WO2010114166A1 - Flame-retardant phosphorus-containing epoxy resin composition and cured product thereof - Google Patents

Flame-retardant phosphorus-containing epoxy resin composition and cured product thereof Download PDF

Info

Publication number
WO2010114166A1
WO2010114166A1 PCT/JP2010/056271 JP2010056271W WO2010114166A1 WO 2010114166 A1 WO2010114166 A1 WO 2010114166A1 JP 2010056271 W JP2010056271 W JP 2010056271W WO 2010114166 A1 WO2010114166 A1 WO 2010114166A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
phosphorus
weight
containing epoxy
flame
Prior art date
Application number
PCT/JP2010/056271
Other languages
French (fr)
Japanese (ja)
Inventor
雅男 軍司
幸良 伊山
隆司 門田
淳子 海東
Original Assignee
東都化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東都化成株式会社 filed Critical 東都化成株式会社
Priority to CN201080015340.1A priority Critical patent/CN102369229B/en
Publication of WO2010114166A1 publication Critical patent/WO2010114166A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to an epoxy resin composition that requires flame retardancy, and is a resin composition for producing a copper-clad laminate used for electronic circuit boards, and a sealing material, molding material, and casting material used for electronic components.
  • a resin composition for producing a copper-clad laminate used for electronic circuit boards and a sealing material, molding material, and casting material used for electronic components.
  • the present invention relates to a flammable phosphorus-containing epoxy resin composition.
  • Forms in which the epoxy resin is actually used include liquid to solid, varnish dissolved in a solvent, and the like.
  • the liquid type is widely used for casting materials and adhesives, and the solid type is used for sealing materials and powder coatings.
  • the varnish type is used as a fiber-reinforced plastic material or a solvent-type paint used by impregnating a glass substrate or carbon fiber.
  • electrical and electronic material parts because of its excellent adhesion and electrical characteristics (insulation). Since these electrical and electronic material parts are required to have high flame resistance (UL: V-0) as represented by glass epoxy laminates and IC encapsulants, usually halogenated epoxy resins are used. Yes.
  • epoxy resin generally substituted with bromine as the main raw material component, mixed with various epoxy resins, and curing for epoxy resin It is used in combination with an agent.
  • halogenated epoxy resins is one of the causes of environmental problems represented by dioxins in recent years, and the adverse effect on electrical long-term reliability due to halogen dissociation in high temperature environments.
  • the problem to be solved by the present invention is to improve the reliability at high temperatures in a phosphorus-containing epoxy resin imparted with flame retardancy without using a halogen, so that heat resistance and moisture resistance are not reduced without causing a decrease in adhesiveness. It aims at providing the flame-retardant phosphorus containing epoxy resin composition which is excellent in property and a flame retardance. That is, the gist of the present invention is a flame-retardant phosphorus-containing epoxy resin composition containing a phosphorus-containing epoxy resin (X) and a curing agent (Y), wherein the phosphorus-containing epoxy resin (X) has a skeleton with a sulfur atom.
  • the epoxy resin (a) containing 50 wt% to 100 wt% of the bifunctional epoxy resin contained therein and the chemical formula (2) is mixed at a ratio of 0.06 mol or less with respect to 1 mol of the chemical formula (1).
  • the flame-retardant phosphorus-containing epoxy resin composition according to the present invention has excellent adhesion and heat resistance in addition to flame retardancy. Furthermore, it is flame retardant when the phosphorus content is from 0.5% to less than 2.0% by weight, and a cured product having high heat resistance and particularly excellent adhesion to metal can be obtained. The effect is further improved by containing the bifunctional epoxy resin contained therein as an essential component.
  • the epoxy resins (a) used in the present invention contain 50 wt% to 100 wt% of a bifunctional epoxy resin having a sulfur atom in the skeleton as an essential component. If it is less than 50% by weight, not only the heat resistance cannot be improved, but also the flame retardancy is lowered, and a composition that can be used in a high heat resistance application cannot be obtained.
  • the bifunctional epoxy resins having a sulfur atom in the skeleton may have any structure as long as it is a bifunctional epoxy resin containing a sulfur atom, but a sulfur atom-containing bisphenol type epoxy resin is particularly preferable.
  • bisphenol S type epoxy resin such as Epototo TX-0908 (Substituted bisphenol S type epoxy resin manufactured by Toto Kasei Co., Ltd.) or Epototo YSLV-120TE (Dimethyldihydroxy-ditertiary butyl diphenyl sulfide type epoxy manufactured by Toto Kasei Co., Ltd.) Resin) and Epototo YSLV-50TE (Bisdiphenyl sulfide type epoxy resin manufactured by Toto Kasei Co., Ltd.) and the like, but are not limited to these, and two or more types may be used in combination. .
  • Epototo TX-0908 Substituted bisphenol S type epoxy resin manufactured by Toto Kasei Co., Ltd.
  • Epototo YSLV-120TE Dimethyldihydroxy-ditertiary butyl diphenyl sulfide type epoxy manufactured by Toto Kasei Co., Ltd.
  • Resin Dimethyldihydroxy-
  • bifunctional epoxy resins having no sulfur atom in the skeleton may be used in combination as the bifunctional epoxy resins, but the bifunctional epoxy resins having a sulfur atom in the skeleton are epoxy resins (a). It is necessary to make it 50% by weight or more.
  • the above-mentioned bifunctional epoxy resin having a sulfur atom in the skeleton and the bifunctional epoxy resin not having a sulfur atom to be used in combination in the skeleton as necessary are necessary for improving adhesion.
  • the amount thereof is 50% by weight or more in the epoxy resins (a), preferably 65% by weight or more, and more preferably 80% by weight or more.
  • Bifunctional epoxy resins that do not have a sulfur atom in the skeleton that can be used with a bifunctional epoxy resin that has a sulfur atom in the skeleton include hydroquinone type epoxy resins, bisphenol type epoxy resins, biphenol type epoxy resins, and naphthalenediol type epoxy resins. Etc.
  • Epototo YDC-1312, Epototo ZX-1027 (manufactured by Toto Kasei Co., Ltd., hydroquinone type epoxy resin), Epototo ZX-1251 (Toto Kasei Co., Ltd., biphenol type epoxy resin), Epototo YD-127, Epototo YD -128, Epototo YD-8125, Epototo YD-825GS, Epototo YD-011, Epototo YD-900, Epototo YD-901 (manufactured by Tohto Kasei Co., Ltd., bisphenol A type epoxy resin), Epototo YDF-170, Epototo YDF-8170 , Epototo YDF-870GS, Epototo YDF-2001 (manufactured by Toto Kasei Co., Ltd., bisphenol F type epoxy resin), Epototo ZX-1201 (manufactured by Toto Kasei Co.
  • epoxy resins having no alkyl substituent are preferred, and among these, naphthalenediol type epoxy resins, biphenyl type epoxy resins, and bisphenol F type epoxy resins are more preferred. If bifunctional epoxy resins having a sulfur atom in the skeleton are used in an amount of 50% by weight or more, heat resistance and adhesiveness can be sufficiently satisfied. However, in order to improve flame retardancy, heat resistance and adhesiveness, An epoxy resin other than a bifunctional epoxy resin having a skeleton in the skeleton may be contained in an amount of less than 50% by weight. However, aliphatic epoxy resins are not preferable from the viewpoint of flame retardancy, and bifunctional epoxy resins are preferable from the viewpoint of improving adhesiveness.
  • the number of average functional groups is 2.1 or more.
  • Functional epoxy resins are preferred.
  • the polyfunctional epoxy resins having an average functional group number of 2.1 or more include phenol novolac type epoxy resins, cresol novolac type epoxy resins, and aralkyl type epoxy resins.
  • Epototo YDPN-638 manufactured by Toto Kasei Co., Ltd., phenol novolac type epoxy resin
  • Epototo YDCN-701 Epototo YDCN-702
  • Epototo YDCN-703 Epototo YDCN-704
  • Epototo ESN-175 manufactured by Toto Kasei Co., Ltd., ⁇ -naphthol aralkyl type epoxy resin
  • Epototo ESN-475V manufactured by Toto Kasei Co., Ltd., ⁇ -naphthol aralkyl type epoxy resin
  • Epototo ESN-355 Epototo ESN-375
  • Epototo ESN-375 manufactured by Toto Kasei Co., Ltd., dinaphthol aral
  • Patent Document 1 discloses a phosphorus-containing epoxy resin obtained from an epoxy resin containing a maximum of 45% by weight of a bifunctional epoxy resin having a sulfur atom in the skeleton, but has sufficient heat resistance because it is less than 50% by weight. It wasn't.
  • Patent Document 5 discloses a phosphorus-containing epoxy resin obtained with a naphthol aralkyl type epoxy resin, but has sufficient heat resistance, but does not use bifunctional epoxy resins having a sulfur atom in the skeleton. The sex was slightly inferior.
  • the phosphorus compound (b) used in the present invention is a phosphorus compound in which the compound represented by the chemical formula (2) is mixed at a ratio of 0.06 mol or less with respect to 1 mol of the compound represented by the chemical formula (1). It is essential to be a kind.
  • Typical examples of the compound represented by the chemical formula (1) are 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and 1,4-naphthoquinone which are the compounds represented by the chemical formula (2). It is a phosphorus compound obtained by reaction with.
  • a compound represented by the chemical formula (1) synthesized in advance and a compound represented by the chemical formula (2) may be mixed and used, or the epoxy resins (a) and Before the reaction, 1,4-naphthoquinone may be reacted in the range of 0.94 mol to 1.00 mol with respect to 1 mol of the compound represented by the chemical formula (2).
  • 1,4-naphthoquinone is added to 1 mol of the compound represented by the chemical formula (2). It is preferable to use less than 1.00 mol.
  • the phosphorous content can be easily adjusted, which is effective in improving the flame retardancy and decreasing the viscosity, but represented by the monofunctional chemical formula (2).
  • the reaction between the compound and the epoxy group occurs frequently and the number of epoxy groups decreases, resulting in a decrease in the adhesiveness of the cured product, a decrease in heat resistance, and a decrease in moisture resistance, resulting in remarkable electrical insulation reliability in high heat resistance applications. descend.
  • the compound represented by the chemical formula (2) is not used, it is necessary to produce the compound represented by the chemical formula (1) in advance. The production of this compound requires many steps, and the productivity is poor and industrially disadvantageous.
  • the molar ratio of the compound represented by the chemical formula (2) to 1 mole of the compound represented by the chemical formula (1) is 0.06 mol or less, and preferably 0.01 to 0.05 mol. .
  • Patent Document 4 suggests a phosphorus-containing epoxy resin obtained with a bisphenol S-type epoxy resin, but there is no disclosure in Examples, and no consideration is given to the remaining compound represented by the chemical formula (2).
  • bisphenol A and bisphenol F are exemplified, but the compound represented by the chemical formula (2) is reacted at 0.92 mol with respect to 1 mol of the compound represented by the chemical formula (1). Since a large amount of the compound represented by the chemical formula (2) remains, the heat resistance is slightly inferior, and there is a problem in electrical insulation reliability in high heat resistance applications.
  • bifunctional or higher functional phenol compounds other than the phosphorus compounds (b) may be used.
  • bifunctional or higher functional phenol compounds examples include bisphenol A, bisphenol S, bisphenol F, naphthalene diol, biphenol, phenol novolac resin, cresol novolac resin, glyoxal tetraphenol resin, bisphenol A novolac resin, phenol aralkyl resin, and naphthol aralkyl resin.
  • biphenol aralkyl resin examples include bisphenol A, bisphenol S, bisphenol F, naphthalene diol, biphenol, phenol novolac resin, cresol novolac resin, glyoxal tetraphenol resin, bisphenol A novolac resin, phenol aralkyl resin, and naphthol aralkyl resin.
  • biphenol aralkyl resin In particular, from the viewpoint of flame retardancy, a phenol compound having no alkyl substituent is preferable, and among these, bisphenol S, naphthalenediol, and biphenol are particularly preferable.
  • the purpose of using bifunctional or higher functional phenol compounds is to adjust the phosphorus content, sulfur content, softening point and epoxy equivalent when reacting the epoxy resins (a) and the phosphorus compounds (b), This is for adjusting the elastic modulus of the laminate.
  • the reaction between the epoxy resins (a) and phosphorus compounds (b) used in the present invention and the bifunctional or higher functional phenol compounds used as necessary can be carried out by a known method.
  • the temperature can be 100 to 200 ° C., more preferably 120 to 180 ° C. with stirring.
  • the reaction time can be determined by measuring the epoxy equivalent.
  • the epoxy equivalent can be measured by the method of JIS K-7236.
  • the epoxy equivalent increases as the phosphorus compounds (b) react with the epoxy resins (a) and the phenolic compounds, and the end point of the reaction can be determined by comparison with the theoretical epoxy equivalent. Further, when the reaction rate is slow, productivity can be improved by using a catalyst as necessary.
  • tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, ethyltriphenylphosphonium
  • phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine
  • ethyltriphenylphosphonium Various catalysts such as phosphonium salts such as bromide and imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole can be used. It is essential that the phosphorus content with respect to all the epoxy resin components in the flame-retardant phosphorus-containing epoxy resin composition of the present invention is 0.5% by weight to less than 2.0% by weight.
  • the heat resistance of the flame-retardant phosphorus-containing epoxy resin composition is increased. It will drop significantly.
  • the phosphorus-free epoxy resin an aliphatic epoxy resin is not preferable from the viewpoint of flame retardancy, and from the viewpoint of heat resistance, it is preferably a polyfunctional epoxy resin having an average functional group number of 2.1 or more. Are preferred.
  • the flame-retardant phosphorus of the present invention can be used without impairing heat resistance and flame retardancy as long as it is 50 parts by weight or less.
  • a contained epoxy resin composition can be obtained. More preferably, the amount of the phosphorus-free epoxy resin is 0 to 25 parts by weight with respect to 100 parts by weight of the phosphorus-containing epoxy resin (X).
  • the phosphorus content of the phosphorus-containing epoxy resin (X) of the present invention may be in the range of 0.5 wt% to 3.5 wt%, preferably 0.8 wt% to 3.0 wt%, more preferably Is 1.2 wt% to 2.7 wt%, more preferably 1.5 wt% to 2.3 wt%. If the phosphorus content is less than 0.5% by weight, it is difficult to ensure flame retardancy. If it exceeds 3.5% by weight, the resin viscosity becomes extremely high and synthesis becomes difficult, and the molecular weight of the resin increases, which adversely affects the heat resistance and further impairs impregnation into glass cloth, which is industrially disadvantageous.
  • the physical properties of the resulting cured product are deteriorated.
  • an epoxy resin other than the phosphorus-containing epoxy resin (X) it is essential that the phosphorus content of the phosphorus-containing epoxy resin (X) is 0.5% by weight to less than 2.0% by weight. Become. It is essential that the sulfur content relative to all epoxy resin components in the flame-retardant phosphorus-containing epoxy resin composition of the present invention is 2 to 9% by weight. If it is less than 2% by weight, sufficient heat resistance cannot be imparted.
  • the amount is preferably 3 to 8% by weight, more preferably 4 to 7% by weight.
  • the sulfur content of the phosphorus-containing epoxy resin (X) is 2 wt% to 9 wt% or less.
  • the epoxy equivalent of the phosphorus-containing epoxy resin (X) of the present invention is preferably 200 g / eq to 900 g / eq, more preferably 250 g / eq to 800 g / eq, and still more preferably 300 g / eq to 600 g / eq.
  • the epoxy equivalent is less than 200 g / eq, the adhesiveness is inferior, and when it exceeds 900 g / eq, the heat resistance is adversely affected, so it is desirable to adjust to 200 g / eq to 900 g / eq.
  • Examples of the curing agent (Y) of the present invention include phenol novolak resins, alkylphenol novolak resins, aralkylphenol novolak resins, triazine ring-containing phenol novolak resins, biphenylaralkylphenol resins, aralkylnaphthalenediol resins, trisphenylmethane, and tetrakisphenylethane.
  • hydrazides such as adipic acid dihydrazide, sebacic acid dihydrazide, imidazole compounds and salts thereof, dicyandiamide, aminobenzoic acid esters, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, metaxylenediamine, isophoronediamine, etc.
  • Aromatic amines such as diaminodiphenylmethane, diaminodiphenylsulfone, and diaminoethylbenzene Mines, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, etc. Examples thereof include, but are not limited to, known and usual curing agents such as acid anhydrides. These curing agents may be used alone or in combination of two or more.
  • the amount of these curing agents used is preferably in the range of 0.3 equivalents to 1.5 equivalents, more preferably 0.4 equivalents to 1.2 equivalents, relative to 1 equivalent of the epoxy group in the epoxy resin used.
  • the flame-retardant phosphorus-containing epoxy resin composition of the present invention may contain phosphines, imidazole compounds, quaternary phosphonium salts, tertiary amines, quaternary ammonium salts, boron trifluoride complexes, 3- Use together with a curing accelerator such as (3,4-dichlorodiphenyl) -1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea.
  • curing accelerators depend on the epoxy resin used together, the type of epoxy resin curing agent used, the molding method, the curing temperature, and the required characteristics, but in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the epoxy resin. It is preferably 0.1 to 10 parts by weight.
  • the flame retardant phosphorus-containing epoxy resin composition of the present invention may be blended with other thermosetting resins and thermoplastic resins other than the epoxy resin as long as the characteristics are not impaired.
  • phenol resin acrylic resin, petroleum resin, indene resin, indene coumarone resin, phenoxy resin, cyanate resin, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyetherimide, bismaleimide triazine resin, polyethersulfone, polysulfone, Examples include polyether ether ketone, polyphenylene sulfide, and polyvinyl formal, but are not limited thereto.
  • the flame-retardant phosphorus-containing epoxy resin composition of the present invention can contain an inorganic filler and an organic filler as necessary.
  • fillers include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, talc, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium carbonate, barium carbonate, barium sulfate, boron nitride, carbon, Examples thereof include glass fiber, carbon fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, and aramid fiber. These fillers are preferably 1 to 95% by weight based on the total amount of the epoxy resin.
  • the flame-retardant phosphorus-containing epoxy resin composition of the present invention further comprises a silane coupling agent, an antioxidant, a mold release agent, an antifoaming agent, an emulsifier, a thixotropic agent, a smoothing agent, a flame retardant, and a pigment as necessary.
  • Various additives such as can be blended. These additives are preferably in the range of 0.01 wt% to 20 wt% in the total amount of the epoxy resin composition.
  • the flame-retardant phosphorus-containing epoxy resin composition of the present invention is an essential component of a phosphorus-containing epoxy resin (X), a curing agent (Y), a curing accelerator, various fillers, and various additives as required by known methods.
  • the flame-retardant phosphorus-containing epoxy resin composition of the present invention can be easily molded into a cured product by molding and curing by a known method.
  • the molding method and the curing method can be the same methods as known epoxy resin compositions.
  • the flame retardant phosphorus-containing epoxy resin cured product of the present invention can take the form of a sealing material, an adhesive layer, a molded product, a laminate, a film and the like.
  • the cured product has high heat resistance, low water absorption, and high reliability at high temperatures.
  • the flame-retardant phosphorus-containing epoxy resin composition and its cured product are a resin composition for producing a copper-clad laminate used for an electronic circuit board and a sealing material, a molding material, a casting material, and an adhesive used for an electronic component. It was found to be useful as a film material, an electrical insulating paint material, and the like.
  • the sample was dissolved in 10 mL of chloroform, 20 mL of acetic anhydride and 10 mL of 20% tetraethylammonium bromide solution were added, and titrated with a 0.1 mol / L perchloric acid acetic acid standard solution using a potentiometric titrator.
  • Softening point Ring and ball method described in JIS K-7234. That is, the sample was melted and degassed, poured into a ring, and measured with a glycerin bath.
  • Phosphorus content Nitric acid-perchloric acid decomposition method.
  • sulfuric acid, nitric acid, and perchloric acid are added to the sample and thermally decomposed to convert all phosphorus to normal phosphoric acid, and then a 0.25% ammonium vanadate solution and a 5% ammonium molybdate solution in a sulfuric acid acidic solution.
  • the color development of the resulting phosphorus-banad molybdate complex was allowed to react, the absorbance at a wavelength of 420 nm was measured, and the phosphorus content was determined by a calibration curve.
  • Sulfur content A method in accordance with the oxygen combustion flask method described in JIS K-6233-1.
  • Copper foil peeling strength The method as described in JIS C-6481 5.7. That is, peeling was performed at a speed of 50 mm / min between the copper foil and the insulating plate in the direction perpendicular to the measurement.
  • Interlaminar peel strength A method according to JIS C-6481 5.7. That is, the measurement was performed by peeling between one prepreg and the remaining three sheets at a speed of 50 mm / min in the perpendicular direction.
  • TMA method TMA / SS120U manufactured by SII Nano Technology Co., Ltd. was used for the analyzer, and the temperature was measured at 10 ° C./min by thermomechanical analysis (TMA).
  • TMA method Linear thermal expansion coefficient
  • TMA thermomechanical analysis
  • Water absorption A method according to JIS C-6481 5.13. That is, using a test piece cut to 50 mm ⁇ 50 mm, the dry weight after drying for 24 hours in an oven at 50 ° C. is measured, and subsequently the weight after boiling at 100 ° C. for 2 hours is measured. The moisture absorption rate was measured on the basis of the increase in.
  • Solder heat resistance A method in accordance with JIS C-6481 5.5. That is, using a test piece cut to 25 mm ⁇ 25 mm, the test piece after boiling at 100 ° C.
  • Synthesis example 1 In a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, HCA (manufactured by Sanko Co., Ltd., phosphorus content: 14. 2 wt.%) 64.0 g and 150 g of toluene were charged, and heated under stirring in a nitrogen atmosphere to be completely dissolved.
  • HCA manufactured by Sanko Co., Ltd., phosphorus content: 14. 2 wt.
  • 1,4-naphthoquinone manufactured by Kawasaki Kasei Kogyo Co., Ltd., 3% water-containing product
  • Epototo TX-0908 manufactured by Tohto Kasei Co., Ltd., epoxy equivalent: 219 g / eq
  • Epototo YDPN-638 manufactured by Toto Kasei Co., Ltd., phenol novolac type epoxy resin, epoxy equivalent: 176 g / eq
  • the obtained phosphorus-containing epoxy resin A had an epoxy equivalent of 392 g / eq, a phosphorus content of 1.8% by weight, a sulfur content of 5.2% by weight, and a softening point of 83 ° C.
  • Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton was added, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene. Removed. Thereafter, 0.08 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin B.
  • the obtained phosphorus-containing epoxy resin B had an epoxy equivalent of 338 g / eq, a phosphorus content of 1.3% by weight, a sulfur content of 7.0% by weight, and a softening point of 76 ° C.
  • Synthesis example 3 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introduction device, 64.5 g of HCA (as described above) and 150 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere.
  • 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat.
  • 350.0 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton was added, stirred while introducing nitrogen gas, heated to 130 ° C., and toluene was removed from the system. Removed.
  • phosphorus-containing epoxy resin C had an epoxy equivalent of 751 g / eq, a phosphorus content of 2.0% by weight, a sulfur content of 6.3% by weight, and a softening point of 120 ° C.
  • Synthesis example 4 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introduction device, 75.0 g of HCA (as described above) and 175 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 55.9 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to temperature rise by reaction heat.
  • phosphorus-containing epoxy resin D had an epoxy equivalent of 723 g / eq, a phosphorus content of 2.1 wt%, a sulfur content of 5.3 wt%, and a softening point of 125 ° C.
  • Synthesis example 5 2,4-bisphenol S-type epoxy resin as a bifunctional epoxy resin having a sulfur atom in its skeleton in a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device (patented) 340.0 g of epoxy equivalent: 220 g / eq) synthesized in advance by the method described in Example 1 of Reference 6, and 9,10-dihydro-9-oxa-10- (2) as the phosphorus compound represented by the chemical formula (1) , 7-dihydroxynaphthyl) -10-phosphaphenanthrene-10-oxide (previously synthesized by the method described in Example 1 of Patent Document 7, hereinafter abbreviated as HCA-NQ), 64.8 g, chemical formula (2) 1.1 g of HCA (described above) as a phosphorus compound represented by formula 4,4′-bisphenol S (manufactured by Nikka Chemical Co., Ltd., B PS-P (T),
  • the phosphorus compound shown by Chemical formula (2) was 0.03 mol with respect to 1 mol of phosphorus compounds shown by Chemical formula (1) at this time. Thereafter, 0.09 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin E.
  • the obtained phosphorus-containing epoxy resin E had an epoxy equivalent of 441 g / eq, a phosphorus content of 1.2 wt%, a sulfur content of 7.8 wt%, and a softening point of 104 ° C.
  • the phosphorus compound represented by the chemical formula (2) was not used. Thereafter, 0.1 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin F.
  • the obtained phosphorus-containing epoxy resin F had an epoxy equivalent of 333 g / eq, a phosphorus content of 1.0% by weight, a sulfur content of 7.7% by weight, and a softening point of 96 ° C.
  • Synthesis example 7 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introduction device, 75.0 g of HCA (as described above) and 175 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 55.9 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to temperature rise by reaction heat.
  • Type epoxy resin, epoxy equivalent: 146 g / eq) 175.0 g was charged, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system.
  • phosphorus-containing epoxy resin G had an epoxy equivalent of 371 g / eq, a phosphorus content of 2.2 wt%, a sulfur content of 3.0 wt%, and a softening point of 110 ° C.
  • Synthesis example 8 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 103.6 g of HCA (previously described) and 240 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 53.4 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat.
  • HCA previously described
  • toluene as a phosphorus compound represented by the chemical formula (2)
  • phosphorus-containing epoxy resin H had an epoxy equivalent of 563 g / eq, a phosphorus content of 2.9% by weight, a sulfur content of 3.7% by weight, and a softening point of 110 ° C.
  • Synthesis Example 9 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 70.0 g of HCA (as described above) and 160 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 46.4 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat.
  • 172.8 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton, and Epototo YD-128 (produced by Toto Kasei Co., Ltd., bisphenol A type epoxy resin as a bifunctional epoxy resin, Epoxy equivalent: 187 g / eq) 211.2 g was charged, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system.
  • Synthesis Example 10 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 70.0 g of HCA (as described above) and 160 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 46.4 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat.
  • 300.0 g of Epototo YSLV-50TE (described above) is charged as a bifunctional epoxy resin having a sulfur atom in the skeleton, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene. Removed. Thereafter, 0.12 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin J.
  • the obtained phosphorus-containing epoxy resin J had an epoxy equivalent of 370 g / eq, a phosphorus content of 2.4% by weight, a sulfur content of 7.1% by weight, and a softening point of 106 ° C.
  • Synthesis Example 11 Epototo TX-0908 (previously described) 315.8 g as a bifunctional epoxy resin having a sulfur atom in the skeleton in a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device, As the phosphorus compound represented by the chemical formula (1), 181.8 g of HCA-NQ (described above) was charged and heated to 130 ° C. with stirring in a nitrogen atmosphere.
  • the phosphorus compound represented by the chemical formula (2) was not used. Thereafter, 0.18 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 170 ° C. to 190 ° C. to obtain a phosphorus-containing epoxy resin K.
  • the obtained phosphorus-containing epoxy resin K had an epoxy equivalent of 1,080 g / eq, a phosphorus content of 3.0% by weight, a sulfur content of 5.2% by weight, and a softening point of 140 ° C. or higher and could not be measured.
  • phosphorus-containing epoxy resin L had an epoxy equivalent of 651 g / eq, a phosphorus content of 1.2% by weight, a sulfur content of 9.1% by weight, and a softening point of 140 ° C. or higher and could not be measured.
  • Synthesis Example 13 Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 90.0 g of HCA (described above) and 210 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 67.0 g of 1,4-naphthoquinone (described above) as quinones was charged in portions while paying attention to the temperature rise by reaction heat.
  • 324.6 g of Epototo YD-128 (described above) was charged as a bifunctional epoxy resin, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system.
  • a bifunctional epoxy resin having a sulfur atom in the skeleton was not used.
  • 0.16 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C.
  • a phosphorus-containing epoxy resin M had an epoxy equivalent of 529 g / eq, a phosphorus content of 2.7 wt%, a sulfur content of 0 wt%, and a softening point of 104 ° C.
  • Examples 1 to 7 and Comparative Examples 1 to 6 A phosphorus-containing epoxy resin (X), a curing agent (Y), other epoxy resins, a curing accelerator, and the like were blended according to the blending formulation shown in Table 1.
  • Phosphorus-containing epoxy resin and other epoxy resins are dissolved in methyl ethyl ketone, and dicyandiamide (DICY, active hydrogen equivalent: 21.0 g / eq) is used as a curing agent (Y) previously dissolved in methyl cellosolve and dimethylformamide.
  • DICOM active hydrogen equivalent: 21.0 g / eq
  • 2-Ethyl-4-methylimidazole manufactured by Shikoku Kasei Co., Ltd., 2E4MZ
  • the obtained resin varnish was used to impregnate a glass cloth as a base material (WEA 116E 106S 136, thickness 100 ⁇ m, manufactured by Nitto Boseki Co., Ltd.), and the impregnated glass cloth was subjected to 8 in a hot air circulation oven at 150 ° C. Drying was performed for a minute to obtain a prepreg. Subsequently, the obtained four prepregs and copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III, thickness 35 ⁇ m) are stacked, and heated and heated under conditions of 130 ° C. ⁇ 15 minutes and 190 ° C. ⁇ 2.0 MPa ⁇ 70 minutes. Pressure was applied to obtain a 0.6 mm thick laminate.
  • WEA 116E 106S 136 thickness 100 ⁇ m, manufactured by Nitto Boseki Co., Ltd.
  • Example 1 Example 2, Example 3, Example 4, Example 7, Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 6 have chemical formulas before reaction with epoxy resins (a) ( 2) Using the phosphorus-containing epoxy resin (X) reacted with the phosphorus compound (b) obtained by reacting the compound represented by 2) and 1,4-naphthoquinone, Example 5 was synthesized in advance.
  • Example 6 Comparative Example 4 and Comparative Example 5 used a phosphorus-containing epoxy resin (X) reacted using only a phosphorus compound represented by the chemical formula (1) synthesized in advance.
  • Example 3, Example 4, Example 5, Example 7, Comparative Example 3, and Comparative Example 6 also used a phosphorus-free epoxy resin other than the phosphorus-containing epoxy resin (X).
  • Comparative Example 1 uses 66% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, but the compound of chemical formula (2) is used with respect to 1 mol of the compound of chemical formula (1). Since the compound has a molar ratio of 0.46 and more than 0.06 mol of the compound of the chemical formula (2), the water absorption is as high as 1.7%, the moisture resistance is poor, and the solder heat resistance is also poor. In addition, although the polyfunctional epoxy resin is frequently used, it cannot be said that the glass transition temperature is 155 ° C. and the heat resistance is not so high. The delamination strength does not reach 1.0 kN / m, and the laminate is not practical.
  • Comparative Example 2 uses only 45% by weight and less than 50% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and in 1 mol of the compound of chemical formula (1).
  • the molar ratio of the compound of the chemical formula (2) is 0.14 and the compound of the chemical formula (2) is used in an amount of more than 0.06 mol, flame retardancy is not obtained even when the phosphorus content is 2% by weight. Low heat resistance and high water absorption.
  • Comparative Example 3 uses 100% by weight of a bifunctional epoxy tree having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, but the compound of the chemical formula (2) with respect to 1 mol of the compound of the chemical formula (1).
  • the molar ratio of 0.14 and the compound of the chemical formula (2) are used in an amount of more than 0.06 mol, so that the delamination strength does not reach 1.0 kN / m and the solder heat resistance is poor.
  • Comparative Example 4 uses 100% by weight of a bifunctional epoxy resin having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and does not use the compound of chemical formula (2), but the phosphorus content is 3 Since it is as high as 0.0% by weight, the softening point of the epoxy resin is considerably high at 140 ° C. or more and the impregnation property into the glass cloth is deteriorated. Therefore, the delamination strength does not reach 1.0 kN / m and the solder heat resistance is poor.
  • Comparative Example 5 when the phosphorus-containing epoxy resin was synthesized, 100% by weight of the bifunctional epoxy resin having a sulfur atom in the skeleton was used, and the phosphorus compound of the chemical formula (2) was not used. Since it is as high as 9.1% by weight, the water absorption is as high as 2.2% by weight and the moisture resistance is poor. Furthermore, since the softening point of the resin is considerably higher than 140 ° C. and the impregnation property into the glass cloth is deteriorated, the delamination strength does not reach 1.0 kN / m and the solder heat resistance is poor.
  • Example 6 since a bifunctional epoxy resin having a sulfur atom in the skeleton is not used when synthesizing the phosphorus-containing epoxy resin, the glass transition temperature is 138 ° C. and the heat resistance is not high, and the phosphorus content is 2. If it is 07% by weight, there is no flame retardancy, and the laminate is not practical. In contrast, in Example 1, when synthesizing a phosphorus-containing epoxy resin, 81% by weight of a bifunctional epoxy resin having a sulfur atom in the skeleton and a polyfunctional epoxy resin having an average functional group number of 2.1 or more are used.
  • the molar ratio of the compound of the chemical formula (2) is 0.05 and the compound of the chemical formula (2) is less than 0.06 mol with respect to 1 mol of the compound of the chemical formula (1). It is low at 1.0% and has good moisture resistance, and even when the phosphorus content is 1.8% by weight and less than 2% by weight, flame retardancy is good. Furthermore, the glass transition temperature is as high as 165 ° C., the solder heat resistance is good, and the delamination strength is 1.1 kN / m, which is a sufficiently practical laminate.
  • Example 2 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and the amount of the compound of the chemical formula (2) is 1 mol of the compound of the chemical formula (1). Since the molar ratio is 0.02 and the compound of the chemical formula (2) is less than 0.06 mol, the phosphorus content is 1.3% by weight and the sulfur content is 7% by weight, It is a good laminate.
  • Example 3 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and the amount of the compound of the chemical formula (2) is 1 mol of the compound of the chemical formula (1).
  • Example 4 uses 91% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin and 9% by weight of polyfunctional epoxy resins having an average number of functional groups of 2.1 or more.
  • the molar ratio of the compound of the chemical formula (2) is 0.01 and the compound of the chemical formula (2) is less than 0.06 mol with respect to 1 mol of the compound of the chemical formula (1), and the sulfur content is 4.2% by weight. Therefore, even if the phosphorus content is 1.7% by weight and less than 2% by weight, the flame retardancy is good, and further, the laminate has good moisture resistance, heat resistance and adhesion.
  • Example 5 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and the amount of the compound of the chemical formula (2) is 1 mol of the compound of the chemical formula (1).
  • Example 6 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and without using the phosphorus compound of chemical formula (2), the phosphorus of chemical formula (1). Since only the compound is used and the phosphorus content is 1.0% by weight and the sulfur content is 7.7% by weight, the laminate has good moisture resistance and adhesion.
  • Example 7 uses 51% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton and 49% by weight of bifunctional epoxy resin not having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin,
  • the molar ratio of the phosphorus compound of the chemical formula (2) is 0.01 and the phosphorus compound of the chemical formula (2) is less than 0.06 mol with respect to 1 mol of the phosphorus compound of the chemical formula (1), and the sulfur content is 2.4 weight. Therefore, even if the phosphorus content is 1.8% by weight and less than 2% by weight, the flame retardancy is good, and further, the laminate has good moisture resistance, heat resistance and adhesion.
  • the compound represented by the chemical formula (2) is made 0.06 mol or less with respect to 1 mol of the compound represented by the chemical formula (1), and 50 weights of the bifunctional epoxy resins having a sulfur atom in the skeleton.
  • the phosphorus-containing epoxy resin synthesized using at least 5% is an essential component, the phosphorus content of the epoxy resin is reduced from 0.5 wt% to less than 2.0 wt%, and the sulfur content is increased from 2 wt% to 9 wt% In these examples, in addition to flame retardancy, the adhesive strength, heat resistance, and moisture resistance are also excellent.
  • the water absorption rate can be maintained while maintaining heat resistance. Reduced and improved solder heat resistance.
  • Example 5 and Example 6 since the flame retardancy can be satisfied even if the phosphorus content is 1% by weight or less, a laminate having good moisture resistance is obtained.
  • a phosphorus-free epoxy resin together as in Example 3, Example 4, Example 5, and Example 7, and in particular, polyfunctional epoxy resins having an average functional group number of 2.1 or more.
  • the present invention is particularly suitable for electrical insulation materials such as copper clad laminates used for electronic circuit boards, and is suitable for sealing materials, molding materials, casting materials, adhesives, and film materials used for electronic components. In addition, it is also effective as a material for electrical insulating paints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Reinforced Plastic Materials (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)

Abstract

A flame-retardant phosphorus-containing epoxy resin composition comprising: a phosphorus-containing epoxy resin (X) obtained by reacting an epoxy resin (a), which comprises 50-100 wt% of a bifunctoinal epoxy resin having a sulfur atom in the skeleton thereof, with phosphorus compounds (b), which comprise a compound represented by chemical formula (1) and a compound represented by chemical formula (2) that is mixed therewith at a ratio of 0.06 mol or less per mol of the compound of chemical formula (1); and a curing agent (Y).

Description

難燃性リン含有エポキシ樹脂組成物及びその硬化物Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
 本発明は難燃性が要求されるエポキシ樹脂組成物に関する発明であり、電子回路基板に用いられる銅張積層板製造用の樹脂組成物や電子部品に用いられる封止材・成形材・注型材・接着剤・電気絶縁塗料などとして有用であり、特に銅張積層板製造用の樹脂組成物として難燃効果のみならず、密着性、耐熱性および耐湿性に優れた積層板を提供し得る難燃性リン含有エポキシ樹脂組成物に関する。 The present invention relates to an epoxy resin composition that requires flame retardancy, and is a resin composition for producing a copper-clad laminate used for electronic circuit boards, and a sealing material, molding material, and casting material used for electronic components.・ Useful as adhesives, electrical insulating paints, etc., especially as a resin composition for the production of copper-clad laminates, it is difficult to provide not only flame retardant effects but also laminates with excellent adhesion, heat resistance and moisture resistance The present invention relates to a flammable phosphorus-containing epoxy resin composition.
 エポキシ樹脂を実際に利用する形態は液状から固形状、溶剤に溶解したワニス状などがある。液状タイプは注型材料や接着剤用途等に広く利用され、固形タイプは封止材や粉体塗料等に利用される。また、ワニスタイプはガラス基材やカーボンファイバー等に含浸して用いられる繊維補強プラスチック材料や溶剤型塗料として利用されている。特にその優れた密着性、電気特性(絶縁性)のために電気電子材料部品に幅広く使用されている。
 これら電気電子材料部品は、ガラスエポキシ積層板やIC封止材に代表される様に高い難燃性(UL:V−0)が求められるため、通常はハロゲン化されたエポキシ樹脂が用いられている。例えば、ガラスエポキシ積層板では、難燃化されたFR−4グレードとして、一般に臭素で置換されたエポキシ樹脂を主原料成分とし、これに種々のエポキシ樹脂を混合したエポキシ樹脂と、エポキシ樹脂用硬化剤とを配合して用いられている。
 しかし、このようなハロゲン化されたエポキシ樹脂の使用は、近年のダイオキシンに代表される環境問題の一要因となっている他、高温環境下でのハロゲン解離による電気的な長期信頼性への悪影響などから、ハロゲンの使用量を低減するか、ハロゲンに代替できる他の化合物を使用した難燃剤、あるいは他の難燃処方が強く求められている。
 従来はこの様なハロゲンによる難燃処方に代わる技術として、例えばリン酸エステル系化合物などを添加系難燃剤として使用する技術が種々検討されているが、このような技術はいずれも積層板の耐熱性や耐水性等の低下、難燃剤が時間とともにブリードアウトする問題、とりわけ電気積層板用途における密着性の低下が激しかった。そこで、エポキシ樹脂と特定のリン化合物を反応させて、積層板の性能を向上させる技術が種々検討されている(特許文献1~4)。しかしながらこのような技術はいずれも耐熱性ではFR−4グレードが限界でそれ以上の耐熱性の向上が難しかった。一般的に耐熱性の向上にはクレゾールノボラックエポキシ樹脂などの多官能エポキシ樹脂を多用する方法が取られているが、難燃性の低下や接着性の低下を招いた。最近では、鉛フリーハンダ対応のため、さらなる高温時での信頼性を高めるため硬化物の吸水率の低下や低弾性化などが求められている。特許文献5ではナフタレンアラルキル構造を持ったエポキシ樹脂と特定のリン化合物を反応させることによって、難燃性と耐熱性向上の両立をさせているが、接着性の低下を招いた。このようにリン含有エポキシ樹脂組成物によって難燃性を保ちながら、耐熱性向上と接着性確保の両立は難しかった。
Forms in which the epoxy resin is actually used include liquid to solid, varnish dissolved in a solvent, and the like. The liquid type is widely used for casting materials and adhesives, and the solid type is used for sealing materials and powder coatings. The varnish type is used as a fiber-reinforced plastic material or a solvent-type paint used by impregnating a glass substrate or carbon fiber. In particular, it is widely used for electrical and electronic material parts because of its excellent adhesion and electrical characteristics (insulation).
Since these electrical and electronic material parts are required to have high flame resistance (UL: V-0) as represented by glass epoxy laminates and IC encapsulants, usually halogenated epoxy resins are used. Yes. For example, in glass epoxy laminates, as flame retardant FR-4 grade, epoxy resin generally substituted with bromine as the main raw material component, mixed with various epoxy resins, and curing for epoxy resin It is used in combination with an agent.
However, the use of such halogenated epoxy resins is one of the causes of environmental problems represented by dioxins in recent years, and the adverse effect on electrical long-term reliability due to halogen dissociation in high temperature environments. For these reasons, there is a strong demand for flame retardants using other compounds that reduce the amount of halogen used or can be substituted for halogens, or other flame retardant formulations.
Conventionally, as a technology to replace such a flame retardant formulation with halogen, various technologies using, for example, a phosphate ester compound as an additive flame retardant have been studied. The deterioration of the property and water resistance and the problem that the flame retardant bleeds out with time, particularly the decrease in adhesion in electrical laminate applications, were severe. Thus, various techniques for improving the performance of a laminated plate by reacting an epoxy resin with a specific phosphorus compound have been studied (Patent Documents 1 to 4). However, in any of these techniques, the heat resistance is limited to the FR-4 grade, and it is difficult to further improve the heat resistance. In general, the heat resistance is improved by using a polyfunctional epoxy resin such as a cresol novolac epoxy resin. However, the flame retardancy and adhesiveness are lowered. Recently, in order to cope with lead-free solder, there has been a demand for a reduction in water absorption and low elasticity of the cured product in order to increase reliability at higher temperatures. In Patent Document 5, although an epoxy resin having a naphthalene aralkyl structure and a specific phosphorus compound are reacted, both flame retardancy and heat resistance are improved, but the adhesiveness is lowered. Thus, it has been difficult to achieve both improved heat resistance and adhesion while maintaining flame retardancy with the phosphorus-containing epoxy resin composition.
特開2001−288247号公報JP 2001-288247 A 特開2002−249540号公報JP 2002-249540 A 特開2001−123049号公報JP 2001-123049 A 特許第3642403号公報Japanese Patent No. 3642403 特開2008−214513号公報JP 2008-214513 A 特開2008−150495公報JP 2008-150495 A 特開昭61−268691号公報JP 61-268691 A
 本発明が解決しようとする課題は、ハロゲンを使用しないで難燃性を付与したリン含有エポキシ樹脂において、高温時での信頼性を高めるため、接着性の低下を招かずに、耐熱性、耐湿性、難燃性に優れる難燃性リン含有エポキシ樹脂組成物を提供することを目的とする。
 即ち本発明の要旨は、リン含有エポキシ樹脂(X)と硬化剤(Y)とを含む難燃性リン含有エポキシ樹脂組成物であって、前記リン含有エポキシ樹脂(X)は、硫黄原子を骨格内に有する2官能エポキシ樹脂類を50重量%から100重量%含有するエポキシ樹脂類(a)と、化学式(1)1モルに対して化学式(2)が0.06モル以下の比率で混合されたリン化合物類(b)を反応して得られたリン含有エポキシ樹脂(X)であり、かつ、該難燃性リン含有エポキシ樹脂組成物中の全エポキシ樹脂成分に対するリン含有率が0.5重量%から2.0重量%未満であり、かつ硫黄含有率が2重量%から9重量%以下であることを特徴とする難燃性リン含有エポキシ樹脂組成物である。
Figure JPOXMLDOC01-appb-I000002
発明の効果
 本発明による難燃性リン含有エポキシ樹脂組成物を用いると、難燃性と併せて、接着力、耐熱性とも優れている。さらに、リン含有率が0.5重量%から2.0重量%未満で難燃性であり、高い耐熱性と特に金属との接着性の優れた硬化物を得ることができ、硫黄原子を骨格内に有する2官能エポキシ樹脂を必須成分として含有することによって、その効果はさらに向上する。
The problem to be solved by the present invention is to improve the reliability at high temperatures in a phosphorus-containing epoxy resin imparted with flame retardancy without using a halogen, so that heat resistance and moisture resistance are not reduced without causing a decrease in adhesiveness. It aims at providing the flame-retardant phosphorus containing epoxy resin composition which is excellent in property and a flame retardance.
That is, the gist of the present invention is a flame-retardant phosphorus-containing epoxy resin composition containing a phosphorus-containing epoxy resin (X) and a curing agent (Y), wherein the phosphorus-containing epoxy resin (X) has a skeleton with a sulfur atom. The epoxy resin (a) containing 50 wt% to 100 wt% of the bifunctional epoxy resin contained therein and the chemical formula (2) is mixed at a ratio of 0.06 mol or less with respect to 1 mol of the chemical formula (1). A phosphorus-containing epoxy resin (X) obtained by reacting the phosphorus compounds (b), and a phosphorus content of 0.5 to all epoxy resin components in the flame-retardant phosphorus-containing epoxy resin composition It is a flame-retardant phosphorus-containing epoxy resin composition characterized by having a sulfur content of from 2% to 9% by weight.
Figure JPOXMLDOC01-appb-I000002
EFFECT OF THE INVENTION When the flame-retardant phosphorus-containing epoxy resin composition according to the present invention is used, it has excellent adhesion and heat resistance in addition to flame retardancy. Furthermore, it is flame retardant when the phosphorus content is from 0.5% to less than 2.0% by weight, and a cured product having high heat resistance and particularly excellent adhesion to metal can be obtained. The effect is further improved by containing the bifunctional epoxy resin contained therein as an essential component.
 以下、本発明の実施の形態について、詳細に説明する。
 本発明に用いるエポキシ樹脂類(a)は、硫黄原子を骨格内に有する2官能エポキシ樹脂を必須成分として50重量%から100重量%含有する。50重量%未満では耐熱性の向上が図れないばかりか、難燃性の低下を招き、高耐熱用途で使用可能な組成物が得られない為である。
 硫黄原子を骨格内に有する2官能エポキシ樹脂類としては、硫黄原子を含有する2官能のエポキシ樹脂であればどのような構造でも良いが、特に硫黄原子含有ビスフェノール型エポキシ樹脂が好ましい。具体的には、エポトートTX−0908(東都化成株式会社製 置換ビスフェノールS型エポキシ樹脂)等のビスフェノールS型エポキシ樹脂やエポトートYSLV−120TE(東都化成株式会社製 ジメチルジヒドロキシ−ジターシャリーブチルジフェニルスルフィド型エポキシ樹脂)やエポトートYSLV−50TE(東都化成株式会社製 ビスジフェニルスルフィド型エポキシ樹脂)等のジフェニルスルフィド型エポキシ樹脂等が挙げられるがこれらに限定されるものではなく、また2種類以上併用しても良い。
 また、2官能エポキシ樹脂類としては硫黄原子を骨格内に持たない2官能エポキシ樹脂類を併用しても良いが、硫黄原子を骨格内に有する2官能エポキシ樹脂類は、エポキシ樹脂類(a)中の50重量%以上にする必要がある。
 前述の硫黄原子を骨格内に有する2官能エポキシ樹脂及び、必要に応じて併用する硫黄原子を骨格内に持たない2官能エポキシ樹脂は、接着性向上のために必要である。その量は、エポキシ樹脂類(a)中の50重量%以上であり、好ましくは65重量%以上であり、より好ましくは80重量%以上である。50重量%未満では接着性の低下が激しく、実用性に乏しい組成物しか得られない為である。
 硫黄原子を骨格内に有する2官能エポキシ樹脂と共に使用できる硫黄原子を骨格内に持たない2官能エポキシ樹脂類としては、ヒドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂などが挙げられる。具体的にはエポトートYDC−1312、エポトートZX−1027(東都化成株式会社製、ヒドロキノン型エポキシ樹脂)、エポトートZX−1251(東都化成株式会社製、ビフェノール型エポキシ樹脂)、エポトートYD−127、エポトートYD−128、エポトートYD−8125、エポトートYD−825GS、エポトートYD−011、エポトートYD−900、エポトートYD−901(東都化成株式会社製、ビスフェノールA型エポキシ樹脂)、エポトートYDF−170、エポトートYDF−8170、エポトート YDF−870GS、エポトートYDF−2001(東都化成株式会社製、ビスフェノールF型エポキシ樹脂)、エポトートZX−1201(東都化成株式会社製、ビスフェノールフルオレン型エポキシ樹脂)、エポトートZX−1355、エポトートZX−1711(東都化成株式会社製、ナフタレンジオール型エポキシ樹脂)などが挙げられるがこれらに限定されるものではなく、また2種類以上併用しても良い。また、難燃性の観点からはアルキル置換基のないエポキシ樹脂が好ましく、これらの中ではナフタレンジオール型エポキシ樹脂やビフェニル型エポキシ樹脂やビスフェノールF型エポキシ樹脂がより好ましい。
 硫黄原子を骨格内に有する2官能エポキシ樹脂類を50重量%以上使用すれば、耐熱性や接着性を十分満足できるが、より難燃性や耐熱性や接着性の向上を図るため、硫黄原子を骨格内に有する2官能エポキシ樹脂以外のエポキシ樹脂類を50重量%未満の範囲で含有させても良い。しかし、難燃性の観点から脂肪族系エポキシ樹脂は好ましくなく、接着性向上の観点からは2官能エポキシ樹脂類が好ましいが、耐熱性向上の観点からは平均官能基数が2.1以上の多官能エポキシ樹脂類が好ましい。
 平均官能基数が2.1以上の多官能エポキシ樹脂類としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂などが挙げられる。具体例としては、エポトートYDPN−638(東都化成株式会社製、フェノールノボラック型エポキシ樹脂)、エポトートYDCN−701、エポトートYDCN−702、エポトートYDCN−703、エポトートYDCN−704(東都化成株式会社製、オルソクレゾールノボラック型エポキシ樹脂)、エポトートESN−175(東都化成株式会社製、β−ナフトールアラルキル型エポキシ樹脂)、エポトートESN−475V、エポトートESN−485(東都化成株式会社製、α−ナフトールアラルキル型エポキシ樹脂)、エポトートESN−355、エポトートESN−375(東都化成株式会社製、ジナフトールアラルキル型エポキシ樹脂)、EPPN−501H、EPPN−502(日本化薬株式会社製、多官能エポキシ樹脂)、NC−3000(日本化薬株式会社製、ビフェニルアラルキル型エポキシ樹脂)などが挙げられるがこれらに限定されるものではなく、また2種類以上併用しても良い。また、難燃性の観点からはアルキル置換基のないエポキシ樹脂が好ましく、これらの中では特にフェノールノボラック型エポキシ樹脂やナフトールアラルキル型エポキシ樹脂がより好ましい。
 特許文献1では硫黄原子を骨格内に有する2官能エポキシ樹脂類を最大45重量%含有するエポキシ樹脂で得られたリン含有エポキシ樹脂を開示しているが、50重量%未満のため耐熱性が十分ではなかった。特許文献5ではナフトールアラルキル型エポキシ樹脂で得られたリン含有エポキシ樹脂を開示しているが、耐熱性は十分だが、硫黄原子を骨格内に有する2官能エポキシ樹脂類を使用していないため、接着性がやや劣っていた。
 本発明に用いるリン化合物類(b)は、化学式(1)で表される化合物1モルに対して、化学式(2)で表される化合物を0.06モル以下の比率で混合されたリン化合物類であることが必須である。
 化学式(1)で表される化合物の代表例は、化学式(2)で表される化合物である9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドと1,4−ナフトキノンとの反応で得られたリン化合物である。
 リン化合物類(b)は、あらかじめ合成しておいた化学式(1)で表される化合物と化学式(2)で表される化合物を混合して用いても良いし、エポキシ樹脂類(a)との反応前に化学式(2)で表される化合物1モルに対し0.94モルから1.00モルの範囲で1,4−ナフトキノンを反応させても良い。エポキシ樹脂類(a)との反応前に化学式(2)で表される化合物と1,4−ナフトキノンを反応させる場合、化学式(2)で表される化合物1モルに対し1,4−ナフトキノンを1.00モル未満で使用することが好ましい。この場合、化学式(2)で表される化合物と1,4−ナフトキノンの反応は理論通りに進み、化学式(1)で表される化合物が得られ、得られるリン含有エポキシ樹脂(X)中に原料の1,4−ナフトキノンが残存することはない。化学式(2)で表される化合物1モルに対し1,4−ナフトキノンを1.00モル以上使用すると、得られるリン含有エポキシ樹脂(X)中に原料の1,4−ナフトキノンが残存し、硬化物の耐湿性が悪化するため好ましくない。
 化学式(2)で表される化合物が0.06モルを越える場合、リン含有率の調整が容易なため難燃性の向上や粘度低下に効果があるが、1官能の化学式(2)で表される化合物とエポキシ基の反応が多く起こり、エポキシ基数が低下するため、硬化物の接着性の低下や耐熱性の低下や耐湿性の低下が起こり、高耐熱用途での電気絶縁信頼性が著しく低下する。化学式(2)で表される化合物を用いない場合、化学式(1)で表される化合物をあらかじめ製造する必要がある。この化合物の製造には多くの工程が必要であり生産性が悪く工業的に不利益である。さらに、エポキシ樹脂類(b)との反応において、最終的なリン含有エポキシ組成物中のリン含有率を高く設定すると得られるリン含有エポキシ樹脂の分子量が増大し、樹脂粘度が上昇しすぎるため、ガラスクロスとの含浸性も著しく悪化し工業的に不利益になるばかりか、得られる積層板の物性、特にハンダ耐熱性が悪化し、さらに弾性率も高くなる傾向にあり、積層板が硬く脆くなりやすく不都合である。そのため、化学式(1)で表される化合物1モルに対する化学式(2)で表される化合物のモル比は、0.06モル以下であり、好ましくは、0.01モルから0.05モルである。
 特許文献4ではビスフェノールS型エポキシ樹脂で得られたリン含有エポキシ樹脂を示唆しているが実施例での開示はなく、残存する化学式(2)で表される化合物について考慮されていない。実施例ではビスフェノールAやビスフェノールFを例示しているが、化学式(1)で表される化合物1モルに対し、化学式(2)で表される化合物を0.92モルで反応しているため、化学式(2)で表される化合物が多く残存する為、耐熱性は若干劣り、高耐熱用途での電気絶縁信頼性に課題があった。
 本発明に用いるエポキシ樹脂類(a)とリン化合物類(b)との反応の際に、リン化合物類(b)以外の2官能以上のフェノール化合物類を使用してもかまわない。2官能以上のフェノール化合物類としては、例えばビスフェノールA、ビスフェノールS、ビスフェノールF、ナフタレンジオール、ビフェノール、フェノールノボラック樹脂、クレゾールノボラック樹脂、グリオキザールテトラフェノール樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェノールアラルキル樹脂などが挙げられる。特に難燃性の観点からは、アルキル置換基のないフェノール化合物が好ましく、これらの中では特にビスフェノールSやナフタレンジオールやビフェノールが好ましい。2官能以上のフェノール化合物類を使用する目的は、エポキシ樹脂類(a)とリン化合物類(b)とを反応する際、リン含有率や硫黄含有率や軟化点やエポキシ当量を調整したり、積層板の弾性率を調整するためである。
 また、本発明に用いるエポキシ樹脂類(a)とリン化合物類(b)と、必要に応じて使用する2官能以上のフェノール化合物類との反応は公知の方法で行うことが可能であり、反応温度として100℃~200℃、より好ましくは120℃~180℃で攪拌下行うことができる。反応時間はエポキシ当量の測定を行って決定することができる。エポキシ当量の測定にはJIS K−7236の方法により測定可能である。エポキシ樹脂類(a)にリン化合物類(b)と、フェノール化合物類とが反応することによりエポキシ当量は大きくなっていき、理論エポキシ当量との比較により反応終点を決定できる。
 また、反応の速度が遅い場合、必要に応じて触媒を使用して生産性の改善を計ることができる。具体的にはベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド等のホスホニウム塩類、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類等各種触媒が使用可能である。
 本発明の難燃性リン含有エポキシ樹脂組成物中の全エポキシ樹脂成分に対するリン含有率は0.5重量%から2.0重量%未満であることが必須である。0.5重量%未満では十分な難燃性を付与することができない。2.0重量%以上では、リン含有エポキシ樹脂中のリン成分の影響で硬化物の耐湿性が低下し高耐熱用途での信頼性が著しく低下する。
 難燃性リン含有エポキシ樹脂組成物中の全エポキシ樹脂成分に対するリン含有率が0.5重量%から2.0重量%に調整する必要性から、リン含有エポキシ樹脂(X)100重量部に対して、リン不含有エポキシ樹脂を0重量部から50重量部配合することができる。50重量部以上配合しようとすると、難燃性を損なわないようにリン含有エポキシ樹脂(X)のリン含有率を高める必要があり、この場合、難燃性リン含有エポキシ樹脂組成物の耐熱性が大幅に低下してしまう。リン不含有エポキシ樹脂としては難燃性の観点から脂肪族系エポキシ樹脂は好ましくなく、耐熱性の観点から好ましくは平均官能基数が2.1以上の多官能エポキシ樹脂類であり、前述したエポキシ樹脂類が好ましい。特にリン不含有エポキシ樹脂類として平均官能基数が2.1以上の多官能エポキシ樹脂を使用する場合、50重量部以下であれば耐熱性、難燃性を損なうことなく本発明の難燃性リン含有エポキシ樹脂組成物を得ることができる。より好ましくはリン含有エポキシ樹脂(X)100重量部に対して、リン不含有エポキシ樹脂を0重量部から25重量部である。
 本発明のリン含有エポキシ樹脂(X)のリン含有率は、0.5重量%~3.5重量%の範囲であれば良く、好ましくは0.8重量%~3.0重量%、より好ましくは1.2重量%~2.7重量%、さらに好ましくは1.5重量%~2.3重量%である。リン含有率が0.5重量%未満になると難燃性の確保が難しくなる。3.5重量%を越えると樹脂粘度が著しく高くなり合成が難しくなり、樹脂の分子量が増大するため、耐熱性に悪影響を与え、さらにガラスクロスへの含浸性も悪化し工業的に不利益になるばかりか、得られる硬化物の物性、特に耐湿性やハンダ耐熱性が悪化する。また、リン含有エポキシ樹脂(X)以外のエポキシ樹脂を用いない場合では、リン含有エポキシ樹脂(X)のリン含有率は、0.5重量%~2.0重量%未満にすることが必須になる。
 本発明の難燃性リン含有エポキシ樹脂組成物中の全エポキシ樹脂成分に対する硫黄含有率は2重量%~9重量%以下であることが必須である。2重量%未満では十分な耐熱性を付与することができない。9重量%を越えると、リン含有エポキシ樹脂中の硫黄成分の影響で得られる硬化物の物性、特に耐湿性やハンダ耐熱性が悪化し、高耐熱用途での信頼性が著しく低下する。好ましくは3重量%~8重量%であり、より好ましくは4重量%~7重量%である。また、リン含有エポキシ樹脂(X)以外のエポキシ樹脂を用いない場合では、リン含有エポキシ樹脂(X)の硫黄含有率は、2重量%~9重量%以下にすることが必須になる。
 本発明のリン含有エポキシ樹脂(X)のエポキシ当量は好ましくは200g/eq~900g/eq、より好ましくは250g/eq~800g/eq、さらに好ましくは300g/eq~600g/eqである。エポキシ当量が200g/eq未満の場合は接着性に劣り、900g/eqを越えると耐熱性に悪影響を与えるために200g/eq~900g/eqに調整することが望ましい。
 本発明の硬化剤(Y)としては、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、アラルキルフェノールノボラック樹脂、トリアジン環含有フェノールノボラック樹脂、ビフェニルアラルキルフェノール樹脂、アラルキルナフタレンジオール樹脂、トリスフェニルメタン、テトラキスフェニルエタン等の多価フェノール類、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジド類、イミダゾール化合物類及びその塩類、ジシアンジアミド、アミノ安息香酸エステル類、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メタキシレンジアミン、イソホロンジアミン等の脂肪族アミン類、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノエチルベンゼン等の芳香族アミン類、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸等の酸無水物類等、公知慣用の硬化剤が挙げられるがこれらに限定されるものではない。これらの硬化剤は1種類だけ使用しても2種類以上併用しても良い。これらの硬化剤の使用量は使用されるエポキシ樹脂中のエポキシ基1当量に対して0.3当量~1.5当量の範囲が好ましく、0.4当量~1.2当量がさらに好ましい。
 また、本発明の難燃性リン含有エポキシ樹脂組成物は必要に応じてホスフィン類、イミダゾール化合物類、四級ホスホニウム塩類、三級アミン類、四級アンモニウム塩類、三フッ化ホウ素錯体類、3−(3,4−ジクロロジフェニル)−1,1−ジメチルウレア、3−(4−クロロフェニル)−1,1−ジメチルウレア、3−フェニル−1,1−ジメチルウレア等の硬化促進剤を併用することもできる。これらの硬化促進剤は併用するエポキシ樹脂、使用するエポキシ樹脂硬化剤の種類、成型方法、硬化温度、要求特性によるが、エポキシ樹脂100重量部に対して0.01重量部~20重量部の範囲が好ましく、0.1重量部~10重量部がさらに好ましい。
 本発明の難燃性リン含有エポキシ樹脂組成物は、特性を損ねない範囲でエポキシ樹脂以外の他の熱硬化性樹脂、熱可塑性樹脂を配合してもよい。例えばフェノール樹脂、アクリル樹脂、石油樹脂、インデン樹脂、インデンクマロン樹脂、フェノキシ樹脂、シアネート樹脂、ポリウレタン、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ビスマレイミドトリアジン樹脂、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリビニルホルマール等が挙げられるがこれらに限定されるものではない。
 本発明の難燃性リン含有エポキシ樹脂組成物は、必要に応じて無機充填剤、有機充填剤を配合することができる。充填剤の例としては、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム、タルク、マイカ、炭酸カルシウム、珪酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、窒化ホウ素、カーボン、ガラス繊維、カーボン繊維、アルミナ繊維、シリカアルミナ繊維、シリコンカーバイド繊維、ポリエステル繊維、セルロース繊維、アラミド繊維等が挙げられる。これら充填剤はエポキシ樹脂全量中の1重量%~95重量%が好ましい。
 本発明の難燃性リン含有エポキシ樹脂組成物は、さらに必要に応じてシランカップリング剤、酸化防止剤、離型剤、消泡剤、乳化剤、揺変性付与剤、平滑剤、難燃剤、顔料等の各種添加剤を配合することができる。これら添加剤はエポキシ樹脂組成物全量中の0.01重量%~20重量%の範囲が好ましい。
 本発明の難燃性リン含有エポキシ樹脂組成物は、公知の方法により必須成分であるリン含有エポキシ樹脂(X)、硬化剤(Y)、必要に応じて硬化促進剤、各種充填剤、各種添加剤等を配合して均一に混合することにより得ることができる。
 本発明の難燃性リン含有エポキシ樹脂組成物は、公知の方法により成型、硬化して容易に硬化物とすることができる。成型方法、硬化方法は公知のエポキシ樹脂組成物と同様の方法をとることができる。
 本発明の難燃性リン含有エポキシ樹脂硬化物は封止材、接着層、成型物、積層物、フィルム等の形態をとることができる。
 本発明の難燃性リン含有エポキシ樹脂組成物を使用して得られた積層板の特性の評価を行った結果、高耐熱性で低吸水率であり、高温時での信頼性が高い硬化物を得ることが可能である。該難燃性リン含有エポキシ樹脂組成物及びその硬化物は、電子回路基板に用いられる銅張積層板の製造用樹脂組成物や電子部品に用いられる封止材、成形材、注型材、接着剤、フィルム材、電気絶縁塗料用材料などとして有用であることがわかった。
Hereinafter, embodiments of the present invention will be described in detail.
The epoxy resins (a) used in the present invention contain 50 wt% to 100 wt% of a bifunctional epoxy resin having a sulfur atom in the skeleton as an essential component. If it is less than 50% by weight, not only the heat resistance cannot be improved, but also the flame retardancy is lowered, and a composition that can be used in a high heat resistance application cannot be obtained.
The bifunctional epoxy resins having a sulfur atom in the skeleton may have any structure as long as it is a bifunctional epoxy resin containing a sulfur atom, but a sulfur atom-containing bisphenol type epoxy resin is particularly preferable. Specifically, bisphenol S type epoxy resin such as Epototo TX-0908 (Substituted bisphenol S type epoxy resin manufactured by Toto Kasei Co., Ltd.) or Epototo YSLV-120TE (Dimethyldihydroxy-ditertiary butyl diphenyl sulfide type epoxy manufactured by Toto Kasei Co., Ltd.) Resin) and Epototo YSLV-50TE (Bisdiphenyl sulfide type epoxy resin manufactured by Toto Kasei Co., Ltd.) and the like, but are not limited to these, and two or more types may be used in combination. .
In addition, bifunctional epoxy resins having no sulfur atom in the skeleton may be used in combination as the bifunctional epoxy resins, but the bifunctional epoxy resins having a sulfur atom in the skeleton are epoxy resins (a). It is necessary to make it 50% by weight or more.
The above-mentioned bifunctional epoxy resin having a sulfur atom in the skeleton and the bifunctional epoxy resin not having a sulfur atom to be used in combination in the skeleton as necessary are necessary for improving adhesion. The amount thereof is 50% by weight or more in the epoxy resins (a), preferably 65% by weight or more, and more preferably 80% by weight or more. This is because if the amount is less than 50% by weight, the adhesiveness is drastically lowered, and only a composition having poor practicality can be obtained.
Bifunctional epoxy resins that do not have a sulfur atom in the skeleton that can be used with a bifunctional epoxy resin that has a sulfur atom in the skeleton include hydroquinone type epoxy resins, bisphenol type epoxy resins, biphenol type epoxy resins, and naphthalenediol type epoxy resins. Etc. Specifically, Epototo YDC-1312, Epototo ZX-1027 (manufactured by Toto Kasei Co., Ltd., hydroquinone type epoxy resin), Epototo ZX-1251 (Toto Kasei Co., Ltd., biphenol type epoxy resin), Epototo YD-127, Epototo YD -128, Epototo YD-8125, Epototo YD-825GS, Epototo YD-011, Epototo YD-900, Epototo YD-901 (manufactured by Tohto Kasei Co., Ltd., bisphenol A type epoxy resin), Epototo YDF-170, Epototo YDF-8170 , Epototo YDF-870GS, Epototo YDF-2001 (manufactured by Toto Kasei Co., Ltd., bisphenol F type epoxy resin), Epototo ZX-1201 (manufactured by Toto Kasei Co., Ltd., bisphenol fluorene type epoxy tree) Fat), epototo ZX-1355, epototo ZX-1711 (manufactured by Tohto Kasei Co., Ltd., naphthalene diol type epoxy resin) and the like, but are not limited thereto, and two or more types may be used in combination. From the viewpoint of flame retardancy, epoxy resins having no alkyl substituent are preferred, and among these, naphthalenediol type epoxy resins, biphenyl type epoxy resins, and bisphenol F type epoxy resins are more preferred.
If bifunctional epoxy resins having a sulfur atom in the skeleton are used in an amount of 50% by weight or more, heat resistance and adhesiveness can be sufficiently satisfied. However, in order to improve flame retardancy, heat resistance and adhesiveness, An epoxy resin other than a bifunctional epoxy resin having a skeleton in the skeleton may be contained in an amount of less than 50% by weight. However, aliphatic epoxy resins are not preferable from the viewpoint of flame retardancy, and bifunctional epoxy resins are preferable from the viewpoint of improving adhesiveness. However, from the viewpoint of improving heat resistance, the number of average functional groups is 2.1 or more. Functional epoxy resins are preferred.
Examples of the polyfunctional epoxy resins having an average functional group number of 2.1 or more include phenol novolac type epoxy resins, cresol novolac type epoxy resins, and aralkyl type epoxy resins. Specific examples include Epototo YDPN-638 (manufactured by Toto Kasei Co., Ltd., phenol novolac type epoxy resin), Epototo YDCN-701, Epototo YDCN-702, Epototo YDCN-703, Epototo YDCN-704 (manufactured by Toto Kasei Co., Ltd., Ortho Cresol novolac type epoxy resin), Epototo ESN-175 (manufactured by Toto Kasei Co., Ltd., β-naphthol aralkyl type epoxy resin), Epototo ESN-475V, Epototo ESN-485 (manufactured by Toto Kasei Co., Ltd., α-naphthol aralkyl type epoxy resin) ), Epototo ESN-355, Epototo ESN-375 (manufactured by Toto Kasei Co., Ltd., dinaphthol aralkyl type epoxy resin), EPPN-501H, EPPN-502 (Nippon Kayaku Co., Ltd., polyfunctional epoxy tree) Fat), NC-3000 (manufactured by Nippon Kayaku Co., Ltd., biphenyl aralkyl type epoxy resin) and the like, but are not limited thereto, and two or more kinds may be used in combination. From the viewpoint of flame retardancy, epoxy resins having no alkyl substituent are preferred, and among these, phenol novolac type epoxy resins and naphthol aralkyl type epoxy resins are more preferred.
Patent Document 1 discloses a phosphorus-containing epoxy resin obtained from an epoxy resin containing a maximum of 45% by weight of a bifunctional epoxy resin having a sulfur atom in the skeleton, but has sufficient heat resistance because it is less than 50% by weight. It wasn't. Patent Document 5 discloses a phosphorus-containing epoxy resin obtained with a naphthol aralkyl type epoxy resin, but has sufficient heat resistance, but does not use bifunctional epoxy resins having a sulfur atom in the skeleton. The sex was slightly inferior.
The phosphorus compound (b) used in the present invention is a phosphorus compound in which the compound represented by the chemical formula (2) is mixed at a ratio of 0.06 mol or less with respect to 1 mol of the compound represented by the chemical formula (1). It is essential to be a kind.
Typical examples of the compound represented by the chemical formula (1) are 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and 1,4-naphthoquinone which are the compounds represented by the chemical formula (2). It is a phosphorus compound obtained by reaction with.
As the phosphorus compounds (b), a compound represented by the chemical formula (1) synthesized in advance and a compound represented by the chemical formula (2) may be mixed and used, or the epoxy resins (a) and Before the reaction, 1,4-naphthoquinone may be reacted in the range of 0.94 mol to 1.00 mol with respect to 1 mol of the compound represented by the chemical formula (2). When the compound represented by the chemical formula (2) is reacted with 1,4-naphthoquinone before the reaction with the epoxy resins (a), 1,4-naphthoquinone is added to 1 mol of the compound represented by the chemical formula (2). It is preferable to use less than 1.00 mol. In this case, the reaction between the compound represented by the chemical formula (2) and 1,4-naphthoquinone proceeds as theoretically, and the compound represented by the chemical formula (1) is obtained. In the obtained phosphorus-containing epoxy resin (X) The raw material 1,4-naphthoquinone does not remain. When 1,4-naphthoquinone is used in an amount of 1.00 mol or more with respect to 1 mol of the compound represented by the chemical formula (2), 1,4-naphthoquinone as a raw material remains in the obtained phosphorus-containing epoxy resin (X) and is cured. This is not preferable because the moisture resistance of the product deteriorates.
When the compound represented by the chemical formula (2) exceeds 0.06 mol, the phosphorous content can be easily adjusted, which is effective in improving the flame retardancy and decreasing the viscosity, but represented by the monofunctional chemical formula (2). The reaction between the compound and the epoxy group occurs frequently and the number of epoxy groups decreases, resulting in a decrease in the adhesiveness of the cured product, a decrease in heat resistance, and a decrease in moisture resistance, resulting in remarkable electrical insulation reliability in high heat resistance applications. descend. When the compound represented by the chemical formula (2) is not used, it is necessary to produce the compound represented by the chemical formula (1) in advance. The production of this compound requires many steps, and the productivity is poor and industrially disadvantageous. Furthermore, in the reaction with the epoxy resins (b), when the phosphorus content in the final phosphorus-containing epoxy composition is set high, the molecular weight of the resulting phosphorus-containing epoxy resin increases, and the resin viscosity increases too much, Not only does the impregnation with glass cloth worsen and it is industrially disadvantageous, but the physical properties of the resulting laminate, especially the soldering heat resistance, deteriorates and the elastic modulus tends to increase, making the laminate hard and brittle. It is easy to become inconvenient. Therefore, the molar ratio of the compound represented by the chemical formula (2) to 1 mole of the compound represented by the chemical formula (1) is 0.06 mol or less, and preferably 0.01 to 0.05 mol. .
Patent Document 4 suggests a phosphorus-containing epoxy resin obtained with a bisphenol S-type epoxy resin, but there is no disclosure in Examples, and no consideration is given to the remaining compound represented by the chemical formula (2). In the examples, bisphenol A and bisphenol F are exemplified, but the compound represented by the chemical formula (2) is reacted at 0.92 mol with respect to 1 mol of the compound represented by the chemical formula (1). Since a large amount of the compound represented by the chemical formula (2) remains, the heat resistance is slightly inferior, and there is a problem in electrical insulation reliability in high heat resistance applications.
In the reaction of the epoxy resins (a) and phosphorus compounds (b) used in the present invention, bifunctional or higher functional phenol compounds other than the phosphorus compounds (b) may be used. Examples of the bifunctional or higher functional phenol compounds include bisphenol A, bisphenol S, bisphenol F, naphthalene diol, biphenol, phenol novolac resin, cresol novolac resin, glyoxal tetraphenol resin, bisphenol A novolac resin, phenol aralkyl resin, and naphthol aralkyl resin. And biphenol aralkyl resin. In particular, from the viewpoint of flame retardancy, a phenol compound having no alkyl substituent is preferable, and among these, bisphenol S, naphthalenediol, and biphenol are particularly preferable. The purpose of using bifunctional or higher functional phenol compounds is to adjust the phosphorus content, sulfur content, softening point and epoxy equivalent when reacting the epoxy resins (a) and the phosphorus compounds (b), This is for adjusting the elastic modulus of the laminate.
In addition, the reaction between the epoxy resins (a) and phosphorus compounds (b) used in the present invention and the bifunctional or higher functional phenol compounds used as necessary can be carried out by a known method. The temperature can be 100 to 200 ° C., more preferably 120 to 180 ° C. with stirring. The reaction time can be determined by measuring the epoxy equivalent. The epoxy equivalent can be measured by the method of JIS K-7236. The epoxy equivalent increases as the phosphorus compounds (b) react with the epoxy resins (a) and the phenolic compounds, and the end point of the reaction can be determined by comparison with the theoretical epoxy equivalent.
Further, when the reaction rate is slow, productivity can be improved by using a catalyst as necessary. Specifically, tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, ethyltriphenylphosphonium Various catalysts such as phosphonium salts such as bromide and imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole can be used.
It is essential that the phosphorus content with respect to all the epoxy resin components in the flame-retardant phosphorus-containing epoxy resin composition of the present invention is 0.5% by weight to less than 2.0% by weight. If it is less than 0.5% by weight, sufficient flame retardancy cannot be imparted. If it is 2.0% by weight or more, the moisture resistance of the cured product is lowered due to the influence of the phosphorus component in the phosphorus-containing epoxy resin, and the reliability in the high heat resistance application is remarkably lowered.
From the necessity of adjusting the phosphorus content to the total epoxy resin component in the flame-retardant phosphorus-containing epoxy resin composition from 0.5 wt% to 2.0 wt%, to 100 parts by weight of the phosphorus-containing epoxy resin (X) Thus, 0 to 50 parts by weight of the phosphorus-free epoxy resin can be blended. When trying to mix 50 parts by weight or more, it is necessary to increase the phosphorus content of the phosphorus-containing epoxy resin (X) so as not to impair the flame retardancy. In this case, the heat resistance of the flame-retardant phosphorus-containing epoxy resin composition is increased. It will drop significantly. As the phosphorus-free epoxy resin, an aliphatic epoxy resin is not preferable from the viewpoint of flame retardancy, and from the viewpoint of heat resistance, it is preferably a polyfunctional epoxy resin having an average functional group number of 2.1 or more. Are preferred. In particular, when a polyfunctional epoxy resin having an average functional group number of 2.1 or more is used as a phosphorus-free epoxy resin, the flame-retardant phosphorus of the present invention can be used without impairing heat resistance and flame retardancy as long as it is 50 parts by weight or less. A contained epoxy resin composition can be obtained. More preferably, the amount of the phosphorus-free epoxy resin is 0 to 25 parts by weight with respect to 100 parts by weight of the phosphorus-containing epoxy resin (X).
The phosphorus content of the phosphorus-containing epoxy resin (X) of the present invention may be in the range of 0.5 wt% to 3.5 wt%, preferably 0.8 wt% to 3.0 wt%, more preferably Is 1.2 wt% to 2.7 wt%, more preferably 1.5 wt% to 2.3 wt%. If the phosphorus content is less than 0.5% by weight, it is difficult to ensure flame retardancy. If it exceeds 3.5% by weight, the resin viscosity becomes extremely high and synthesis becomes difficult, and the molecular weight of the resin increases, which adversely affects the heat resistance and further impairs impregnation into glass cloth, which is industrially disadvantageous. In addition, the physical properties of the resulting cured product, particularly moisture resistance and solder heat resistance, are deteriorated. In addition, when an epoxy resin other than the phosphorus-containing epoxy resin (X) is not used, it is essential that the phosphorus content of the phosphorus-containing epoxy resin (X) is 0.5% by weight to less than 2.0% by weight. Become.
It is essential that the sulfur content relative to all epoxy resin components in the flame-retardant phosphorus-containing epoxy resin composition of the present invention is 2 to 9% by weight. If it is less than 2% by weight, sufficient heat resistance cannot be imparted. If it exceeds 9% by weight, the physical properties of the cured product obtained under the influence of the sulfur component in the phosphorus-containing epoxy resin, particularly moisture resistance and soldering heat resistance will deteriorate, and the reliability in high heat resistance applications will be significantly reduced. The amount is preferably 3 to 8% by weight, more preferably 4 to 7% by weight. In the case where an epoxy resin other than the phosphorus-containing epoxy resin (X) is not used, it is essential that the sulfur content of the phosphorus-containing epoxy resin (X) is 2 wt% to 9 wt% or less.
The epoxy equivalent of the phosphorus-containing epoxy resin (X) of the present invention is preferably 200 g / eq to 900 g / eq, more preferably 250 g / eq to 800 g / eq, and still more preferably 300 g / eq to 600 g / eq. When the epoxy equivalent is less than 200 g / eq, the adhesiveness is inferior, and when it exceeds 900 g / eq, the heat resistance is adversely affected, so it is desirable to adjust to 200 g / eq to 900 g / eq.
Examples of the curing agent (Y) of the present invention include phenol novolak resins, alkylphenol novolak resins, aralkylphenol novolak resins, triazine ring-containing phenol novolak resins, biphenylaralkylphenol resins, aralkylnaphthalenediol resins, trisphenylmethane, and tetrakisphenylethane. Polyhydric phenols, hydrazides such as adipic acid dihydrazide, sebacic acid dihydrazide, imidazole compounds and salts thereof, dicyandiamide, aminobenzoic acid esters, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, metaxylenediamine, isophoronediamine, etc. Aromatic amines such as diaminodiphenylmethane, diaminodiphenylsulfone, and diaminoethylbenzene Mines, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, etc. Examples thereof include, but are not limited to, known and usual curing agents such as acid anhydrides. These curing agents may be used alone or in combination of two or more. The amount of these curing agents used is preferably in the range of 0.3 equivalents to 1.5 equivalents, more preferably 0.4 equivalents to 1.2 equivalents, relative to 1 equivalent of the epoxy group in the epoxy resin used.
In addition, the flame-retardant phosphorus-containing epoxy resin composition of the present invention may contain phosphines, imidazole compounds, quaternary phosphonium salts, tertiary amines, quaternary ammonium salts, boron trifluoride complexes, 3- Use together with a curing accelerator such as (3,4-dichlorodiphenyl) -1,1-dimethylurea, 3- (4-chlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea. You can also. These curing accelerators depend on the epoxy resin used together, the type of epoxy resin curing agent used, the molding method, the curing temperature, and the required characteristics, but in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the epoxy resin. It is preferably 0.1 to 10 parts by weight.
The flame retardant phosphorus-containing epoxy resin composition of the present invention may be blended with other thermosetting resins and thermoplastic resins other than the epoxy resin as long as the characteristics are not impaired. For example, phenol resin, acrylic resin, petroleum resin, indene resin, indene coumarone resin, phenoxy resin, cyanate resin, polyurethane, polyester, polyamide, polyimide, polyamideimide, polyetherimide, bismaleimide triazine resin, polyethersulfone, polysulfone, Examples include polyether ether ketone, polyphenylene sulfide, and polyvinyl formal, but are not limited thereto.
The flame-retardant phosphorus-containing epoxy resin composition of the present invention can contain an inorganic filler and an organic filler as necessary. Examples of fillers include fused silica, crystalline silica, alumina, silicon nitride, aluminum hydroxide, talc, mica, calcium carbonate, calcium silicate, calcium hydroxide, magnesium carbonate, barium carbonate, barium sulfate, boron nitride, carbon, Examples thereof include glass fiber, carbon fiber, alumina fiber, silica alumina fiber, silicon carbide fiber, polyester fiber, cellulose fiber, and aramid fiber. These fillers are preferably 1 to 95% by weight based on the total amount of the epoxy resin.
The flame-retardant phosphorus-containing epoxy resin composition of the present invention further comprises a silane coupling agent, an antioxidant, a mold release agent, an antifoaming agent, an emulsifier, a thixotropic agent, a smoothing agent, a flame retardant, and a pigment as necessary. Various additives such as can be blended. These additives are preferably in the range of 0.01 wt% to 20 wt% in the total amount of the epoxy resin composition.
The flame-retardant phosphorus-containing epoxy resin composition of the present invention is an essential component of a phosphorus-containing epoxy resin (X), a curing agent (Y), a curing accelerator, various fillers, and various additives as required by known methods. It can be obtained by blending an agent or the like and mixing them uniformly.
The flame-retardant phosphorus-containing epoxy resin composition of the present invention can be easily molded into a cured product by molding and curing by a known method. The molding method and the curing method can be the same methods as known epoxy resin compositions.
The flame retardant phosphorus-containing epoxy resin cured product of the present invention can take the form of a sealing material, an adhesive layer, a molded product, a laminate, a film and the like.
As a result of evaluating the characteristics of the laminate obtained using the flame-retardant phosphorus-containing epoxy resin composition of the present invention, the cured product has high heat resistance, low water absorption, and high reliability at high temperatures. It is possible to obtain The flame-retardant phosphorus-containing epoxy resin composition and its cured product are a resin composition for producing a copper-clad laminate used for an electronic circuit board and a sealing material, a molding material, a casting material, and an adhesive used for an electronic component. It was found to be useful as a film material, an electrical insulating paint material, and the like.
 以下、合成例、実施例及び比較例に基づき、本発明を具体的に説明するが、本発明の技術的範囲は実施例のみに制限されるものではない。なお、合成例、実施例及び比較例における各成分の配合部数は、特に断らない限り重量部を示すものである。
 また、本発明では以下の分析方法を使用した。
エポキシ当量:JIS K−7236に記載の方法。即ち、試料をクロロホルム10mLに溶解し、無水酢酸20mL、20%の臭化テトラエチルアンモニウム酢酸溶液10mLをそれぞれ加えて、電位差滴定装置を用いて0.1mol/L過塩素酸酢酸標準液で滴定した。
 軟化点:JIS K−7234に記載の環球法。即ち、試料を溶融脱泡し環に注ぎ込み、グリセリン浴にて測定した。
 リン含有率:硝酸−過塩素酸分解法。即ち、試料に硫酸、硝酸、過塩素酸を加えて熱分解し、全てのリンを正リン酸とした後、硫酸酸性溶液中で0.25%バナジン酸アンモニウム溶液及び5%モリブデン酸アンモニウム溶液を反応させ、生じたリン−バナードモリブデン酸錯体の発色を波長420nmにおける吸光度を測定し、検量線によってリン含有率を求めた。
 硫黄含有率:JIS K−6233−1に記載の酸素燃焼フラスコ法に準じた方法。即ち、燃焼フラスコで試料を完全に分解し溶液に硫酸イオンとして補足吸収させた後、イオンクロマトグラフィーにて測定した。
 銅箔剥離強さ:JIS C−6481 5.7に記載の方法。即ち、銅箔と絶縁板との間で直角方向に50mm/minの速度で剥離を行い測定した。
 層間剥離強度:JIS C−6481 5.7に準じた方法。即ち、プリプレグ1枚と残りの3枚の間で直角方向に50mm/minの速度で剥離を行い測定した。
 難燃性:UL(Underwriters Laboratories)規格、UL94垂直試験法に準じて測定を行い、同規格の判定基準である、V−0、V−1、V−2、NG(難燃性なし)の4水準で判定した(後になるほど難燃性が悪い)。
 ガラス転移温度:TMA法。即ち、エスアイアイ・ナノテクノロジー株式会社製TMA/SS120Uを分析装置に使用し、熱機械分析(TMA)にて10℃/分の昇温速度で測定した。
 線熱膨張係数:TMA法。即ち、エスアイアイ・ナノテクノロジー株式会社製TMA/SS120Uを分析装置に使用し、熱機械分析(TMA)にて10℃/分の昇温速度で測定した、50℃から150℃での変位として求めた。
 吸水率:JIS C−6481 5.13に準じた方法。即ち、50mm×50mmにカットした試験片を用いて、50℃のオーブン中で24時間乾燥した後の乾燥重量を測定し、引き続き100℃、2時間煮沸した後の重量を測定し、乾燥重量からの増加分に基づいて吸湿率を測定した。
 ハンダ耐熱性:JIS C−6481 5.5に準じた方法。即ち、25mm×25mmにカットした試験片を用いて、100℃、2時間煮沸後の試験片を、n=5で、288℃の半田浴に20秒間浸け、5点とも膨れや剥がれを生じなかったものを○とし、1つでも生じたものを×とした。
合成例1
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(三光株式会社製、リン含有率:14.2重量%)64.0gとトルエン150gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(川崎化成工業株式会社製、3%含水品)45.9gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.95であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(東都化成株式会社製、エポキシ当量:219g/eq)317.1gと、平均官能基数が2.1以上の多官能エポキシ樹脂としてエポトートYDPN−638(東都化成株式会社製、フェノールノボラック型エポキシ樹脂、エポキシ当量:176g/eq)74.4gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(北興化学工業株式会社製、製品名:TPP)を0.11g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Aを得た。得られたリン含有エポキシ樹脂Aのエポキシ当量は392g/eq、リン含有率は1.8重量%、硫黄含有率は5.2重量%、軟化点は83℃であった。
合成例2
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)45.5gとトルエン110gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)33.6gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.98であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(前述)420.7gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.08g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Bを得た。得られたリン含有エポキシ樹脂Bのエポキシ当量は338g/eq、リン含有率は1.3重量%、硫黄含有率は7.0重量%、軟化点は76℃であった。
合成例3
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)64.5gとトルエン150gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)47.2gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.97であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(前述)350.0gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.11g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Cを得た。得られたリン含有エポキシ樹脂Cのエポキシ当量は751g/eq、リン含有率は2.0重量%、硫黄含有率は6.3重量%、軟化点は120℃であった。
合成例4
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)75.0gとトルエン175gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)55.9gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.99であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(前述)320.0gと、平均官能基数が2.1以上の多官能エポキシ樹脂としてエポトートESN−485(東都化成株式会社製、α−ナフトールアラルキル型エポキシ樹脂、エポキシ当量:269g/eq)30.0gと、2官能以上のフェノール化合物として4,4’−ビフェノール(新日鐵化学株式会社製、水酸基当量:93g/eq)18.0gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.15g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Dを得た。得られたリン含有エポキシ樹脂Dのエポキシ当量は723g/eq、リン含有率は2.1重量%、硫黄含有率は5.3重量%、軟化点は125℃であった。
合成例5
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、硫黄原子を骨格内に有する2官能エポキシ樹脂として2,4−ビスフェノールS型エポキシ樹脂(特許文献6の実施例1に記載の方法であらかじめ合成した、エポキシ当量:220g/eq)340.0g、化学式(1)で示されるリン化合物として9,10−ジヒドロ−9−オキサ−10−(2,7−ジヒドロキシナフチル)−10−ホスファフェナンスレン−10−オキサイド(特許文献7の実施例1に記載の方法であらかじめ合成した、以下HCA−NQと略す)64.8g、化学式(2)で示されるリン化合物としてHCA(前述)1.1g、2官能以上のフェノール化合物として4,4’−ビスフェノールS(日華化学株式会社製、BPS−P(T)、水酸基当量:125g/eq)25.0gを仕込み、窒素雰囲気下で攪拌しながら130℃まで加熱した。この時の化学式(1)で示されるリン化合物1モルに対して化学式(2)で示されるリン化合物は0.03モルであった。その後触媒としてトリフェニルホスフィン(前述)を0.09g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Eを得た。得られたリン含有エポキシ樹脂Eのエポキシ当量は441g/eq、リン含有率は1.2重量%、硫黄含有率は7.8重量%、軟化点は104℃であった。
合成例6
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートYSLV−50TE(東都化成株式会社製 エポキシ当量:172g/eq)400.0g、化学式(1)で示されるリン化合物としてHCA−NQ(前述)62.0g、2官能以上のフェノール化合物として4,4’−ビフェノール(前述)40.0gを仕込み、窒素雰囲気下で攪拌しながら130℃まで加熱した。この時、化学式(2)で示されるリン化合物は使わなかった。その後触媒としてトリフェニルホスフィン(前述)を0.1g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Fを得た。得られたリン含有エポキシ樹脂Fのエポキシ当量は333g/eq、リン含有率は1.0重量%、硫黄含有率は7.7重量%、軟化点は96℃であった。
合成例7
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)75.0gとトルエン175gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)55.9gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.99であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(前述)180.0gと、2官能エポキシ樹脂としてエポトートZX−1711(東都化成株式会社製、2,5−ナフタレンジオール型エポキシ樹脂、エポキシ当量:146g/eq)175.0gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.13g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Gを得た。得られたリン含有エポキシ樹脂Gのエポキシ当量は371g/eq、リン含有率は2.2重量%、硫黄含有率は3.0重量%、軟化点は110℃であった。
合成例8
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)103.6gとトルエン240gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)53.4gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.68であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(前述)226.4gと、平均官能基数が2.1以上の多官能エポキシ樹脂としてエポトートYDPN−638(前述)117.3gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.16g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Hを得た。得られたリン含有エポキシ樹脂Hのエポキシ当量は563g/eq、リン含有率は2.9重量%、硫黄含有率は3.7重量%、軟化点は110℃であった。
合成例9
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)70.0gとトルエン160gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)46.4gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.88であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(前述)172.8gと、2官能エポキシ樹脂としてエポトートYD−128(東都化成株式会社製、ビスフェノールA型エポキシ樹脂、エポキシ当量:187g/eq)211.2gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.11g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂1を得た。得られたリン含有エポキシ樹脂1のエポキシ当量は384g/eq、リン含有率は2.0重量%、硫黄含有率は3.0重量%、軟化点は70℃であった。
合成例10
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)70.0gとトルエン160gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)46.4gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.88であった。加熱反応後、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートYSLV−50TE(前述)300.0gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。その後触媒としてトリフェニルホスフィン(前述)を0.12g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Jを得た。得られたリン含有エポキシ樹脂Jのエポキシ当量は370g/eq、リン含有率は2.4重量%、硫黄含有率は7.1重量%、軟化点は106℃であった。
合成例11
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートTX−0908(前述)315.8g、化学式(1)で示されるリン化合物としてHCA−NQ(前述)181.8gを仕込み、窒素雰囲気下で攪拌しながら130℃まで加熱した。この時、化学式(2)で示されるリン化合物は使わなかった。その後触媒としてトリフェニルホスフィン(前述)を0.18g添加して、反応温度を170℃~190℃に保ちながら4時間反応して、リン含有エポキシ樹脂Kを得た。得られたリン含有エポキシ樹脂Kのエポキシ当量は1,080g/eq、リン含有率は3.0重量%、硫黄含有率は5.2重量%、軟化点は140℃以上あり測定できなかった。
合成例12
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、硫黄原子を骨格内に有する2官能エポキシ樹脂としてエポトートYSLV−50TE(前述)332.0g、2官能以上のフェノール化合物として4,4’−ビスフェノールS(前述)96.3g、化学式(1)で示されるリン化合物としてHCA−NQ(前述)71.3gを仕込み、窒素雰囲気下で攪拌しながら130℃まで加熱した。この時、化学式(2)で示されるリン化合物は使わなかった。その後触媒としてトリフェニルホスフィン(前述)を0.17g添加して、反応温度を170℃~190℃に保ちながら4時間反応して、リン含有エポキシ樹脂Lを得た。得られたリン含有エポキシ樹脂Lのエポキシ当量は651g/eq、リン含有率は1.2重量%、硫黄含有率は9.1重量%、軟化点は140℃以上あり測定できなかった。
合成例13
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、化学式(2)で示されるリン化合物としてHCA(前述)90.0gとトルエン210gを仕込み、窒素雰囲気下で攪拌しながら加熱して完全に溶解した。その後、キノン類として1,4−ナフトキノン(前述)67.0gを反応熱による昇温に注意しながら分割投入した。この時の1,4−ナフトキノンとHCAのモル比は1,4−ナフトキノン/HCA=0.99であった。加熱反応後、2官能エポキシ樹脂としてエポトートYD−128(前述)324.6gを仕込み、窒素ガスを導入しながら攪拌を行い、130℃まで加熱を行ってトルエンを系外に除去した。この時、硫黄原子を骨格内に有する2官能エポキシ樹脂は使わなかった。その後触媒としてトリフェニルホスフィン(前述)を0.16g添加して、反応温度を160℃~165℃に保ちながら4時間反応して、リン含有エポキシ樹脂Mを得た。得られたリン含有エポキシ樹脂Mのエポキシ当量は529g/eq、リン含有率は2.7重量%、硫黄含有率は0重量%、軟化点は104℃であった。
実施例1~7及び比較例1~6
 表1に示す配合処方によりリン含有エポキシ樹脂(X)、硬化剤(Y)、その他のエポキシ樹脂、硬化促進剤等を配合した。リン含有エポキシ樹脂とその他のエポキシ樹脂をメチルエチルケトンで溶解させ、あらかじめメチルセロソルブ、ジメチルホルムアミドに溶解させておいた硬化剤(Y)としてジシアンジアミド(DICY、活性水素当量:21.0g/eq)と硬化促進剤として2−エチル−4−メチルイミダゾール(四国化成株式会社製、2E4MZ)を加えて、不揮発分が50重量%になるように樹脂ワニスを調製した。その後、得られた樹脂ワニスを用い、基材であるガラスクロス(日東紡績株式会社製、WEA 116E 106S 136、厚み100μm)に含浸させ、含浸させたガラスクロスを150℃の熱風循環式オーブンで8分間乾燥を行い、プリプレグを得た。次いで、得られたプリプレグ4枚と銅箔(三井金属鉱業株式会社製、3EC−III、厚み35μm)を重ね、130℃×15分及び190℃×2.0MPa×70分間の条件で加熱と加圧を行い0.6mm厚の積層板を得た。得られた各々の積層板について、銅箔剥離強さ、層間剥離強度、難燃性、ガラス転移温度、線熱膨張係数、吸水率、ハンダ耐熱性の各物性を試験した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1、実施例2、実施例3、実施例4、実施例7、比較例1、比較例2、比較例3、比較例6は、エポキシ樹脂類(a)との反応前に化学式(2)で表される化合物と1,4−ナフトキノンを反応させて得られたリン化合物類(b)を用いて反応したリン含有エポキシ樹脂(X)を使用し、実施例5はあらかじめ合成しておいた化学式(1)で表される化合物と化学式(2)で表される化合物をリン化合物類(b)として用いて反応したリン含有エポキシ樹脂(X)を使用し、実施例6、比較例4、比較例5はあらかじめ合成しておいた化学式(1)で表されるリン化合物だけを用いて反応したリン含有エポキシ樹脂(X)を使用した。また、実施例3、実施例4、実施例5、実施例7、比較例3、比較例6は、リン含有エポキシ樹脂(X)以外のリン不含有エポキシ樹脂も使用した。
 比較例1は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を66重量%使っているが、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.46と化学式(2)の化合物を0.06モルより多く使用しているため、吸水率が1.7%と高く耐湿性が悪く、ハンダ耐熱性も悪い。また、多官能エポキシ樹脂を多用しているにもかかわらずガラス転移温度も155℃で、耐熱性がそれほど高いとは言えない。層間剥離強度も1.0kN/mに達していなく実用性のある積層板になっていない。比較例2は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を45重量%と50重量%未満しか使っていなく、また、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.14と化学式(2)の化合物を0.06モルより多く使用しているので、リン含有率が2重量%でも難燃性が得られず、耐熱性は低く吸水率は高い。比較例3は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹類を100重量%使っているが、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.14と化学式(2)の化合物を0.06モルより多く使用しているため、層間剥離強度は1.0kN/mに達していないし、ハンダ耐熱性が悪い。比較例4は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を100重量%使っていて、化学式(2)の化合物を使っていないが、リン含有率が3.0重量%と高いため、エポキシ樹脂の軟化点が140℃以上とかなり高くガラスクロスへの含浸性が悪化したため、層間剥離強度は1.0kN/mに達していないし、ハンダ耐熱性が悪い。比較例5では、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を100重量%使っていて、化学式(2)のリン化合物を使っていないが、硫黄含有率が9.1重量%と高いため、吸水率が2.2重量%と高く耐湿性が悪い。さらに樹脂の軟化点が140℃以上かなり高くガラスクロスへの含浸性が悪化したため、層間剥離強度は1.0kN/mに達していないし、ハンダ耐熱性が悪い。比較例6では、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を使っていないため、ガラス転移温度も138℃で耐熱性が高くなく、リン含有率が2.07重量%では難燃性がなく、実用性のある積層板になっていない。
 これに対して、実施例1は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を81重量%と平均官能基数が2.1以上の多官能エポキシ樹脂類を19重量%使っていて、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.05と化学式(2)の化合物を0.06モル未満であるため、吸水率が1.0%と低く耐湿性が良く、リン含有率が1.8重量%と2重量%未満でも難燃性が良い。さらにガラス転移温度も165℃と高くハンダ耐熱性が良く、層間剥離強度も1.1kN/mと十分実用性の高い積層板になっている。実施例2は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を100重量%使っていて、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.02と化学式(2)の化合物を0.06モル未満であり、リン含有率が1.3重量%で、硫黄含有率が7重量%であるため、耐湿性、接着性の良い積層板になっている。平均官能基数が2.1以上の多官能エポキシ樹脂類を全く使用していないため、難燃性はV−0だが消火までの時間は実施例1や実施例4に比べると若干長く、ガラス転移温度も161℃と実施例1や実施例4よりは若干悪いが十分耐熱用途で使用可能な積層板になっている。実施例3は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を100重量%使っていて、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.03と化学式(2)の化合物を0.06モル未満であり、硫黄含有率が4.2重量%であるため、リン含有率が1.3重量%と2重量%未満でも難燃性が良く、さらに耐湿性、耐熱性、接着性の良い積層板になっている。実施例4は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を91重量%と平均官能基数が2.1以上の多官能エポキシ樹脂類を9重量%使っていて、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.01と化学式(2)の化合物を0.06モル未満であり、硫黄含有率が4.2重量%であるため、リン含有率が1.7重量%と2重量%未満でも難燃性が良く、さらに耐湿性、耐熱性、接着性の良い積層板になっている。実施例5は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を100重量%使っていて、化学式(1)の化合物1モルに対し化学式(2)の化合物のモル比が0.03と化学式(2)の化合物を0.06モル未満であり、硫黄含有率が5.9重量%であるため、リン含有率が0.9重量%と1重量%未満でも難燃性が良く、さらに耐湿性、耐熱性、接着性の良い積層板になっている。実施例6は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を100重量%使っていて、化学式(2)のリン化合物を使わずに化学式(1)のリン化合物だけを使用し、リン含有率が1.0重量%、硫黄含有率が7.7重量%であるため、耐湿性、接着性の良い積層板になっている。平均官能基数が2.1以上の多官能エポキシ樹脂類を全く使用していないため、難燃性はV−0だが消火までの時間は実施例1や実施例4に比べると若干長く、ガラス転移温度も160℃と実施例1や実施例4よりは若干悪いが十分耐熱用途で使用可能な積層板になっている。実施例7は、リン含有エポキシ樹脂を合成する時に硫黄原子を骨格内に有する2官能エポキシ樹脂類を51重量%と硫黄原子を骨格内に持たない2官能エポキシ樹脂を49重量%使っていて、化学式(1)のリン化合物1モルに対し化学式(2)のリン化合物のモル比が0.01と化学式(2)のリン化合物を0.06モル未満であり、硫黄含有率が2.4重量%であるため、リン含有率が1.8重量%と2重量%未満でも難燃性が良く、さらに耐湿性、耐熱性、接着性の良い積層板になっている。
 このように、化学式(1)で表される化合物1モルに対し化学式(2)で表される化合物を0.06モル以下にして、硫黄原子を骨格内に有する2官能エポキシ樹脂類を50重量%以上使用して合成したリン含有エポキシ樹脂を必須成分にし、エポキシ樹脂のリン含有率を0.5重量%から2.0重量%未満にし、かつ硫黄含有率を2重量%から9重量%にした実施例では難燃性と併せて、接着力、耐熱性、耐湿性とも優れている。特に、エポキシ樹脂のリン含有率を0.5重量%から2.0重量%未満にし、かつ硫黄含有率を2重量%から9重量%に調整することで、耐熱性を保ちながら、吸水率を低減し、はんだ耐熱性を向上させている。また、実施例5や実施例6のように、リン含有率が1重量%以下でも難燃性を満足できるので耐湿性の良い積層板が得られている。さらに、実施例3、実施例4、実施例5、実施例7のようにリン不含有エポキシ樹脂を併用することも可能であり、特に平均官能基数が2.1以上の多官能エポキシ樹脂類を併用することで、高い耐熱性を得るとともに接着力、難燃性に優れたエポキシ樹脂組成物を得ることができる。
Hereinafter, the present invention will be specifically described based on synthesis examples, examples, and comparative examples, but the technical scope of the present invention is not limited only to the examples. In addition, unless otherwise indicated, the compounding part number of each component in a synthesis example, an Example, and a comparative example shows a weight part.
In the present invention, the following analysis method was used.
Epoxy equivalent: The method described in JIS K-7236. Specifically, the sample was dissolved in 10 mL of chloroform, 20 mL of acetic anhydride and 10 mL of 20% tetraethylammonium bromide solution were added, and titrated with a 0.1 mol / L perchloric acid acetic acid standard solution using a potentiometric titrator.
Softening point: Ring and ball method described in JIS K-7234. That is, the sample was melted and degassed, poured into a ring, and measured with a glycerin bath.
Phosphorus content: Nitric acid-perchloric acid decomposition method. That is, sulfuric acid, nitric acid, and perchloric acid are added to the sample and thermally decomposed to convert all phosphorus to normal phosphoric acid, and then a 0.25% ammonium vanadate solution and a 5% ammonium molybdate solution in a sulfuric acid acidic solution. The color development of the resulting phosphorus-banad molybdate complex was allowed to react, the absorbance at a wavelength of 420 nm was measured, and the phosphorus content was determined by a calibration curve.
Sulfur content: A method in accordance with the oxygen combustion flask method described in JIS K-6233-1. That is, the sample was completely decomposed in a combustion flask and supplemented and absorbed as sulfate ions in the solution, and then measured by ion chromatography.
Copper foil peeling strength: The method as described in JIS C-6481 5.7. That is, peeling was performed at a speed of 50 mm / min between the copper foil and the insulating plate in the direction perpendicular to the measurement.
Interlaminar peel strength: A method according to JIS C-6481 5.7. That is, the measurement was performed by peeling between one prepreg and the remaining three sheets at a speed of 50 mm / min in the perpendicular direction.
Flame retardancy: Measured according to UL (Underwriters Laboratories) standard, UL94 vertical test method, V-0, V-1, V-2, NG (no flame retardancy) of the standard of the standard Judgment was made at 4 levels (flame retardance was worse as later).
Glass transition temperature: TMA method. In other words, TMA / SS120U manufactured by SII Nano Technology Co., Ltd. was used for the analyzer, and the temperature was measured at 10 ° C./min by thermomechanical analysis (TMA).
Linear thermal expansion coefficient: TMA method. That is, it is obtained as a displacement from 50 ° C. to 150 ° C. measured with a temperature rise rate of 10 ° C./min by thermomechanical analysis (TMA) using TMA / SS120U manufactured by SII Nano Technology Co., Ltd. as an analyzer. It was.
Water absorption: A method according to JIS C-6481 5.13. That is, using a test piece cut to 50 mm × 50 mm, the dry weight after drying for 24 hours in an oven at 50 ° C. is measured, and subsequently the weight after boiling at 100 ° C. for 2 hours is measured. The moisture absorption rate was measured on the basis of the increase in.
Solder heat resistance: A method in accordance with JIS C-6481 5.5. That is, using a test piece cut to 25 mm × 25 mm, the test piece after boiling at 100 ° C. for 2 hours was immersed in a solder bath at 288 ° C. for 20 seconds at n = 5, and no swelling or peeling occurred at all 5 points. The result was marked with ◯, and the result of even one was marked with x.
Synthesis example 1
In a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, HCA (manufactured by Sanko Co., Ltd., phosphorus content: 14. 2 wt.%) 64.0 g and 150 g of toluene were charged, and heated under stirring in a nitrogen atmosphere to be completely dissolved. Thereafter, 45.9 g of 1,4-naphthoquinone (manufactured by Kawasaki Kasei Kogyo Co., Ltd., 3% water-containing product) as quinones was added in portions while paying attention to temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.95. After heating reaction, Epototo TX-0908 (manufactured by Tohto Kasei Co., Ltd., epoxy equivalent: 219 g / eq) 317.1 g as a bifunctional epoxy resin having a sulfur atom in the skeleton, and a polyfunctional having an average functional group number of 2.1 or more Epototo YDPN-638 (manufactured by Toto Kasei Co., Ltd., phenol novolac type epoxy resin, epoxy equivalent: 176 g / eq) as an epoxy resin was charged 74.4 g, stirred while introducing nitrogen gas, and heated to 130 ° C. Toluene was removed out of the system. Thereafter, 0.11 g of triphenylphosphine (product name: TPP) manufactured by Hokuko Chemical Co., Ltd. was added as a catalyst, and the reaction was carried out for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. Obtained. The obtained phosphorus-containing epoxy resin A had an epoxy equivalent of 392 g / eq, a phosphorus content of 1.8% by weight, a sulfur content of 5.2% by weight, and a softening point of 83 ° C.
Synthesis example 2
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introduction device, 45.5 g of HCA (as described above) and 110 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 33.6 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.98. After the heating reaction, 420.7 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton was added, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene. Removed. Thereafter, 0.08 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin B. The obtained phosphorus-containing epoxy resin B had an epoxy equivalent of 338 g / eq, a phosphorus content of 1.3% by weight, a sulfur content of 7.0% by weight, and a softening point of 76 ° C.
Synthesis example 3
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introduction device, 64.5 g of HCA (as described above) and 150 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 47.2 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.97. After the heating reaction, 350.0 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton was added, stirred while introducing nitrogen gas, heated to 130 ° C., and toluene was removed from the system. Removed. Thereafter, 0.11 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain phosphorus-containing epoxy resin C. The obtained phosphorus-containing epoxy resin C had an epoxy equivalent of 751 g / eq, a phosphorus content of 2.0% by weight, a sulfur content of 6.3% by weight, and a softening point of 120 ° C.
Synthesis example 4
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introduction device, 75.0 g of HCA (as described above) and 175 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 55.9 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.99. After the heating reaction, 320.0 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton, and Epotot ESN-485 (Toto Kasei Co., Ltd.) as a polyfunctional epoxy resin having an average functional group number of 2.1 or more Company-made α-naphthol aralkyl type epoxy resin, epoxy equivalent: 269 g / eq) 30.0 g and 4,4′-biphenol (manufactured by Nippon Steel Chemical Co., Ltd., hydroxyl group equivalent: 93 g / eq) 18.0 g was charged, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system. Thereafter, 0.15 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin D. The obtained phosphorus-containing epoxy resin D had an epoxy equivalent of 723 g / eq, a phosphorus content of 2.1 wt%, a sulfur content of 5.3 wt%, and a softening point of 125 ° C.
Synthesis example 5
2,4-bisphenol S-type epoxy resin as a bifunctional epoxy resin having a sulfur atom in its skeleton in a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introduction device (patented) 340.0 g of epoxy equivalent: 220 g / eq) synthesized in advance by the method described in Example 1 of Reference 6, and 9,10-dihydro-9-oxa-10- (2) as the phosphorus compound represented by the chemical formula (1) , 7-dihydroxynaphthyl) -10-phosphaphenanthrene-10-oxide (previously synthesized by the method described in Example 1 of Patent Document 7, hereinafter abbreviated as HCA-NQ), 64.8 g, chemical formula (2) 1.1 g of HCA (described above) as a phosphorus compound represented by formula 4,4′-bisphenol S (manufactured by Nikka Chemical Co., Ltd., B PS-P (T), hydroxyl group equivalent: 125 g / eq) 25.0 g was charged and heated to 130 ° C. with stirring in a nitrogen atmosphere. The phosphorus compound shown by Chemical formula (2) was 0.03 mol with respect to 1 mol of phosphorus compounds shown by Chemical formula (1) at this time. Thereafter, 0.09 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin E. The obtained phosphorus-containing epoxy resin E had an epoxy equivalent of 441 g / eq, a phosphorus content of 1.2 wt%, a sulfur content of 7.8 wt%, and a softening point of 104 ° C.
Synthesis Example 6
Epototo YSLV-50TE (Epoxy manufactured by Tohto Kasei Co., Ltd.) as a bifunctional epoxy resin having a sulfur atom in its skeleton in a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device Equivalent: 172 g / eq) 400.0 g, HCA-NQ (described above) 62.0 g as the phosphorus compound represented by the chemical formula (1), 40.0 g of 4,4′-biphenol (described above) as the bifunctional or higher phenol compound The mixture was charged and heated to 130 ° C. with stirring under a nitrogen atmosphere. At this time, the phosphorus compound represented by the chemical formula (2) was not used. Thereafter, 0.1 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin F. The obtained phosphorus-containing epoxy resin F had an epoxy equivalent of 333 g / eq, a phosphorus content of 1.0% by weight, a sulfur content of 7.7% by weight, and a softening point of 96 ° C.
Synthesis example 7
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introduction device, 75.0 g of HCA (as described above) and 175 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 55.9 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.99. After heating reaction, 180.0 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton, and Epotot ZX-1711 (2,5-naphthalenediol, manufactured by Tohto Kasei Co., Ltd.) as a bifunctional epoxy resin Type epoxy resin, epoxy equivalent: 146 g / eq) 175.0 g was charged, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system. Thereafter, 0.13 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin G. The obtained phosphorus-containing epoxy resin G had an epoxy equivalent of 371 g / eq, a phosphorus content of 2.2 wt%, a sulfur content of 3.0 wt%, and a softening point of 110 ° C.
Synthesis example 8
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 103.6 g of HCA (previously described) and 240 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 53.4 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.68. After heating reaction, 226.4 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton, and Epotot YDPN-638 (described above) 117 as a polyfunctional epoxy resin having an average functional group number of 2.1 or more. .3 g was charged, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system. Thereafter, 0.16 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin H. The obtained phosphorus-containing epoxy resin H had an epoxy equivalent of 563 g / eq, a phosphorus content of 2.9% by weight, a sulfur content of 3.7% by weight, and a softening point of 110 ° C.
Synthesis Example 9
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 70.0 g of HCA (as described above) and 160 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 46.4 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.88. After the heating reaction, 172.8 g of Epototo TX-0908 (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton, and Epototo YD-128 (produced by Toto Kasei Co., Ltd., bisphenol A type epoxy resin as a bifunctional epoxy resin, Epoxy equivalent: 187 g / eq) 211.2 g was charged, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system. Thereafter, 0.11 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin 1. Epoxy equivalent of the obtained phosphorus-containing epoxy resin 1 was 384 g / eq, phosphorus content was 2.0% by weight, sulfur content was 3.0% by weight, and softening point was 70 ° C.
Synthesis Example 10
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 70.0 g of HCA (as described above) and 160 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 46.4 g of 1,4-naphthoquinone (described above) as quinones was added in portions while paying attention to the temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.88. After heating reaction, 300.0 g of Epototo YSLV-50TE (described above) is charged as a bifunctional epoxy resin having a sulfur atom in the skeleton, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene. Removed. Thereafter, 0.12 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin J. The obtained phosphorus-containing epoxy resin J had an epoxy equivalent of 370 g / eq, a phosphorus content of 2.4% by weight, a sulfur content of 7.1% by weight, and a softening point of 106 ° C.
Synthesis Example 11
Epototo TX-0908 (previously described) 315.8 g as a bifunctional epoxy resin having a sulfur atom in the skeleton in a four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device, As the phosphorus compound represented by the chemical formula (1), 181.8 g of HCA-NQ (described above) was charged and heated to 130 ° C. with stirring in a nitrogen atmosphere. At this time, the phosphorus compound represented by the chemical formula (2) was not used. Thereafter, 0.18 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 170 ° C. to 190 ° C. to obtain a phosphorus-containing epoxy resin K. The obtained phosphorus-containing epoxy resin K had an epoxy equivalent of 1,080 g / eq, a phosphorus content of 3.0% by weight, a sulfur content of 5.2% by weight, and a softening point of 140 ° C. or higher and could not be measured.
Synthesis Example 12
In a four-necked glass separable flask equipped with a stirrer, a thermometer, a cooling tube, and a nitrogen gas introduction device, 332.0 g of Epototo YSLV-50TE (described above) as a bifunctional epoxy resin having a sulfur atom in the skeleton, While charging 96.3 g of 4,4′-bisphenol S (described above) as a bifunctional or higher functional phenol compound and 71.3 g of HCA-NQ (described above) as a phosphorus compound represented by the chemical formula (1), stirring in a nitrogen atmosphere Heated to 130 ° C. At this time, the phosphorus compound represented by the chemical formula (2) was not used. Thereafter, 0.17 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 170 ° C. to 190 ° C. to obtain a phosphorus-containing epoxy resin L. The obtained phosphorus-containing epoxy resin L had an epoxy equivalent of 651 g / eq, a phosphorus content of 1.2% by weight, a sulfur content of 9.1% by weight, and a softening point of 140 ° C. or higher and could not be measured.
Synthesis Example 13
Into a four-necked glass separable flask equipped with a stirrer, a thermometer, a condenser, and a nitrogen gas introducing device, 90.0 g of HCA (described above) and 210 g of toluene as a phosphorus compound represented by the chemical formula (2) were charged. The solution was completely dissolved by heating with stirring under a nitrogen atmosphere. Thereafter, 67.0 g of 1,4-naphthoquinone (described above) as quinones was charged in portions while paying attention to the temperature rise by reaction heat. The molar ratio of 1,4-naphthoquinone to HCA at this time was 1,4-naphthoquinone / HCA = 0.99. After the heating reaction, 324.6 g of Epototo YD-128 (described above) was charged as a bifunctional epoxy resin, stirred while introducing nitrogen gas, and heated to 130 ° C. to remove toluene out of the system. At this time, a bifunctional epoxy resin having a sulfur atom in the skeleton was not used. Thereafter, 0.16 g of triphenylphosphine (described above) was added as a catalyst and reacted for 4 hours while maintaining the reaction temperature at 160 ° C. to 165 ° C. to obtain a phosphorus-containing epoxy resin M. The obtained phosphorus-containing epoxy resin M had an epoxy equivalent of 529 g / eq, a phosphorus content of 2.7 wt%, a sulfur content of 0 wt%, and a softening point of 104 ° C.
Examples 1 to 7 and Comparative Examples 1 to 6
A phosphorus-containing epoxy resin (X), a curing agent (Y), other epoxy resins, a curing accelerator, and the like were blended according to the blending formulation shown in Table 1. Phosphorus-containing epoxy resin and other epoxy resins are dissolved in methyl ethyl ketone, and dicyandiamide (DICY, active hydrogen equivalent: 21.0 g / eq) is used as a curing agent (Y) previously dissolved in methyl cellosolve and dimethylformamide. 2-Ethyl-4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd., 2E4MZ) was added as an agent to prepare a resin varnish so that the nonvolatile content was 50% by weight. Thereafter, the obtained resin varnish was used to impregnate a glass cloth as a base material (WEA 116E 106S 136, thickness 100 μm, manufactured by Nitto Boseki Co., Ltd.), and the impregnated glass cloth was subjected to 8 in a hot air circulation oven at 150 ° C. Drying was performed for a minute to obtain a prepreg. Subsequently, the obtained four prepregs and copper foil (Mitsui Metal Mining Co., Ltd., 3EC-III, thickness 35 μm) are stacked, and heated and heated under conditions of 130 ° C. × 15 minutes and 190 ° C. × 2.0 MPa × 70 minutes. Pressure was applied to obtain a 0.6 mm thick laminate. About each obtained laminated board, each physical property of copper foil peeling strength, delamination strength, a flame retardance, a glass transition temperature, a linear thermal expansion coefficient, a water absorption rate, and solder heat resistance was tested. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Example 1, Example 2, Example 3, Example 4, Example 7, Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 6 have chemical formulas before reaction with epoxy resins (a) ( 2) Using the phosphorus-containing epoxy resin (X) reacted with the phosphorus compound (b) obtained by reacting the compound represented by 2) and 1,4-naphthoquinone, Example 5 was synthesized in advance. Using the phosphorus-containing epoxy resin (X) reacted with the compound represented by the chemical formula (1) and the compound represented by the chemical formula (2) as the phosphorus compounds (b), Example 6, Comparative Example 4 and Comparative Example 5 used a phosphorus-containing epoxy resin (X) reacted using only a phosphorus compound represented by the chemical formula (1) synthesized in advance. Moreover, Example 3, Example 4, Example 5, Example 7, Comparative Example 3, and Comparative Example 6 also used a phosphorus-free epoxy resin other than the phosphorus-containing epoxy resin (X).
Comparative Example 1 uses 66% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, but the compound of chemical formula (2) is used with respect to 1 mol of the compound of chemical formula (1). Since the compound has a molar ratio of 0.46 and more than 0.06 mol of the compound of the chemical formula (2), the water absorption is as high as 1.7%, the moisture resistance is poor, and the solder heat resistance is also poor. In addition, although the polyfunctional epoxy resin is frequently used, it cannot be said that the glass transition temperature is 155 ° C. and the heat resistance is not so high. The delamination strength does not reach 1.0 kN / m, and the laminate is not practical. Comparative Example 2 uses only 45% by weight and less than 50% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and in 1 mol of the compound of chemical formula (1). On the other hand, since the molar ratio of the compound of the chemical formula (2) is 0.14 and the compound of the chemical formula (2) is used in an amount of more than 0.06 mol, flame retardancy is not obtained even when the phosphorus content is 2% by weight. Low heat resistance and high water absorption. Comparative Example 3 uses 100% by weight of a bifunctional epoxy tree having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, but the compound of the chemical formula (2) with respect to 1 mol of the compound of the chemical formula (1). The molar ratio of 0.14 and the compound of the chemical formula (2) are used in an amount of more than 0.06 mol, so that the delamination strength does not reach 1.0 kN / m and the solder heat resistance is poor. Comparative Example 4 uses 100% by weight of a bifunctional epoxy resin having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and does not use the compound of chemical formula (2), but the phosphorus content is 3 Since it is as high as 0.0% by weight, the softening point of the epoxy resin is considerably high at 140 ° C. or more and the impregnation property into the glass cloth is deteriorated. Therefore, the delamination strength does not reach 1.0 kN / m and the solder heat resistance is poor. In Comparative Example 5, when the phosphorus-containing epoxy resin was synthesized, 100% by weight of the bifunctional epoxy resin having a sulfur atom in the skeleton was used, and the phosphorus compound of the chemical formula (2) was not used. Since it is as high as 9.1% by weight, the water absorption is as high as 2.2% by weight and the moisture resistance is poor. Furthermore, since the softening point of the resin is considerably higher than 140 ° C. and the impregnation property into the glass cloth is deteriorated, the delamination strength does not reach 1.0 kN / m and the solder heat resistance is poor. In Comparative Example 6, since a bifunctional epoxy resin having a sulfur atom in the skeleton is not used when synthesizing the phosphorus-containing epoxy resin, the glass transition temperature is 138 ° C. and the heat resistance is not high, and the phosphorus content is 2. If it is 07% by weight, there is no flame retardancy, and the laminate is not practical.
In contrast, in Example 1, when synthesizing a phosphorus-containing epoxy resin, 81% by weight of a bifunctional epoxy resin having a sulfur atom in the skeleton and a polyfunctional epoxy resin having an average functional group number of 2.1 or more are used. 19% by weight, and the molar ratio of the compound of the chemical formula (2) is 0.05 and the compound of the chemical formula (2) is less than 0.06 mol with respect to 1 mol of the compound of the chemical formula (1). It is low at 1.0% and has good moisture resistance, and even when the phosphorus content is 1.8% by weight and less than 2% by weight, flame retardancy is good. Furthermore, the glass transition temperature is as high as 165 ° C., the solder heat resistance is good, and the delamination strength is 1.1 kN / m, which is a sufficiently practical laminate. Example 2 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and the amount of the compound of the chemical formula (2) is 1 mol of the compound of the chemical formula (1). Since the molar ratio is 0.02 and the compound of the chemical formula (2) is less than 0.06 mol, the phosphorus content is 1.3% by weight and the sulfur content is 7% by weight, It is a good laminate. Since no polyfunctional epoxy resins having an average functional group number of 2.1 or more are used at all, the flame retardancy is V-0, but the time to extinguishment is slightly longer than in Examples 1 and 4, and the glass transition Although the temperature is 161 ° C., which is slightly worse than that of Example 1 or Example 4, it is a laminated plate that can be used for heat-resistant applications. Example 3 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and the amount of the compound of the chemical formula (2) is 1 mol of the compound of the chemical formula (1). Since the molar ratio is 0.03 and the compound of the chemical formula (2) is less than 0.06 mol and the sulfur content is 4.2% by weight, even if the phosphorus content is 1.3% by weight and less than 2% by weight It is a laminated board with good flame retardancy, moisture resistance, heat resistance, and adhesion. Example 4 uses 91% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin and 9% by weight of polyfunctional epoxy resins having an average number of functional groups of 2.1 or more. The molar ratio of the compound of the chemical formula (2) is 0.01 and the compound of the chemical formula (2) is less than 0.06 mol with respect to 1 mol of the compound of the chemical formula (1), and the sulfur content is 4.2% by weight. Therefore, even if the phosphorus content is 1.7% by weight and less than 2% by weight, the flame retardancy is good, and further, the laminate has good moisture resistance, heat resistance and adhesion. Example 5 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and the amount of the compound of the chemical formula (2) is 1 mol of the compound of the chemical formula (1). Since the molar ratio is 0.03 and the compound of the chemical formula (2) is less than 0.06 mol and the sulfur content is 5.9% by weight, even if the phosphorus content is 0.9% by weight and less than 1% by weight It is a laminated board with good flame retardancy, moisture resistance, heat resistance, and adhesion. Example 6 uses 100% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, and without using the phosphorus compound of chemical formula (2), the phosphorus of chemical formula (1). Since only the compound is used and the phosphorus content is 1.0% by weight and the sulfur content is 7.7% by weight, the laminate has good moisture resistance and adhesion. Since no polyfunctional epoxy resins having an average functional group number of 2.1 or more are used at all, the flame retardancy is V-0, but the time to extinguishment is slightly longer than in Examples 1 and 4, and the glass transition Although the temperature is 160 ° C., which is slightly worse than that of Example 1 or Example 4, it is a laminate that can be used for heat-resistant applications. Example 7 uses 51% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton and 49% by weight of bifunctional epoxy resin not having a sulfur atom in the skeleton when synthesizing a phosphorus-containing epoxy resin, The molar ratio of the phosphorus compound of the chemical formula (2) is 0.01 and the phosphorus compound of the chemical formula (2) is less than 0.06 mol with respect to 1 mol of the phosphorus compound of the chemical formula (1), and the sulfur content is 2.4 weight. Therefore, even if the phosphorus content is 1.8% by weight and less than 2% by weight, the flame retardancy is good, and further, the laminate has good moisture resistance, heat resistance and adhesion.
Thus, the compound represented by the chemical formula (2) is made 0.06 mol or less with respect to 1 mol of the compound represented by the chemical formula (1), and 50 weights of the bifunctional epoxy resins having a sulfur atom in the skeleton. The phosphorus-containing epoxy resin synthesized using at least 5% is an essential component, the phosphorus content of the epoxy resin is reduced from 0.5 wt% to less than 2.0 wt%, and the sulfur content is increased from 2 wt% to 9 wt% In these examples, in addition to flame retardancy, the adhesive strength, heat resistance, and moisture resistance are also excellent. In particular, by adjusting the phosphorus content of the epoxy resin from 0.5 wt% to less than 2.0 wt% and adjusting the sulfur content from 2 wt% to 9 wt%, the water absorption rate can be maintained while maintaining heat resistance. Reduced and improved solder heat resistance. In addition, as in Example 5 and Example 6, since the flame retardancy can be satisfied even if the phosphorus content is 1% by weight or less, a laminate having good moisture resistance is obtained. Furthermore, it is also possible to use a phosphorus-free epoxy resin together as in Example 3, Example 4, Example 5, and Example 7, and in particular, polyfunctional epoxy resins having an average functional group number of 2.1 or more. By using in combination, an epoxy resin composition having high heat resistance and excellent adhesion and flame retardancy can be obtained.
 本発明は、特に電子回路基板に用いられる銅張積層板をはじめとする電気絶縁材料に最適であり、電子部品に用いられる封止材・成形材・注型材・接着剤・フィルム材に適しており、さらに電気絶縁塗料用材料としても有効である。 The present invention is particularly suitable for electrical insulation materials such as copper clad laminates used for electronic circuit boards, and is suitable for sealing materials, molding materials, casting materials, adhesives, and film materials used for electronic components. In addition, it is also effective as a material for electrical insulating paints.

Claims (9)

  1.  リン含有エポキシ樹脂(X)と硬化剤(Y)とを含む難燃性リン含有エポキシ樹脂組成物であって、前記リン含有エポキシ樹脂(X)は、硫黄原子を骨格内に有する2官能エポキシ樹脂類を50重量%から100重量%含有するエポキシ樹脂類(a)と、化学式(1)1モルに対して化学式(2)が0.06モル以下の比率で混合されたリン化合物類(b)を、必須成分として反応して得られたリン含有エポキシ樹脂(X)であり、かつ、該難燃性リン含有エポキシ樹脂組成物中の全エポキシ樹脂成分に対するリン含有率が0.5重量%から2.0重量%未満であり、かつ硫黄含有率が2重量%から9重量%以下であることを特徴とする難燃性リン含有エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    A flame-retardant phosphorus-containing epoxy resin composition containing a phosphorus-containing epoxy resin (X) and a curing agent (Y), wherein the phosphorus-containing epoxy resin (X) has a sulfur atom in the skeleton. Compounds (b) in which the chemical formula (2) is mixed in an amount of 0.06 mol or less per 1 mol of the chemical formula (1) Is a phosphorus-containing epoxy resin (X) obtained by reacting as an essential component, and the phosphorus content relative to all epoxy resin components in the flame-retardant phosphorus-containing epoxy resin composition is from 0.5% by weight A flame-retardant phosphorus-containing epoxy resin composition characterized by being less than 2.0% by weight and having a sulfur content of 2 to 9% by weight.
    Figure JPOXMLDOC01-appb-I000001
  2.  請求項1に記載のリン含有エポキシ樹脂(X)が、硫黄原子を骨格内に有する2官能エポキシ樹脂類を50重量%から95重量%含有し、平均官能基数が2.1以上の多官能エポキシ樹脂類を5重量%から20重量%未満それぞれ必須成分として含有するエポキシ樹脂類(a)によって得られた請求項1に記載の難燃性リン含有エポキシ樹脂組成物。 The phosphorus-containing epoxy resin (X) according to claim 1 contains 50% to 95% by weight of bifunctional epoxy resins having a sulfur atom in the skeleton, and a polyfunctional epoxy having an average functional group number of 2.1 or more. The flame-retardant phosphorus-containing epoxy resin composition according to claim 1, obtained by epoxy resins (a) containing 5 to 20% by weight of resins as essential components.
  3.  請求項1または2に記載のリン含有エポキシ樹脂(X)が、硫黄原子を骨格内に有する2官能エポキシ樹脂類を50重量%から95重量%含有し、フェノールノボラック型エポキシ樹脂を5重量%から20重量%未満含有するエポキシ樹脂類(a)によって得られた請求項1または2に記載の難燃性リン含有エポキシ樹脂組成物。 The phosphorus-containing epoxy resin (X) according to claim 1 or 2 contains from 50 wt% to 95 wt% of a bifunctional epoxy resin having a sulfur atom in the skeleton, and from 5 wt% of a phenol novolac type epoxy resin. The flame-retardant phosphorus-containing epoxy resin composition according to claim 1 or 2 obtained by an epoxy resin (a) containing less than 20% by weight.
  4.  請求項1または2に記載のリン含有エポキシ樹脂(X)が、硫黄原子を骨格内に有する2官能エポキシ樹脂類を50重量%から95重量%含有し、アラルキル型エポキシ樹脂を5重量%から20重量%未満含有するエポキシ樹脂類(a)によって得られた請求項1または2に記載の難燃性リン含有エポキシ樹脂組成物。 The phosphorus-containing epoxy resin (X) according to claim 1 or 2 contains 50 wt% to 95 wt% of bifunctional epoxy resins having a sulfur atom in the skeleton, and 5 wt% to 20 wt% of an aralkyl type epoxy resin. The flame-retardant phosphorus-containing epoxy resin composition according to claim 1 or 2, which is obtained by an epoxy resin (a) containing less than% by weight.
  5.  リン含有エポキシ樹脂(X)100重量部に対し50重量部以下のリン不含有エポキシ樹脂類を必須成分として含有する請求項1から請求項4のいずれかに記載の難燃性リン含有エポキシ樹脂組成物。 The flame-retardant phosphorus-containing epoxy resin composition according to any one of claims 1 to 4, comprising 50 parts by weight or less of a phosphorus-free epoxy resin as an essential component with respect to 100 parts by weight of the phosphorus-containing epoxy resin (X). object.
  6.  請求項1から請求項5のいずれかに記載の難燃性リン含有エポキシ樹脂組成物を用いることを特徴とするプリプレグ、絶縁接着シート、エポキシ樹脂積層板。 A prepreg, an insulating adhesive sheet, and an epoxy resin laminate using the flame-retardant phosphorus-containing epoxy resin composition according to any one of claims 1 to 5.
  7.  請求項1から請求項5のいずれかに記載の難燃性リン含有エポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂封止材。 An epoxy resin sealing material using the flame-retardant phosphorus-containing epoxy resin composition according to any one of claims 1 to 5.
  8.  請求項1から請求項5のいずれかに記載の難燃性リン含有エポキシ樹脂組成物を用いることを特徴とするエポキシ樹脂注型材。 An epoxy resin casting material characterized by using the flame-retardant phosphorus-containing epoxy resin composition according to any one of claims 1 to 5.
  9.  請求項1から請求項5のいずれかに記載の難燃性リン含有エポキシ樹脂組成物を硬化して得られる難燃性リン含有エポキシ樹脂硬化物。 A cured flame retardant phosphorus-containing epoxy resin obtained by curing the flame retardant phosphorus-containing epoxy resin composition according to any one of claims 1 to 5.
PCT/JP2010/056271 2009-04-01 2010-03-31 Flame-retardant phosphorus-containing epoxy resin composition and cured product thereof WO2010114166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080015340.1A CN102369229B (en) 2009-04-01 2010-03-31 Flame-retardant phosphorus-containing epoxy resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-089483 2009-04-01
JP2009089483A JP5441477B2 (en) 2009-04-01 2009-04-01 Flame retardant phosphorus-containing epoxy resin composition and cured product thereof

Publications (1)

Publication Number Publication Date
WO2010114166A1 true WO2010114166A1 (en) 2010-10-07

Family

ID=42828446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056271 WO2010114166A1 (en) 2009-04-01 2010-03-31 Flame-retardant phosphorus-containing epoxy resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP5441477B2 (en)
KR (1) KR20120022730A (en)
CN (1) CN102369229B (en)
TW (1) TWI460199B (en)
WO (1) WO2010114166A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072304A (en) * 2010-09-29 2012-04-12 Nippon Steel Chem Co Ltd Phosphorus-containing epoxy resin
CN109553756A (en) * 2017-09-26 2019-04-02 日铁化学材料株式会社 The manufacturing method of phosphorous epoxy resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379626B (en) * 2012-06-15 2019-03-22 日铁化学材料株式会社 Phosphorous epoxy resin and using the epoxy resin as the composition of essential component, solidfied material
CN110643289A (en) * 2019-10-10 2020-01-03 常州斯威克光伏新材料有限公司 High-temperature-resistant flame-retardant adhesive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123049A (en) * 1999-10-28 2001-05-08 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition
JP2002188066A (en) * 2000-10-10 2002-07-05 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet and cover lay film for semiconductor devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291627B1 (en) * 1999-03-03 2001-09-18 National Science Council Epoxy resin rendered flame retardant by reaction with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
TW438833B (en) * 1999-04-16 2001-06-07 Nat Science Council Phosphorus containing flame retardant advanced epoxy resins, preparation and cured epoxy resins thereof
JP4588834B2 (en) * 2000-04-06 2010-12-01 パナソニック電工株式会社 Phosphorus-containing epoxy resin composition, flame-retardant resin sheet using the phosphorus-containing epoxy resin, metal foil with resin, prepreg and laminate, multilayer board
US20080039556A1 (en) * 2004-07-13 2008-02-14 Hitachi Chemical Co., Ltd. Encapsulated Epoxy-Resin Molding Compound, And Electronic Component Device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123049A (en) * 1999-10-28 2001-05-08 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition
JP2002188066A (en) * 2000-10-10 2002-07-05 Toray Ind Inc Adhesive composition for semiconductor device and adhesive sheet and cover lay film for semiconductor devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072304A (en) * 2010-09-29 2012-04-12 Nippon Steel Chem Co Ltd Phosphorus-containing epoxy resin
CN109553756A (en) * 2017-09-26 2019-04-02 日铁化学材料株式会社 The manufacturing method of phosphorous epoxy resin
JP2019059845A (en) * 2017-09-26 2019-04-18 日鉄ケミカル&マテリアル株式会社 Manufacturing method of phosphorus-containing epoxy resin
JP7037314B2 (en) 2017-09-26 2022-03-16 日鉄ケミカル&マテリアル株式会社 Method for manufacturing phosphorus-containing epoxy resin
CN109553756B (en) * 2017-09-26 2023-09-29 日铁化学材料株式会社 Method for producing phosphorus-containing epoxy resin

Also Published As

Publication number Publication date
JP2010241870A (en) 2010-10-28
KR20120022730A (en) 2012-03-12
JP5441477B2 (en) 2014-03-12
CN102369229A (en) 2012-03-07
CN102369229B (en) 2014-03-26
TWI460199B (en) 2014-11-11
TW201041928A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP3613724B2 (en) Phosphorus-containing epoxy resin composition
US9215803B2 (en) Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
US20080097014A1 (en) Non-Halogen Flame Retardant and Highly Heat Resistant Phosphorous-Modified Epoxy Resin Compositions
KR101794366B1 (en) Method for producing a phosphorus-containing epoxy resin, epoxy resin composition, and cured product thereof
WO2010029855A1 (en) Soluble imide-skeleton resin, soluble imide-skeleton resin solution composition, curable resin composition, and cured product of same
JP6193689B2 (en) Phosphorus-containing epoxy resin and composition, cured product
JP5793086B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
JP5334373B2 (en) Novel phosphorus-containing epoxy resin, epoxy resin composition containing epoxy resin as an essential component, and cured product thereof
JP5399733B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
JP4906020B2 (en) Phosphorus-containing phenol resin and epoxy resin composition using the phenol resin
WO2013081081A1 (en) Insulating material using epoxy resin composition
JP6228799B2 (en) Epoxy resin composition and cured product thereof
JP6596751B2 (en) Phosphorus-containing epoxy resin composition and cured product
TWI422609B (en) A novel flame retardant epoxy resin, an epoxy resin composition containing the epoxy resin as an essential component and a cured product thereof
KR101954455B1 (en) Phosphorus-containing phenolic resin and the producing method, phenolic resin composition and cured product thereof
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
JP5653374B2 (en) Phosphorus-containing epoxy resin, epoxy resin composition containing the resin, curable epoxy resin composition containing the resin, and cured product obtained therefrom
TWI487725B (en) Flame retardant phosphor-containing epoxy resin composition and cured article thereof
KR101844073B1 (en) Phosphorus-containing phenol resin, phenol resin compositions and cured products using same
WO2014034675A1 (en) Method for producing cyanuric acid-modified phosphorus-containing epoxy resin, resin composition containing cyanuric acid-modified phosphorus-containing epoxy resin, and cured product of same
JP2011213870A (en) Epoxy resin, epoxy resin composition, and cured product

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015340.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117022088

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758927

Country of ref document: EP

Kind code of ref document: A1