WO2010113761A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2010113761A1
WO2010113761A1 PCT/JP2010/055240 JP2010055240W WO2010113761A1 WO 2010113761 A1 WO2010113761 A1 WO 2010113761A1 JP 2010055240 W JP2010055240 W JP 2010055240W WO 2010113761 A1 WO2010113761 A1 WO 2010113761A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
carbon atoms
organic
electron
Prior art date
Application number
PCT/JP2010/055240
Other languages
English (en)
French (fr)
Inventor
孝弘 甲斐
山本 敏浩
正樹 古森
和明 吉村
大志 辻
泰裕 高橋
Original Assignee
新日鐵化学株式会社
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社, パイオニア株式会社 filed Critical 新日鐵化学株式会社
Priority to KR1020117025685A priority Critical patent/KR101759966B1/ko
Priority to EP10758534.1A priority patent/EP2416627B1/en
Priority to US13/257,163 priority patent/US9299947B2/en
Priority to CN201080012586.3A priority patent/CN102362551B/zh
Priority to JP2011507133A priority patent/JP5723764B2/ja
Publication of WO2010113761A1 publication Critical patent/WO2010113761A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values

Definitions

  • the present invention relates to an organic electroluminescent element containing an indolocarbazole compound, and more particularly to a thin film device that emits light by applying an electric field to a light emitting layer made of an organic compound.
  • an organic electroluminescence element (hereinafter referred to as an organic EL element) is composed of a pair of counter electrodes with a light emitting layer interposed therebetween as its simplest structure. That is, in an organic EL element, when an electric field is applied between both electrodes, electrons are injected from the cathode, holes are injected from the anode, and these are recombined in the light emitting layer to emit light. .
  • organic EL elements using organic thin films have been developed.
  • the type of electrode is optimized for the purpose of improving the efficiency of carrier injection from the electrode, and a hole transport layer made of aromatic diamine and a light emitting layer made of 8-hydroxyquinoline aluminum complex (Alq3)
  • Alq3 8-hydroxyquinoline aluminum complex
  • the organic EL element By the way, in the organic EL element, holes and electrons are injected from both electrodes into the light emitting layer in a well-balanced manner, and the injected holes and electrons are efficiently recombined in the light emitting layer. obtain.
  • the charge injection into the light emitting layer and the transport balance of both electric charges in the light emitting layer are disrupted, resulting in leakage of charges to the transport layer, reducing the recombination probability in the light emitting layer.
  • the recombination region in the light emitting layer is limited to a narrow region near the interface of the transport layer.
  • Non-Patent Document 1 proposes to provide an electron and / or exciton blocking layer at the anode side interface of the light emitting layer using the following compound, which is effective in improving efficiency. Is raised.
  • Non-Patent Documents 2 and 3 disclose examples in which 1,3-dicarbazolylbenzene (mCP) is used as an electron blocking layer or an exciton blocking layer.
  • mCP 1,3-dicarbazolylbenzene
  • hole transport of electrons and / or excitons is performed by inserting an organic layer between the hole transport layer and the light emitting layer.
  • the organic layer inserted between the hole transport layer and the light-emitting layer is also referred to as an electron blocking layer or an exciton blocking layer because it prevents leakage of electrons and / or excitons to the hole transport layer.
  • the electron and / or exciton blocking layer refers to this organic layer.
  • the electron and / or exciton blocking layer is also referred to as an EB layer.
  • Patent Document 2 and Patent Document 3 disclose the following indolocarbazole compounds.
  • an indolocarbazole compound is contained as a charge transporting component, and a hole injection layer or a positive layer is disclosed.
  • a hole transport layer it is recommended to use as a material for the hole transport layer, it does not teach the use as a material for the EB layer adjacent to the light emitting layer between the light emitting layer and the hole transport layer.
  • An object of this invention is to provide the practically useful organic EL element which has high efficiency and high drive stability in view of the said present condition, and a compound suitable for it.
  • the present invention relates to an organic electroluminescent device in which an organic layer including at least a hole transport layer and a light emitting layer is sandwiched between an anode and a cathode, the phosphorescent material is contained in the light emitting layer, and the hole transport layer
  • EB layer electron and / or exciton blocking layer
  • the present invention relates to an electroluminescent element.
  • Z represents an n-valent aromatic hydrocarbon group having 6 to 50 carbon atoms or an aromatic heterocyclic group having 3 to 50 carbon atoms
  • Y represents a group represented by the formula (1a).
  • N represents an integer of 1 to 6.
  • n is 2 or more, Y may be the same or different.
  • ring A represents an aromatic ring represented by formula (1b) that is condensed with an adjacent ring
  • ring B represents a heterocyclic ring represented by formula (1c) that is condensed with an adjacent ring.
  • R 1 and R 2 each independently represent hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 11 carbon atoms.
  • X represents methine or nitrogen
  • R 3 represents hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic group having 3 to 11 carbon atoms.
  • a heterocyclic group which may be condensed with a ring containing X to form a condensed ring.
  • Ar represents an aromatic hydrocarbon group having 6 to 50 carbon atoms or an aromatic heterocyclic group having 3 to 50 carbon atoms.
  • indolocarbazole compound represented by the general formula (1) there is an indolocarbazole compound represented by the following general formula (2).
  • ring B represents a heterocycle represented by formula (1c) that is condensed with an adjacent ring.
  • Z, Ar, R 1 and R 2 are the same as those in the general formula (1).
  • R 3 represents hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 11 carbon atoms.
  • n represents an integer of 1 or 2.
  • indolocarbazole compound represented by the general formula (2) there is an indolocarbazole compound selected from the compounds represented by the general formulas (3) to (6).
  • the organic electroluminescent device it is preferable to use a phosphorescent material and an electron transporting host material in combination in the light emitting layer.
  • the phosphorescent material and the electron transporting host material may be a single compound or a mixture.
  • the organic electroluminescence device further has an electron transport layer, and the electron transfer speed of at least one material used for the electron transport layer is 1 ⁇ 10 ⁇ 7 cm 2 / V ⁇ s or more.
  • the LUMO energy of the indolocarbazole compound contained in the EB layer is preferably larger than the LUMO energy of the host material contained in the light emitting layer adjacent to the EB layer.
  • the LUMO energy of this indolocarbazole compound is preferably ⁇ 1.2 eV or more.
  • the light emitting layer uses a phosphorescent light emitting material and an electron transporting host material in combination, it is derived from the LUMO energy of the electron transporting host material, and when the electron transporting host material is a mixture, the LUMO energy of the main component compound Derived from.
  • the HOMO energy of the hole transporting material contained in the hole transporting layer is larger than the HOMO energy of the indolocarbazole compound contained in the EB layer.
  • the HOMO energy of the hole transporting material contained in the hole transport layer adjacent to the anode or the hole injection layer is preferably ⁇ 4.8 eV or more.
  • Sectional drawing of an example of an organic EL element is shown.
  • 1 shows a 1 H-NMR chart of Compound 1-1.
  • 1 shows a 1 H-NMR chart of Compound 2-1.
  • 1 shows a 1 H-NMR chart of Compound 3-1.
  • an organic layer composed of a plurality of layers including at least a hole transport layer and a light emitting layer is sandwiched between an anode and a cathode. And it has EB layer adjacent to the light emitting layer at the side of a positive hole transport layer, and a positive hole transport layer is arrange
  • the light emitting layer contains a phosphorescent light emitting material
  • the EB layer contains an indolocarbazole compound represented by the general formula (1).
  • indolocarbazole compounds represented by the general formula (1) are known in the above-mentioned patent documents and the like, but their use forms are different. However, any indolocarbazole compound known as a hole transporting material can be advantageously used.
  • Z represents an n-valent aromatic hydrocarbon group having 6 to 50 carbon atoms and an aromatic heterocyclic group having 3 to 50 carbon atoms, and n Represents an integer of 1 to 6.
  • Y represents a group having an indolocarbazole skeleton represented by the formula (1a).
  • aromatic hydrocarbon group and aromatic heterocyclic group having no substituent include benzene, pyridine, pyrimidine, triazine, indole, carbazole, naphthalene, quinoline, isoquinoline, quinoxaline, naphthyridine, or these aromatic rings.
  • an n-valent group formed by removing n hydrogen atoms from a plurality of linked aromatic compounds and more preferably, benzene, pyridine, pyrimidine, triazine, indole, carbazole, naphthalene, or a combination of these aromatic rings.
  • n-valent groups generated by removing hydrogen from the aromatic compound are examples of the aromatic hydrocarbon group and aromatic heterocyclic group having no substituent.
  • the number connected is preferably 2 to 10, more preferably 2 to 7.
  • the position of connection with Y is not limited, and it may be a terminal ring or a central ring.
  • a group generated from an aromatic compound in which a plurality of aromatic rings are connected is represented by the following formula, for example.
  • Ar 1 to Ar 6 are unsubstituted monocyclic or condensed aromatic rings
  • Specific examples of the group generated by removing hydrogen from the aromatic compound in which a plurality of aromatic rings are connected include biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, terpyridine, bistriazylbenzene, dicarbazolylbenzene, carbazolyl.
  • substituents include alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 2 carbon atoms, acetyl groups, and 6 to 6 carbon atoms.
  • the group which arises from the aromatic compound with which multiple aromatic rings were connected can also have a substituent.
  • the total number of substituents is 1 to 10. Preferably it is 1-6, more preferably 1-4. Moreover, when the said aromatic hydrocarbon group or aromatic heterocyclic group has two or more substituents, they may be the same or different. Further, in the calculation of the carbon number of the aromatic hydrocarbon group or aromatic heterocyclic group, when it has a substituent, the carbon number of the substituent is included.
  • n is an integer of 1 to 6, preferably 1 to 4, and more preferably 1 to 3.
  • Y is represented by formula (1a)
  • ring A in formula (1a) is represented by formula (1b).
  • X is methine or nitrogen.
  • R 3 is hydrogen, an alkyl group hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, an aromatic heterocyclic group having 3 to 11 carbon atoms, or a six-membered ring containing X Represents a group to be condensed.
  • a ring obtained by removing the six-membered ring containing X from a condensed ring formed by condensation includes a pyrrole ring, a furan ring, a thiophene ring, an indole ring, a benzofuran A ring, a benzothiophene ring, a benzene ring, a naphthalene ring, and the like. These rings may have a substituent, and are preferably indole rings which may have a substituent.
  • a carbazole ring may be formed.
  • R 3 is condensed with a 6-membered ring containing X
  • R 3 is a case where the carbon adjacent to the position substituted for the 6-membered ring containing X has a replaceable hydrogen, and becomes a carbazole ring.
  • X is methine.
  • the ring B is represented by the formula (1c).
  • Ar represents an aromatic hydrocarbon group having 6 to 50 carbon atoms and an aromatic heterocyclic group having 3 to 50 carbon atoms. These aromatic hydrocarbon groups and aromatic heterocyclic groups may or may not have a substituent. Preferable examples of these aromatic hydrocarbon groups and aromatic heterocyclic groups are the same as the aromatic hydrocarbon group or aromatic heterocyclic group constituting Z described above except that they are monovalent groups. Moreover, the substitution position of N and Ar in Formula (1c) is not limited.
  • aromatic hydrocarbon group and aromatic heterocyclic group having no substituent include monovalent groups generated from benzene, pyridine, pyrimidine, triazine, indole, carbazole, naphthalene, quinoline, isoquinoline, quinoxaline, and naphthyridine. And more preferably, a monovalent group derived from benzene, pyridine, pyrimidine, triazine, indole, carbazole or naphthalene.
  • monovalent groups generated from aromatic compounds in which a plurality of these aromatic rings are connected are also preferred, for example, biphenyl, terphenyl, bipyridine, bipyrimidine, vitriazine, terpyridine, bistriazylbenzene, dicarbazolylbenzene, carbazolyl.
  • substituents are an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 2 carbon atoms, an acetyl group, or a diarylamino group having 6 to 24 carbon atoms. More preferably, it is a methyl group or a diphenylamino group.
  • R 1 and R 2 are each independently hydrogen, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic group having 3 to 11 carbon atoms. Represents a heterocyclic group.
  • Preferred is hydrogen, an alkyl group having 1 to 4 carbon atoms, phenyl group, pyridyl group, pyrimidyl group, triazyl group, naphthyl group, biphenylyl group, bipyrimidyl group or carbazolyl group, and more preferred is hydrogen, phenyl group or carbazolyl group. is there.
  • R 1 , R 2 and R 3 are an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic heterocyclic group having 3 to 11 carbon atoms. In each case, preferred groups are common.
  • an indolocarbazole compound represented by the general formula (2) is preferable.
  • ring B represents a heterocycle represented by formula (1c) that is condensed with an adjacent ring.
  • the ring B or formula (1c) has the same meaning as the ring B or formula (1c) in the general formula (1).
  • Z, Ar, R 1 and R 2 have the same meaning as Z, Ar, R 1 and R 2 in the general formula (1).
  • R 3 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic heterocyclic group having 3 to 11 carbon atoms.
  • n represents an integer of 1 or 2.
  • an indolocarbazole compound represented by any one of the general formulas (3) to (6) is preferable.
  • the indolocarbazole compounds represented by the general formulas (1) to (6) can be synthesized using a known method.
  • the indolocarbazole skeleton of the indolocarbazole compound represented by the general formula (3) is Synlett, 2005, No. 1; 1, p42-48 can be synthesized according to the following reaction formula with reference to the synthesis example.
  • indolocarbazole skeleton represented by the general formulas (4) and (5) can be obtained from the synthesis examples shown in The Journal of Organic Chemistry, 2007, 72 (15) 5886 and Tetrahedron, 1999, 55, p2371. Can be synthesized according to the following reaction formula. *
  • indolocarbazole skeleton represented by the general formula (6) is obtained by the following reaction formula with reference to the synthesis example shown in Archiv der Pharmacie (Weinheim, Germany), 1987, 320 (3), p280-2. Can be synthesized.
  • each indolocarbazole obtained in the above reaction formula is subjected to a coupling reaction with a corresponding halogen-substituted aromatic compound, etc., so that hydrogen substituted for two nitrogen atoms present in the indolocarbazole skeleton is replaced with an aromatic group.
  • the indolocarbazole compounds of the present invention represented by the general formulas (1) to (6) can be synthesized.
  • indolocarbazole compound represented by the general formulas (1) to (6) are shown, but the indolocarbazole compound used in the present invention is not limited to these.
  • the organic EL device of the present invention comprises an organic layer including a hole transport layer and a light emitting layer sandwiched between an anode and a cathode, contains a phosphorescent material in the light emitting layer, and includes a hole transport layer and a light emitting layer.
  • an EB layer containing an indolocarbazole compound represented by the general formula (1) is provided adjacent to the light emitting layer.
  • the indolocarbazole compound represented by the general formula (1) is used as a hole transporting material for a hole transporting layer or a host material for a light emitting layer.
  • the EB layer is provided between the hole transport layer and the light emitting layer.
  • the material used for the hole transport layer provided separately from the EB layer is a hole transport material having a HOMO energy larger than the HOMO energy of the indolocarbazole compound used for the EB layer. Hole transport materials other than compounds are preferably used.
  • One of the adjacent layers of the EB layer is a light emitting layer, and the other is preferably a hole transport layer or a layer containing a hole transport material.
  • the layer containing the hole transporting material disposed between the EB layer and the anode also functions as a hole transport layer, this layer is also referred to as a hole transport layer in this specification. Therefore, the hole transport layer may be a single layer or two or more layers.
  • the LUMO energy of the indolocarbazole compound contained in the EB layer is preferably larger than the LUMO energy of the compound contained in the adjacent light emitting layer.
  • the adjacent light emitting layer contains a plurality of compounds, it is preferably larger than the compound as the main component.
  • the LUMO energy of the indolocarbazole compound should be 0.1 eV or more, preferably 0.3 eV or more, and more preferably 0.5 eV or more than the LUMO energy of the compound (main component) contained in the light emitting layer.
  • the LUMO energy of the indolocarbazole compound is preferably ⁇ 1.2 eV or more, more preferably ⁇ 1.0 eV or more, and most preferably ⁇ 0.9 eV or more.
  • the HOMO energy of the hole transporting material contained in the hole transporting layer is larger than the HOMO energy of the indolocarbazole compound represented by the general formula (1).
  • the HOMO energy of the hole transport material adjacent to the anode or the hole injection layer is preferably ⁇ 4.8 eV or more.
  • the light emitting layer contains at least one phosphorescent light emitting material and at least one electron transporting host material.
  • EBL electrons flowing in the light emitting layer are efficiently blocked by EBL, and leakage of electrons to the hole transport layer is reduced.
  • the recombination probability of holes and electrons in the light emitting layer is improved, and the light emission efficiency of the phosphorescent light emitting material is improved.
  • an electron transport layer is provided between the cathode and the light emitting layer in addition to the above.
  • the preferable electron transfer speed of the material used for the electron transport layer is 1 ⁇ 10 ⁇ 7 cm 2 / V ⁇ s or more, more preferably 1 ⁇ 10 ⁇ 6 cm 2 / V ⁇ s or more, and most preferably 1 ⁇ 10 ⁇ 7 cm 2 / V ⁇ s. ⁇ 10 ⁇ 5 cm 2 / V ⁇ s or more.
  • the values of LUMO energy and HOMO energy in this specification are values obtained using Gaussian 03, a molecular orbital calculation software manufactured by Gaussian, USA, and structure optimization calculation at B3LYP / 6-31G * level. It is defined as the value calculated by
  • the structure of the organic EL element of the present invention will be described with reference to the drawings.
  • the structure of the organic EL element of the present invention is not limited to the illustrated one.
  • FIG. 1 is a cross-sectional view schematically showing a structural example of a general organic EL element used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, Represents an EB layer, 6 represents a light emitting layer, 7 represents an electron transport layer, and 8 represents a cathode.
  • the organic EL device of the present invention has an anode, a hole transport layer, an EB layer, a light emitting layer, and a cathode as essential layers.
  • it has an anode, a hole transport layer, an EB layer, a light emitting layer, an electron transport layer and a cathode.
  • the organic EL device of the present invention can also have an electron transport layer, an electron injection layer, and a hole blocking layer in layers other than the essential layers.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • the organic EL device of the present invention has a structure opposite to that shown in FIG. 1, that is, a cathode 8, an electron transport layer 7, a light emitting layer 6, an EB layer 5, a hole transport layer 4 and an anode 2 on the substrate 1 in this order. Stacking is also possible, and in this case, layers can be added or omitted as necessary.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used for an organic EL element.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the anode or the cathode of the organic EL element is transparent or translucent.
  • a transparent or semi-transparent cathode can be produced.
  • an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a phosphorescent light emitting layer and includes a phosphorescent light emitting material and a host material.
  • a phosphorescent material in the light emitting layer a material containing an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold is preferable.
  • organometallic complexes are known in the above-mentioned patent documents and the like, and these can be selected and used.
  • Preferable phosphorescent materials include complexes such as Ir (ppy) 3 having a noble metal element such as Ir as a central metal, complexes such as Ir (bt) 2 ⁇ acac3, and complexes such as PtOEt3. Specific examples of these complexes are shown below, but are not limited to the following compounds.
  • the amount of the phosphorescent light emitting material contained in the light emitting layer is in the range of 1 to 20% by weight, preferably 5 to 10% by weight.
  • the host material in the light emitting layer is known from many patent documents and the like, it can be selected from them.
  • Specific examples of the host material are not particularly limited, but include indole derivatives, carbazole derivatives, indolocarbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, Pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidine compounds, porphyrins Compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyr
  • metal complexes represented by tetracarboxylic acid anhydrides, metal complexes of phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes of benzoxazole and benzothiazole derivatives, polysilane compounds, poly (N-vinylcarbazole) derivatives, Examples include aniline-based copolymers, thiophene oligomers, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, and polyfluorene derivatives.
  • the host material is preferably a compound that prevents the emission of light from becoming longer in wavelength and has a high glass transition temperature. In this specification, the host material is defined as a material that does not emit phosphorescence while the organic EL element is driven.
  • the host material has the ability to transport both holes and electrons.
  • a material with excellent hole transport performance is a hole transportable host material, and a material with excellent electron transport ability is an electron. Called a transportable host material.
  • an electron transporting host material In the organic EL device of the present invention, it is preferable to use an electron transporting host material.
  • the electron transporting host material in this specification is defined as a host material having an electron mobility higher than a hole transfer rate or a host material having an electron transfer rate of 1 ⁇ 10 ⁇ 7 cm 2 / V ⁇ s or more.
  • the electron transporting host material preferably has an electron moving speed of 1 ⁇ 10 ⁇ 6 cm 2 / V ⁇ s or more.
  • Specific electron transporting host materials include carbazole derivatives, indolocarbazole derivatives, pyridine, pyrimidine, triazine, imidazole derivatives, pyrazoles, triazole derivatives, oxazole derivatives, oxadiazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone.
  • Derivatives diphenylquinone derivatives, thiopyran dioxide, carbodiimide, fluorenylidenemethane, distyrylpyrazine, fluorine-substituted aromatic compounds, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, phthalocyanine derivatives, 8-quinolinol derivatives
  • metal complexes represented by metal complexes, metal phthalocyanines, metal complexes having benzoxazole or benzothiazole as a ligand.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission, and includes a hole injection layer and an electron injection layer, And between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer can be provided as necessary.
  • the blocking layer can block diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the EB layer as used in the present specification is used in the sense of including a layer having a function of an electron blocking layer and / or an exciton blocking layer in one layer.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • Examples of the material for the hole blocking layer include aluminum metal complexes, styryl derivatives, triazole derivatives, phenanthroline derivatives, oxadiazole derivatives, and boron derivatives.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • an indolocarbazole compound represented by the general formula (1) As the material for the electron blocking layer, it is preferable to use an indolocarbazole compound represented by the general formula (1).
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided between the child blocking layer.
  • the EB layer according to the present invention functions as an electron blocking layer and / or an exciton blocking layer, it is advantageous not to provide an electron blocking layer and an exciton blocking layer in addition to the EB layer between the light emitting layer and the anode. It is. In addition, it can provide between a light emitting layer and a cathode as needed.
  • the thickness of the EB layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • an indolocarbazole compound represented by the general formula (1) is preferably used, and the derivative is more preferably used as an exciton blocking layer on the anode side.
  • the exciton blocking material may be used.
  • exciton blocking layer materials examples include 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolatoaluminum (III) (BAlq ).
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport layer is provided between the EB layer and the anode and contains a hole transport material.
  • the hole transport layer is preferably adjacent to the anode or the hole injection layer.
  • the hole transport material has a hole transport function and may also serve as an injection function.
  • the hole transport material may be either organic or inorganic.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. It is preferable to use an aromatic tertiary amine compound and a styrylamine compound, and it is more preferable to use an aromatic
  • the indolocarbazole compound contained in the EB layer is also a kind of hole transport material, but functions as an EB layer by arranging a layer containing this compound on the light emitting layer side separately from the hole transport layer. .
  • An organic EL device using two or more hole transport layers is known, but an example in which an indolocarbazole compound is used in a position such as an EB layer in the organic EL device of the present invention is known. Absent. And providing the said EB layer shows the remarkable effect which is not until now.
  • This excellent EB layer has excellent electron blocking effect due to large LUMO energy, moderate HOMO energy and hole transport capability, preventing electrons and excitons from leaking from the light emitting layer, and stable and good device characteristics. Seems to give. Even in a situation where a large number of hole transport materials are known, a compound for the EB layer that gives such good device characteristics is not known, and the present inventors have found it for the first time.
  • the indolocarbazole compound is contained in a normal hole transport layer, if the hole transport layer is a single layer, the HOMO energy does not match, the drive voltage becomes higher, or the life tendency tends to be shorter. It becomes.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • electron transport layers that can be used include aluminum complexes typified by Alq3, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxalates. And diazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • phosphorus-containing derivatives and silicon-containing attractants have a high electron transfer rate and are preferable electron transport materials.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the EB layer is an electron blocking layer, an exciton blocking layer, or a layer having both functions, and contains an indolocarbazole compound represented by the general formula (1).
  • the organic EL element of the present invention may be any one of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • the organic EL device of the present invention by providing an EB layer between the hole transport layer and the phosphorescent light emitting layer adjacent to the light emitting layer, leakage of electrons and / or excitons from the light emitting layer to the hole transport layer is achieved. Therefore, it is possible to obtain an element having higher luminous efficiency than that of a conventional element and having greatly improved driving stability.
  • intermediate A 14.1 g (0.061 mol), N, N-dimethylaminoacetaldehyde diethyl acetal 11.4 g (0.071 mol) and 110.0 g acetic acid were stirred at 118 ° C. for 8 hours with heating under reflux. After the reaction solution was cooled to room temperature, the precipitated crystals were collected by filtration and washed with acetic acid (30 ml). The obtained crystals were purified by reslurry to obtain 10.4 g of intermediate B (yield 67%) as white crystals.
  • DCZP 2,6-di (4-carbazolylphenyl) pyridine
  • TOF Time Of Flight
  • DCZP is used as a host material
  • Alq3 is used as an electron transport material.
  • Alq3 1 ⁇ 10 ⁇ 6 cm 2 / V ⁇ s
  • Table 1 shows LUMO energies calculated by structural optimization calculation at B3LYP / 6-31G * level for some compounds using Gaussian 03.
  • Table 2 shows the HOMO energies calculated by B3LYP / 6-31G * level structure optimization calculation for several compounds using Gaussian 03.
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 150 nm was formed.
  • CuPc was formed as a hole injection layer with a thickness of 25 nm on ITO
  • NPB was formed as a hole transport layer with a thickness of 30 nm.
  • Compound 1-1 was formed as an EB layer to a thickness of 10 nm on the hole transport layer.
  • DCZP and Ir (PPy) 3 were co-deposited from different vapor deposition sources as a light emitting layer to form a thickness of 40 nm.
  • the concentration of Ir (PPy) 3 was 6.0 wt%.
  • Alq3 was formed to a thickness of 20 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 0.5 nm as an electron injection layer.
  • Al aluminum as an electrode was formed to a thickness of 170 nm to produce an organic EL element.
  • the organic EL element had the light emission characteristics as shown in Table 3.
  • Table 1 the luminance, voltage, and luminous efficiency, shown when driving at 2.5 mA / cm 2, also the brightness half time was evaluated at constant current driving of 20 mA / cm 2, the initial this result The value converted in the case of luminance 1000 cd / m 2 is shown.
  • the maximum wavelength of the device emission spectrum was 517 nm, and it was found that light emission from Ir (PPy) 3 was obtained.
  • Example 2 In Example 1, an organic EL device was produced in the same manner as in Example 1 except that a compound other than Compound 2-1 was used as the EB layer. The maximum wavelength of the device emission spectrum was 517 nm, and it was found that light emission from Ir (PPy) 3 was obtained. The obtained light emission characteristics are shown in Table 1.
  • Example 3 In Example 1, an organic EL device was produced in the same manner as in Example 1 except that a compound other than Compound 3-1 was used as the EB layer. The maximum wavelength of the device emission spectrum was 517 nm, and it was found that light emission from Ir (PPy) 3 was obtained. The obtained light emission characteristics are shown in Table 1.
  • Example 4 In Example 1, an organic EL device was produced in the same manner as in Example 1 except that compounds other than Compound 1-7 were used as the EB layer.
  • Example 5 an organic EL device was produced in the same manner as in Example 1 except that the EB layer other than Compound 2-12 was used.
  • Example 6 an organic EL device was prepared in the same manner as in Example 1 except that the compound other than Compound 6-2 was used as the EB layer.
  • Example 1 an organic EL device was prepared in the same manner as in Example 1 except that the film thickness of NPB as the hole transport layer was 40 nm and no electron blocking layer was used.
  • Example 2 an organic EL device was prepared in the same manner as in Example 1 except that Compound 1-1 was used as the hole transport layer, the film thickness was 40 nm, and no EB layer was used.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that mCP was used as the EB layer.
  • the maximum wavelengths of the device emission spectra of the organic EL devices obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were all 517 nm, indicating that light emission from Ir (PPy) 3 was obtained. .
  • the emission characteristics are shown in Table 3.
  • Example 7 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method on a glass substrate on which an anode made of ITO having a thickness of 150 nm was formed.
  • CuPc was formed as a hole injection layer on ITO with a thickness of 25 nm
  • NPB was formed as a hole transport layer with a thickness of 45 nm.
  • Compound 1-1 was formed as an EB layer to a thickness of 10 nm on the hole transport layer.
  • DCZP and Ir (piq) 2 acac were co-deposited as a light emitting layer from different evaporation sources to form a thickness of 40 nm.
  • the concentration of Ir (piq) 2 acac was 4.5 wt%.
  • Alq3 was formed to a thickness of 37.5 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 0.5 nm as an electron injection layer.
  • Al (Al) as an electrode was formed to a thickness of 170 nm to produce an organic EL element.
  • the organic EL element had light emission characteristics as shown in Table 4.
  • Table 4 the luminance, voltage, and luminous efficiency, shown when the current drive of 2.5 mA / cm 2, also the brightness half time was evaluated at constant current driving of 20 mA / cm 2, the initial this result The value converted in the case of luminance 1000 cd / m 2 is shown.
  • the maximum wavelength of the device emission spectrum was 620 nm, and it was found that light was emitted from Ir (piq) 2 acac.
  • Example 8 an organic EL device was produced in the same manner as in Example 7 except that compounds other than Compound 1-40 were used as the EB layer.
  • Example 9 an organic EL device was produced in the same manner as in Example 7 except that compounds other than Compound 2-12 were used as the EB layer.
  • Example 10 an organic EL device was produced in the same manner as in Example 7 except that the compound other than Compound 6-2 was used as the EB layer.
  • Example 4 an organic EL device was produced in the same manner as in Example 4 except that the film thickness of NPB as the hole transport layer was 55 nm and the EB layer was not used.
  • the indolocarbazole compound used in the present invention exhibits good hole transport properties and has a large LUMO energy. Therefore, by providing the EB layer containing this adjacent to the phosphorescent light emitting layer between the hole transporting layer and the phosphorescent light emitting layer, the hole can be effectively transported from the anode to the light emitting layer. It is possible to prevent leakage of electrons and excitons from the light emitting layer to the hole transport layer, and as a result, it is possible to improve the light emitting efficiency of the device and improve the driving life. That is, the EB layer in the present invention functions as an electron blocking layer and / or an exciton blocking layer, and this EB layer greatly improves the initial characteristics and driving life of the organic EL element.
  • the indolocarbazole compound is found to have good thin film stability and thermal stability, and the organic EL device having an EB layer containing the compound exhibits excellent driving stability and high durability. It was revealed that.
  • the organic EL device of the present invention has practically satisfactory levels of light emission characteristics, drive life and durability, and is a flat panel display (mobile phone display device, in-vehicle display device, OA computer display device, television, etc.), surface light emission. Its technical value is great in applications to light sources (lighting, light sources for copying machines, backlight light sources for liquid crystal displays and instruments), display boards, and sign lamps that make use of the characteristics of the body.

Abstract

 素子の発光効率を改善し、駆動安定性を充分に確保し、かつ簡略な構成をもつ有機電界発光素子(有機EL素子)を提供する。 この有機電界発光素子は、陽極と陰極の間に、正孔輸送層と発光層を含む有機層を挟持してなり、発光層に燐光発光材料を含有し、正孔輸送層と発光層の間に、発光層と隣接して一般式(2)で表されるインドロカルバゾール誘導体を含有する電子及び/又は励起子阻止層を有する。式中、環Bは隣接環と縮合する式(1c)で表される複素環であり、Zはn価の芳香族炭化水素基又は芳香族複素環基を示し、nは1又は2である。

Description

有機電界発光素子
 本発明はインドロカルバゾール化合物を含有する有機電界発光素子に関するものであり、詳しくは、有機化合物からなる発光層に電界をかけて光を放出する薄膜型デバイスに関するものである。
 一般に、有機電界発光素子(以下、有機EL素子という)は、その最も簡単な構造としては発光層を挟んだ一対の対向電極から構成されている。すなわち、有機EL素子では、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入され、これらが発光層において再結合し、光を放出する現象を利用する。
 近年、有機薄膜を用いた有機EL素子の開発が行われるようになった。特に、発光効率を高めるため、電極からキャリアー注入の効率向上を目的として電極の種類の最適化を行い、芳香族ジアミンからなる正孔輸送層と8-ヒドロキシキノリンアルミニウム錯体(Alq3)からなる発光層とを電極間に薄膜として設けた素子の開発により、従来のアントラセン等の単結晶を用いた素子と比較して大幅な発光効率の改善がなされたことから、自発光・高速応答性といった特徴を持つ高性能フラットパネルへの実用化を目指して進められてきた。
  また、素子の発光効率を上げる試みとして、蛍光ではなく燐光を用いることも検討されている。上記の芳香族ジアミンからなる正孔輸送層とAlq3からなる発光層とを設けた素子をはじめとした多くの素子が蛍光発光を利用したものであったが、燐光発光を用いる、すなわち、三重項励起状態からの発光を利用することにより、従来の蛍光(一重項)を用いた素子と比べて、3~4倍程度の効率向上が期待される。この目的のためにクマリン誘導体やベンゾフェノン誘導体を発光層とすることが検討されてきたが、極めて低い輝度しか得られなかった。また、三重項状態を利用する試みとして、ユーロピウム錯体を用いることが検討されてきたが、これも高効率の発光には至らなかった。近年では、特許文献1に挙げられるように発光の高効率化や長寿命化を目的にイリジウム錯体等の有機金属錯体を中心に研究が多数行われている。
特表2003-515897号公報 特開平11-162650号公報 特開平11-176578号公報
New Journal of Chemistry 2002, 26, 1171 APPLIED PHYSICS LETTERS 2003, 83, 3818 APPLIED PHYSICS LETTERS 2008, 93, 143307
 ところで、有機EL素子は、両電極から、正孔ならびに電子がバランスよく発光層へ注入され、注入された正孔と電子が発光層中で効率的に再結合することで、良好な発光効率を得る。言い換えると、発光層中への両電荷の注入バランスや、発光層内での両電荷の輸送バランスが崩れることにより、輸送層への電荷の漏れが生じ、発光層内での再結合確率が低下する。さらに両電荷のバランスが崩れた状態では、発光層内の再結合領域は輸送層界面近傍の狭い領域に限定される。このような場合、発光層から輸送層への励起子の漏れが生じ、発光効率の低下に繋がる。特に、正孔輸送層への電子ならびに励起子の漏れは、発光効率の低下と同時に、正孔輸送材料の劣化に起因する素子寿命低下を招くことから、極めて重要な問題になっている。
  上記の問題を解決するために、非特許文献1には、下記化合物を用いて発光層の陽極側界面に、電子及び/又は励起子阻止層を設けることが提案されており、効率向上に効果を上げている。
Figure JPOXMLDOC01-appb-I000005
  さらに、非特許文献2、3には1,3-ジカルバゾリルベンゼン(mCP)を電子阻止層や励起子阻止層として用いた例が開示されている。
Figure JPOXMLDOC01-appb-I000006
  しかし、これらの素子においては、駆動電圧が高く、また用いた化合物の耐久性が不足していることから、実用的な発光特性と駆動寿命を示せていないという課題を有している。
 つまり、良好な発光特性と寿命特性を示す有機EL素子を実現するための方法として、正孔輸送層と発光層の間に有機層を挿入することで、電子及び/又は励起子の正孔輸送層への漏れを阻止する手法があるが、この機能を果たす実用レベルの材料は知られていない状況にある。正孔輸送層と発光層の間に挿入される有機層は、電子及び/又は励起子の正孔輸送層への漏れを阻止するものであるため、電子阻止層又は励起子阻止層とも称される。本明細書でいう電子及び/又は励起子阻止層はこの有機層をいう。以下、電子及び/又は励起子阻止層をEB層ともいう。
 一方、特許文献2ならびに特許文献3は、以下のインドロカルバゾール化合物を開示するが、これらの特許文献は、インドロカルバゾール化合物を電荷輸送成分として含有させることを開示し、正孔注入層又は正孔輸送層の材料として使用することを推奨するが、発光層と正孔輸送層の間に発光層と隣接するEB層の材料としての使用を教えるものではない。  
Figure JPOXMLDOC01-appb-I000007
 また、これらのインドロカルバゾール化合物を正孔輸送層に使用した有機EL素子の特性が開示されるが、駆動電圧が高く寿命特性が悪いという問題を残しており、発光特性と寿命特性の双方において、実用的に十分満足がいくものとは言い難い。
 有機EL素子をフラットパネルディスプレイ等の表示素子に応用するためには、素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状に鑑み、高効率かつ高い駆動安定性を有した実用上有用な有機EL素子及びそれに適する化合物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、特定構造のインドロカルバゾール化合物を有機EL素子のEB層に使用することで、上記課題を解決することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、陽極と陰極の間に、少なくとも正孔輸送層と発光層を含む有機層を挟持してなる有機電界発光素子において、発光層に燐光発光材料を含有し、正孔輸送層と発光層の間に、発光層と隣接して下記一般式(1)で表されるインドロカルバゾール化合物を含有する電子及び/又は励起子阻止層(EB層)を有することを特徴とする有機電界発光素子に関する。
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
 一般式(1)中、Zはn価の炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を示し、Yは式(1a)で表される基を示し、nは1~6の整数を示す。nが2以上の場合、Yは同一でも異なっていても良い。
 式(1a)中、環Aは隣接環と縮合する式(1b)で表される芳香族環を示し、環Bは隣接環と縮合する式(1c)で表される複素環を表す。R、Rはそれぞれ独立に、水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示す。
 式(1b)中、Xはメチン又は窒素を示し、Rは水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示すが、Xを含む環と縮合して縮合環を形成しても良い。
 式(1c)中、Arは炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を示す。
 一般式(1)で表されるインドロカルバゾール化合物としては、下記一般式(2)で表されるインドロカルバゾール化合物がある。
Figure JPOXMLDOC01-appb-I000010
 一般式(2)中、環Bは隣接環と縮合する式(1c)で表される複素環を示す。Z、Ar、R、Rは一般式(1)と同意である。Rは水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示す。nは1又は2の整数を示す。
 一般式(2)で表されるインドロカルバゾール化合物としては、一般式(3)~(6)で表される化合物から選ばれるインドロカルバゾール化合物がある。
Figure JPOXMLDOC01-appb-I000011
 一般式(3)~(6)中、Z、Ar、R、R、R及びnは一般式(2)のそれらと同意である。
 上記有機電界発光素子において、発光層に、燐光発光材料と、電子輸送性ホスト材料とを併用することが好ましい。その場合、燐光発光材料及び電子輸送性ホスト材料は、単一化合物でも混合物でも構わない。
 上記有機電界発光素子が、更に電子輸送層を有し、該電子輸送層に用いる材料の少なくとも一つの材料の電子移動速度が1×10-7cm/V・s以上であることが好ましい。
 上記EB層に含有されるインドロカルバゾール化合物のLUMOエネルギーは、EB層と隣接する発光層に含有されるホスト材料のLUMOエネルギーよりも大きいことが好ましい。また、このインドロカルバゾール化合物のLUMOエネルギーが-1.2eV以上であることが好ましい。例えば、該発光層が燐光発光材料と、電子輸送性ホスト材料を併用する場合、電子輸送性ホスト材料のLUMOエネルギーから導かれ、電子輸送性ホスト材料が混合物の場合はその主成分化合物のLUMOエネルギーから導かれる。
 また、正孔輸送層に含有される正孔輸送性材料のHOMOエネルギーが、上記EB層に含有されるインドロカルバゾール化合物のHOMOエネルギーよりも大きいことが好ましい。また、陽極又は正孔注入層に隣接する正孔輸送層に含有される正孔輸送性材料のHOMOエネルギーが、-4.8eV以上であることが好ましい。
有機EL素子の一例の断面図を示す。 化合物1-1のH-NMRチャートを示す。 化合物2-1のH-NMRチャートを示す。 化合物3-1のH-NMRチャートを示す。
 本発明の有機EL素子は、陽極と陰極の間に、少なくとも正孔輸送層、発光層を含む複数の層からなる有機層が挟持されている。そして、正孔輸送層側の発光層に隣接してEB層を有し、EB層からみて正孔輸送層は陽極側に配置される。発光層は燐光発光材料を含有し、EB層は上記一般式(1)で表されるインドロカルバゾール化合物を含有する。
 一般式(1)で表されるインドロカルバゾール化合物のいくつかは上記特許文献等で知られているが、その使用形態が異なる。しかし、正孔輸送性材料として知られているインドロカルバゾール化合物であれば、それを有利に使用できる。
 本発明で使用するインドロカルバゾール化合物は、一般式(1)において、Zはn価の炭素数6~50の芳香族炭化水素基、炭素数3~50の芳香族複素環基を表し、nは1~6の整数を表す。Yは式(1a)で表わされるインドロカルバゾール骨格を有する基を表す。これらの芳香族炭化水素基及び芳香族複素環基は置換基を有しても、有しなくてもよい。
 置換基を有しない芳香族炭化水素基及び芳香族複素環基の好ましい具体例としては、ベンゼン、ピリジン、ピリミジン、トリアジン、インドール、カルバゾール、ナフタレン、キノリン、イソキノリン、キノキサリン、ナフチリジン、又はこれら芳香環が複数連結された芳香族化合物からn個の水素を除いて生じるn価の基が挙げられ、より好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、インドール、カルバゾール、ナフタレン、又はこれら芳香環が複数連結された芳香族化合物から水素を除いて生じるn価の基が挙げられる。なお、芳香環が複数連結された芳香族化合物から生じる基である場合、連結される数は2~10が好ましく、より好ましくは2~7である。その場合、Yとの連結位置は限定されず、末端の環であっても中央部の環であってもよい。
 ここで、芳香環が複数連結された芳香族化合物から生じる基は、2価の基の場合、例えば、下記式で表わされる。
Figure JPOXMLDOC01-appb-I000012
(Ar1~Arは無置換の単環又は縮合環の芳香環)
 上記芳香環が複数連結された芳香族化合物から水素を除いて生じる基の具体例としては、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、ビストリアジルベンゼン、ジカルバゾリルベンゼン、カルバゾリルビフェニル、ジカルバゾリルビフェニル、フェニルターフェニル、カルバゾリルターフェニル、ビナフタレン、フェニルピリジン、フェニルカルバゾール、ジフェニルカルバゾール、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン等から水素を除いて生じるn価の基が挙げられる。
 上記芳香族炭化水素基又は芳香族複素環基が置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基、炭素数6~24のジアリールアミノ基がある。より好ましくは、メチル基又はジフェニルアミノ基である。なお、芳香環が複数連結された芳香族化合物から生じる基も同様に置換基を有することができる。
 上記芳香族炭化水素基又は芳香族複素環基が置換基を有する場合、置換基の総数は1~10である。好ましくは1~6であり、より好ましくは1~4である。また、上記芳香族炭化水素基又は芳香族複素環基が2つ以上の置換基を有する場合、それらは同一でも異なっていてもよい。また、上記芳香族炭化水素基又は芳香族複素環基の炭素数の計算において、置換基を有する場合、その置換基の炭素数を含む。
 一般式(1)において、nは1~6の整数であるが、1~4であることが好ましく、より好ましくは1~3である。
 一般式(1)において、Yは式(1a)で表され、式(1a)中の環Aは式(1b)で表される。式(1b)において、Xはメチン又は窒素である。Rは水素、炭素数1~10のアルキル基族炭化水素基、炭素数6~12の芳香族炭化水素基、炭素数3~11の芳香族複素環基、又はXを含む六員環と縮合する基を表す。RがXを含む六員環に縮合する基である場合、縮合し形成された縮合環からXを含む六員環を除いた環として、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、ベンゼン環、ナフタレン環等であることができる。これらの環は置換基を有しても良く、好ましくは、置換基を有してもよいインドール環であり、その場合Xを含む6員環を含めるとカルバゾール環を形成することがよい。RがXを含む六員環と縮合する場合は、RがXを含む6員環に置換する位置の隣接位の炭素が置換可能な水素を有する場合であり、カルバゾール環となる場合は、更にXがメチンである場合に限られる。
 式(1a)において、環Bは式(1c)で表される。式(1c)において、Arは炭素数6~50の芳香族炭化水素基、炭素数3~50の芳香族複素環基を表す。これらの芳香族炭化水素基及び芳香族複素環基は置換基を有しても、有しなくてもよい。これらの芳香族炭化水素基及び芳香族複素環基の好ましい例は、1価の基であることを除き上記Zを構成する芳香族炭化水素基又は芳香族複素環基と同様である。また、式(1c)におけるNとArの置換位置は限定されない。
 置換基を有しない芳香族炭化水素基及び芳香族複素環基の好ましい具体例としてはベンゼン、ピリジン、ピリミジン、トリアジン、インドール、カルバゾール、ナフタレン、キノリン、イソキノリン、キノキサリン、ナフチリジンより生じる1価の基が挙げられ、より好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、インドール、カルバゾール又はナフタレンより生じる1価の基が挙げられる。また、これら芳香環が複数連結された芳香族化合物より生じる1価の基も好ましく挙げられ、例えばビフェニル、ターフェニル、ビピリジン、ビピリミジン、ビトリアジン、ターピリジン、ビストリアジルベンゼン、ジカルバゾリルベンゼン、カルバゾリルビフェニル、ジカルバゾリルビフェニル、フェニルターフェニル、カルバゾイルターフェニル、ビナフタレン、フェニルピリジン、フェニルカルバゾール、ジフェニルカルバゾール、ジフェニルピリジン、フェニルピリミジン、ジフェニルピリミジン、フェニルトリアジン、ジフェニルトリアジン、フェニルナフタレン、ジフェニルナフタレン等より生じる1価の基が挙げられる。また、置換基を有する場合、好ましい置換基としては、炭素数1~4のアルキル基、炭素数1~2のアルコキシ基、アセチル基又は炭素数6~24のジアリールアミノ基である。より好ましくは、メチル基又はジフェニルアミノ基である。
 式(1a)において、R、Rはそれぞれ独立して水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を表す。好ましくは水素、炭素数1~4のアルキル基、フェニル基、ピリジル基、ピリミジル基、トリアジル基、ナフチル基、ビフェニリル基、ビピリミリジル基又はカルバゾリル基であり、より好ましくは水素、フェニル基又はカルバゾリル基である。
 なお、上記R、R及びRが、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基である場合、それぞれ好ましい基は共通する。
 上記一般式(1)で表されるインドロカルバゾール化合物としては、一般式(2)で表されるインドロカルバゾール化合物が好ましいものとしてある。
 一般式(2)において、環Bは隣接環と縮合する式(1c)で表される複素環を示す。この環B又は式(1c)は、一般式(1)の環B又は式(1c)と同じ意味を有する。また、Z、Ar、R、Rは一般式(1)のZ、Ar、R、Rと同じ意味を有する。Rは水素、炭素数1~10のアルキル基、炭素数6~12の芳香族炭化水素基、又は炭素数3~11の芳香族複素環基を表す。ここで、上記芳香族炭化水素基及び芳香族複素環基は、縮環構造でないことが好ましい。nは1又は2の整数を表す。
 上記一般式(2)で表されるインドロカルバゾール化合物としては、一般式(3)~(6)のいずれかで表されるインドロカルバゾール化合物が好ましいものとしてある。
 一般式(3)~(6)において、Z、Ar、R、R、R及びnは一般式(2)のそれらと同じ意味を有する。
 一般式(1)~(6)で表されるインドロカルバゾール化合物は、公知の手法を用いて合成することができる。
 例えば、一般式(3)で表されるインドロカルバゾール化合物のインドロカルバゾール骨格は、Synlett,2005,No.1,p42-48に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000013
 また、一般式(4)及び(5)で表されるインドロカルバゾール骨格は、The Journal of Organic Chemistry,2007,72(15)5886 ならびに、Tetrahedron,1999,55,p2371に示される合成例を参考にして以下の反応式により合成することができる。 
Figure JPOXMLDOC01-appb-I000014
 更に、一般式(6)で表されるインドロカルバゾール骨格は、Archiv der Pharmazie (Weinheim, Germany),1987,320(3),p280-2に示される合成例を参考にして以下の反応式により合成することができる。
Figure JPOXMLDOC01-appb-I000015
 前述の反応式で得られる各インドロカルバゾールを、対応するハロゲン置換芳香族化合物等とカップリング反応させることで、インドロカルバゾール骨格中に存在する2つの窒素に置換する水素が芳香族基に置換され、一般式(1)~(6)で表される本発明のインドロカルバゾール化合物を合成することができる。
 以下に、一般式(1)~(6)で表されるインドロカルバゾール化合物の好ましい具体例を示すが、本発明で使用されるインドロカルバゾール化合物はこれらに限定するものではない。
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
 本発明の有機EL素子は、陽極と陰極の間に、正孔輸送層と発光層を含む有機層を挟持してなり、発光層に燐光発光材料を含有し、正孔輸送層と発光層の間に、発光層と隣接して、一般式(1)で表されるインドロカルバゾール化合物を含有するEB層を有する。
 ここで、一般式(1)で表されるインドロカルバゾール化合物に含まれる一部の化合物は正孔輸送層の正孔輸送性材料や発光層のホスト材料に使用されることが知られているが、本発明においては、正孔輸送層と発光層の間に上記EB層を設ける。そして、EB層とは別に設けられる正孔輸送層に使用される材料はEB層に使用されるインドロカルバゾール化合物のHOMOエネルギーより大きいHOMOエネルギーを有する正孔輸送性材料が使用され、インドロカルバゾール化合物以外の正孔輸送性材料が好ましく使用される。
 EB層の隣接層の一つは発光層であり、他の一つは正孔輸送層又は正孔輸送性材料を含む層であることが好ましい。ここで、EB層と陽極の間に配置された正孔輸送性材料を含む層は正孔輸送層としても機能するので、本明細書ではこの層も正孔輸送層という。したがって、正孔輸送層は1層であっても、2層以上であってもよい。
 EB層に含有されるインドロカルバゾール化合物のLUMOエネルギーは、隣接する発光層に含まれる化合物のLUMOエネルギーよりも大きいことが好ましい。隣接する発光層が複数の化合物を含む場合は、その主成分となる化合物より大きいことが好ましい。インドロカルバゾール化合物のLUMOエネルギーは、発光層に含まれる化合物(主成分)のLUMOエネルギーより、0.1eV以上、好ましくは0.3eV以上、さらに好ましくは0.5eV以上大きいことがよい。
 インドロカルバゾール化合物のLUMOエネルギーは好ましくは-1.2eV以上であり、より好ましくは-1.0eV以上、最も好ましくは-0.9eV以上である。
 また、正孔輸送層に含有される正孔輸送性材料のHOMOエネルギーが、上記一般式(1)で表されるインドロカルバゾール化合物のHOMOエネルギーよりも大きいことが好ましい。また、特に限定されるものではないが、陽極又は正孔注入層に隣接する正孔輸送材料のHOMOエネルギーが、-4.8eV以上であることが好ましい。
 本発明の有機EL素子の好ましい形態としては、発光層が少なくとも一つの燐光発光材料と、少なくとも一つの電子輸送性ホスト材料を含有するものである。この場合、発光層中を流れる電子はEBLに効率的に阻止され、正孔輸送層への電子の漏れが低減する。これにより、発光層中での正孔と電子の再結合確率が向上し、燐光発光材料の発光効率が向上する。
 より好ましい有機EL素子の形態としては、上記に加えて、陰極と発光層の間に電子輸送層を有する。電子輸送層に用いられる材料の好ましい電子移動速度としては1×10-7cm/V・s以上であり、更に好ましくは、1×10-6cm/V・s以上、最も好ましくは1×10-5cm/V・s以上である。
 なお、本明細書でいうLUMOエネルギー及びHOMOエネルギーの値は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian03を用いて求めた値であり、B3LYP/6-31G*レベルの構造最適化計算により算出した値と定義する。
 また、本明細書で言う電子移動速度の値は、Time Of Fright (TOF)法にて測定した電場E1/2=500(V/cm)1/2の時の値とする。
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造は何ら図示のものに限定されるものではない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を模式的に示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5はEB層、6は発光層、7は電子輸送層、8は陰極を各々表わす。本発明の有機EL素子では、必須の層として、陽極、正孔輸送層、EB層、発光層及び陰極を有する。有利には、陽極、正孔輸送層、EB層、発光層、電子輸送層及び陰極を有する。
 また、本発明の有機EL素子は必須の層以外の層に、電子輸送層、電子注入層、正孔阻止層を有することもできる。更に、正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。
 なお、本発明の有機EL素子は、図1とは逆の構造、すなわち、基板1上に陰極8、電子輸送層7、発光層6、EB層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も、必要により層を追加したり、省略したりすることが可能である。
 以下に、各部材及び各層について説明する。
-基板-
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英などからなるものを用いることができる。
-陽極-
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
-陰極-
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が、透明又は半透明である。
  また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
-発光層-
  発光層は燐光発光層であり、燐光発光材料とホスト材料を含む。発光層における燐光発光材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体を含有するものがよい。かかる有機金属錯体は、前記特許文献等で公知であり、これらが選択されて使用可能である。
  好ましい燐光発光材料としては、Ir等の貴金属元素を中心金属として有するIr(ppy)3等の錯体類、Ir(bt)2・acac3等の錯体類、PtOEt3等の錯体類が挙げられる。これらの錯体類の具体例を以下に示すが、下記の化合物に限定されない。
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
  前記燐光発光材料が発光層中に含有される量は、1~20重量%、好ましくは5~10重量%の範囲にあることがよい。
 発光層におけるホスト材料は、多数の特許文献等により知られているので、それらから選択することができる。ホスト材料の具体例としては、特に限定されるものではないが、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリジン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール誘導体の金属錯体に代表される各種金属錯体、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。上記ホスト材料は、発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する化合物であることが好ましい。本明細書で言うホスト材料とは、有機EL素子駆動中に燐光発光しない材料と定義する。
 一般的に、ホスト材料は、正孔と電子の両電荷の輸送能を有するが、特に、正孔輸送性能に優れた材料を正孔輸送性ホスト材料、また電子輸送能に優れた材料を電子輸送性ホスト材料と呼ぶ。
 本発明の有機EL素子においては、電子輸送性ホスト材料を用いることが好ましい。本明細書で言う電子輸送性ホスト材料とは、電子移動度が正孔移動速度より大きいホスト材料、又は電子移動速度が1×10-7cm/V・s以上であるホスト材料と定義する。特に、電子輸送性ホスト材料は電子移動速度が1×10-6cm/V・s以上であることが好ましい。
 具体的な電子輸送性ホスト材料としてはカルバゾール誘導体、インドロカルバゾール誘導体、ピリジン、ピリミジン、トリアジン、イミダゾール誘導体、ピラゾール、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体等が挙げられる。
-注入層-
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-阻止層-
 阻止層は、発光層中に存在する電荷(電子若しくは正孔)及び/又は励起子の発光層外への拡散を阻止することができる。電子阻止層は、発光層及び正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層及び電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいうEB層は、一つの層で電子阻止層及び/又は励起子阻止層の機能を有する層を含む意味で使用される。
-正孔阻止層-
 正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、アルミニウム金属錯体、スチリル誘導体、トリアゾール誘導体、フェナントロリン誘導体、オキサジアゾール誘導体、ボロン誘導体等が挙げられる。
-電子阻止層-
 電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
 電子阻止層の材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましい。
-励起子阻止層-
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。
 本発明に係るEB層は、電子阻止層及び/又は励起子阻止層として機能するので、発光層と陽極の間にはEB層に加えて電子阻止層及び励起子阻止層を設けないことが有利である。なお、発光層と陰極の間には必要により設けることができる。EB層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
 励起子阻止層の材料としては、一般式(1)で表されるインドロカルバゾール化合物を用いることが好ましく、該誘導体は陽極側の励起子阻止層として用いられることがより好ましいが、他の公知の励起子阻止材料であってもよい。
 使用できる公知の励起子阻止層用材料としては例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。正孔輸送層はEB層と陽極の間に設けられ、正孔輸送材料を含有する。正孔輸送層は、陽極又は正孔注入層に隣接することが好ましい。
  正孔輸送材料としては、正孔の輸送機能を有するものであり、注入機能を兼ねても良い。正孔輸送材料としては有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
 EB層に含有されるインドロカルバゾール化合物も正孔輸送材料の1種であるが、この化合物を含有する層を正孔輸送層とは別に発光層側に配置することにより、EB層として機能する。
 2層以上の正孔輸送層を使用した有機EL素子は知られているが、インドロカルバゾール化合物を本発明の有機EL素子におけるEB層のような位置に配置して使用した例は知られていない。そして、上記EB層を設けることにより、これまでにない顕著な効果を示す。この優れた効果を示すEB層は、大きいLUMOエネルギーによる優れた電子阻止効果、適度なHOMOエネルギーと正孔輸送能力が、電子や励起子が発光層から漏れることを防ぎ、安定で良好な素子特性を与えるものと思われる。正孔輸送材料が多数知られている状況であっても、このような良好な素子特性を与えるEB層用の化合物は知られておらず、本発明者らが初めて見出したものである。なお、上記インドロカルバゾール化合物を、通常の正孔輸送層に含有させた場合で、正孔輸送層が単層であると、HOMOエネルギーが合わず、駆動電圧が高電圧化したり、短寿命傾向となる。
-電子輸送層-
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、Alq3に代表されるアルミニウム錯体類、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。また、含リン誘導体や含ケイ素誘体は高い電子移動速度を有しており、好ましい電子輸送材料である。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
-EB層-
 EB層は、電子阻止層、励起子阻止層又は両者の機能を有する層であり、一般式(1)で表されるインドロカルバゾール化合物を含有する。
 本発明の有機EL素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれであってもよい。本発明の有機EL素子は、発光層と隣接して、正孔輸送層と燐光発光層の間にEB層を設けることにより、発光層から正孔輸送層への電子及び/又は励起子の漏れを阻止することが可能となり、従来の素子よりも発光効率が高くかつ駆動安定性においても大きく改善された素子が得られる。
 以下、本発明を実施例によって更に詳しく説明するが、本発明は勿論、これらの実施例に限定されるものではなく、その要旨を越えない限りにおいて、種々の形態で実施することが可能である。
 以下に本発明化合物の合成例を示す。なお、化合物番号は、上記化学式に付した番号に対応する。
合成例1
化合物1-1の合成
Figure JPOXMLDOC01-appb-I000033
 窒素雰囲気下、インドール20.0 g (0.17 mol)の脱水ジエチルエーテル300 ml溶液を室温で撹拌しながら、濃硫酸211.7 g (2.16 mol)に濃塩酸112.0 g (1.10 mol)を1時間かけて滴下し発生させた塩化水素ガスを吹き込んだ。反応溶液を室温で15時間撹拌した後に、酢酸エチル121.0 gと飽和炭酸水素ナトリウム水溶液303.2 gを加えた。水層を酢酸エチル(2 × 100 ml)で抽出した後に、有機層を飽和炭酸水素ナトリウム水溶液(100 ml)と蒸留水(2 × 100 ml)で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後に、硫酸マグネシウムをろ別し、溶媒を減圧留去した。得られた残渣をトルエン150 mlに溶解し、パラジウム/活性炭2.5 gを加えた後に、111℃で加熱還流しながら3時間撹拌した。反応溶液を室温まで冷却した後に、パラジウム/活性炭をろ別し、溶媒を減圧留去した。再結晶により精製を行い、白色結晶として中間体A 14.7 g(収率37%)を得た。
Figure JPOXMLDOC01-appb-I000034
 窒素雰囲気下、中間体A 14.1 g (0.061 mol)、N,N -ジメチルアミノアセトアルデヒドジエチルアセタール11.4 g (0.071 mol)と酢酸110.0 gを118℃で加熱還流しながら8時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、酢酸(30ml)で洗浄した。得られた結晶をリスラリー精製し、白色結晶として中間体B 10.4 g (収率67%)を得た。
Figure JPOXMLDOC01-appb-I000035
 
 窒素雰囲気下、中間体B 10.0 g (0.039 mol)、ヨードベンゼン79.6 g (0.39 mol)、銅12.4 g (0.20 mol)、炭酸カリウム16.2 g (0.12 mol)とテトラグリム200 mlを190℃で加熱しながら72時間撹拌した。反応溶液を室温まで冷却し、無機物をろ別した後に、この溶液に蒸留水(200 ml)を撹拌しながら加え、析出した結晶をろ取した。シリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物1-1 10.0 g (収率65%)を得た。融点176℃、APCI-TOFMS, m/z 409 [M+H]+ 、1H-NMR測定結果(測定溶媒:THF-d8)を図2に示す。
合成例2
化合物2-1の合成
Figure JPOXMLDOC01-appb-I000036
 窒素雰囲気下、1,2-シクロヘキサンジオン33.3 g (0.30 mol)、フェニルヒドラジン塩酸塩86.0 g (0.60 mol)とエタノール1000 mlを室温で撹拌しながら、濃硫酸3.0 g (0.031 mol)を5分かけて滴下した後に、65℃で加熱しながら4時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、エタノール(2 × 500 ml)を用いて洗浄を行い、紫茶色結晶80.0 gを得た。この結晶72.0 g (0.26 mol)、トリフルオロ酢酸72.0 gと酢酸720.0 gを100℃で加熱しながら15時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、酢酸(200 ml)で洗浄した。リスラリー精製を行い、白色結晶として中間体C 30.0 g (収率45%)を得た。
Figure JPOXMLDOC01-appb-I000037
 窒素雰囲気下、中間体C 10.0 g (0.039 mol)、ヨードベンゼン79.6 g(0.39 mol)、銅12.4 g (0.20 mol)、炭酸カリウム2 1.6 g (0.16 mol)とテトラグリム200 mlを190℃で加熱しながら120時間撹拌した。反応溶液を室温まで冷却し、無機物をろ別した後に、この溶液に蒸留水(200 ml)を撹拌しながら加え、析出した結晶をろ取した。シリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物2-1 9.6 g (収率60%)を得た。融点263℃、APCI-TOFMS, m/z 409 [M+H]+ 、1H-NMR測定結果(測定溶媒:THF-d8)を図3に示す。
合成例3
化合物3-1の合成
Figure JPOXMLDOC01-appb-I000038
 窒素雰囲気下、3,3 ’-メチレンジインドール50.69 g (0.21 mol)、オルトギ酸トリエチル30.55 g (0.21 mol)とメタノール640 gを室温で撹拌しながら、濃硫酸5.0 g (0.052 mol)を3分かけて滴下した後に、65℃で加熱還流しながら1時間撹拌した。反応溶液を室温まで冷却した後に、析出した結晶をろ取し、メタノールにて洗浄し、赤茶色結晶として中間体D 36.81 g (収率70%)を得た。
Figure JPOXMLDOC01-appb-I000039
 窒素雰囲気下、中間体D 10.0 g (0.039 mol)、ヨードベンゼン39.8 g (0.20 mol)、銅12.4 g (0.20 mol)、炭酸カリウム21.6 g (0.16 mol)とテトラグリム200 mlを190℃で加熱しながら、72時間撹拌した。反応溶液を室温まで冷却し、無機物をろ別した後に、この溶液に蒸留水(200 ml)を撹拌しながら加え、析出した結晶をろ取した。シリカゲルカラムクロマトグラフィーで精製を行い、白色固体として化合物3-1 11.9 g (収率75%)を得た。融点309℃、APCI-TOFMS, m/z 409 [M+H]+ 、1H -NMR測定結果(測定溶媒:THF-d8)を図4に示す。
 以下に、実施例中の有機EL素子で使用した各材料を示す。
Figure JPOXMLDOC01-appb-I000040
 Time Of Fright (TOF)法にて測定した2,6-ジ(4-カルバゾリルフェニル)ピリジン(DCZP)及びAlq3の電子移動速度を次に示す。なお、DCZPはホスト材料として、Alq3は電子輸送材料として使用される。
 以下に示す数値は、電場E1/2=500(V/cm)1/2の時の値を示す。
 DCZP:3×10-6cm/V・s
 Alq3:1×10-6cm/V・s
 Gaussian03を用い、いくつかの化合物について、B3LYP/6-31G*レベルの構造最適化計算により算出したLUMOエネルギーを表1に示す。
 Gaussian03を用い、いくつかの化合物について、B3LYP/6-31G*レベルの構造最適化計算により算出したHOMOエネルギーを表2に示す。
Figure JPOXMLDOC01-appb-T000042
実施例1
  膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-4 Paで積層させた。まず、ITO上に正孔注入層としてCuPcを25nmの厚さに形成し、次に孔輸送層としてNPBを30nmの厚さに形成した。次に、正孔輸送層上に、EB層として化合物1-1を10nmの厚さに形成した。次に発光層としてDCZPとIr(PPy)3とを異なる蒸着源から、共蒸着し、40nmの厚さに形成した。この時、Ir(PPy)3の濃度は6.0wt%であった。次に、電子輸送層としてAlq3を20nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を0.5nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を170nmの厚さに形成し、有機EL素子を作成した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表3のような発光特性を有することが確認された。表1において、輝度、電圧及び発光効率は、2.5mA/cm2での駆動時の値を示し、また、輝度半減時間は、20mA/cm2の一定電流駆動で評価し、この結果を初期輝度1000cd/m2の場合に換算した値を示す。素子発光スペクトルの極大波長は517nmであり、Ir(PPy)3からの発光が得られていることがわかった。
実施例2
 実施例1において、EB層として化合物2-1以外を用いた以外は実施例1と同様にして有機EL素子を作成した。素子発光スペクトルの極大波長は517nmであり、Ir(PPy)3からの発光が得られていることがわかった。得られた発光特性を表1に示す。  
実施例3
  実施例1において、EB層として化合物3-1以外を用いた以外は実施例1と同様にして有機EL素子を作成した。素子発光スペクトルの極大波長は517nmであり、Ir(PPy)3からの発光が得られていることがわかった。得られた発光特性を表1に示す。
実施例4
  実施例1において、EB層として化合物1-7以外を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例5
  実施例1において、EB層として化合物2-12以外を用いた以外は実施例1と同様にして有機EL素子を作成した。
実施例6
  実施例1において、EB層として化合物6-2以外を用いた以外は実施例1と同様にして有機EL素子を作成した。
比較例1
 実施例1において、正孔輸送層としてのNPBの膜厚を40nmとし、電子阻止層を使用しない以外は、実施例1と同様にして有機EL素子を作成した。
比較例2
  実施例1において、正孔輸送層として化合物1-1を用い、その膜厚を40nmとし、EB層を使用しない以外は、実施例1と同様にして有機EL素子を作成した
比較例3
  実施例1において、EB層としてmCPを用いた以外は実施例1と同様にして有機EL素子を作成した。
 実施例1~6及び比較例1~3で得られた有機EL素子の素子発光スペクトルの極大波長は、いずれも517nmであり、Ir(PPy)3からの発光が得られていることがわかった。発光特性を表3に示す。
Figure JPOXMLDOC01-appb-T000043
  表3より、EB層を使用しない比較例1に対して、特定のインドロカルバゾール誘導体をEB層に用いた実施例1、2、3、4、5及び6においては、輝度の向上ならびに駆動電圧の低下が観られており、発光効率が向上することが判る。更に、駆動寿命特性が大幅に改善される。一方、mCPをEB層に用いた比較例3では、輝度の向上は観られるものの駆動電圧が上昇し、また駆動寿命が低下しており、インドロカルバゾール誘導体の優位性が判る。インドロカルバゾール誘導体を正孔輸送層として使用した比較例2においては、輝度は向上しているものの駆動電圧が上昇し、また寿命特性の改善は観られず、このことからインドロカルバゾール誘導体のEB層としての使用が有効であることがわかる。これらの結果より、上記インドロカルバゾール誘導体をEB層に用いることにより、高効率で、良好な寿命特性を示す有機EL燐光素子を実現することが明らかである。
実施例7
  膜厚150nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-4 Paで積層させた。まず、ITO上に正孔注入層としてCuPcを25nmの厚さに形成し、次に孔輸送層としてNPBを45nmの厚さに形成した。次に、正孔輸送層上に、EB層として化合物1-1を10nmの厚さに形成した。次に発光層としてDCZPとIr(piq)2acacとを異なる蒸着源から、共蒸着し、40nmの厚さに形成した。この時、Ir(piq)2acacの濃度は4.5wt%であった。次に、電子輸送層としてAlq3を37.5nmの厚さに形成した。更に、電子輸送層上に、電子注入層としてフッ化リチウム(LiF)を0.5nmの厚さに形成した。最後に、電子注入層上に、電極としてアルミニウム(Al)を170nmの厚さに形成し、有機EL素子を作成した。
  得られた有機EL素子に外部電源を接続し直流電圧を印加したところ、表4のような発光特性を有することが確認された。表4において、輝度、電圧及び発光効率は、2.5mA/cm2の電流駆動時の値を示し、また、輝度半減時間は、20mA/cm2の一定電流駆動で評価し、この結果を初期輝度1000cd/m2の場合に換算した値を示す。素子発光スペクトルの極大波長は620nmであり、Ir(piq)2acacからの発光が得られていることがわかった。
実施例8
  実施例7において、EB層として化合物1-40以外を用いた以外は実施例7と同様にして有機EL素子を作成した。
実施例9
  実施例7において、EB層として化合物2-12以外を用いた以外は実施例7と同様にして有機EL素子を作成した。
実施例10
  実施例7において、EB層として化合物6-2以外を用いた以外は実施例7と同様にして有機EL素子を作成した。
比較例4
  実施例4において、正孔輸送層としてのNPBの膜厚を55nmとし、EB層を使用しない以外は、実施例4と同様にして有機EL素子を作成した。
 実施例7~10及び比較例4で得られた有機EL素子の素子発光スペクトルの極大波長は、いずれも620nmであり、Ir(piq)2acacからの発光が得られていることがわかった。得られた発光特性を表4に示す。
Figure JPOXMLDOC01-appb-T000044
  表4より、EB層を使用しない比較例4に対して、特定のインドロカルバゾール誘導体をEB層に用いた実施例7、8、9および10においては、発光効率と駆動寿命が大幅に向上していることが判る。
産業上の利用の可能性
 本発明で用いられるインドロカルバゾール化合物は、良好な正孔輸送特性を示し、且つ大きいLUMOエネルギー有する。そのため、これを含有するEB層を燐光発光層と隣接して正孔輸送層と燐光発光層の間に設けることにより、陽極から発光層への正孔の輸送が効果的に行われると同時に、発光層から正孔輸送層への電子や励起子の漏れを阻止することが可能となり、その結果、素子の発光効率向上とともに、駆動寿命を改善が可能となる。すなわち、本発明におけるEB層は、電子阻止層及び/又は励起子阻止層としての機能を有しており、このEB層が有機EL素子の初期特性ならびに駆動寿命を大幅に改善する。
 加えて、該インドロカルバゾール化合物は良好な薄膜安定性と熱安定性を有することを見出し、これを含むEB層を有する有機EL素子が、優れた駆動安定性を示す耐久性の高い有機EL素子であることを明らかにした。
 本発明の有機EL素子は、発光特性、駆動寿命ならびに耐久性において、実用上満足できるレベルにあり、フラットパネルディスプレイ(携帯電話表示素子、車載表示素子、OAコンピュータ表示素子やテレビ等)、面発光体としての特徴を生かした光源(照明、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板や標識灯等への応用において、その技術的価値は大きいものである。

Claims (9)

  1.  陽極と陰極の間に、少なくとも正孔輸送層と発光層を含む有機層を挟持してなる有機電界発光素子において、発光層に燐光発光材料を含有し、正孔輸送層と発光層の間に、発光層と隣接して一般式(1)で表されるインドロカルバゾール化合物を含有する電子及び/又は励起子阻止層を有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
     一般式(1)中、Zはn価の炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を示し、Yは式(1a)で表される基を示し、nは1~6の整数を示す。nが2以上の場合、Yは同一でも異なっていても良い。
     式(1a)中、環Aは隣接環と縮合する式(1b)で表される芳香族環を示し、環Bは隣接環と縮合する式(1c)で表される複素環を示す。R、Rはそれぞれ独立に、水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示す。
     式(1b)中、Xはメチン又は窒素を示し、Rは水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示すが、Xを含む環と縮合して縮合環を形成しても良い。
     式(1c)中、Arは炭素数6~50の芳香族炭化水素基又は炭素数3~50の芳香族複素環基を示す。
  2.  発光層に、燐光発光材料と、電子輸送性ホスト材料とを含有することを特徴とする請求項1に記載の有機電界発光素子。
  3.  有機層が更に電子輸送層を有し、該電子輸送層に用いる材料の少なくとも一つの材料の電子移動速度が1×10-7cm/V・s以上であることを特徴とする請求項1に記載の有機電界発光素子。
  4.  一般式(1)で表されるインドロカルバゾール化合物が下記一般式(2)で表されるインドロカルバゾール化合物である請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000003
     一般式(2)中、環Bは隣接環と縮合する式(1c)で表される複素環を示す。Z、Ar、R及びRは一般式(1)と同意である。Rは水素、炭素数1~10の脂肪族炭化水素基、炭素数6~12の芳香族炭化水素基又は炭素数3~11の芳香族複素環基を示す。nは1又は2の整数を示す。
  5.  一般式(2)で表されるインドロカルバゾール化合物が、一般式(3)~(6)で表されるインドロカルバゾール化合物から選ばれることを特徴とする請求項4に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-I000004
     一般式(3)~(6)中、Z、Ar、R、R、R及びnは一般式(2)と同意である。
  6.  電子及び/又は励起子阻止層に含有されるインドロカルバゾール化合物のLUMOエネルギーが、発光層に含有されるホスト材料のLUMOエネルギーよりも大きいことを特徴とする請求項1に記載の有機電界発光素子。
  7.  インドロカルバゾール化合物のLUMOエネルギーが、-1.2eV以上であることを特徴とする請求項1に記載の有機電界発光素子。
  8.  正孔輸送層に含有される正孔輸送性材料のHOMOエネルギーが、電子及び/又は励起子阻止層に含有されるインドロカルバゾール化合物のHOMOエネルギーよりも大きいことを特徴とする請求項1に記載の有機電界発光素子。
  9.  陽極又は正孔注入層に隣接して正孔輸送層を有し、該正孔輸送層に含有される正孔輸送材料のHOMOエネルギーが、-4.8eV以上であることを特徴とする請求項1に記載の有機電界発光素子。
PCT/JP2010/055240 2009-03-31 2010-03-25 有機電界発光素子 WO2010113761A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117025685A KR101759966B1 (ko) 2009-03-31 2010-03-25 유기 전계 발광 소자
EP10758534.1A EP2416627B1 (en) 2009-03-31 2010-03-25 Organic electroluminescent device
US13/257,163 US9299947B2 (en) 2009-03-31 2010-03-25 Organic electroluminescent device having an electron- and /or exciton-blocking layer comprising an indolocarbazole compound
CN201080012586.3A CN102362551B (zh) 2009-03-31 2010-03-25 有机电致发光元件
JP2011507133A JP5723764B2 (ja) 2009-03-31 2010-03-25 有機電界発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009085657 2009-03-31
JP2009-085657 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113761A1 true WO2010113761A1 (ja) 2010-10-07

Family

ID=42828054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055240 WO2010113761A1 (ja) 2009-03-31 2010-03-25 有機電界発光素子

Country Status (7)

Country Link
US (1) US9299947B2 (ja)
EP (1) EP2416627B1 (ja)
JP (1) JP5723764B2 (ja)
KR (1) KR101759966B1 (ja)
CN (1) CN102362551B (ja)
TW (1) TWI468494B (ja)
WO (1) WO2010113761A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049063A1 (ja) * 2009-10-23 2011-04-28 新日鐵化学株式会社 有機電界発光素子
JP2012140367A (ja) * 2010-12-28 2012-07-26 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2011080972A1 (ja) * 2009-12-28 2013-05-09 新日鉄住金化学株式会社 有機電界発光素子
JP5215481B2 (ja) * 2010-02-12 2013-06-19 新日鉄住金化学株式会社 有機電界発光素子
WO2013137001A1 (ja) * 2012-03-12 2013-09-19 新日鉄住金化学株式会社 有機電界発光素子
WO2014061546A1 (ja) 2012-10-18 2014-04-24 東レ株式会社 ベンゾインドロカルバゾール誘導体、それを用いた発光素子材料および発光素子
KR101472295B1 (ko) * 2011-12-19 2014-12-15 단국대학교 산학협력단 다중고리 방향족 화합물 및 이를 포함하는 유기전계 발광소자
US20150115240A1 (en) * 2012-03-30 2015-04-30 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
US9543528B2 (en) 2013-09-05 2017-01-10 Cheil Industries, Inc. Compound for an organic optoelectric device, organic optoelectric device including the same, and display device including the optoelectric device
KR20170026515A (ko) 2014-07-03 2017-03-08 스미또모 가가꾸 가부시키가이샤 고분자 화합물 및 그것을 사용한 발광 소자
JP2017108006A (ja) * 2015-12-10 2017-06-15 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20180123043A1 (en) * 2012-08-31 2018-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US10593894B2 (en) 2016-07-13 2020-03-17 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device and organic optoelectronic device and display device
US10600971B2 (en) 2016-08-11 2020-03-24 Samsung Sdi Co., Ltd. Composition for organic optoelectric device and organic optoelectric device and display device
CN113382493A (zh) * 2020-03-09 2021-09-10 财团法人纺织产业综合研究所 电致发光线

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477613B1 (ko) * 2009-03-31 2014-12-30 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전자 소자
KR101401620B1 (ko) 2012-07-17 2014-06-02 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20200133011A (ko) 2013-04-08 2020-11-25 메르크 파텐트 게엠베하 열 활성화 지연 형광 재료를 갖는 유기 전계발광 디바이스
CN106328816B (zh) * 2015-06-16 2018-11-13 昆山国显光电有限公司 一种有机电致发光器件及其制备方法
US11094891B2 (en) * 2016-03-16 2021-08-17 Universal Display Corporation Organic electroluminescent materials and devices
KR20180125369A (ko) * 2017-05-15 2018-11-23 주식회사 엘지화학 유기 발광 소자
TW202216951A (zh) * 2020-10-30 2022-05-01 財團法人紡織產業綜合研究所 電致發光線

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162650A (ja) * 1997-10-02 1999-06-18 Xerox Corp エレクトロルミネセントデバイス
JPH11176578A (ja) * 1997-10-02 1999-07-02 Xerox Corp インドロカルバゾールを用いたエレクトロルミネセントデバイス
JP2003229275A (ja) * 2001-11-27 2003-08-15 Semiconductor Energy Lab Co Ltd 発光素子
JP2006032599A (ja) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) * 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313177A (ja) * 2000-04-28 2001-11-09 Pioneer Electronic Corp 有機エレクトロルミネッセンス素子
US6759146B2 (en) * 2001-11-08 2004-07-06 Xerox Corporation Organic devices
US20040209116A1 (en) * 2003-04-21 2004-10-21 Xiaofan Ren Organic light emitting devices with wide gap host materials
US7211823B2 (en) * 2003-07-10 2007-05-01 Universal Display Corporation Organic light emitting device structure for obtaining chromaticity stability
DE102005023437A1 (de) * 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
JP2007063754A (ja) * 2005-08-29 2007-03-15 Matsumoto Kensetsu:Kk 側溝蓋用グレーチング
KR100846590B1 (ko) * 2006-11-08 2008-07-16 삼성에스디아이 주식회사 실란일아민계 화합물, 이의 제조 방법 및 이를 포함한유기막을 구비한 유기 발광 소자
JP2008277648A (ja) * 2007-05-02 2008-11-13 Seiko Epson Corp 有機el素子及び有機el素子の製造方法
JP5115061B2 (ja) * 2007-07-09 2013-01-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162650A (ja) * 1997-10-02 1999-06-18 Xerox Corp エレクトロルミネセントデバイス
JPH11176578A (ja) * 1997-10-02 1999-07-02 Xerox Corp インドロカルバゾールを用いたエレクトロルミネセントデバイス
JP2003229275A (ja) * 2001-11-27 2003-08-15 Semiconductor Energy Lab Co Ltd 発光素子
JP2006032599A (ja) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2007063754A1 (ja) * 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) * 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2008146839A1 (ja) * 2007-05-29 2008-12-04 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008149691A1 (ja) * 2007-05-30 2008-12-11 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ARCHIV DER PHARMAZIE (WEINHEIM, GERMANY, vol. 320, no. 3, 1987, pages 280 - 2
See also references of EP2416627A4
SYNLETT, 2005, pages 42 - 48
TETRAHEDRON, vol. 55, 1999, pages 2371
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 72, no. 15, 2007, pages 5886

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9290498B2 (en) 2009-10-23 2016-03-22 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device having an electron- and/or exciton-blocking layer comprising an indolocarbazole compound
WO2011049063A1 (ja) * 2009-10-23 2011-04-28 新日鐵化学株式会社 有機電界発光素子
JP5697599B2 (ja) * 2009-10-23 2015-04-08 新日鉄住金化学株式会社 有機電界発光素子
JP5596706B2 (ja) * 2009-12-28 2014-09-24 新日鉄住金化学株式会社 有機電界発光素子
JPWO2011080972A1 (ja) * 2009-12-28 2013-05-09 新日鉄住金化学株式会社 有機電界発光素子
US9156843B2 (en) 2010-02-12 2015-10-13 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device comprising an organic layer containing an indolocarbazole compound
JP5215481B2 (ja) * 2010-02-12 2013-06-19 新日鉄住金化学株式会社 有機電界発光素子
JP2012140367A (ja) * 2010-12-28 2012-07-26 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
KR101472295B1 (ko) * 2011-12-19 2014-12-15 단국대학교 산학협력단 다중고리 방향족 화합물 및 이를 포함하는 유기전계 발광소자
JPWO2013137001A1 (ja) * 2012-03-12 2015-08-03 新日鉄住金化学株式会社 有機電界発光素子
WO2013137001A1 (ja) * 2012-03-12 2013-09-19 新日鉄住金化学株式会社 有機電界発光素子
US20150115240A1 (en) * 2012-03-30 2015-04-30 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent element
US10340460B2 (en) * 2012-03-30 2019-07-02 Nippon Steel Chemical & Material Co., Ltd. Organic electroluminescent element
US11444246B2 (en) 2012-08-31 2022-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US20180123043A1 (en) * 2012-08-31 2018-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
KR20150070214A (ko) 2012-10-18 2015-06-24 도레이 카부시키가이샤 벤즈인돌로카르바졸 유도체, 그것을 사용한 발광 소자 재료 및 발광 소자
JPWO2014061546A1 (ja) * 2012-10-18 2016-09-05 東レ株式会社 ベンゾインドロカルバゾール誘導体、それを用いた発光素子材料および発光素子
WO2014061546A1 (ja) 2012-10-18 2014-04-24 東レ株式会社 ベンゾインドロカルバゾール誘導体、それを用いた発光素子材料および発光素子
US9825239B2 (en) 2012-10-18 2017-11-21 Toray Industries, Inc. Benzindolocarbazole derivative, light-emitting element material produced using same, and light-emitting element
US9543528B2 (en) 2013-09-05 2017-01-10 Cheil Industries, Inc. Compound for an organic optoelectric device, organic optoelectric device including the same, and display device including the optoelectric device
KR20170026515A (ko) 2014-07-03 2017-03-08 스미또모 가가꾸 가부시키가이샤 고분자 화합물 및 그것을 사용한 발광 소자
US10370484B2 (en) 2014-07-03 2019-08-06 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
JP2017108006A (ja) * 2015-12-10 2017-06-15 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US10593894B2 (en) 2016-07-13 2020-03-17 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device and organic optoelectronic device and display device
US10600971B2 (en) 2016-08-11 2020-03-24 Samsung Sdi Co., Ltd. Composition for organic optoelectric device and organic optoelectric device and display device
CN113382493A (zh) * 2020-03-09 2021-09-10 财团法人纺织产业综合研究所 电致发光线
CN113382493B (zh) * 2020-03-09 2023-08-25 财团法人纺织产业综合研究所 电致发光线

Also Published As

Publication number Publication date
TWI468494B (zh) 2015-01-11
JP5723764B2 (ja) 2015-05-27
KR101759966B1 (ko) 2017-07-20
TW201107447A (en) 2011-03-01
EP2416627A4 (en) 2014-02-26
EP2416627B1 (en) 2019-01-02
US20120007070A1 (en) 2012-01-12
CN102362551A (zh) 2012-02-22
JPWO2010113761A1 (ja) 2012-10-11
CN102362551B (zh) 2016-03-23
US9299947B2 (en) 2016-03-29
EP2416627A1 (en) 2012-02-08
KR20120003922A (ko) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5723764B2 (ja) 有機電界発光素子
JP5215481B2 (ja) 有機電界発光素子
JP5662994B2 (ja) 有機電界発光素子
JP5027947B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP4870245B2 (ja) 燐光発光素子用材料及びこれを用いた有機電界発光素子
JP6140146B2 (ja) 有機電界発光素子
JP5596706B2 (ja) 有機電界発光素子
JP5697599B2 (ja) 有機電界発光素子
JP5399418B2 (ja) 有機電界発光素子
JP5584702B2 (ja) 有機電界発光素子
JP5914500B2 (ja) 有機電界発光素子
KR20150124924A (ko) 신규한 화합물 및 이를 포함하는 유기발광소자
KR20160045019A (ko) 신규한 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012586.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758534

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13257163

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011507133

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117025685

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010758534

Country of ref document: EP