID assigned to the first communication node that transmitted the initial transmission data. From the transmission start interval for each type associated with one data information, all the timings that arrive for each type in the transmission cycle associated with the first data information for each transmission start interval are The first transmission timing is estimated for each type of all first data transmitted from the first communication node.
  • the transmission timing estimation unit 2031 also estimates the reception time of the initial transmission data as described above when estimating all the first transmission timings of the first communication node that transmitted the initial transmission data at other reception times. The time is converted to a time based on the reference time. When the reception time of the initial transmission data is converted into a time based on the estimated reference time, the transmission timing estimation unit 2031 is assigned to the first communication node that transmitted the initial transmission data based on the converted time. From the transmission start interval associated with the CAN-ID in the first data information, all the timings that arrive at the transmission cycle associated with the first data information for each transmission start interval are The first transmission timing of all communication nodes is estimated for each type of first data.
  • a method of subtracting the difference between the reception time and the estimated reference time from the reception time is given as an example. It is done.
  • the transmission timing estimation unit 2031 includes a first communication node that transmits the fastest initial transmission data, and a first communication node that transmits the initial transmission data of the latest reception time, from each of all the first communication nodes. All first transmission timings of the first data transmitted for each type are estimated. However, as illustrated in FIG. 8 as an example, the transmission timing estimation unit 2031 estimates all the first transmission timings that arrive in the least common multiple period SK based on the estimation reference time.
  • the least common multiple period SK is a period equal to the least common multiple of a transmission cycle that is predetermined for every type of first data transmitted to the first communication line A.
  • the transmission timing estimation unit 2031 repeats the least common multiple of these transmission cycles as one cycle, and the first data of each type is periodically transmitted at the same first transmission timing. This is because it is equivalent to storing all first transmission timings that arrive for each type of first data transmitted to the first communication line A throughout the period in which the network 1 is operating. .
  • the transmission timing estimation unit 2031 may estimate the first transmission timing further considering the arbitration process described above. Good.
  • the transmission timing estimation unit 2031 estimates all the first transmission timings that arrive in the least common multiple period SK using the estimated reference time as a reference, the transmission timing estimation unit 2031 causes the storage unit 202 to store all the estimated first transmission timings.
  • the determination unit 204 determines the reference timing KJT in the above-described FlexRay protocol based on the first transmission timing estimated by the transmission timing estimation unit 2031 and the above-described schedule stored in the storage unit 202.
  • FIG. 9 is a functional block diagram showing a more detailed functional configuration of the determination unit 204 according to the present embodiment.
  • the determination unit 204 according to the present embodiment includes a setting unit 2041, a relay timing estimation unit 2042, a calculation unit 2043, a standard deviation calculation unit 2044, and a reference timing determination unit 2045.
  • the setting unit 2041 stores the least common multiple period based on the estimation reference time as illustrated in FIG.
  • the assumption timing KT is set within the range of SK. Note that when the setting unit 2041 sets the assumed timing, as shown as an example in FIG. 10, timings that arrive at every predetermined time interval KTD within the range of the least common multiple period SK with the estimated reference time as a reference. May be set, or an assumed timing KT may be set at an arbitrary timing. When setting the assumed timing KT, the setting unit 2041 stores all the set assumed timings KT in the storage unit 202.
  • the relay timing estimation unit 2042 is connected to the second communication line B in accordance with the schedule stored in the storage unit 202.
  • the FC transmission timing at which the FC relay data determined as described above is transmitted is recognized.
  • FIG. 11 is a diagram showing the FC transmission timings of FlexRay-ID 1 and 3 indicated by the relay data information shown as an example in FIG.
  • FIG. 11 shows an example of the FC transmission timing that arrives according to schedule in one communication cycle period (hereinafter referred to as cycle period CYK) based on the reference timing KJT as described above.
  • cycle period CYK one communication cycle period
  • the relay timing estimation unit 2042 recognizes the FC transmission timing in the cycle period CYK with reference to the reference timing KJT, as shown in FIG. 12 as an example, the first timing in the least common multiple period SK estimated by the transmission timing estimation unit 2031 is shown. And the FC transmission timing recognized by the relay timing estimation unit 2042 respectively arrive at the least common multiple period (hereinafter referred to as a common common multiple period KK) of the least common multiple period SK and the cycle period CYK. Infer. As shown in FIG. 12, the common common multiple period KK is a period based on the estimated reference time and the reference timing KJT.
  • the relay timing estimation unit 2042 obtains all first transmission timings that arrive in the common common multiple period KK that is based on the estimated reference time, and all FC transmission timings that arrive in the common common multiple period KK that is based on the reference timing KJT. If estimated, the estimated timing is stored in the storage unit 202.
  • the calculation unit 2043 stores the common common multiple based on the estimated reference time.
  • the overlapping period of the first transmission timing that arrives in the period KK and the FC transmission timing that arrives in the common common multiple period KK with reference to the reference timing KJT is the reference timing KJT of the common common multiple period KK with reference to the reference timing KJT. Is calculated while shifting to the assumed timing KT set by the setting unit 2041.
  • the overlapping period according to the present embodiment will be described.
  • the transmitted FC relay data is received by the data relay device 20, and the received FC relay data is used as the first data for the first communication.
  • a period from transmission to line A until relaying (hereinafter referred to as relay completion period) can be considered as substantially zero.
  • the overlapping period of the FC transmission timing and the first transmission timing is that the first communication node and the data relay device 20 in the first communication line A are the first to each other. It can be considered as a period in which the transmitted first data collides when data is transmitted.
  • FIG. 13 is a diagram illustrating an example of the overlap period calculated by the calculation unit 2043.
  • the first transmission timing that arrives in the common common multiple period KK with the estimated reference time as a reference, and the assumed timing KT assumed for the estimated reference time are shown. It is a figure which shows the duplication period with the FC transmission timing on the basis of the matched reference timing KJT.
  • the calculation unit 2043 compares the first transmission timing with the FC transmission timing, thereby duplicating the common common multiple period KK based on the reference timing KJT matched with the assumed timing KT.
  • the length of the period is calculated for each overlapping period.
  • FIG. 13 illustrates lengths a1 to a7 calculated for each overlapping period as an example of the length calculated by the calculating unit 2043 for each overlapping period.
  • FIG. 14 is a diagram illustrating another example of the overlap period calculated by the calculation unit 2043.
  • the first transmission timing that arrives in the common common multiple period KK with the estimated reference time as a reference is set to a time different from the estimated reference time.
  • FIG. 10 is a diagram illustrating an overlapping period with an FC transmission timing based on a reference timing KJT that is matched with an assumed timing KT set by a unit 2041.
  • FIG. 14 shows the lengths a8 to a18 calculated for each overlapping period as an example of the length calculated by the calculating unit 2043 for each overlapping period.
  • the calculation unit 2043 receives the first transmission that arrives in the common common multiple period KK that is based on the reference timing KJT that is matched with the assumed timing KT set by the setting unit 2041.
  • the length of each overlapping period between the timing and the FC transmission timing that arrives in the common common multiple period KK with reference to the estimated reference time is calculated for each assumption timing KT, and for each overlapping period calculated for each assumption timing KT.
  • the length is associated with each assumption timing KT and stored in the storage unit 202.
  • the standard deviation calculating unit 2044 stores the length for each overlapping period stored in the storage unit 202. This standard deviation is calculated for each assumption timing KT, and the calculated standard deviation for each overlap period is stored in the storage unit 202 in association with each assumption timing KT.
  • the standard deviation calculation unit 2044 calculates the standard deviation of the length for each delay period for each assumption timing KT using the following equation (1).
  • am is an average value of lengths for each overlapping period associated with one hypothetical timing KT.
  • K is the number of detected overlapping periods.
  • the reference timing determination unit 2045 is assumed to be associated with the smallest standard deviation among the standard deviations of the lengths of the overlapping periods stored in the storage unit 202 at every assumption timing KT by the standard deviation calculation unit 2044.
  • the timing KT is specified.
  • the reference timing determination unit 2045 determines the specified assumption timing KT as the reference timing KJT for performing the synchronization process, and stores the determined assumption timing KT in the storage unit 202.
  • FIG. 15 is a functional block diagram showing a more detailed functional configuration of the relay unit 205 according to the present embodiment.
  • the relay unit 205 according to the present embodiment uses the above-described synchronization based on the reference timing KJT determined by the reference timing determination unit 2045 after the reference timing KJT when the synchronization processing is performed is determined by the reference timing determination unit 2045.
  • the relay unit 205 according to the present embodiment includes a synchronization processing unit 2051, a first data transmission / reception unit 2052, a second data transmission / reception unit 2053, and a data relay unit 2054.
  • the synchronization processing unit 2051 transmits / receives data to / from each of the second communication nodes 30a to 30d connected to the second communication line B by a known method in accordance with the FlexRay protocol.
  • the data relay unit 2054 performs synchronization processing so that the second data can be transmitted to and received from each of the second communication nodes 30a to 30d.
  • the synchronization processing unit 2051 stores the assumption timing KT in the storage unit 202 with the assumption timing KT as a reference.
  • each of the second communication nodes 30a to 30d connected to the second communication line B and the data relay unit 2054 can transmit and receive the second data to and from each other using the FlexRay protocol.
  • the synchronization process is performed by transmitting / receiving data to / from each of the second communication nodes 30a to 30d by a well-known method. That is, the data relay apparatus 20 according to the present embodiment functions as a so-called leading cold start node defined by the FlexRay protocol.
  • the synchronization processing unit 2051 When the synchronization processing is completed, the synchronization processing unit 2051 generates synchronization processing completion information indicating that the synchronization processing has been completed. When the synchronization processing unit 2051 completes the synchronization process, the second communication node connected to the second communication line B and the data relay device 20 start transmitting / receiving the second data according to the schedule. .
  • the first data transmission / reception unit 2052 acquires the generated synchronization processing completion information.
  • the first data transmitting / receiving unit 2052 receives the first data from the first communication line A after acquiring the synchronization processing completion information
  • the first data transmitting / receiving unit 2052 causes the data relay unit 2054 to acquire the received first data.
  • the first data transmitting / receiving unit 2052 transmits the acquired first data to the first communication line A when acquiring the first data from the data relay unit 2054 after acquiring the synchronization processing completion information. .
  • the second data transmission / reception unit 2053 acquires the generated synchronization processing completion information when the synchronization processing completion information is generated by the synchronization processing unit 2051.
  • the second data transmitting / receiving unit 2053 causes the data relay unit 2054 to acquire the received second data.
  • the second data transmitting / receiving unit 2053 acquires the second data from the data relay unit 2054 after acquiring the synchronization processing completion information
  • the second data transmitting / receiving unit 2053 transmits the acquired second data to the second communication line B. .
  • the data relay unit 2054 starts relay processing for relaying the first data and the second data, respectively.
  • the data relay unit 2054 starts the relay process, the first data type predetermined to relay to the second communication line B, the assumed timing KT determined as the reference timing KJT, the schedule, and the relay data Information necessary for relay such as information is read from the storage unit 202.
  • the data relay unit 2054 When the data relay unit 2054 reads information necessary for relay from the storage unit 202, the data relay unit 2054 elapses from the assumed timing KT using a timer or the like (not shown) based on the assumed timing KT and the schedule determined as the reference timing KJT. Time is measured and its second transmission timing is recognized. After starting the relay processing, the data relay unit 2054 determines the above-described CF relay data from the first data acquired by the first data transmitting / receiving unit 2052, and has a format according to the FlexRay protocol. Convert to frame. When the CF relay data is converted, the data relay unit 2054 uses the converted CF relay data as the second data when the time counted is the recognized second transmission timing. To get.
  • the data relay unit 2054 starts the relay process and then selects the second data of the type indicated by the relay data information from the second data acquired by the second data transmitting / receiving unit 2053, that is, The FC relay data is judged and converted into a frame in a format according to the CAN protocol.
  • the data relay unit 2054 causes the first data transmission / reception unit 2052 to acquire the converted FC relay data as the first data.
  • the functional configurations included in the estimation unit 203 and the determination unit 204, the synchronization processing unit 2051, and the data relay unit 2054 are typically CPU (Central Processing Unit ), LSI (Large Scale Integration), and a control unit composed of an integrated circuit such as a microcomputer.
  • the control unit reads out a predetermined program from the storage unit 202 and interprets and executes the program. You may implement
  • Each of the reception unit 201, the first data transmission / reception unit 2052, and the second data transmission / reception unit 2053 typically includes a communication circuit that transmits / receives data to / from a communication line to which the reception unit 201, the first data transmission / reception unit 2052, and the like are connected. It may be realized by an interface circuit consisting of Further, the receiving unit 201 and the first data transmitting / receiving unit 2052 may be realized by the same interface circuit.
  • step S101 the control unit functions as the transmission timing estimation unit 2031 and recognizes and recognizes the first transmission timings of all types of first data transmitted to the first communication line A as described above.
  • the first transmission timing is stored in the storage unit 202.
  • step S102 the control unit functions as the setting unit 2041, sets the assumed timing KT as described above, and stores all the set assumed timing KT in the storage unit 202.
  • the control section advances the process to step S103.
  • step S103 the control unit functions as the relay timing estimation unit 2042, estimates the first transmission timing and the FC transmission timing as described above, and stores the estimated timings in the storage unit 202.
  • the control section advances the process to step S104.
  • step S104 the control unit functions as the calculation unit 2043, calculates the length of each overlapping period for each assumed timing KT as described above, and calculates the length for each overlapping period calculated for each assumed timing KT.
  • the data are stored in the storage unit 202 in association with each other.
  • step S105 the control unit functions as the standard deviation calculation unit 2044, calculates the standard deviation of the length for each overlapping period calculated for each assumption timing KT as described above, and associates it for each assumption timing KT. To be stored in the storage unit 202.
  • the control section completes the process step of step S105, the control section advances the process to step S106.
  • step S106 the control unit functions as the reference timing determination unit 2045, and, as described above, the smallest length for each overlapping period among the standard deviations of the lengths for each overlapping period calculated for each assumed timing KT.
  • the assumed timing KT associated with the standard deviation is determined as the reference timing KJT, and the determined assumed timing KT is stored in the storage unit 202.
  • step S107 the control unit functions as the synchronization processing unit 2051, and as described above, each of the second communication nodes 30a to 30d connected to the second communication line B and the data relay unit 2054 are connected. Then, after performing the synchronization process so that the second data can be transmitted and received in order according to the schedule based on the assumed timing KT stored as the reference timing KJT in the storage unit 202, the synchronization process completion information is generated.
  • the control section completes the process step of step S107, the control section advances the process to step S108.
  • step S108 the control unit functions as the data relay unit 2054 and starts the relay process as described above.
  • the control unit ends the process shown in the flowchart of FIG.
  • the control unit continues the relay process started in step S108 even after the process shown in the flowchart of FIG.
  • the reference timing KJT is determined so that the total sum of the lengths of the overlapping periods described with reference to FIGS. 13 and 14 is minimized. It is possible to prevent the relay delay time caused by the arbitration process from being greatly delayed.
  • the first data information described in the first embodiment described above indicates a CAN-ID, an information type, a transmission cycle, and a transmission start interval in association with each type of first data. there were. However, even if the transmission start interval is not indicated by the first data information, from the first communication node connected to the first communication line A as in the transmission timing estimation unit 2031 according to the first embodiment.
  • the first transmission timing can be estimated for each type of all the first data transmitted.
  • FIG. 17 is a functional block diagram showing a detailed functional configuration of the data relay device 21 according to the first modification of the first embodiment.
  • the data relay device 21 according to the present modification includes a storage unit 206 instead of the storage unit 202 and includes an estimation unit 207 instead of the estimation unit 203. The point is different. Therefore, among the functional configurations of the data relay device 21 according to the present modification and the data relay device 20 according to the first embodiment, the same functional configuration is denoted by the same reference numeral, and description thereof is omitted.
  • the storage unit 206 according to the present modification stores the tenth communication nodes 10a to 10d, CAN-ID1 to 9, the information classes D1 to D9, and the transmission periods TD1 to TD9 as the first.
  • First data information shown in association with each data type is stored in advance.
  • the first data information stored in the storage unit 206 according to the present modification is like the first data information stored in the storage unit 202 according to the first embodiment.
  • the transmission start interval for each type of first data is not shown.
  • other information stored in the storage unit 206 according to the present modification is the same as that of the storage unit 202 according to the first embodiment.
  • FIG. 19 is a functional block diagram showing a more detailed functional configuration of the estimation unit 207 according to this modification.
  • the estimation unit 207 according to this modification includes an initial transmission timing recognition unit 2071 and a transmission timing estimation unit 2072.
  • the initial transmission timing recognizing unit 2071 acquires the received first data.
  • the first transmission timing recognizing unit 2071 corresponds to the time when the first data is acquired as the reception time every time the first data is acquired from the receiving unit 201 after the data relay device 21 starts operating. In addition, it is stored in the storage unit 206.
  • the first transmission timing recognition unit 2071 acquires all the first communication lines A connected to the first communication line A every time the first data is acquired from the reception unit 201 after the data relay device 21 starts operating. It is determined whether or not the first data respectively transmitted from one communication node has been received at least once.
  • the first transmission timing recognition unit 2071 stores the first data acquired by the reception unit 201 in association with the reception time after the data relay device 21 starts operating in the storage unit 206. Each time, the first data information stored in the storage unit 206 is compared with the type of each first data acquired from the reception unit 201 and stored in the storage unit 206. The first transmission timing recognizing unit 2071 compares all types of first data stored in the storage unit 206 with the first data information, so that all types of data indicated by the first data information are compared. It is determined whether or not at least one first data is stored in the storage unit 206.
  • the first transmission timing recognition unit 2071 determines that all types of first data indicated by the first data information are stored in the storage unit 206, the first transmission timing recognition unit 2071 stores the first data of each type. Based on the reception time received first (hereinafter referred to as the first reception time), the transmission start interval described in the first embodiment is calculated for each type of first data.
  • the initial transmission timing recognition unit 2071 When calculating the transmission start interval for each type of first data, the initial transmission timing recognition unit 2071 first matches the first data stored in the storage unit 206 while referring to the first data information. Are grouped together for each first communication node. The first data collected in one group is the first data transmitted from the same first communication node. When the first data stored in the storage unit 206 is grouped, the initial transmission timing recognition unit 2071 selects the first data with the earliest reception time from the first data grouped for each group. To be specific. The first data with the earliest reception time specified for each group is the first transmission data of the first communication node that has transmitted the first data collected for each group.
  • the initial transmission timing recognition unit 2071 When the initial transmission data for each first communication node connected to the first communication line A is specified, the initial transmission timing recognition unit 2071 includes the first reception time of the first data collected for each group and the respective groups. The difference from the first reception time of the first transmission data to which it belongs is calculated as the transmission start interval of the first data collected for each group, and stored in the storage unit 206 in association with each type of the first data. In addition to the first data information, it is stored. Note that when the initial transmission timing recognition unit 2071 calculates the transmission start interval, the difference between the initial reception time of the initial transmission data and the initial reception time of the first data is calculated for each type of first data. The transmission start interval of transmission data is 0.
  • the transmission timing estimation unit 2072 transmits the transmission timing according to the first embodiment. Similar to the estimation unit 2031, the first transmission timing is estimated for every type of first data respectively transmitted from the first communication node connected to the first communication line A.
  • the initial transmission timing recognizing unit 2071 transmits the first data transmission intervals for all types transmitted from the first communication node connected to the first communication line A.
  • the transmission timing estimation unit 2072 according to this modification is connected to the first communication line A when the initial transmission timing recognition unit 2071 calculates the transmission start intervals of all types of first data. It is determined that all initial transmission data respectively transmitted from all the first communication nodes has been received, and is connected to the first communication line A in the same manner as the transmission timing estimation unit 2031 according to the first embodiment.
  • the first transmission timing of all types of first data respectively transmitted from all the first communication nodes is estimated.
  • the transmission start interval is not stored in the storage unit 206 for each type of the first data as the first data information described in the first embodiment.
  • the transmission timing of the first data can be estimated.
  • FIG. 20 is a functional block diagram showing a detailed functional configuration of the data relay device 22 according to the second modification of the first embodiment.
  • the data relay device 22 according to the present modification includes a storage unit 208 instead of the storage unit 202, and includes an estimation unit 209 instead of the estimation unit 203. The point is different. Therefore, among the functional configurations of the data relay device 22 according to the present modification and the data relay device 20 according to the first embodiment, the same functional configuration is denoted by the same reference numeral, and description thereof is omitted.
  • the storage unit 208 according to the present modification includes the first communication nodes 10a to 10d, CAN-IDs 1 to 9, and information categories D1 to D9 for each first data type. Are stored in advance in association with each other.
  • the first data information stored in the storage unit 208 according to the present modification is compared with the first data information stored in the storage unit 202 according to the first embodiment. The difference is that the period is not indicated for each type of first data. Further, other information stored in the storage unit 208 according to the present modification is the same as that of the storage unit 202 according to the first embodiment.
  • FIG. 22 is a functional block diagram showing a more detailed functional configuration of the estimation unit 209 according to this modification.
  • the estimation unit 209 according to this modification includes an initial transmission timing recognition unit 2091, a period recognition unit 2092, and a transmission timing estimation unit 2093.
  • the initial transmission timing recognition unit 2091 is transmitted from each of the first communication nodes connected to the first communication line A in the same manner as the initial transmission timing recognition unit 2071 according to the first modification of the first embodiment.
  • the transmission start interval of the first data is calculated for each type, and is added to the first data information stored in the storage unit 208 and stored.
  • the cycle recognition unit 2092 is connected to the first communication line A.
  • a transmission cycle is calculated for every type of first data respectively transmitted from one communication node.
  • the period recognizing unit 2092 first determines whether or not at least two pieces of the same type of first data have been received for all types of the first data.
  • the period recognizing unit 2092 determines whether or not at least two pieces of the same type of first data are received by determining whether or not at least two pieces of the same type of first data are stored in the storage unit 208. Determine whether.
  • the period recognition unit 2092 waits until all types of first data are received at least twice.
  • the period recognition unit 2092 determines that all types of first data have been received at least twice, the period recognition unit 2092 is based on the reception time of the first data received twice for each type of first data. Thus, the transmission cycle for each type of the first data is calculated.
  • the cycle recognizing unit 2092 receives the reception time of the first data received first and the reception time of the first data received next from the reception time of the first data of the same type.
  • the time interval from the reception time of the first data is calculated as the transmission cycle of the first data of the type.
  • the period recognizing unit 2092 calculates the transmission period for every type of first data, the first data stored in the storage unit 208 in association with the calculated transmission period for each type of first data. Add to information and store.
  • the transmission timing estimation unit 2093 Similar to the transmission timing estimation unit 2031 according to the first embodiment, the transmission timings of all the first data respectively transmitted from the first communication nodes connected to the first communication line A are estimated.
  • the transmission timing estimation unit 2093 uses all the transmission lines connected to the first communication line A when the cycle recognition unit 2092 calculates the transmission cycle of the first data for all types. It is determined that all the initial transmission data respectively transmitted from the first communication node has been received, and all the connections connected to the first communication line A in the same manner as the transmission timing estimation unit 2031 according to the first embodiment. The first transmission timing of the first data is estimated for every type transmitted from the first communication node.
  • the transmission start interval and the transmission cycle are stored for each type of the first data as the first data information described in the first embodiment.
  • the first communication connected to the first communication line A after calculating the transmission start interval and the transmission cycle for each type of the first data without storing in the first communication line A as in the first embodiment.
  • the transmission timings of all types of first data transmitted from the nodes can be estimated.
  • the assumed timing KT as the reference timing KJT is determined based on the standard deviation of the length of each overlapping period calculated for each assumed timing KT.
  • the assumed timing KT that is the reference timing KJT may be determined based on the sum of the lengths of the overlapping periods calculated for each assumed timing KT.
  • FIG. 23 is a functional block diagram showing a more detailed functional configuration of the data relay device 23 according to the third modification of the first embodiment.
  • the data relay device 23 according to the present modification includes a storage unit 210 instead of the storage unit 202, and includes a determination unit 211 instead of the determination unit 204. The point is different. Therefore, in the data relay device 23 according to the present embodiment, the same functional configuration as that of the data relay device 20 according to the first embodiment is denoted by the same reference numeral, and description thereof is omitted.
  • the storage unit 210 stores the same information as the storage unit 202 according to the first embodiment. However, in the information stored in the storage unit 210 according to this modification, the information is stored by the determination unit 211 according to this modification instead of the information stored by the determination unit 204 according to the first embodiment. Only the information is different.
  • FIG. 24 is a functional block diagram showing a more detailed functional configuration of the determination unit 211 according to this modification.
  • the determination unit 211 according to this modification is different in that it includes a sum calculation unit 2111, and a reference timing determination unit 2112 instead of the standard deviation calculation unit 2044 and the reference timing determination unit 2045 according to the first embodiment. . Therefore, in the determination unit 211 according to this modification, the same functional configuration as that of the determination unit 204 according to the first embodiment is denoted by the same reference numeral, and description thereof is omitted.
  • the calculation unit 2043 stores in the storage unit 210 the length of each overlap period for each assumption timing KT
  • the sum calculation unit 2114 is associated with each assumption timing KT and stored in the storage unit 210.
  • the sum of lengths for each period is calculated for each assumption timing KT, and the calculated sum of lengths for each overlap period is stored in the storage unit 210 in association with each assumption timing KT.
  • the reference timing determination unit 2112 stores the length for each overlap period stored in the storage unit 210 when the sum of the lengths for each overlap period calculated by the sum calculation unit 2111 for each assumption timing KT is stored in the storage unit 210.
  • the hypothetical timing KT associated with the sum of the lengths of the smallest overlapping periods in the sum of the two is specified.
  • the reference timing determining unit 2112 determines the specified assumed timing KT as the reference timing KJT for performing synchronization processing, and the storage unit 210 is stored.
  • the reference timing KJT is determined so that the sum of the lengths of the overlapping periods calculated for each assumed timing KT is minimized, and the relay delay time is greatly increased. To prevent it from becoming too long.
  • the configuration of the network is the same as that of the network 1 shown in FIG. 1 described in the first embodiment.
  • the first data is according to the event-triggered communication protocol.
  • the second data is transmitted / received in the second network according to the time-triggered communication protocol.
  • the CAN protocol is used as an example of an event trigger type communication protocol
  • the FlexRay protocol is used as an example of a time trigger type communication protocol.
  • the reference timing KJT in the second network is determined so that the relay delay time caused by the arbitration process is not significantly increased.
  • the data relay apparatus receives the CF relay data relayed from the first network using the CAN protocol to the second network using the FlexRay protocol, and then received.
  • the reference timing KJT in the second network is determined so that the relay delay time that occurs when the CF relay data is transmitted to the second communication line B as the second data and relayed is not significantly increased.
  • the second communication node or the data relay device configuring the second network transmits and receives data according to a predetermined schedule.
  • the first communication node or the data relay device transmits and receives data at an arbitrary timing when transmission is necessary. Therefore, after receiving the CF relay data from the first network by the data relay device, the second transmission timing for transmitting and relaying the CF relay data in the order determined by the data relay device in the second network Until the time (hereinafter referred to as CF relay timing) arrives, a time during which the CF relay data cannot be relayed occurs as a relay delay time.
  • the relay delay time generated in this way follows the schedule determined based on the reference timing KJT described in the first embodiment for the second transmission timing determined for the data relay apparatus in the second network. Therefore, it changes by changing the reference timing KJT.
  • the first The reference timing KJT in the second network is determined so that the relay delay time when the CF relay data is relayed from the network to the second network does not become large.
  • FIG. 25 is a functional block diagram showing a more detailed functional configuration of the data relay device 24 according to the second embodiment.
  • the data relay device 24 according to the present embodiment includes a storage unit 212 instead of the storage unit 202, and includes a determination unit 213 instead of the determination unit 204. The point is different. Therefore, in the data relay device 24 according to the present embodiment, the same functional configuration as that of the data relay device 20 according to the first embodiment is denoted by the same reference numeral, and description thereof is omitted.
  • the storage unit 212 includes the first data information described in the first embodiment, the schedule, and the first data transmitted from the first communication nodes 10a to 10d to the first communication line A, respectively.
  • the relay data information indicating the first data of a predetermined type to be transmitted and relayed as the second data to the second communication line B is stored as the CF relay data.
  • FIG. 26 is a diagram illustrating an example of relay data information stored in the storage unit 212. As shown in FIG. 26, in the present embodiment, relay data information indicating the first data of the type relayed from the first communication line A to the second communication line B as CF relay data is stored in the storage unit 212. ing. Further, the information stored in the storage unit 212 according to the present embodiment includes information stored by the estimation unit 203 and the determination unit 213 described later.
  • the determination unit 213 determines the reference timing KJT in the above-described FlexRay protocol based on the first transmission timing estimated by the transmission timing estimation unit 2031 and the above-described schedule stored in the storage unit 212.
  • FIG. 27 is a functional block diagram showing a more detailed configuration of the determination unit 213 according to the present embodiment.
  • the determination unit 213 according to the present embodiment includes a setting unit 2131, a relay timing estimation unit 2132, a calculation unit 2133, a standard deviation calculation unit 2134, and a reference timing determination unit 2135.
  • the setting unit 2131 has the same functional configuration as that of the setting unit 2041 described in the first embodiment.
  • the setting unit 2131 sets the assumption timing KT assuming the same as the setting unit 2041, and stores all the set assumption timings KT.
  • the data is stored in the unit 212.
  • the relay timing estimation unit 2132 includes all the first transmission timings stored in the storage unit 212 by the transmission timing estimation unit 2031.
  • the first transmission timing of the CF relay data is estimated as the CF transmission timing.
  • FIG. 28 is a diagram illustrating an example of CF transmission timing of information types B, E, F, and H indicated by the relay data information illustrated as an example in FIG.
  • FIG. 28 shows an example of the CF transmission timing that arrives in one least common multiple period SK of the first transmission timing estimated by the transmission timing estimation unit 2031 as described above, based on the estimated reference timing. Yes.
  • the relay timing estimation unit 2132 When the relay timing estimation unit 2132 recognizes the CF transmission timing in the least common multiple period SK with reference to the estimated reference time, the relay timing estimation unit 2132 is based on the schedule stored in the storage unit 212, and the reference timing KJT assigned in advance to the data relay device 24. Is also recognized as a second transmission timing.
  • FIG. 29 shows an example of the second transmission timing assigned in advance to the data relay device 24 that arrives according to the schedule based on the reference timing KJT as described above in one cycle period CYK based on the reference timing KJT. Is shown.
  • the relay timing estimation unit 2132 recognizes each of the second transmission timing in the cycle period CYK based on the reference timing KJT and the CF transmission timing based on the estimated reference time, as shown in FIG. 30 as an example, The timing at which the recognized second transmission timing and the CF transmission timing arrive in the common common multiple period KK is estimated.
  • the relay timing estimation unit 2132 estimates all the second transmission timings and CF transmission timings that arrive in the common common multiple period KK with the estimation reference time as a reference, the relay timing estimation unit 2132 stores the estimated timings in the storage unit 212.
  • the calculation unit 2133 calculates the common common multiple based on the estimated reference time.
  • the delay period between the CF transmission timing that arrives in the period KK and the second transmission timing that arrives in the common common multiple period KK with reference to the reference timing KJT is the reference timing KJT of the common common multiple period KK with reference to the reference timing KJT. Is calculated while shifting to the assumed timing KT set by the setting unit 2131.
  • FIG. 31 is a diagram illustrating an example of a delay period calculated by the calculation unit 2133.
  • the CF transmission timing that arrives in the common common multiple period KK with the estimated reference time as a reference is matched with the assumed timing KT assumed at the estimated reference time. It is a figure which shows the delay period with the 2nd transmission timing on the basis of the reference timing KJT.
  • the calculation unit 2133 compares the second transmission timing with the CF transmission timing, thereby delaying the common common multiple period KK based on the reference timing KJT matched with the assumed timing KT.
  • the length of the period is calculated for each delay period.
  • FIG. 31 illustrates lengths DL1 to DL7 calculated for each delay period as an example of the length calculated by the calculation unit 2133 for each delay period.
  • the calculation unit 2133 matches the CF transmission timing that arrives in the common common multiple period KK with the estimated reference time as a reference, and the assumed timing KT set by the setting unit 2131 at a time different from the corresponding estimated reference time.
  • the length of each delay period with respect to the second transmission timing based on the reference timing KJT is calculated for each assumption timing KT, and the length for each delay period calculated for each assumption timing KT is calculated for each assumption timing KT.
  • the standard deviation calculation unit 2134 stores the length for each delay period stored in the storage unit 212.
  • the standard deviation is calculated for each assumption timing KT, and the calculated standard deviation for each delay period is stored in the storage unit 212 in association with each assumption timing KT.
  • the standard deviation calculation unit 2134 calculates the standard deviation of the length for each delay period for each assumption timing KT using the following equation (1).
  • DLm is an average value of delay periods associated with one hypothetical timing KT.
  • N is the number of detected delay periods.
  • the reference timing determination unit 2135 is assumed to be associated with the smallest standard deviation among the standard deviations of the lengths of the delay periods stored in the storage unit 212 at every assumption timing KT by the standard deviation calculation unit 2134.
  • the timing KT is specified.
  • the reference timing determination unit 2135 determines the identified assumption timing KT as the reference timing KJT for performing the synchronization process, and stores the determined timing in the storage unit 212.
  • the control unit includes an integrated circuit such as a CPU, an LSI, and a microcomputer, and the control unit reads out a predetermined program from the storage unit 212 and interprets and executes the program. It may be realized by appropriately functioning as the functional configuration.
  • step S201 the control unit functions as the calculation unit 2133, calculates the length of each delay period for each assumed timing KT as described above, and calculates the length for each delay period calculated for each assumed timing KT.
  • the data are stored in the storage unit 212 in association with each other.
  • step S202 the control unit functions as the standard deviation calculation unit 2134, calculates the standard deviation of the length for each delay period calculated for each assumption timing KT as described above, and associates the assumption for each assumption timing KT. To be stored in the storage unit 212.
  • the control section completes the process step of step S202, the control section advances the process to step S203.
  • step S203 the control unit functions as the reference timing determination unit 2135, and, as described above, the smallest length for each delay period among the standard deviations of the lengths for each delay period calculated for each assumed timing KT.
  • the assumed timing KT associated with the standard deviation is determined as the reference timing KJT, and the determined assumed timing KT is stored in the storage unit 212.
  • the reference timing KJT is determined so that the standard deviation of the delay period when data is relayed from the first network to the second network is minimized.
  • the delay period can be prevented from becoming significantly longer.
  • the data relay device 20 according to the first embodiment is replaced with the data relay device 21 according to the first modification of the first embodiment, or the data relay device according to the second modification of the first embodiment.
  • the data relay device 24 according to the second embodiment may be modified.
  • the data relay device 20 determines the reference timing KJT based on the standard deviation of the length for each overlap period, but is duplicated in the third modification of the first embodiment. Similar to the modification to determine the reference timing KJT based on the sum of the lengths for each period, the data relay device 24 according to the second embodiment uses the standard based on the standard deviation of the length for each delay period. The timing KJT is determined, but may be modified so that the reference timing KJT is determined based on the total length of each delay period.
  • the reference timing KJT was determined so as not to be significantly long.
  • the delay period when relaying the CF relay data from the first network using the event-triggered communication protocol to the second network using the time-triggered communication protocol is reduced.
  • the reference timing was determined so as not to be significantly longer.
  • the overlapping period and the delay period are combined by combining the first embodiment and the second embodiment so that the above-described overlapping period and the above-described delay period do not become significantly longer from each other.
  • the reference timing KJT may be determined so that the respective calculated periods satisfy arbitrary requirements.
  • relay delay time, the overlap period, and the delay period described above can be considered as a residence period in which the data relay apparatus stays until the CF relay data or the FC relay data is relayed by the data relay apparatus.
  • the communication speed obtained with the FlexRay protocol is faster than the communication speed obtained with the CAN protocol. Therefore, the data relay device according to the present invention is applied to a mobile body such as an automobile, and the mobile body such as an automobile is relayed by relaying data between the network using the CAN protocol and the network using the FlexRay protocol.
  • a moving body such as an automobile includes a radar device that measures a relative distance and a relative speed with respect to an object (an oncoming vehicle, a pedestrian, and an installation on a road), a driver's state (for example, The system etc. which are determined based on the image which image
  • a collision prevention system that predicts a collision with an object and issues a warning to the driver based on the prediction result and the state of the driver is put into practical use. It has been. If a time-triggered communication protocol such as the FlexRay protocol described in the present invention is used, for example, the possibility of a collision between the host vehicle and the oncoming vehicle is determined based on the prediction result and the driver's state. Then, it becomes possible to perform more advanced control such as automatically steering the steered wheels. On the other hand, the CAN protocol described in the present invention is already widely used in networks in mobile objects such as automobiles.
  • data relay apparatus that can prevent a significant delay from occurring even when relaying data transmitted and received with different communication protocols.
  • data can be transmitted over a network configured in a mobile body such as an automobile. It can be used as a data relay device for relaying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

 互いに異なるプロトコルで送受信されるデータを中継するときでも大幅な遅延が生じないデータ中継装置を提供する。イベントトリガ型の通信プロトコルを用いたネットワークで送受信されるデータの送信タイミングを推測し、タイムトリガ型の通信プロトコルを用いたネットワークで予め定められた送信タイミングでデータを送信して中継するときの滞留時間を、タイムトリガ型の通信プロトコルにおける基準時刻を変化させながら算出し、算出された滞留時間の小さい基準時刻で通信するようにタイムトリガ型の通信プロトコルを用いたネットワークで同期処理をする。

Description

データ中継装置、及び当該装置で用いられるデータ中継方法
 本発明は、データ中継装置に関し、より特定的には、互いに異なる通信プロトコルで送受信されるデータを中継するデータ中継装置に関する。
 近年、互いに異なる通信プロトコルで送受信される通信情報をデータとして効率よく中継するためのデータ中継装置が開発されている。このようなデータ中継装置の一例として、例えば、特許文献1に記載の通信メッセージ変換装置(以下、従来技術と称する)が挙げられる。
 従来技術では、CAN(Controller Area Network)プロトコルにしたがって一方の通信線で送受信されるデータと、FlexRay(登録商標)プロトコルにしたがって他方の通信線で送受信されるデータとを互いの通信線に効率よく中継する。従来技術では、効率よくデータを中継できるようにハードウェアを構成し、重要度の低いデータの中継回数を間引いたりする。また、従来技術では、FlexRayプロトコルにしたがって一方の通信線から受信したフレームをCANプロトコルにしたがって他方の通信線へ効率よく中継できるように、FlexRayプロトコルにしたがって受信したフレームを予め分割しやすいサイズで送受信している。
特開2007-174053号公報
 しかしながら、上記従来技術では、以下に述べるような課題を有する。すなわち、上記従来技術では、CANプロトコルにしたがって一方の通信線で送受信されるデータと、FlexRayプロトコルにしたがって他方の通信線で送受信されるデータとを互いの通信線に中継する。ここで、通信線に送信する必要が生じた送信ノードが、送信する必要が生じたときにデータを送信するイベントトリガ型のCANプロトコルと、通信線に送信するタイミングが、それぞれの送信ノードに予め割り当てられているタイムトリガ型のFlexRayプロトコルとの間において、互いのプロトコルにしたがったデータの送受信のタイミングは同期していない。しかし、上記従来技術では、このように、互いのプロトコルにしたがったデータの送受信のタイミングが同期していないことを考慮していないため、一方の通信線から他方の通信線へ従来技術でデータを中継するときに大幅な遅延が生じてしまう場合がある。
 それ故に、本発明は、互いに異なるプロトコルで送受信されるデータを中継するときでも大幅な遅延が生じないデータ中継装置を提供することを目的とする。
 本発明は、上記目的を達成するために以下に示す特徴を有する。
 本発明の第1の局面は、イベントトリガ型の通信プロトコルにしたがって第1のデータが送受信される第1の通信線と、タイムトリガ型の通信プロトコルにしたがって第2のデータが送受信される第2の通信線とに接続されたデータ中継装置であって、第1の通信線に接続された第1の通信ノードから送信される第1のデータを受信したタイミングを基準として、第1の通信線で送受信される全ての第1のデータの第1の送信タイミングを推測する推測手段と、第2のデータがタイムトリガ型の通信プロトコルにしたがって送受信されるときの予め定められた予定を記憶する予定記憶手段と、推測手段によって推測された第1の送信タイミングと、予定記憶手段に記憶されている予定とに基づき、第1の通信線、及び第2の通信線のいずれか一方にデータを中継するときの滞留期間を算出することにより、当該予定の基準タイミングを決定する決定手段と、決定手段によって決定された基準タイミングから予定にしたがって第2のデータを送受信するように、第2の通信線に接続された第2の通信ノードとの同期処理をする同期処理手段とを備える。
 本発明の第2の局面は、上記第1の局面において、第1の通信ノードのそれぞれは、互いに異なる1以上の種類の第1のデータをそれぞれ予め定められた送信周期で送信し、推測手段は、第1のデータを種類毎に最初に受信したタイミングを初回受信タイミングとして当該種類毎に認識する初回受信タイミング認識手段と、第1のデータを種類毎に2度連続して受信したときの時間間隔を送信周期として当該種類毎に認識する周期認識手段と、初回受信タイミングと送信周期とを種類毎に対応付け、種類毎の初回受信タイミングを基準として、当該初回受信タイミングに当該種類毎に対応付けられた送信周期で到来する全てのタイミングを第1の送信タイミングとして推測する送信タイミング推測手段とを含む。
 本発明の第3の局面は、上記第1の局面において、第1の通信ノードのそれぞれは、互いに異なる1以上の種類の第1のデータを当該種類毎に予め定められた送信周期で送信し、送信周期を種類毎に予め記憶する周期記憶手段をさらに備え、推測手段は、第1のデータを種類毎に最初に受信したタイミングを初回受信タイミングとして当該種類毎に認識する初回受信タイミング認識手段と、初回受信タイミングと送信周期とを種類毎に対応付け、種類毎の初回受信タイミングを基準として、当該初回受信タイミングに当該種類毎に対応付けられた送信周期で到来する全てのタイミングを第1の送信タイミングとして推測する送信タイミング推測手段とを含む。
 本発明の第4の局面は、上記第1の局面において、第1の通信ノードのそれぞれは、互いに異なる1以上の種類の第1のデータを、最初に送信するように予め定められた種類の第1のデータを送信するタイミングを基準として、当該種類毎に予め定められた送信開始間隔が経過したときから、当該種類毎に予め定められた送信周期で送信し、送信周期を種類毎に予め記憶する周期記憶手段と、第1の通信ノードのそれぞれに、種類毎に予め定められた送信開始間隔を記憶する送信開始間隔記憶手段とをさらに備え、推測手段は、第1のノードのそれぞれから最初に第1のデータを受信したときを基準として、第1の通信ノードのそれぞれに、種類毎に予め定められた送信開始間隔から当該種類毎に予め定められた送信周期で到来する全てのタイミングを第1の送信タイミングとして推測する送信タイミング推測手段を含む。
 本発明の第5の局面は、上記第1の局面において、決定手段は、予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、仮定タイミングから予定にしたがって第2のデータを送受信するように第2の通信ノードとの同期処理をしたときに、第2の通信線から第2のデータを受信して第1の通信線に第1のデータとして送信して中継する中継タイミングを、設定手段によって設定された仮定タイミング毎に推測する中継タイミング推測手段と、推測手段によって推測された第1の送信タイミングと、中継タイミング推測手段によって推測された中継タイミングとが重複することによって生じる重複期間を、中継タイミング推測手段が中継タイミングを推測するのに用いた仮定タイミング毎に滞留期間として算出する算出手段と、算出手段が仮定タイミング毎に算出した重複期間の総和をそれぞれ算出する総和算出手段と、総和算出手段によって仮定タイミング毎に算出された重複期間の総和の中で最も小さい重複期間の総和が総和算出手段によって算出された仮定タイミングを基準タイミングとして決定する基準タイミング決定手段とを含む。
 本発明の第6の局面は、上記第1の局面において、決定手段は、予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、仮定タイミングから予定にしたがって第2のデータを送受信するように第2の通信ノードとの同期処理をしたときに、第2の通信線から第2のデータを受信して第1の通信線に第1のデータとして送信して中継する中継タイミングを、設定手段によって設定された仮定タイミング毎に推測する中継タイミング推測手段と、推測手段によって推測された第1の送信タイミングと、中継タイミング推測手段によって推測された中継タイミングとが重複することによって生じる重複期間を、中継タイミング推測手段が中継タイミングを推測するのに用いた仮定タイミング毎に滞留期間として算出する算出手段と、算出手段が仮定タイミング毎に算出した重複期間の標準偏差を算出する標準偏差算出手段と、標準偏差算出手段によって仮定タイミング毎に算出された重複期間の標準偏差の中で最も小さい重複期間の標準偏差が標準偏差算出手段によって算出された仮定タイミングを基準タイミングとして決定する基準タイミング決定手段とを含む。
 本発明の第7の局面は、上記第1の局面において、決定手段は、予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、仮定タイミングから予定にしたがって第2のデータを送受信するように第2の通信ノードとの同期処理をしたときに、第2の通信線に第2のデータを送信する第2の送信タイミングを、当該予定に基づいて、設定手段によって設定された仮定タイミング毎に推測する送信タイミング推測手段と、推測手段によって推測された第1の送信タイミングでそれぞれ受信した第1のデータを、送信タイミング推測手段によって推測された第2の送信タイミングで第2の通信線に第2のデータとして送信して中継するまでの遅延期間を、送信タイミング推測手段が第2の送信タイミングを推測するのに用いた仮定タイミング毎に滞留期間として算出する算出手段と、算出手段が仮定タイミング毎に算出した遅延期間の総和をそれぞれ算出する総和算出手段と、総和算出手段によって仮定タイミング毎に算出された遅延期間の総和の中で最も小さい遅延期間の総和が総和算出手段によって算出された仮定タイミングを基準タイミングとして決定する基準タイミング決定手段とを含む。
 本発明の第8の局面は、上記第1の局面において、決定手段は、予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、仮定タイミングから予定にしたがって第2のデータを送受信するように第2の通信ノードとの同期処理をしたときに、第2の通信線に第2のデータを送信する第2の送信タイミングを、当該予定に基づいて、設定手段によって設定された仮定タイミング毎に推測する送信タイミング推測手段と、推測手段によって推測された第1の送信タイミングでそれぞれ受信した第1のデータを、送信タイミング推測手段によって推測された第2の送信タイミングで第2の通信線に第2のデータとして送信して中継するまでの遅延期間を、送信タイミング推測手段が第2の送信タイミングを推測するのに用いた仮定タイミング毎に滞留期間として算出する算出手段と、算出手段が仮定タイミング毎に算出した遅延期間の標準偏差を算出する標準偏差算出手段と、標準偏差算出手段によって仮定タイミング毎に算出された遅延期間の標準偏差の中で最も小さい遅延期間の標準偏差が標準偏差算出手段によって算出された仮定タイミングを基準タイミングとして決定する基準タイミング決定手段とを含む。
 本発明の第9の局面は、上記第5乃至第8のいずれか1つの局面において、設定手段は、前記推測手段が推測の基準とする時刻から予め定められた時間範囲内だけで仮定タイミングを設定する。
 本発明の第10の局面は、イベントトリガ型の通信プロトコルにしたがって第1のデータが送受信される第1の通信線と、タイムトリガ型の通信プロトコルにしたがって第2のデータが送受信される第2の通信線とに接続されたデータ中継装置で用いられるデータ中継方法であって、第1の通信線に接続された第1の通信ノードから送信される第1のデータを受信したタイミングを基準として、第1の通信線で送受信される全ての第1のデータの第1の送信タイミングを推測する推測ステップと、推測ステップにおいて推測された第1の送信タイミングと、第2のデータがタイムトリガ型の通信プロトコルにしたがって送受信されるときの予め定められた予定とに基づき、第1の通信線、及び第2の通信線のいずれか一方にデータを中継するときの滞留期間を算出することにより、当該予定の基準タイミングを決定する決定ステップと、決定ステップにおいて決定された基準タイミングから予定にしたがって第2のデータを送受信するように、第2の通信線に接続された第2の通信ノードとの同期処理をする同期処理ステップとを備える。
 本発明の上記第1の局面によれば、イベントトリガ型の通信プロトコルにしたがって送受信される第1のデータの受信タイミングとタイムトリガ型の通信プロトコルで第2のデータを送受信するときの予め定められた予定とに基づいて、いずれか一方の通信プロトコルでデータを送受信するネットワークにデータを中継するときの滞留期間を算出することによって当該予定の基準タイミングを決定するので、互いに異なる通信プロトコルで送受信されるデータを中継するときでも大幅な遅延が生じることを防げる。
 本発明の上記第2の局面によれば、第1の通信ノードが第1の通信線に第1のデータを送信するタイミングを、第1の通信線から第1のデータを受信したタイミングに基づいて推測できる。
 本発明の上記第3の局面によれば、それぞれの第1の通信ノードが最初に第1の通信線に第1のデータを送信するタイミングを予め記憶していなくても、第1の通信ノードが第1の通信線に第1のデータを送信するタイミングを認識することができる。
 本発明の上記第4の局面によれば、第1の通信線に接続されたそれぞれの第1の通信ノードから最初に送信される第1のデータを受信するだけで、第1の通信ノードが第1の通信線に第1のデータを送信するタイミングを認識することができる。
 本発明の上記第5乃至第6のそれぞれの局面によれば、タイムトリガ型の通信プロトコルのネットワークからイベントトリガ型の通信プロトコルのネットワークへデータを中継するときに大幅な遅延が生じることを防げる。
 本発明の上記第7乃至第8のそれぞれの局面によれば、イベントトリガ型の通信プロトコルのネットワークからタイムトリガ型の通信プロトコルのネットワークへデータを中継するときに大幅な遅延が生じることを防げる。
 本発明の上記第9の局面によれば、基準タイミングを決定するときの処理負荷を低減することができる。
 また、本発明に係るデータ中継方法によれば、上述したデータ中継システムと同様の効果を得ることができる。
図1は、本発明におけるネットワークの構成の一例を示す図である。 図2は、第1の通信ノードのデータの送信のタイミングの一例を示す図である。 図3は、FlexRayプロトコルにおける通信時間の概念を説明する図である。 図4は、第1の実施形態に係るデータ中継装置の機能構成を示す機能ブロック図である。 図5は、第1の実施形態における第1のデータ情報の一例を示す図である。 図6は、第1の実施形態における中継データ情報の一例を示す図である。 図7は、第1の実施形態に係る推測部のより詳細な機能構成を示す機能ブロック図である。 図8は、第1のネットワークにおけるデータの送信タイミングの推測結果の一例を示す図である。 図9は、第1の実施形態に係る決定部204のより詳細な機能構成を示す機能ブロック図である。 図10は、仮定タイミングの設定の一例を示す図である。 図11は、第1の実施形態におけるFC中継データの送信タイミングの一例を示す図である。 図12は、第1の実施形態に係る中継タイミング推測部が推測するタイミングの一例を示す図である。 図13は、第1の実施形態における重複期間の一例を示す図である。 図14は、第1の実施形態における重複期間の他の一例を示す図である。 図15は、第1の実施形態に係る中継部205のより詳細な機能構成を示す機能ブロック図である。 図16は、第1の実施形態に係るデータ中継装置の処理を示すフローチャートである。 図17は、第1の実施形態の第1の変形例に係るデータ中継装置の機能構成を示す機能ブロック図である。 図18は、第1の実施形態の第1の変形例における第1のデータ情報の一例を示す図である。 図19は、第1の実施形態の第1の変形例に係る推測部のより詳細な機能構成を示す機能ブロック図である。 図20は、第1の実施形態の第2の変形例に係るデータ中継装置の機能構成を示す機能ブロック図である。 図21は、第1の実施形態の第2の変形例における第1のデータ情報の一例を示す図である。 図22は、第1の実施形態の第2の変形例に係る推測部のより詳細な機能構成を示す機能ブロック図である。 図23は、第1の実施形態の第3の変形例に係るデータ中継装置の機能構成を示す機能ブロック図である。 図24は、第1の実施形態の第3の変形例に係る決定部のより詳細な機能構成を示す機能ブロック図である。 図25は、第2の実施形態に係るデータ中継装置の機能構成を示す機能ブロック図である。 図26は、第2の実施形態における中継データ情報の一例を示す図である。 図27は、第2の実施形態に係る決定部のより詳細な機能構成を示す機能ブロック図である。 図28は、第2の実施形態におけるCF中継データの送信タイミングの一例を示す図である。 図29は、第2の実施形態に係るデータ中継装置の第2のネットワークにおける送信タイミングの一例を示す図である。 図30は、第2の実施形態に係る中継タイミング推測部が推測するタイミングの一例を示す図である。 図31は、第2の実施形態における遅延期間の一例を示す図である。 図32は、第2の実施形態に係るデータ中継装置の処理を示すフローチャートである。
符号の説明
 1  ネットワーク
 10a~10d  第1の通信ノード
 20,21,22,23,24  データ中継装置
 30a~30d  第2の通信ノード
 201  受信部
 202,206,208,210,212  記憶部
 203,207,209  推測部
 204,211,213  決定部
 205  中継部
 (第1の実施形態)
 図1は、本実施形態に係るデータ中継装置20でデータを中継するネットワーク1の概略構成を示すブロック図である。ネットワーク1は、第1の通信ノード10a乃至10d、及びデータ中継装置20をそれぞれ第1の通信線Aに接続して構成した第1のネットワークと、第2の通信ノード30a乃至30d、及びデータ中継装置20をそれぞれ第2の通信線Bに接続して構成した第2のネットワークとからなる。本実施形態に係るデータ中継装置20は、第1の通信線A、及び第2の通信線Bのそれぞれに接続され、第1のネットワークと第2のネットワークとの間でデータを中継する。
 第1のネットワークでは、第1の通信ノード10a乃至10d、及びデータ中継装置20のそれぞれが、送信の必要が生じたときに任意のタイミングでデータを送受信するイベントトリガ型の通信プロトコルにしたがって第1のデータを送受信する。一方、第2のネットワークでは、第2の通信ノード30a乃至30d、及びデータ中継装置20のそれぞれが、予め定められた予定にしたがって、送信の必要が生じたデータを送受信するタイムトリガ型の通信プロトコルにしたがって第2のデータを送受信する。本実施形態では、イベントトリガ型の通信プロトコルの一例としてCAN(Controller Area Network)プロトコルを用いるものとし、タイムトリガ型の通信プロトコルの一例としてFlexRay(登録商標)プロトコルを用いるものとする。
 第1の通信ノード10a乃至10dは、それぞれ第1のネットワークで用いられているプロトコル(本実施形態ではCANプロトコル)で規定された形式のフレームを第1のデータとして互いに送受信する。また、第1の通信ノード10a乃至10dのそれぞれは、データ中継装置20によって中継されるデータの中で自ノード宛のデータの受信もする。
 本実施形態に係る第1の通信ノード10a乃至10dのそれぞれは、1以上の種類の第1のデータを送信する。また、第1の通信ノード10a乃至10dは、それぞれ互いに異なる種類の第1のデータを送信する。ここで、第1のデータの種類とは、第1のデータとして送信されるフレームによって示される識別子(本実施形態では、CAN-ID)で分けられる種類のことである。本実施形態では、第1の通信ノード10a乃至10dのそれぞれは、互いに異なる1以上のCAN-IDが識別子として予め割り当てられている。また、本実施形態では、第1の通信ノード10a乃至10dのそれぞれが、第1のデータとして送信するフレームに1つだけ含ませる情報の部類がCAN-IDに対応づけて予め定められている。そして、本実施形態では、第1の通信ノード10a乃至10dのそれぞれは、自ノードに予め割り当てられたいずれかのCAN-IDと、当該CAN-IDに対応する部類の1つの情報とを含むフレームを第1のデータとして送信する。
 本実施形態に係る第1の通信ノード10a乃至10dのそれぞれは、電源が投入されてから動作を開始し、第1のデータを生成する処理を開始するための準備処理などを完了したときから第1のデータの送信を開始するものとする。そして、本実施形態に係る第1の通信ノード10a乃至10dのそれぞれには、第1のデータの送信を開始したときに、最初に送信を開始する種類の第1のデータが初回送信データとして予め定められている。また、本実施形態に係る第1の通信ノード10a乃至10dのそれぞれには、初回送信データの最初の送信タイミングを基準として他の種類の第1のデータの送信を開始するまでの送信開始間隔と、送信を開始してから繰り返し送信をするときの送信周期とが、第1のデータの種類毎に予め対応付けて定められている。
 尚、本発明の説明では、後述の説明で参照する図5に示すように、CAN-ID1乃至9と、第1のデータの種類A乃至Iとをそれぞれ対応させて説明している。
 図2は、一例として、第1の通信ノード10aにそれぞれ予め定められている送信開始間隔SD1乃至SD2と送信周期TD1乃至TD3とを示す図である。図2に示すように、第1の通信ノード10aは、初回送信データとして予め定められた種類Aの第1のデータ(以下、第1のデータAと称する)の送信を開始してから、第1のデータAを送信周期TD1で送信するように予め定められている。また、第1の通信ノード10aは、図2に示すように、第1のデータAの送信を開始してから、送信開始間隔SD1が経過したときに種類Bの第1のデータ(以下、第1のデータBと称する)を送信周期TD2で、第1のデータAの送信と並行して送信するように予め定められている。さらに、第1の通信ノード10aは、図2に示すように、第1のデータAの送信を開始してから、送信開始間隔SD2が経過したときに種類Cの第1のデータ(以下、第1のデータCと称する)を送信周期TD3で、第1のデータA、及びBの送信と並行して送信するように予め定められている。
 このように、第1の通信ノード10aには、初回送信データとして送信する第1のデータの種類と、初回送信データの送信周期とが予め定められている。さらに、第1の通信ノード10aには、初回送信データ以外の種類の第1のデータを送信するときの送信開始間隔と送信周期とが種類毎に予め対応付けて定められている。第1の通信ノード10aは、予め定められた送信開始間隔と送信周期とで上述したように種類毎に周期的に到来する送信タイミング(以下、第1の送信タイミングと称する)で第1のデータを送信する。そして、第1の通信ノード10b乃至10dのそれぞれについても同様に、初回送信データとして送信する第1のデータの種類と、初回送信データの送信周期とが予め定められており、さらに、初回送信データ以外の種類の第1のデータを送信するときの送信開始間隔と送信周期とが種類毎に予め対応付けて定められており、第1の通信ノード10aと同様に種類毎に周期的に到来する第1の送信タイミングで第1のデータを送信する。
 尚、第1の通信ノード10a乃至10dに予め定められた送信開始間隔、及び送信周期はそれぞれ互いに同一であってもよいし、互いに異なっていてもよい。また、第1の通信ノード10a乃至10dは、互いの第1の送信タイミングの同期をとっていないため、互いの第1の送信タイミングが重複する場合があるが、この場合には、後述する調停処理がされ、結果的に、全ての第1の通信ノードから第1の通信線Aに送信される全ての種類毎の第1のデータの第1の送信タイミングは、周期的になる。
 データ中継装置20は、第1の通信ノード10a乃至10dがそれぞれ送信する第1のデータの中で第2のネットワークに中継するように予め定められた種類の第1のデータ(以下、CF中継データと称する)を第2のネットワークで用いられているプロトコル(本実施形態ではFlexRayプロトコル)にしたがった形式のフレームに変換して、変換したフレームを第1の通信線Aから第2の通信線Bに第2のデータとして送信して中継する。また、データ中継装置20は、第2の通信ノード30a乃至30dがそれぞれ送信する第2のデータの中で第1のネットワークに中継するように定められた種類の第2のデータ(以下、FC中継データと称する)を第1のネットワークで用いられているプロトコル(本実施形態ではCANプロトコル)にしたがった形式のフレームに変換して、第2の通信線Bから第1の通信線Aに第1のデータとして送信して中継する。
 第2の通信ノード30a乃至30dはそれぞれ、FlexRayプロトコルの規定に基づいて予め定められた予定にしたがって、FlexRayプロトコルで規定される形式のフレームを第2のデータとして互いに送受信する。また、第2の通信ノード30a乃至30dのそれぞれは、データ中継装置20によって第2のデータとして中継されるデータの中で自ノード宛のデータの受信もする。以下に、FlexRayプロトコルの概要について説明する。
 図3は、FlexRayプロトコルにおける通信時間の階層的な分け方を説明する図である。以下、FlexRayプロトコルにおける通信時間の分け方について説明する。FlexRayプロトコルにおける通信時間は、図3に示すように0から63のコミュニケーションサイクルに分けられている。第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれは、1つのコミュニケーションサイクルの中で割り当てられた時間に第2のデータを順番に第2の通信線Bに送信する。そして、第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dは、それぞれ1つのコミュニケーションサイクルにおける第2のデータの送受信を完了すると次のコミュニケーションサイクルにおける第2のデータの送受信を開始し、0~63までのコミュニケーションサイクルにおける第2のデータの送受信を完了すると、0のコミュニケーションサイクルから第2のデータの送受信を繰り返す。
 図3に示すように1つのコミュニケーションサイクルにおける時間は、静的セグメント、動的セグメント、シンボルウインドウ、及びNIT(Network Idle Time:ネットワークアイドルタイム)に分けられる。さらに、図3に示すように、静的セグメントにおける時間は、1~n番目まで順番に番号が増加する静的スロットという時間単位で分けられる。FlexRayプロトコルでは、1つの静的スロットの時間には、静的スロットの番号と同じ番号のFlexRay-IDのフレームの送信時間が割り当てられる。また、第2のネットワークを構成する全ての通信ノード、及びデータ中継装置(本実施形態では、データ中継装置20、及び第2の通信ノード30a乃至30d)は、互いに異なるFlexRay-IDが予め割り当てられており、それぞれに割り当てられているFlexRay-IDのフレームを第2のデータとして送信する。尚、本実施形態では、第2の通信線Bに送信される第2のデータの種類は、FlexRay-IDで分けられるものとする。
 そして、第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれは、0のコミュニケーションサイクルの開始タイミングを基準タイミングKJTとして、互いに基準タイミングKJTを基準として経過する時間を共通して認識する同期処理をする。第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれは、同期処理をした後、基準タイミングKJTから時間の経過にしたがって増加する静的スロットの番号を、それぞれ内部に備えているタイマを用いて時間を計時することによって共通して独自に認識する。第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれは、独自に認識した時間に基づき、送信するフレームのFlexRay-IDと同じ番号の静的スロットに対応する期間が到来したと判断したときにフレームを送信することにより、互いにフレームを衝突させることなく送信できる。
 FlexRayプロトコルでは、互いに異なる任意の静的スロットの番号と同じ番号のFlexRay-IDを第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dにそれぞれ予め割り当てることによって、データ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれが第2のデータを送信するタイミングを基準タイミングKJTを基準とする予定として予め定めることができる。そして、本実施形態に係るデータ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれは、第2のデータをFlexRayプロトコルにしたがって送受信するとき、基準タイミングKJTを基準とする予定にしたがって、第2の通信線Bに第2のデータを順番に送信する。
 図3において静的セグメントの次に到来する動的セグメントは、第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれが、必要に応じて任意のタイミングでフレームを送信できる期間である。また、動的セグメントの次に到来するシンボルウインドウは、必ずしも設けられなくてもよい。また、シンボルウインドウの次に到来するNITは、第2のネットワークを構成するデータ中継装置20、及び第2の通信ノード30a乃至30dのそれぞれが上述したように独自に認識している共通の時間の補正、或いはエラー訂正などをする期間である。
 以上が、本実施形態に係るネットワーク1の概略構成の説明である。尚、図1に示すネットワーク1の概略構成では、第1の通信ノード10a乃至10dの4つの第1の通信ノードが第1の通信線Aに接続されている場合を一例として示しているが、第1の通信線Aに接続される第1の通信ノードは3以下であってもよいし、5以上であってもよい。また、図1に示すネットワーク1の概略構成では、第2の通信ノード30a乃至30dの4つの第2の通信ノードが第2の通信線Bに接続されている場合を一例として示しているが、第2の通信線Bに接続される第2の通信ノードは3以下であってもよいし、5以上であってもよい。
 図1に示すように構成されたネットワーク1では、データ中継装置20が、FC中継データを受信してから、受信したFC中継データを第1の通信線Aに第1のデータとして送信して中継する中継タイミング(以下、FC中継タイミングと称する)と、第1の通信線Aに接続された通信ノード(本実施形態では、第1の通信ノード10a乃至10d)のそれぞれの第1の送信タイミングとが、重複してしまう重複期間が生じる。この理由は、第1のネットワークで送受信される全ての第1のデータの種類毎の第1の送信タイミングと、第2のネットワークで送受信される全ての第2のデータの種類毎の送信タイミング(以下、第2の送信タイミングと称する)とを、データ中継装置20で中継するのに要する時間も考慮して、重複しないように設計することが困難だからである。
 第1のネットワークで用いられているCANプロトコルでは、前述の重複期間が生じる場合には、予め定められた優先順位の相対的に低い通信ノード、或いはデータ中継装置が、予め定められた優先順位の相対的に高い通信ノード、或いはデータ中継装置がデータを送信しないタイミングでデータを送信する所謂調停処理をするように規定されている。そして、この調停処理では、予め定められた優先順位の相対的に低い通信ノード、或いはデータ中継装置は、予め定められた優先順位の相対的に高い通信ノード、或いはデータ中継装置がデータを送信しなくなるタイミングが到来するまでデータの送信を待機する。したがって、本実施形態に係るデータ中継装置20の第1のネットワークにおける優先順位が相対的に低い場合には、データ中継装置20が第2の通信線BからFC中継データを受信してから、受信したFC中継データを第1の通信線Aに第1のデータとして送信して中継するまでの中継遅延時間が、調停処理をすることによって大幅に長くなることがある。
 ここで、第1の通信線Aに接続された全ての第1の通信ノードが第1のデータをそれぞれ送信する前述の第1の送信タイミングは、上述したようにそれぞれの第1の通信ノードに送信開始間隔、及び送信周期をそれぞれ予め定めることによって、定められる。一方、第2の通信線Bに接続された全ての第2の通信ノードが第2のデータをそれぞれ送信する前述の第2の送信タイミングは、上述したように基準タイミングKJTを基準とする予定によって予め定められている。
 したがって、ネットワーク1では、基準タイミングKJTが変化すると、FC中継データが、データ中継装置20によって受信されるまでの時間が変化し、当該FC中継データを第1の通信線Aへ第1のデータとして送信して中継する前述のFC中継タイミングも変化する。したがって、ネットワーク1では、基準タイミングKJTが変化すると、前述のFC中継タイミングと、前述の第1の送信タイミングとが重複する期間の長さ、すなわち、重複期間の長さが変化する。重複期間の長さが変化すると、前述の調停処理によって生じる中継遅延時間の長さが変化する。
 そこで、本実施形態に係るデータ中継装置20は、予め定められた優先順位に拘わらずに、前述の中継遅延時間が大幅に長くならないように、第1の通信線Aに接続されている全ての第1のデータの種類毎の第1の送信タイミングに基づいて、上述した第2のネットワークにおける基準タイミングKJTを定める。
 本実施形態に係るデータ中継装置20についてより詳細に説明する。図4は、本実施形態に係るデータ中継装置20のより詳細な機能構成を示す機能ブロック図である。本実施形態に係るデータ中継装置20は、受信部201と、記憶部202と、推測部203と、決定部204と、中継部205とを含む。
 受信部201は、第1の通信ノード10a乃至10dからそれぞれ第1の通信線Aに第1のデータが送信されたとき、送信された第1のデータを受信する。受信部201は、第1の通信線Aから第1のデータを受信したとき、受信した第1のデータを推測部203に取得させる。
 記憶部202は、第1の通信線Aに接続されている全ての第1の通信ノードのそれぞれがと、CAN-IDと、情報の部類と、当該第1の通信ノードのそれぞれが上述したように第1のデータを送信するときの送信開始間隔と、送信周期とを種類毎に対応付けて示す第1のデータ情報を記憶している。
 図5は、記憶部202に記憶されている第1のデータ情報の具体的な一例を示す図である。本実施形態では、図5に示すように、第1の通信ノード10a乃至10dにそれぞれ予め割り当てられたCAN-ID1乃至9と、第1のデータによって示される情報の部類(メッセージの部類)D1乃至D9と、送信周期TD1乃至TD9と、送信開始間隔SD1乃至SD5とを、種類A乃至I毎にそれぞれ対応付けて第1のデータ情報として記憶部202に記憶させているものとする。尚、本実施形態では、第1のデータ情報において、上述したように第1の通信ノード毎に前述の初回送信データとして予め定められている種類の第1のデータに対応付けられている送信開始間隔は、0で示されるものとする。
 また、本実施形態に係る記憶部202は、上述したように予め定められた予定と、第2の通信ノード30a乃至30dから第2の通信線Bにそれぞれ送信される第2のデータの種類の中で、FC中継データとして中継する第2のデータの種類を示す中継データ情報も記憶している。図6は、記憶部202に記憶されている中継データ情報の一例を示す図である。図6に一例として示すように、本実施形態では、第2の通信線Bから第1の通信線Aに中継するFlexRay-IDの第2のデータをFC中継データとして示す中継データ情報が記憶部202に記憶されている。さらに、本実施形態に係る記憶部202に記憶される情報には、後述するように推測部203、及び決定部204によって記憶させられる情報もある。
 推測部203は、第1の通信線Aに接続された第1の通信ノードから送信される第1のデータを受信部201で受信した時刻に基づいて、第1の通信線Aで送受信される全ての種類毎に第1の送信タイミングを推測する。
 図7は、本実施形態に係る推測部203のより詳細な機能構成を示すブロック図である。本実施形態に係る推測部203は、送信タイミング推測部2031を含む。送信タイミング推測部2031は、データ中継装置20が動作を開始してから、受信部201によって第1のデータを取得させられる度に、当該第1のデータを取得したときの時刻を受信時刻として対応付けて記憶部202に記憶させる。尚、送信タイミング推測部2031が第1のデータと対応付ける受信時刻は、図示しないタイマなどによって計時されるものとする。また、送信タイミング推測部2031は、データ中継装置20が動作を開始してから、受信部201によって第1のデータを取得させられる度に、第1の通信線Aに接続されている全ての第1の通信ノードの初回送信データを全て受信したか否かを判断する。
 より具体的には、送信タイミング推測部2031は、データ中継装置20が動作を開始してから、受信部201によって取得させられた第1のデータを受信時刻と対応付けて記憶部202に記憶させる度に、記憶部202に記憶されている第1のデータ情報と、受信部201から取得して記憶部202に記憶させたそれぞれの第1のデータの種類とを比較する。送信タイミング推測部2031は、記憶部202に記憶させたそれぞれの第1のデータの種類と、第1のデータ情報とを比較することにより、当該第1のデータ情報によって0の送信開始間隔と対応付けられている全ての種類の第1のデータが、記憶部202に記憶されているか否かを判断する。送信タイミング推測部2031は、第1のデータ情報によって、0の送信開始間隔と対応付けられている全ての種類の第1のデータが記憶部202に記憶されていると判断したとき、第1の通信線Aに接続されている全ての第1の通信ノードの初回送信データを全て受信したと判断する。
 第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される初回送信データを全て受信したと判断すると、送信タイミング推測部2031は、記憶部202に記憶されている初回送信データの受信時刻を基準として、前述の第1の送信タイミングを推測する。
 送信タイミング推測部2031は、第1の送信タイミングを推測するとき、まず、最も早い受信時刻の初回送信データ(以下、最速初回送信データと称する)を送信した第1の通信ノード(以下、最速通信ノードと称する)から送信される全ての第1のデータの種類毎に第1の送信タイミングをそれぞれ推測する。送信タイミング推測部2031が、最速通信ノードから送信される全ての第1のデータの種類毎に第1の送信タイミングを推測する手法を、仮に第1の通信ノード10aが最速通信ノードである場合を想定して、再度図2を参照しながら説明する。
 最速通信ノードから送信される全ての第1のデータの種類毎に第1の送信タイミングを推測するとき、送信タイミング推測部2031は、最速初回送信データとして受信した種類の第1のデータの受信時刻を図2に示すように推測基準時刻として設定する。推測基準時刻を設定すると、送信タイミング推測部2031は、設定した推測基準時刻を基準として、最速通信ノードに割り当てられているCAN-ID(ここでは、CAN-ID1乃至3)に第1のデータ情報でそれぞれ対応付けられている種類毎の送信開始間隔(ここでは、0、SD1、及びSD2)から、当該送信開始間隔毎に第1のデータ情報で対応付けられている送信周期(ここでは、TD1乃至TD3)で種類(ここでは、A乃至C)毎に到来する全てのタイミング(図2に示す例では送信タイミングf1)を、当該最速通信ノードから送信される全ての第1のデータの種類毎の第1の送信タイミングとして推測する。
 最速通信ノードから送信される全ての第1のデータの種類毎の第1の送信タイミングを推測すると、送信タイミング推測部2031は、次に早い受信時刻の初回送信データを送信した第1の通信ノードから送信される全ての第1のデータの種類毎に第1の送信タイミングを推測する。
 次に早い受信時刻の初回送信データを送信した第1の通信ノードの全ての第1の送信タイミングを推測するとき、送信タイミング推測部2031は、当該初回送信データの受信時刻を、前述の推測基準時刻を基準とした時刻に変換する。送信タイミング推測部2031は、次に早い初回送信データの受信時刻を変換すると、変換した受信時刻を基準として、当該初回送信データを送信した第1の通信ノードに割り当てられているCAN-IDに第1のデータ情報でそれぞれ対応付けられている種類毎の送信開始間隔から、当該送信開始間隔毎に第1のデータ情報で対応付けられている送信周期で種類毎に到来する全てのタイミングを、当該第1の通信ノードから送信される全ての第1のデータの種類毎の第1の送信タイミングとして推測する。
 送信タイミング推測部2031は、他の受信時刻の初回送信データを送信した第1の通信ノードの全ての第1の送信タイミングを推測するときにも、当該初回送信データの受信時刻を、前述の推測基準時刻を基準とした時刻に変換する。初回送信データの受信時刻を推測基準時刻を基準とした時刻に変換すると、送信タイミング推測部2031は、変換した時刻を基準として、当該初回送信データを送信した第1の通信ノードに割り当てられているCAN-IDに第1のデータ情報で対応付けられている送信開始間隔から、当該送信開始間隔毎に第1のデータ情報で対応付けられている送信周期で到来する全てのタイミングを当該第1の通信ノードの全ての第1の送信タイミングとして第1のデータの種類毎に推測する。
 尚、初回送信データの受信時刻を、推測基準時刻を基準として時刻に変換する手法としては、当該受信時刻と当該推測基準時刻との差を当該受信時刻から引いて変換する手法などが一例として挙げられる。
 送信タイミング推測部2031は、最速初回送信データを送信した第1の通信ノードから、最も遅い受信時刻の初回送信データを送信した第1の通信ノードまで、全ての第1の通信ノードのそれぞれから、種類毎に送信される第1のデータの第1の送信タイミングを全て推測する。ただし、送信タイミング推測部2031は、図8に一例として示すように、推測基準時刻を基準とする最小公倍数期間SKにおいて到来する全ての第1の送信タイミングを推測する。ここで、最小公倍数期間SKとは、第1の通信線Aに送信される全ての第1のデータの種類毎に予め定められた送信周期の最小公倍数に等しい期間である。
 この理由は、第1の通信線Aに送信される全ての種類の第1のデータは、上述したように種類毎に予め定められた送信開始間隔、及び送信周期で周期的に送信されるため、送信タイミング推測部2031が、これらの送信周期の最小公倍数の期間を1つの周期として繰り返し同じ第1の送信タイミングでそれぞれの種類の第1のデータが周期的に送信されるものとすることで、ネットワーク1が稼働している期間を通じて第1の通信線Aに送信される第1のデータの種類毎に到来する全ての第1の送信タイミングを記憶していることと等価となるからである。
 尚、送信タイミング推測部2031は、第1のデータの種類毎に推測した第1の送信タイミングが互いに重複する場合には、上述した調停処理をさらに考慮した第1の送信タイミングを推測してもよい。
 送信タイミング推測部2031は、推測基準時刻を基準として最小公倍数期間SKにおいて到来する全ての第1の送信タイミングを推測すると、推測した全ての第1の送信タイミングを記憶部202に記憶させる。
 決定部204は、送信タイミング推測部2031によって推測された第1の送信タイミングと、記憶部202に記憶されている前述の予定とに基づき、前述のFlexRayプロトコルにおける基準タイミングKJTを決定する。
 図9は、本実施形態に係る決定部204のより詳細な機能構成を示す機能ブロック図である。本実施形態に係る決定部204は、設定部2041と、中継タイミング推測部2042と、算出部2043と、標準偏差算出部2044と、基準タイミング決定部2045とを含む。
 設定部2041は、送信タイミング推測部2031によって推測された全ての第1の送信タイミングが記憶部202に記憶させられると、図10に一例として示すように、推測基準時刻を基準とする最小公倍数期間SKの範囲内で、仮定タイミングKTを仮定して設定する。尚、設定部2041が仮定タイミングを設定するときは、図10に一例として示すように、推測基準時刻を基準とする最小公倍数期間SKの範囲内で予め定められた時間間隔KTD毎に到来するタイミングを仮定して設定してもよいし、任意のタイミングに仮定タイミングKTを仮定して設定してもよい。設定部2041は、仮定タイミングKTを設定すると、設定した全ての仮定タイミングKTを記憶部202に記憶させる。
 設定部2041によって全ての仮定タイミングKTが記憶部202に記憶させられると、中継タイミング推測部2042は、記憶部202に記憶されている前述の予定にしたがって第2の通信線Bに接続された第2の通信ノードから第2の送信タイミングでそれぞれ送信される第2のデータの中で、上述したように定められたFC中継データが送信されるFC送信タイミングを認識する。
 図11は、図6に一例として示す中継データ情報によって示されるFlexRay-ID1、及び3のFC送信タイミングを示す図である。図11には、上述したように基準タイミングKJTを基準とする1つのコミュニケーションサイクルの期間(以下、サイクル期間CYKと称する)において予定にしたがって到来するFC送信タイミングの一例を示している。
 中継タイミング推測部2042は、基準タイミングKJTを基準とするサイクル期間CYKにおけるFC送信タイミングを認識すると、図12に一例として示すように、送信タイミング推測部2031によって推測された最小公倍数期間SKにおける第1の送信タイミングと、中継タイミング推測部2042によって認識されたFC送信タイミングとが、最小公倍数期間SKとサイクル期間CYKとの最小公倍数の期間(以下、共通公倍数期間KKと称する)において到来するタイミングをそれぞれ推測する。共通公倍数期間KKは、図12に示すように、推測基準時刻と基準タイミングKJTとをそれぞれ基準とする期間である。中継タイミング推測部2042は、推測基準時刻を基準とする共通公倍数期間KKにおいて到来する全ての第1の送信タイミング、及び基準タイミングKJTを基準とする共通公倍数期間KKにおいて到来する全てのFC送信タイミングを推測すると、推測したそれぞれのタイミングを記憶部202に記憶させる。
 算出部2043は、中継タイミング推測部2042が、共通公倍数期間KKにおいてそれぞれ到来する全ての第1の送信タイミング、及びFC送信タイミングを記憶部202に記憶させると、推測基準時刻を基準とする共通公倍数期間KKにおいて到来する第1の送信タイミングと、基準タイミングKJTを基準とする共通公倍数期間KKにおいて到来するFC送信タイミングとの重複期間を、基準タイミングKJTを基準とする共通公倍数期間KKの基準タイミングKJTを、設定部2041によって設定された仮定タイミングKTにずらしながら算出する。
 ここで、本実施形態に係る重複期間について説明する。本実施形態では、FC中継データが第2の通信ノードから送信されてから、送信されたFC中継データをデータ中継装置20で受信し、受信したFC中継データを第1のデータとして第1の通信線Aに送信して中継するまでの期間(以下、中継完了期間と称する)は、略ゼロとして考えることができる。中継完了期間を略ゼロとして考えると、FC送信タイミングと第1の送信タイミングとの重複期間とは、第1の通信線Aにおいて、第1の通信ノードとデータ中継装置20とが互いに第1のデータを送信したときに、送信された第1のデータが衝突してしまう期間と考えられる。
 図13は、算出部2043が算出する重複期間の一例を示す図である。図13には、算出部2043が算出する重複期間の一例として、推測基準時刻を基準とする共通公倍数期間KKにおいて到来する第1の送信タイミングと、当該推測基準時刻に仮定された仮定タイミングKTに一致させた基準タイミングKJTを基準とするFC送信タイミングとの重複期間を示す図である。
 算出部2043は、図13に一例として示すように、第1の送信タイミングとFC送信タイミングとを比較することによって、仮定タイミングKTに一致させた基準タイミングKJTを基準とする共通公倍数期間KKにおける重複期間の長さを重複期間毎に算出する。図13には、算出部2043が、重複期間毎に算出する長さの一例として、重複期間毎に算出された長さa1乃至a7を示している。
 また、図14は、算出部2043が算出する重複期間の他の一例を示す図である。図14には、算出部2043が算出する重複期間の他の一例として、推測基準時刻を基準とする共通公倍数期間KKにおいて到来する第1の送信タイミングと、当該推測基準時刻とは異なる時刻に設定部2041によって設定された仮定タイミングKTに一致させた基準タイミングKJTを基準とするFC送信タイミングとの重複期間を示す図である。図14には、算出部2043が、重複期間毎に算出する長さの一例として、重複期間毎に算出された長さa8乃至a18を示している。
 算出部2043は、図13、及び図14にそれぞれ示したように設定部2041によって設定された仮定タイミングKTにそれぞれ一致させた基準タイミングKJTを基準とする共通公倍数期間KKにおいて到来する第1の送信タイミングと、推測基準時刻を基準とする共通公倍数期間KKにおいて到来するFC送信タイミングとの重複期間毎の長さを当該仮定タイミングKT毎に算出して、仮定タイミングKT毎に算出した重複期間毎の長さを当該仮定タイミングKT毎に対応付けて記憶部202に記憶させる。
 標準偏差算出部2044は、算出部2043によって全ての仮定タイミングKT毎に算出された重複期間毎の長さが記憶部202に記憶されると、記憶部202に記憶させられた重複期間毎の長さの標準偏差を仮定タイミングKT毎に算出して、算出した重複期間毎の長さの標準偏差を当該仮定タイミングKT毎に対応付けて記憶部202に記憶させる。
 標準偏差算出部2044は、次に示す式(1)を用いて仮定タイミングKT毎に遅延期間毎の長さの標準偏差を算出する。
 
Figure JPOXMLDOC01-appb-I000001
 ここで、amは、1つの仮定タイミングKTに対応付けられている重複期間毎の長さの平均値である。また、kは検出した重複期間の数である。
 基準タイミング決定部2045は、標準偏差算出部2044によって全ての仮定タイミングKT毎に記憶部202に記憶させられた重複期間毎の長さの標準偏差の中で最も小さい標準偏差に対応付けられた仮定タイミングKTを特定する。基準タイミング決定部2045は、特定した仮定タイミングKTを、同期処理をするときの基準タイミングKJTとして決定し、記憶部202に記憶させる。
 以上が、決定部204の詳細な説明である。次に、中継部205について説明する。図15は、本実施形態に係る中継部205のより詳細な機能構成を示す機能ブロック図である。本実施形態に係る中継部205は、同期処理をするときの基準タイミングKJTが基準タイミング決定部2045によって決定された後、基準タイミング決定部2045によって決定された基準タイミングKJTに基づいて、上述した同期処理をする。本実施形態に係る中継部205は、同期処理部2051と、第1のデータ送受信部2052と、第2のデータ送受信部2053と、データ中継部2054とを含む。
 同期処理部2051は、FlexRayプロトコルの規定にしたがった周知の手法で、第2の通信線Bに接続されている第2の通信ノード30a乃至30dのそれぞれとデータの送受信をすることによって、記憶部202に記憶されている予定にしたがって、データ中継部2054が第2の通信ノード30a乃至30dのそれぞれと互いに第2のデータを送受信できるように同期処理をする。
 より具体的には、基準タイミング決定部2045によって基準タイミングKJTとして決定された仮定タイミングKTが記憶部202に記憶されると、同期処理部2051は、当該仮定タイミングKTを基準として、記憶部202に記憶されている予定にしたがって、第2の通信線Bに接続されている第2の通信ノード30a乃至30dのそれぞれとデータ中継部2054とが互いに第2のデータを送受信できるように、FlexRayプロトコルで規定されている周知の手法で、第2の通信ノード30a乃至30dのそれぞれとデータを送受信することによって、同期処理をする。つまり、本実施形態に係るデータ中継装置20は、FlexRayプロトコルで規定されている所謂リーディングコールドスタートノードとして機能する。同期処理部2051は、同期処理を完了すると、同期処理を完了したことを示す同期処理完了情報を生成する。また、同期処理部2051が同期処理を完了したとき、第2の通信線Bに接続された第2の通信ノード、及びデータ中継装置20は、予定にしたがった第2のデータの送受信を開始する。
 第1のデータ送受信部2052は、同期処理部2051によって同期処理完了情報が生成されたとき、生成された同期処理完了情報を取得する。第1のデータ送受信部2052は、同期処理完了情報を取得した後、第1の通信線Aから第1のデータを受信したとき、受信した第1のデータをデータ中継部2054へ取得させる。また、第1のデータ送受信部2052は、同期処理完了情報を取得した後、データ中継部2054から第1のデータを取得したとき、取得した第1のデータを第1の通信線Aに送信する。
 第2のデータ送受信部2053は、同期処理部2051によって同期処理完了情報が生成されたとき、生成された同期処理完了情報を取得する。第2のデータ送受信部2053は、同期処理完了情報を取得した後、第2の通信線Bから第2のデータを受信したとき、受信した第2のデータをデータ中継部2054へ取得させる。また、第2のデータ送受信部2053は、同期処理完了情報を取得した後、データ中継部2054から第2のデータを取得したとき、取得した第2のデータを第2の通信線Bに送信する。
 データ中継部2054は、同期処理部2051の同期処理が完了したとき、第1のデータ、及び第2のデータをそれぞれ中継する中継処理を開始する。データ中継部2054は、中継処理を開始すると、第2の通信線Bに中継するように予め定められた第1のデータの種類、基準タイミングKJTとして決定された仮定タイミングKT、予定、及び中継データ情報などの中継に必要な情報を記憶部202から読み出す。
 データ中継部2054は、中継に必要な情報を記憶部202から読み出すと、基準タイミングKJTとして決定された仮定タイミングKTと予定とに基づいて、図示しないタイマなどを用いて当該仮定タイミングKTから経過する時間を計時し、自身の第2の送信タイミングを認識する。データ中継部2054は、中継処理を開始した後、第1のデータ送受信部2052によって取得させられた第1のデータの中から、前述のCF中継データを判断して、FlexRayプロトコルにしたがった形式のフレームに変換する。CF中継データを変換すると、データ中継部2054は、計時している時間が、認識した第2の送信タイミングとなったとき、変換したCF中継データを第2のデータとして第2のデータ送受信部2053に取得させる。
 一方、データ中継部2054は、中継処理を開始してから、第2のデータ送受信部2053によって取得させられた第2のデータの中から、中継データ情報によって示される種類の第2のデータ、すなわち、FC中継データを判断して、CANプロトコルにしたがった形式のフレームに変換する。FC中継データを変換すると、データ中継部2054は、変換したFC中継データを第1のデータとして、第1のデータ送受信部2052に取得させる。
 以上が、本実施形態に係るデータ中継装置20の機能構成の説明である。尚、上述したデータ中継装置20の機能構成の内、推測部203、決定部204にそれぞれ含まれる機能構成、同期処理部2051、及びデータ中継部2054は、典型的には、CPU(Central Processing Unit)、LSI(Large Scale Integration)、及びマイクロコンピュータなどの集積回路からなる制御部であって、予め定められたプログラムを記憶部202から当該制御部が読み出して解釈実行することによって、当該制御部がそれぞれの機能構成として適宜機能することによって実現されてもよい。また、受信部201、第1のデータ送受信部2052、及び第2のデータ送受信部2053のそれぞれは、典型的には、それぞれが接続された通信線との間でデータの送受信をする通信回路などからなるインターフェース回路で実現されてもよい。また、受信部201、及び第1のデータ送受信部2052は、それぞれ同一のインターフェース回路で実現されてもよい。
 次に、上述したように制御部によって実行される処理について図16に示すフローチャートを参照しながら説明する。尚、図16に示すフローチャートは、データ中継装置20に給電されたときに自動的に開始されるものとする。
 ステップS101において、制御部は、送信タイミング推測部2031として機能し、上述したように第1の通信線Aに送信される全ての種類の第1のデータの第1の送信タイミングを認識し、認識した第1の送信タイミングを記憶部202に記憶させる。制御部は、ステップS101の処理を完了すると、ステップS102へ処理を進める。
 ステップS102において、制御部は、設定部2041として機能し、上述したように仮定タイミングKTを仮定して設定し、設定した仮定タイミングKTを全て記憶部202に記憶させる。制御部は、ステップS102の処理を完了すると、ステップS103へ処理を進める。
 ステップS103において、制御部は、中継タイミング推測部2042として機能し、上述したように第1の送信タイミング、及びFC送信タイミングをそれぞれ推測し、推測したそれぞれのタイミングを記憶部202に記憶させる。制御部は、ステップS103の処理を完了すると、ステップS104へ処理を進める。
 ステップS104において、制御部は、算出部2043として機能し、上述したように、仮定タイミングKT毎の重複期間毎の長さをそれぞれ算出し、仮定タイミングKT毎に算出した重複期間毎の長さを対応付けて記憶部202に記憶させる。制御部は、ステップS104の処理を完了すると、ステップS105へ処理を進める。
 ステップS105において、制御部は、標準偏差算出部2044として機能し、上述したように、仮定タイミングKT毎に算出された重複期間毎の長さの標準偏差を算出し、仮定タイミングKT毎に対応付けて記憶部202に記憶させる。制御部は、ステップS105の処理を完了すると、ステップS106へ処理を進める。
 ステップS106において、制御部は、基準タイミング決定部2045として機能し、上述したように、仮定タイミングKT毎に算出された重複期間毎の長さの標準偏差の中で最も小さい重複期間毎の長さの標準偏差に対応付けられている仮定タイミングKTを基準タイミングKJTとして決定し、決定した仮定タイミングKTを記憶部202に記憶させる。制御部は、ステップS106の処理を完了すると、ステップS107へ処理を進める。
 ステップS107において、制御部は、同期処理部2051として機能し、上述したように、第2の通信線Bに接続されている第2の通信ノード30a乃至30dのそれぞれと、データ中継部2054とが、記憶部202に基準タイミングKJTとして記憶されている仮定タイミングKTを基準とした予定にしたがって順番に第2のデータを送受信できるように同期処理をした後、同期処理完了情報を生成する。制御部は、ステップS107の処理を完了すると、ステップS108へ処理を進める。
 ステップS108において、制御部は、データ中継部2054として機能し、上述したように中継処理を開始する。制御部は、ステップS108の処理を完了すると、図13のフローチャートに示す処理を終了する。ただし、制御部は、ステップS108において開始した中継処理は、図16のフローチャートに示す処理を終了した後も継続してするものとする。
 以上より、本実施形態に係るデータ中継装置20によれば、図13、及び図14を参照して説明した重複期間毎の長さの総和が最も小さくなるように基準タイミングKJTを決定するため、前述の調停処理によって生じる中継遅延時間が大幅に遅れることを防げる。
 (第1の実施形態の第1の変形例)
 上述した第1の実施形態で説明した第1のデータ情報は、CAN-IDと、情報の部類と、送信周期と、送信開始間隔とを第1のデータの種類毎に対応付けて示すものであった。しかしながら、送信開始間隔が第1のデータ情報によって示されていなくても、第1の実施形態に係る送信タイミング推測部2031と同様に第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される全ての第1のデータの種類毎に第1の送信タイミングを推測することができる。
 図17は、第1の実施形態の第1の変形例に係るデータ中継装置21の詳細な機能構成を示す機能ブロック図である。本変形例に係るデータ中継装置21は、第1の実施形態に係るデータ中継装置20と比較して、記憶部202の代わりに記憶部206を備え、推測部203の代わりに推測部207を備える点が相違する。したがって、本変形例に係るデータ中継装置21と、第1の実施形態に係るデータ中継装置20との機能構成の中で同一の機能構成については同一の参照符号を付し、説明を省略する。
 本変形例に係る記憶部206は、図18に一例として示すように、第10の通信ノード10a乃至10d、CAN-ID1乃至9、情報の部類D1乃至D9、及び送信周期TD1乃至TD9を第1のデータの種類毎に対応付けて示す第1のデータ情報を予め記憶している。本変形例に係る記憶部206に記憶される第1のデータ情報は、図18から明らかなように、第1の実施形態に係る記憶部202に記憶させていた第1のデータ情報のように第1のデータの種類毎の送信開始間隔を示していない。また、本変形例に係る記憶部206がその他に記憶している情報は、第1の実施形態に係る記憶部202と同様である。
 図19は、本変形例に係る推測部207のより詳細な機能構成を示す機能ブロック図である。本変形例に係る推測部207は、初回送信タイミング認識部2071と、送信タイミング推測部2072とを含む。
 初回送信タイミング認識部2071は、受信部201によって第1の通信線Aから第1のデータが受信されたとき、受信された第1のデータを取得する。初回送信タイミング認識部2071は、データ中継装置21が動作を開始してから、受信部201から第1のデータを取得する度に、当該第1のデータを取得したときの時刻を受信時刻として対応付けて記憶部206に記憶させる。また、初回送信タイミング認識部2071は、データ中継装置21が動作を開始してから、受信部201から第1のデータを取得する度に、第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される第1のデータを少なくとも1度受信したか否かを判断する。
 より具体的には、初回送信タイミング認識部2071は、データ中継装置21が動作を開始してから、受信部201によって取得させられた第1のデータを受信時刻と対応付けて記憶部206に記憶させる度に、記憶部206に記憶されている第1のデータ情報と、受信部201から取得して記憶部206に記憶させたそれぞれの第1のデータの種類とを比較する。初回送信タイミング認識部2071は、記憶部206に記憶させたそれぞれの第1のデータの種類と、第1のデータ情報とを比較することにより、当該第1のデータ情報によって示される全ての種類の第1のデータがそれぞれ少なくとも1つ記憶部206に記憶されているか否かを判断する。
 初回送信タイミング認識部2071は、第1のデータ情報によって示される全ての種類の第1のデータがそれぞれ少なくとも1つ記憶部206に記憶されていると判断すると、それぞれの種類の第1のデータを始めに受信した受信時刻(以下、初回受信時刻と称する)に基づき、第1のデータの種類毎に第1の実施形態で説明した送信開始間隔を算出する。
 第1のデータの種類毎に送信開始間隔を算出するとき、初回送信タイミング認識部2071は、まず、第1のデータ情報を参照しながら、記憶部206に記憶されている第1のデータを同一の第1の通信ノード毎に纏めてグループ化する。1つのグループに纏められた第1のデータは、同一の第1の通信ノードから送信された第1のデータとなる。記憶部206に記憶されている第1のデータをグループ化すると、初回送信タイミング認識部2071は、グループ毎に纏められた第1のデータの中から受信時刻の最も早い第1のデータをグループ毎に特定する。グループ毎に特定された受信時刻の最も早い第1のデータは、グループ毎に纏められた第1のデータをそれぞれ送信した第1の通信ノードの初回送信データである。
 第1の通信線Aに接続された第1の通信ノード毎の初回送信データを特定すると、初回送信タイミング認識部2071は、グループ毎に纏めた第1のデータの初回受信時刻とそれぞれのグループに属する初回送信データの初回受信時刻との差をグループ毎に纏められた第1のデータの送信開始間隔として算出して、第1のデータの種類毎に対応付けて記憶部206に記憶されている第1のデータ情報に追加して記憶させる。尚、初回送信タイミング認識部2071が送信開始間隔を算出するとき、初回送信データの初回受信時刻と第1のデータの初回受信時刻との差を第1のデータの種類毎に算出するため、初回送信データの送信開始間隔は0となる。
 初回送信タイミング認識部2071が、第1のデータの種類毎に送信開始間隔を対応付けて記憶部206に追加して記憶させると、送信タイミング推測部2072は、第1の実施形態に係る送信タイミング推測部2031と同様に、第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される全ての第1のデータの種類毎に第1の送信タイミングを推測する。
 より詳細には、初回送信タイミング認識部2071が第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される全ての種類毎の第1のデータの送信開始間隔を上述したように算出したときには、第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される初回送信データを全て受信したときである。したがって、本変形例に係る送信タイミング推測部2072は、初回送信タイミング認識部2071が全ての種類の第1のデータの送信開始間隔を算出したときに、第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される初回送信データを全て受信したと判断して、第1の実施形態に係る送信タイミング推測部2031と同様に第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される全ての種類の第1のデータの第1の送信タイミングを推測する。
 以上より、本変形例に係るデータ中継装置21によれば、第1の実施形態で説明した第1のデータ情報として第1のデータの種類毎に送信開始間隔を記憶部206に記憶させなくても、送信開始間隔を第1のデータの種類毎に算出した後、第1の実施形態と同様に、第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される全ての種類の第1のデータの送信タイミングを推測できる。
 (第1の実施形態の第2の変形例)
 上述した第1の実施形態の第1の変形例では、送信開始間隔が第1のデータ情報として記憶されていない場合に、第1の実施形態と同様に、第1の通信線Aに接続された全ての第1の通信ノードからそれぞれ送信される第1のデータの全ての種類毎に第1の送信タイミングを推測する変形例であった。しかしながら、送信開始間隔、及び送信周期がそれぞれ第1のデータ情報によって示されていなくても、第1の実施形態に係る送信タイミング推測部2031と同様に第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される全ての第1のデータの種類毎に第1の送信タイミングを推測することができる。
 図20は、第1の実施形態の第2の変形例に係るデータ中継装置22の詳細な機能構成を示す機能ブロック図である。本変形例に係るデータ中継装置22は、第1の実施形態に係るデータ中継装置22と比較して、記憶部202の代わりに記憶部208を備え、推測部203の代わりに推測部209を備える点が相違する。したがって、本変形例に係るデータ中継装置22と、第1の実施形態に係るデータ中継装置20との機能構成の中で同一の機能構成については同一の参照符号を付し、説明を省略する。
 本変形例に係る記憶部208には、図21に一例として示すように、第1の通信ノード10a乃至10d、CAN-ID1乃至9、及び情報の部類D1乃至D9を第1のデータの種類毎に対応付けて予め記憶している。本変形例に係る記憶部208が記憶している第1のデータ情報は、第1の実施形態に係る記憶部202が記憶している第1のデータ情報と比較すると、送信開始間隔、及び送信周期をそれぞれ第1のデータの種類毎に示さない点が相違する。また、本変形例に係る記憶部208がその他に記憶している情報は、第1の実施形態に係る記憶部202と同様である。
 図22は、本変形例に係る推測部209のより詳細な機能構成を示す機能ブロック図である。本変形例に係る推測部209は、初回送信タイミング認識部2091と、周期認識部2092と、送信タイミング推測部2093とを含む。
 初回送信タイミング認識部2091は、第1の実施形態の第1の変形例に係る初回送信タイミング認識部2071と同様に第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される第1のデータの送信開始間隔を種類毎に算出して、記憶部208に記憶されている第1のデータ情報に追加して記憶させる。
 周期認識部2092は、初回送信タイミング認識部2091によって、第1のデータの種類毎に算出された送信開始間隔が記憶部208に記憶させられると、第1の通信線Aに接続されている第1の通信ノードからそれぞれ送信される第1のデータの全ての種類毎に送信周期を算出する。
 周期認識部2092は、送信周期を算出するとき、まず、同一の種類の第1のデータが少なくとも2つ受信されたか否かを、第1のデータの全ての種類について判断する。周期認識部2092は、同一の種類の第1のデータが少なくとも2つ記憶部208に記憶されているか否かを判断することによって、同一の種類の第1のデータが少なくとも2つ受信されたか否かを判断する。周期認識部2092は、全ての種類の第1のデータについて、少なくとも2回受信されていないと判断したとき、全ての種類の第1のデータについて、少なくとも2回受信されるまで待機する。一方、周期認識部2092は、全ての種類の第1のデータについて、少なくとも2回受信されたと判断したとき、第1のデータの種類毎に2回受信された第1のデータの受信時刻に基づいて、第1のデータの種類毎の送信周期を算出する。
 第1のデータの送信周期を算出するとき、周期認識部2092は、同一の種類の第1のデータの受信時刻の内、始めに受信した第1のデータの受信時刻と、次に受信した第1のデータの受信時刻との時間間隔を当該種類の第1のデータの送信周期として算出する。周期認識部2092は、全ての第1のデータの種類毎に送信周期を算出すると、算出した送信周期を第1のデータの種類毎に対応付けて記憶部208に記憶されている第1のデータ情報に追加して記憶させる。
 周期認識部2092が、第1のデータの種類毎に送信開始間隔を対応付けて記憶部208に記憶されている第1のデータ情報に追加して記憶させると、送信タイミング推測部2093は、第1の実施形態に係る送信タイミング推測部2031と同様に、第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される全ての第1のデータの送信タイミングを推測する。
 より詳細には、周期認識部2092が、全ての第1のデータの種類毎に送信周期を算出したときは、第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される初回送信データを全て受信したときである。したがって、本変形例に係る送信タイミング推測部2093は、周期認識部2092が全ての種類毎の第1のデータの送信周期を算出したときに、第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される初回送信データを全て受信したと判断して、第1の実施形態に係る送信タイミング推測部2031と同様に第1の通信線Aに接続されている全ての第1の通信ノードからそれぞれ送信される全ての種類毎に第1のデータの第1の送信タイミングを推測する。
 以上より、本変形例に係るデータ中継装置22によれば、第1の実施形態で説明した第1のデータ情報として第1のデータの種類毎に送信開始間隔、及び送信周期をそれぞれ記憶部208に記憶させなくても、送信開始間隔、及び送信周期を第1のデータの種類毎に算出した後、第1の実施形態と同様に、第1の通信線Aに接続された第1の通信ノードからそれぞれ送信される全ての種類の第1のデータの送信タイミングを推測できる。
 (第1の実施形態の第3の変形例)
 第1の実施形態では、仮定タイミングKT毎に算出された重複期間毎の長さの標準偏差に基づいて基準タイミングKJTとする仮定タイミングKTを決定していた。しかしながら、本発明では、仮定タイミングKT毎に算出した重複期間毎の長さの総和に基づいて基準タイミングKJTとする仮定タイミングKTを決定してもよい。
 図23は、第1の実施形態の第3の変形例に係るデータ中継装置23のより詳細な機能構成を示す機能ブロック図である。本変形例に係るデータ中継装置23は、第1の実施形態に係るデータ中継装置20と比較して、記憶部202に代えて記憶部210を備え、決定部204に代えて決定部211を備える点が相違する。したがって、本実施形態に係るデー中継装置23において、第1の実施形態に係るデータ中継装置20と同一の機能構成については、同一の参照符号を付し、説明を省略する。
 記憶部210は、第1の実施形態に係る記憶部202と同様の情報を記憶する。ただし、本変形例に係る記憶部210が記憶させられる情報の中では、第1の実施形態に係る決定部204によって記憶させられる情報に代えて、本変形例に係る決定部211によって記憶させられる情報である点のみが相違する。
 図24は、本変形例に係る決定部211のより詳細な機能構成を示す機能ブロック図である。本変形例に係る決定部211は、第1の実施形態に係る標準偏差算出部2044、及び基準タイミング決定部2045に代えて、総和算出部2111、及び基準タイミング決定部2112を含む点が相違する。したがって、本変形例に係る決定部211において、第1の実施形態に係る決定部204と同一の機能構成については、同一の参照符号を付し、説明を省略する。
 総和算出部2114は、算出部2043によって全ての仮定タイミングKT毎の重複期間毎の長さが記憶部210に記憶されると、仮定タイミングKT毎に対応付けて記憶部210に記憶されている重複期間毎の長さの総和を仮定タイミングKT毎に算出して、算出した重複期間毎の長さの総和を当該仮定タイミングKT毎に対応付けて記憶部210に記憶させる。
 基準タイミング決定部2112は、総和算出部2111によって全ての仮定タイミングKT毎に算出された重複期間毎の長さの総和が記憶部210に記憶されると、記憶させられた重複期間毎の長さの総和の中で最も小さい重複期間毎の長さの総和に対応付けられた仮定タイミングKTを特定する。
 最も小さい重複期間の長さの総和に対応付けられた仮定タイミングKTを特定すると、基準タイミング決定部2112は、特定した仮定タイミングKTを、同期処理をするときの基準タイミングKJTとして決定し、記憶部210に記憶させる。
 以上より、本変形例に係るデータ中継装置23によれば、仮定タイミングKT毎に算出した重複期間毎の長さの総和が最も小さくなるように基準タイミングKJTを決定して、中継遅延時間が大幅に長くなることを防げる。
 (第2の実施形態)
 第2の実施形態において、ネットワークの構成は、第1の実施形態で説明した図1に示すネットワーク1と同様の構成であり、第1のネットワークではイベントトリガ型の通信プロトコルにしたがって第1のデータが送受信され、第2のネットワークではタイムトリガ型の通信プロトコルにしたがって第2のデータが送受信されるものとする。また、本実施形態においても、第1の実施形態と同様にイベントトリガ型の通信プロトコルの一例としてCANプロトコルを用いるものとし、タイムトリガ型の通信プロトコルの一例としてFlexRayプロトコルを用いるものとする。
 第1の実施形態では、第2の通信線Bから第1の通信線AにFC中継データを中継するとき、すなわち、FlexRayプロトコルを用いた第2のネットワークからCANプロトコルを用いた第1のネットワークへFC中継データを中継するときに、調停処理によって生じる中継遅延時間が大幅に長くならないように、第2のネットワークにおける基準タイミングKJTを決定していた。
 これに対して、第2の実施形態では、データ中継装置が、CANプロトコルを用いた第1のネットワークからFlexRayプロトコルを用いた第2のネットワークへ中継するCF中継データを受信してから、受信したCF中継データを第2の通信線Bに第2のデータとして送信して中継するときに生じる中継遅延時間が大幅に長くならないように、第2のネットワークにおける基準タイミングKJTを決定する。
 より詳細には、第1の実施形態で説明したように、第2のネットワークを構成する第2の通信ノード、或いはデータ中継装置は、予め定められた予定にしたがって、データを送受信する。これに対して、第1のネットワークでは、第1の通信ノード、或いはデータ中継装置は、送信の必要が生じたときに任意のタイミングでデータを送受信する。したがって、第1のネットワークからデータ中継装置でCF中継データを受信してから、第2のネットワークにおいて当該データ中継装置に定められた順番で当該CF中継データを送信して中継する第2の送信タイミング(以下、CF中継タイミングと称する)が到来するまで、当該CF中継データの中継ができない時間が中継遅延時間として生じる。
 このように生じる中継遅延時間は、第2のネットワークにおいてデータ中継装置に定められた第2の送信タイミングが、第1の実施形態で説明した基準タイミングKJTを基準として予め定められた予定にしたがっているため、当該基準タイミングKJTを変化させることによって変化する。
 したがって、本実施形態では、第1の通信線Aに接続されている第1の通信ノードからそれぞれ送信される全ての種類毎の第1のデータの第1の送信タイミングに基づいて、第1のネットワークから第2のネットワークへCF中継データを中継するときの中継遅延時間が大幅にならないように、第2のネットワークにおける基準タイミングKJTを決定する。
 図25は、第2の実施形態に係るデータ中継装置24のより詳細な機能構成を示す機能ブロック図である。本実施形態に係るデータ中継装置24は、第1の実施形態に係るデータ中継装置20と比較して、記憶部202に代えて記憶部212を備え、決定部204に代えて決定部213を備える点が相違する。したがって、本実施形態に係るデータ中継装置24において、第1の実施形態に係るデータ中継装置20と同一の機能構成については、同一の参照符号を付し、説明を省略する。
 記憶部212は、第1の実施形態で説明した第1のデータ情報と、予定と、第1の通信ノード10a乃至10dから第1の通信線Aにそれぞれ送信される第1のデータの中で、第2の通信線Bに第2のデータとして送信して中継するように予め定められた種類の第1のデータを前述のCF中継データとして示す中継データ情報を記憶している。図26は、記憶部212に記憶されている中継データ情報の一例を示す図である。図26に示すように、本実施形態では、第1の通信線Aから第2の通信線Bに中継する種類の第1のデータをCF中継データとして示す中継データ情報が記憶部212に記憶されている。さらに、本実施形態に係る記憶部212に記憶される情報には、推測部203、及び後述する決定部213によって記憶させられる情報もある。
 決定部213は、送信タイミング推測部2031によって推測された第1の送信タイミングと、記憶部212に記憶されている前述の予定とに基づき、前述のFlexRayプロトコルにおける基準タイミングKJTを決定する。
 図27は、本実施形態に係る決定部213のより詳細な構成を示す機能ブロック図である。本実施形態に係る決定部213は、設定部2131と、中継タイミング推測部2132と、算出部2133と、標準偏差算出部2134と、基準タイミング決定部2135とを含む。
 設定部2131は、第1の実施形態で説明した設定部2041と同一の機能構成であって、設定部2041と同様に仮定タイミングKTを仮定して設定し、設定した全ての仮定タイミングKTを記憶部212に記憶させる。
 中継タイミング推測部2132は、設定部2131によって全ての仮定タイミングKTが記憶部212に記憶させられると、送信タイミング推測部2031によって記憶部212に記憶させられた全ての第1の送信タイミングの中でCF中継データの第1の送信タイミングをCF送信タイミングとして推測する。
 図28は、図26に一例として示す中継データ情報によって示される情報の種類B、E、F、HのCF送信タイミングの一例を示す図である。図28には、上述したように送信タイミング推測部2031によって推測された第1の送信タイミングの内、推測基準タイミングを基準とする1つの最小公倍数期間SKにおいて到来するCF送信タイミングの一例を示している。
 中継タイミング推測部2132は、推測基準時刻を基準とする最小公倍数期間SKにおけるCF送信タイミングを認識すると、記憶部212に記憶されている予定に基づき、データ中継装置24に予め割り当てられた基準タイミングKJTを基準とする第2の送信タイミングも認識する。図29は、基準タイミングKJTを基準とする1つのサイクル期間CYKにおいて上述したように当該基準タイミングKJTを基準とする予定にしたがって到来するデータ中継装置24に予め割り当てられた第2の送信タイミングの一例を示している。
 中継タイミング推測部2132は、基準タイミングKJTを基準とするサイクル期間CYKにおける第2の送信タイミングと、推測基準時刻を基準とするCF送信タイミングとをそれぞれ認識すると、図30に一例として示すように、認識した第2の送信タイミングと、CF送信タイミングとが、前述の共通公倍数期間KKにおいて到来するタイミングをそれぞれ推測する。中継タイミング推測部2132は、推測基準時刻を基準とする共通公倍数期間KKにおいて到来する全ての第2の送信タイミング、及びCF送信タイミングを推測すると、推測したそれぞれのタイミングを記憶部212に記憶させる。
 算出部2133は、中継タイミング推測部2132が、共通公倍数期間KKにおいてそれぞれ到来する全ての第2の送信タイミング、及びCF送信タイミングを記憶部212に記憶させると、推測基準時刻を基準とする共通公倍数期間KKにおいて到来するCF送信タイミングと、基準タイミングKJTを基準とする共通公倍数期間KKにおいて到来する第2の送信タイミングとの遅延期間を、基準タイミングKJTを基準とする共通公倍数期間KKの基準タイミングKJTを、設定部2131によって設定された仮定タイミングKTにずらしながら算出する。
 図31は、算出部2133が算出する遅延期間の一例を示す図である。図31には、算出部2133が算出する遅延期間の一例として、推測基準時刻を基準とする共通公倍数期間KKにおいて到来するCF送信タイミングと、当該推測基準時刻に仮定された仮定タイミングKTに一致させた基準タイミングKJTを基準とする第2の送信タイミングとの遅延期間を示す図である。
 算出部2133は、図31に一例として示すように、第2の送信タイミングとCF送信タイミングとを比較することによって、仮定タイミングKTに一致させた基準タイミングKJTを基準とする共通公倍数期間KKにおける遅延期間の長さを遅延期間毎に算出する。図31には、算出部2133が、遅延期間毎に算出する長さの一例として、遅延期間毎に算出された長さDL1乃至DL7を示している。
 また、算出部2133は、推測基準時刻を基準とする共通公倍数期間KKにおいて到来するCF送信タイミングと、当対推測基準時刻とは異なる時刻に設定部2131によって設定された仮定タイミングKTに一致させた基準タイミングKJTを基準とする第2の送信タイミングとの遅延期間毎の長さを当該仮定タイミングKT毎に算出して、仮定タイミングKT毎に算出した遅延期間毎の長さを当該仮定タイミングKT毎に対応付けて記憶部212に記憶させる。
 標準偏差算出部2134は、算出部2133によって全ての仮定タイミングKT毎に算出された遅延期間毎の長さが記憶部212に記憶されると、記憶部212に記憶させられた遅延期間毎の長さの標準偏差を仮定タイミングKT毎に算出して、算出した遅延期間毎の長さの標準偏差を当該仮定タイミングKT毎に対応付けて記憶部212に記憶させる。
 標準偏差算出部2134は、次に示す式(1)を用いて仮定タイミングKT毎に遅延期間毎の長さの標準偏差を算出する。
 
Figure JPOXMLDOC01-appb-I000002
 ここで、DLmは、1つの仮定タイミングKTに対応付けられている遅延期間の平均値である。また、nは検出した遅延期間の数である。
 基準タイミング決定部2135は、標準偏差算出部2134によって全ての仮定タイミングKT毎に記憶部212に記憶させられた遅延期間毎の長さの標準偏差の中で最も小さい標準偏差に対応付けられた仮定タイミングKTを特定する。基準タイミング決定部2135は、特定した仮定タイミングKTを、同期処理をするときの基準タイミングKJTとして決定し、記憶部212に記憶させる。
 以上が、本実施形態に係るデータ中継装置24の機能構成の説明である。尚、上述したデータ中継装置24の機能構成の内、推測部203、決定部213にそれぞれ含まれる機能構成、同期処理部2051、及びデータ中継部2054は、第1の実施形態と同様に、典型的には、CPU、LSI、及びマイクロコンピュータなどの集積回路からなる制御部であって、予め定められたプログラムを記憶部212から当該制御部が読み出して解釈実行することによって、当該制御部がそれぞれの機能構成として適宜機能することによって実現されてもよい。
 次に、上述したように制御部によって実行される処理について図32に示すフローチャートを参照しながら説明する。尚、図32に示すフローチャートに示す処理は、データ中継装置24に給電されたときに自動的に開始されるものとする。また、図32のフローチャートに示す処理の内、第1の実施形態で説明した図16のフローチャートに示す処理と同一の処理については、同一の参照符号を付し、説明を省略する。
 第2の実施形態に係る制御部は、ステップS103の処理を完了すると、ステップS201へ処理を進める。ステップS201において、制御部は、算出部2133として機能し、上述したように、仮定タイミングKT毎の遅延期間毎の長さをそれぞれ算出し、仮定タイミングKT毎に算出した遅延期間毎の長さを対応付けて記憶部212に記憶させる。制御部は、ステップS201の処理を完了すると、ステップS202へ処理を進める。
 ステップS202において、制御部は、標準偏差算出部2134として機能し、上述したように、仮定タイミングKT毎に算出された遅延期間毎の長さの標準偏差を算出し、仮定タイミングKT毎に対応付けて記憶部212に記憶させる。制御部は、ステップS202の処理を完了すると、ステップS203へ処理を進める。
 ステップS203において、制御部は、基準タイミング決定部2135として機能し、上述したように、仮定タイミングKT毎に算出された遅延期間毎の長さの標準偏差の中で最も小さい遅延期間毎の長さの標準偏差に対応付けられている仮定タイミングKTを基準タイミングKJTとして決定し、決定した仮定タイミングKTを記憶部212に記憶させる。制御部は、ステップS203の処理を完了すると、ステップS107へ処理を進める。
 以上より、本実施形態に係るデータ中継装置24によれば、第1のネットワークから第2のネットワークへデータを中継するときの遅延期間の標準偏差が最も小さくなるように基準タイミングKJTを決定するので、当該遅延期間が大幅に長くなることを防げる。
 尚、第1の実施形態に係るデータ中継装置20を、第1の実施形態の第1の変形例に係るデータ中継装置21、或いは第1の実施形態の第2の変形例に係るデータ中継装置22に変形したのと同様に、第2の実施形態に係るデータ中継装置24を変形してもよい。
 また、第1の実施形態に係るデータ中継装置20で重複期間毎の長さの標準偏差に基づいて基準タイミングKJTを決定していたのを、第1の実施形態の第3の変形例で重複期間毎の長さの総和に基づいて基準タイミングKJTを決定するように変形したのと同様に、第2の実施形態に係るデータ中継装置24で遅延期間毎の長さの標準偏差に基づいて基準タイミングKJTを決定していたのを、遅延期間毎の長さの総和に基づいて基準タイミングKJTを決定するように変形してもよい。
 また、上述した第1の実施形態では、タイムトリガ型の通信プロトコルを用いた第2のネットワークからイベントトリガ型の通信プロトコルを用いた第1のネットワークへFC中継データを中継するときの重複期間が大幅に長くならないように基準タイミングKJTを決定した。一方、上述した第2の実施形態では、イベントトリガ型の通信プロトコルを用いた第1のネットワークからタイムトリガ型の通信プロトコルを用いた第2のネットワークへCF中継データを中継するときの遅延期間が大幅に長くならないように基準タイミングを決定した。そして、本発明では、前述の重複期間と、前述の遅延期間とが、互いに大幅に長くならないように、第1の実施形態と第2の実施形態とを組み合わせて、重複期間と遅延期間とをそれぞれ算出し、算出したそれぞれの期間が任意の要求を満たすように基準タイミングKJTを決定するようにしてもよい。
 また、上述した全ての実施形態、及び全ての変形例において、例えば、共通公倍数期間KKの基準となる時刻から、予め定められた期間内だけで仮定タイミングKTを仮定することにより、仮定タイミングKT毎に算出する重複期間毎の長さ、或いは遅延期間毎の長さを算出するときの制御部の処理負荷を軽減することができる。
 また、上述した中継遅延時間、重複期間、及び遅延期間は、データ中継装置でCF中継データ、またはFC中継データが中継されるまで当該データ中継装置に滞留する滞留期間として考えることができる。
 また、FlexRayプロトコルで得られる通信速度は、CANプロトコルで得られる通信速度よりも早い。したがって、本発明に係るデータ中継装置を自動車などの移動体に適用し、CANプロトコルを用いたネットワークと、FlexRayプロトコルを用いたネットワークとの間のデータの中継をすることにより、自動車などの移動体のより高度な制御をすることができる。例えば、従来、自動車などの移動体には、対象物(対向車、歩行者、及び路上設置物など)との相対距離、及び相対速度などを測定するレーダ装置や、運転者の状態(例えば、居眠り状態、及び脇見運転状態など)を運転者の顔を撮像した画像に基づいて判断するシステムなどが搭載されている。
 そして、このような装置、及びシステムなどを組み合わせて、例えば、対象物との衝突を予測し、予測結果と運転者の状態とに基づいて、運転者に警報を発する衝突予防システムなどが実用化されてきた。そして、本発明で説明したFlexRayプロトコルなどのタイムトリガ型の通信プロトコルを用いれば、前述の予測結果と運転者の状態とに基づいて、例えば、自車両と対向車との衝突の可能性を判断したときに、自動的に転舵輪を操舵するなどのより高度な制御をすることが可能となる。一方で、本発明で説明したCANプロトコルも既に自動車などの移動体におけるネットワークで多く用いられている。したがって、本発明に係るデータ中継装置によれば、CANプロトコルなどのイベントトリガ型の通信プロトコルを用いたネットワークと、FlexRayプロトコルなどのタイムトリガ型の通信プロトコルを用いたネットワークとの間で中継遅延時間が大幅に長くなることを防げるので、既に用いられている通信プロトコルを用いるネットワークと、より高度な制御を可能とする通信プロトコルを用いるネットワークとを同一の移動体内で構成できる。
 以上、本発明を詳細に説明してきたが、上述の説明はあらゆる点において本発明の一例にすぎず、その範囲を限定しようとするものではない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。
 本発明によれば、互いに異なる通信プロトコルで送受信されるデータを中継するときでも大幅な遅延が生じることを防げるデータ中継装置を提供でき、例えば、自動車などの移動体内に構成されるネットワークでデータを中継するデータ中継装置などに利用できる。

Claims (10)

  1.  イベントトリガ型の通信プロトコルにしたがって第1のデータが送受信される第1の通信線と、タイムトリガ型の通信プロトコルにしたがって第2のデータが送受信される第2の通信線とに接続されたデータ中継装置であって、
     前記第1の通信線に接続された第1の通信ノードから送信される前記第1のデータを受信したタイミングを基準として、前記第1の通信線で送受信される全ての前記第1のデータの第1の送信タイミングを推測する推測手段と、
     前記第2のデータが前記タイムトリガ型の通信プロトコルにしたがって送受信されるときの予め定められた予定を記憶する予定記憶手段と、
     前記推測手段によって推測された前記第1の送信タイミングと、前記予定記憶手段に記憶されている前記予定とに基づき、前記第1の通信線、及び前記第2の通信線のいずれか一方にデータを中継するときの滞留期間を算出することにより、当該予定の基準タイミングを決定する決定手段と、
     前記決定手段によって決定された前記基準タイミングから前記予定にしたがって前記第2のデータを送受信するように、前記第2の通信線に接続された第2の通信ノードとの同期処理をする同期処理手段とを備える、データ中継装置。
  2.  前記第1の通信ノードのそれぞれは、互いに異なる1以上の種類の前記第1のデータをそれぞれ予め定められた送信周期で送信し、
     前記推測手段は、
      前記第1のデータを前記種類毎に最初に受信したタイミングを初回受信タイミングとして当該種類毎に認識する初回受信タイミング認識手段と、
      前記第1のデータを前記種類毎に2度連続して受信したときの時間間隔を前記送信周期として当該種類毎に認識する周期認識手段と、
      前記初回受信タイミングと前記送信周期とを前記種類毎に対応付け、前記種類毎の前記初回受信タイミングを基準として、当該初回受信タイミングに当該種類毎に対応付けられた前記送信周期で到来する全てのタイミングを前記第1の送信タイミングとして推測する送信タイミング推測手段とを含む、請求項1に記載のデータ中継装置。
  3.  前記第1の通信ノードのそれぞれは、互いに異なる1以上の種類の前記第1のデータを当該種類毎に予め定められた送信周期で送信し、
     前記送信周期を前記種類毎に予め記憶する周期記憶手段をさらに備え、
     前記推測手段は、
      前記第1のデータを前記種類毎に最初に受信したタイミングを初回受信タイミングとして当該種類毎に認識する初回受信タイミング認識手段と、
      前記初回受信タイミングと前記送信周期とを前記種類毎に対応付け、前記種類毎の前記初回受信タイミングを基準として、当該初回受信タイミングに当該種類毎に対応付けられた前記送信周期で到来する全てのタイミングを前記第1の送信タイミングとして推測する送信タイミング推測手段とを含む、請求項1に記載のデータ中継装置。
  4.  前記第1の通信ノードのそれぞれは、互いに異なる1以上の種類の前記第1のデータを、最初に送信するように予め定められた前記種類の前記第1のデータを送信するタイミングを基準として、当該種類毎に予め定められた送信開始間隔が経過したときから、当該種類毎に予め定められた送信周期で送信し、
     前記送信周期を前記種類毎に予め記憶する周期記憶手段と、
     前記第1の通信ノードのそれぞれに前記種類毎に予め定められた前記送信開始間隔を記憶する送信開始間隔記憶手段とをさらに備え、
     前記推測手段は、
      前記第1のノードのそれぞれから最初に前記第1のデータを受信したときを基準として、前記第1の通信ノードのそれぞれに前記種類毎に予め定められた前記送信開始間隔から当該種類毎に予め定められた前記送信周期で到来する全てのタイミングを前記第1の送信タイミングとして推測する送信タイミング推測手段を含む、請求項1に記載のデータ中継装置。
  5.  前記決定手段は、
      予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、
      前記仮定タイミングから前記予定にしたがって前記第2のデータを送受信するように前記第2の通信ノードとの同期処理をしたときに、前記第2の通信線から前記第2のデータを受信して前記第1の通信線に前記第1のデータとして送信して中継する中継タイミングを、前記設定手段によって設定された前記仮定タイミング毎に推測する中継タイミング推測手段と、
      前記推測手段によって推測された前記第1の送信タイミングと、前記中継タイミング推測手段によって推測された前記中継タイミングとが重複することによって生じる重複期間を、前記中継タイミング推測手段が前記中継タイミングを推測するのに用いた前記仮定タイミング毎に前記滞留期間として算出する算出手段と、
      前記算出手段が前記仮定タイミング毎に算出した前記重複期間の総和をそれぞれ算出する総和算出手段と、
      前記総和算出手段によって前記仮定タイミング毎に算出された前記重複期間の総和の中で最も小さい前記重複期間の総和が前記総和算出手段によって算出された前記仮定タイミングを前記基準タイミングとして決定する基準タイミング決定手段とを含む、請求項1に記載のデータ中継装置。
  6.  前記決定手段は、
      予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、
      前記仮定タイミングから前記予定にしたがって前記第2のデータを送受信するように前記第2の通信ノードとの同期処理をしたときに、前記第2の通信線から前記第2のデータを受信して前記第1の通信線に前記第1のデータとして送信して中継する中継タイミングを、前記設定手段によって設定された前記仮定タイミング毎に推測する中継タイミング推測手段と、
      前記推測手段によって推測された前記第1の送信タイミングと、前記中継タイミング推測手段によって推測された前記中継タイミングとが重複することによって生じる重複期間を、前記中継タイミング推測手段が前記中継タイミングを推測するのに用いた前記仮定タイミング毎に前記滞留期間として算出する算出手段と、
      前記算出手段が前記仮定タイミング毎に算出した前記重複期間の標準偏差を算出する標準偏差算出手段と、
      前記標準偏差算出手段によって前記仮定タイミング毎に算出された前記重複期間の標準偏差の中で最も小さい前記重複期間の標準偏差が前記標準偏差算出手段によって算出された前記仮定タイミングを前記基準タイミングとして決定する基準タイミング決定手段とを含む、請求項1に記載のデータ中継装置。
  7.  前記決定手段は、
      予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、
      前記仮定タイミングから前記予定にしたがって前記第2のデータを送受信するように前記第2の通信ノードとの同期処理をしたときに、前記第2の通信線に前記第2のデータを送信する第2の送信タイミングを、当該予定に基づいて、前記設定手段によって設定された前記仮定タイミング毎に推測する送信タイミング推測手段と、
      前記推測手段によって推測された前記第1の送信タイミングでそれぞれ受信した前記第1のデータを、前記送信タイミング推測手段によって推測された前記第2の送信タイミングで前記第2の通信線に前記第2のデータとして送信して中継するまでの遅延期間を、前記送信タイミング推測手段が前記第2の送信タイミングを推測するのに用いた前記仮定タイミング毎に前記滞留期間として算出する算出手段と、
      前記算出手段が前記仮定タイミング毎に算出した前記遅延期間の総和をそれぞれ算出する総和算出手段と、
      前記総和算出手段によって前記仮定タイミング毎に算出された前記遅延期間の総和の中で最も小さい前記遅延期間の総和が前記総和算出手段によって算出された前記仮定タイミングを前記基準タイミングとして決定する基準タイミング決定手段とを含む、請求項1に記載のデータ中継装置。
  8.  前記決定手段は、
      予め定められた時間間隔でタイミングを仮定タイミングとして仮定して設定する設定手段と、
      前記仮定タイミングから前記予定にしたがって前記第2のデータを送受信するように前記第2の通信ノードとの同期処理をしたときに、前記第2の通信線に前記第2のデータを送信する第2の送信タイミングを、当該予定に基づいて、前記設定手段によって設定された前記仮定タイミング毎に推測する送信タイミング推測手段と、
      前記推測手段によって推測された前記第1の送信タイミングでそれぞれ受信した前記第1のデータを、前記送信タイミング推測手段によって推測された前記第2の送信タイミングで前記第2の通信線に前記第2のデータとして送信して中継するまでの遅延期間を、前記送信タイミング推測手段が前記第2の送信タイミングを推測するのに用いた前記仮定タイミング毎に前記滞留期間として算出する算出手段と、
      前記算出手段が前記仮定タイミング毎に算出した前記遅延期間の標準偏差を算出する標準偏差算出手段と、
      前記標準偏差算出手段によって前記仮定タイミング毎に算出された前記遅延期間の標準偏差の中で最も小さい前記遅延期間の標準偏差が前記標準偏差算出手段によって算出された前記仮定タイミングを前記基準タイミングとして決定する基準タイミング決定手段とを含む、請求項1に記載のデータ中継装置。
  9.  前記設定手段は、前記推測手段が推測の基準とする時刻から予め定められた時間範囲内だけで前記仮定タイミングを設定する、請求項5乃至8のいずれか1つに記載のデータ中継装置。
  10.  イベントトリガ型の通信プロトコルにしたがって第1のデータが送受信される第1の通信線と、タイムトリガ型の通信プロトコルにしたがって第2のデータが送受信される第2の通信線とに接続されたデータ中継装置で用いられるデータ中継方法であって、
     前記第1の通信線に接続された第1の通信ノードから送信される前記第1のデータを受信したタイミングを基準として、前記第1の通信線で送受信される全ての前記第1のデータの第1の送信タイミングを推測する推測ステップと、
     前記推測ステップにおいて推測された前記第1の送信タイミングと、前記第2のデータが前記タイムトリガ型の通信プロトコルにしたがって送受信されるときの予め定められた予定とに基づき、前記第1の通信線、及び前記第2の通信線のいずれか一方にデータを中継するときの滞留期間を算出することにより、当該予定の基準タイミングを決定する決定ステップと、
     前記決定ステップにおいて決定された前記基準タイミングから前記予定にしたがって前記第2のデータを送受信するように、前記第2の通信線に接続された第2の通信ノードとの同期処理をする同期処理ステップとを備える、データ中継方法。
PCT/JP2009/001635 2009-04-08 2009-04-08 データ中継装置、及び当該装置で用いられるデータ中継方法 WO2010116416A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09842928.5A EP2418806B1 (en) 2009-04-08 2009-04-08 Data relay device and data relay method used in the device
PCT/JP2009/001635 WO2010116416A1 (ja) 2009-04-08 2009-04-08 データ中継装置、及び当該装置で用いられるデータ中継方法
JP2011508073A JP5382472B2 (ja) 2009-04-08 2009-04-08 データ中継装置、及び当該装置で用いられるデータ中継方法
US13/130,987 US8654797B2 (en) 2009-04-08 2009-04-08 Data relay device and data relay method used in the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001635 WO2010116416A1 (ja) 2009-04-08 2009-04-08 データ中継装置、及び当該装置で用いられるデータ中継方法

Publications (1)

Publication Number Publication Date
WO2010116416A1 true WO2010116416A1 (ja) 2010-10-14

Family

ID=42935731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001635 WO2010116416A1 (ja) 2009-04-08 2009-04-08 データ中継装置、及び当該装置で用いられるデータ中継方法

Country Status (4)

Country Link
US (1) US8654797B2 (ja)
EP (1) EP2418806B1 (ja)
JP (1) JP5382472B2 (ja)
WO (1) WO2010116416A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084471A1 (de) * 2010-12-23 2012-06-28 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum ansteuern von peripheriegeräten eines taktsynchron arbeitenden bussystems und von fremdperipheriegeräten eines fremdbussystems sowie zugehöriger busumsetzer
JP2012253532A (ja) * 2011-06-02 2012-12-20 Yokogawa Electric Corp 中継装置
CN109510779A (zh) * 2017-09-15 2019-03-22 丰田自动车株式会社 车载装置、信息处理单元、信息处理方法以及存储介质
JP2019186747A (ja) * 2018-04-10 2019-10-24 富士通コンポーネント株式会社 無線通信システムおよび受信機
WO2022180892A1 (ja) * 2021-02-25 2022-09-01 日立Astemo株式会社 電子装置及び通信制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362668B2 (ja) * 2010-09-16 2013-12-11 日立オートモティブシステムズ株式会社 車内データ中継装置
CN102877837A (zh) * 2011-07-11 2013-01-16 中国石油集团长城钻探工程有限公司 基于FlexRay总线的测井井下仪器总线系统
DE102012204586A1 (de) * 2012-03-22 2013-10-17 Bayerische Motoren Werke Aktiengesellschaft Gateway, Knoten und Verfahren für ein Fahrzeug
US9088514B2 (en) * 2012-07-23 2015-07-21 Broadcom Corporation Flexray communications using ethernet
EP3111600B1 (de) * 2014-02-24 2018-11-14 TTTech Computertechnik AG Verfahren und computernetzwerk zum übertragen von nachrichten
JP2017183935A (ja) * 2016-03-29 2017-10-05 富士通株式会社 信号収容プログラム、信号収容方法、及び信号収容装置
WO2019021403A1 (ja) * 2017-07-26 2019-01-31 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 制御ネットワークシステム、車両遠隔制御システム及び車載中継装置
JP6848769B2 (ja) * 2017-08-29 2021-03-24 トヨタ自動車株式会社 車載中継装置、情報処理システム、中継装置、情報処理方法、及びプログラム
CN113031644B (zh) * 2021-02-06 2022-04-01 中南大学 一种面向通信时滞的飞行器编队控制系统事件触发方法、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219555A (ja) * 2007-03-06 2008-09-18 Auto Network Gijutsu Kenkyusho:Kk 車載用の中継接続ユニット
JP2008277873A (ja) * 2007-04-25 2008-11-13 Auto Network Gijutsu Kenkyusho:Kk 中継接続ユニット
JP2008306648A (ja) * 2007-06-11 2008-12-18 Nissan Motor Co Ltd データ中継装置及びデータ中継方法並びに通信ネットワークシステム
JP2009027358A (ja) * 2007-07-18 2009-02-05 Nissan Motor Co Ltd データ中継装置及びデータ中継方法並びに通信ネットワークシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE524201C2 (sv) * 2002-12-17 2004-07-06 Lars-Berno Fredriksson Anordning vid distribuerat styr- och övervakningssystem
EP1629614A1 (en) * 2003-05-20 2006-03-01 Philips Intellectual Property & Standards GmbH Time-triggered communication system and method for the synchronization of a dual-channel network
GB2404121A (en) * 2003-07-18 2005-01-19 Motorola Inc Inter-network synchronisation
ATE426312T1 (de) * 2004-01-13 2009-04-15 Nxp Bv Synchronisation von zeitbasiseinheiten
JP4401239B2 (ja) * 2004-05-12 2010-01-20 Necエレクトロニクス株式会社 通信メッセージ変換装置、通信方法及び通信システム
US7623552B2 (en) * 2004-10-14 2009-11-24 Temic Automotive Of North America, Inc. System and method for time synchronizing nodes in an automotive network using input capture
DE102005018837A1 (de) * 2005-04-22 2006-10-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Synchronisation zweier Bussysteme sowie Anordnung aus zwei Bussystemen
US7787488B2 (en) * 2005-10-12 2010-08-31 Gm Global Technology Operations, Inc. System and method of optimizing the static segment schedule and cycle length of a time triggered communication protocol
JP4376862B2 (ja) * 2005-12-20 2009-12-02 富士通テン株式会社 通信メッセージ変換装置及び通信メッセージ変換方法
DE102006011059A1 (de) * 2006-03-08 2007-09-13 Robert Bosch Gmbh Verfahren und System zum Übertragen von in einem Signal codierten Daten
DE102006013640A1 (de) * 2006-03-22 2007-09-27 Robert Bosch Gmbh Verfahren und Datenübertragungssystem zur Übergabe von Daten zwischen dem Datenübertragungssystem und einem Host-Prozessor eines Teilnehmers eines Datenübertragungssystems
WO2008053277A1 (en) * 2006-10-31 2008-05-08 Freescale Semiconductor, Inc. Network and method for setting a time-base of a node in the network
WO2008104098A1 (en) * 2007-02-28 2008-09-04 Huawei Technologies Co., Ltd. System and method for determining a transmit timing for sommunication in a radio communication system
KR100900882B1 (ko) * 2007-06-11 2009-06-04 성균관대학교산학협력단 상호 상이한 복수의 네트워크 프로토콜을 사용하는 차량에적용되는 게이트웨이 디바이스, 네트워크 시스템 및 데이터변환방법
DE112009000439T8 (de) * 2008-02-29 2012-01-19 Autonetworks Technologies, Ltd. Fahrzeuginformationsaufzeichnungsvorrichtung, Fahrzeuginformationskommunikationssystem und Fahrzeuginformationskommunikationsverfahren
JP4987760B2 (ja) * 2008-03-05 2012-07-25 株式会社オートネットワーク技術研究所 中継装置、通信システム及び通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219555A (ja) * 2007-03-06 2008-09-18 Auto Network Gijutsu Kenkyusho:Kk 車載用の中継接続ユニット
JP2008277873A (ja) * 2007-04-25 2008-11-13 Auto Network Gijutsu Kenkyusho:Kk 中継接続ユニット
JP2008306648A (ja) * 2007-06-11 2008-12-18 Nissan Motor Co Ltd データ中継装置及びデータ中継方法並びに通信ネットワークシステム
JP2009027358A (ja) * 2007-07-18 2009-02-05 Nissan Motor Co Ltd データ中継装置及びデータ中継方法並びに通信ネットワークシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418806A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084471A1 (de) * 2010-12-23 2012-06-28 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum ansteuern von peripheriegeräten eines taktsynchron arbeitenden bussystems und von fremdperipheriegeräten eines fremdbussystems sowie zugehöriger busumsetzer
JP2012253532A (ja) * 2011-06-02 2012-12-20 Yokogawa Electric Corp 中継装置
CN109510779A (zh) * 2017-09-15 2019-03-22 丰田自动车株式会社 车载装置、信息处理单元、信息处理方法以及存储介质
JP2019054418A (ja) * 2017-09-15 2019-04-04 トヨタ自動車株式会社 車載装置、情報処理装置、情報処理方法、及びプログラム
JP2019186747A (ja) * 2018-04-10 2019-10-24 富士通コンポーネント株式会社 無線通信システムおよび受信機
JP7244212B2 (ja) 2018-04-10 2023-03-22 富士通コンポーネント株式会社 無線通信システムおよび受信機
WO2022180892A1 (ja) * 2021-02-25 2022-09-01 日立Astemo株式会社 電子装置及び通信制御方法
JP7446517B2 (ja) 2021-02-25 2024-03-08 日立Astemo株式会社 電子装置及び通信制御方法

Also Published As

Publication number Publication date
US20110235648A1 (en) 2011-09-29
JPWO2010116416A1 (ja) 2012-10-11
JP5382472B2 (ja) 2014-01-08
EP2418806A4 (en) 2015-08-05
EP2418806A1 (en) 2012-02-15
US8654797B2 (en) 2014-02-18
EP2418806B1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP5382472B2 (ja) データ中継装置、及び当該装置で用いられるデータ中継方法
US10153825B2 (en) Vehicle-mounted control device
JP5434512B2 (ja) 車載通信システム、ゲートウェイ装置
US20030131171A1 (en) Method and device for exchange of data between at least two users linked by means of a bus system
US9331838B2 (en) Method for synchronizing clocks in nodes of a vehicle network and node designed to perform the method
JP4926648B2 (ja) 車載ゲートウェイ装置
EP3016306A1 (en) Method and apparatus for providing in-vehicle network time synchronization using redundant grandmaster
JP5099156B2 (ja) 通信ネットワークシステム、中継端末、マイクロコンピュータ、送受信装置
JP2003521144A (ja) バスシステムと結合された少なくとも2名の加入者間でデータを交換する方法と装置
US20170324675A1 (en) Communication system and communication device
JP2011131762A (ja) データ中継用制御装置および車両制御システム
US9672175B2 (en) Communication system
US10090996B2 (en) Communication system
JP2008306648A (ja) データ中継装置及びデータ中継方法並びに通信ネットワークシステム
CN105284069B (zh) 用于具有多个网络节点的通信网络中的时间同步的方法
KR102431490B1 (ko) 차량 네트워크에서 다중 도메인을 활용한 통신 노드의 동기화 방법 및 장치
JPH04213251A (ja) 通信システム
JP6410914B1 (ja) シリアル通信システム
KR101481132B1 (ko) 차량용 네트워크에서의 데이터 출력 시간 동기화 장치 및 방법
US9485139B2 (en) Communication node, communication system, and method for performing a communication
JP2008022071A (ja) 通信ネットワークシステム及び受信エラーの通知方法
CN115037571B (zh) 一种应用于星型ttp网络的集线器及其实现方法
CN110650175B (zh) 在车辆网络中使用多个域同步通信节点的方法和装置
Jo et al. PLCA Experiment for 10Base-T1 Performance Verification
JP4341466B2 (ja) 同期通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011508073

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130987

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009842928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009842928

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE