WO2010113727A1 - Organic el element and manufacturing method therefor - Google Patents

Organic el element and manufacturing method therefor Download PDF

Info

Publication number
WO2010113727A1
WO2010113727A1 PCT/JP2010/055124 JP2010055124W WO2010113727A1 WO 2010113727 A1 WO2010113727 A1 WO 2010113727A1 JP 2010055124 W JP2010055124 W JP 2010055124W WO 2010113727 A1 WO2010113727 A1 WO 2010113727A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic
light emitting
emitting layer
layer
Prior art date
Application number
PCT/JP2010/055124
Other languages
French (fr)
Japanese (ja)
Inventor
宮林毅
井上豊和
別所久美
日比野真吾
Original Assignee
ブラザー工業株式会社
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社, 東海ゴム工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010113727A1 publication Critical patent/WO2010113727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes

Definitions

  • the present invention relates to a thin organic EL element and a method for manufacturing the organic EL element.
  • the flat display using the organic EL element has attracted a great deal of attention as the next generation display, and research and development on this has been actively conducted.
  • an organic EL element is used, a high-resolution display having characteristics such as direct current low voltage driving, high viewing angle, and self-luminous emission can be realized, and its utility value is considered to be very high.
  • This organic EL element has a configuration in which, for example, a transparent electrode (anode) / a light emitting layer / a metal electrode (cathode) are laminated on a glass substrate.
  • a material having a high work function is used for the anode, and a material having a low work function is used for the cathode.
  • An organic material is used for the light emitting layer, and holes and electrons injected from both electrodes recombine in the light emitting layer to emit light.
  • the solid organic material used for the light-emitting layer is easily affected by moisture and the like, and when the organic EL element is driven in the air, the light-emitting characteristics are rapidly deteriorated. Therefore, a light emitting layer made of an organic material is sandwiched between a transparent electrode formed on a glass substrate and a counter electrode facing the transparent electrode, and carriers are injected into the light emitting layer from both electrodes to cause the light emitting layer to emit light.
  • a sealing chamber is formed by a sealing glass plate surrounding at least the light emitting layer and the counter electrode, and an inert gas is sealed in the sealing chamber, and a hygroscopic property is provided between the sealing glass plate and the counter electrode.
  • Patent Document 1 discloses a proposal for providing a porous layer to absorb moisture in the element, preventing deterioration of light emission characteristics of the organic EL element, and extending the life of the element.
  • the hygroscopic porous layer is provided on the inner surface of the sealing glass plate, the hygroscopic porous layer is hygroscopic between the hygroscopic porous layer and the counter electrode. It is necessary to provide a certain amount of internal space so that the thickness of the organic EL element can be reduced.
  • the light emitting layer which is the most unaffected by moisture, is hardly exposed in the internal space, moisture that has been mixed in the light emitting layer during the manufacturing process, or from the exposed surface of the light emitting layer between the electrodes. It cannot always be said that effective moisture absorption can be performed with respect to moisture entering the light emitting layer.
  • An object of the present invention is to provide an EL element and a manufacturing method thereof.
  • an organic EL device includes a planar light emitting layer made of an organic light emitting material, and a first formed on one surface of the light emitting layer.
  • An element part composed of a first electrode, a second electrode formed on the other surface of the light emitting layer, and a hygroscopic layer composed of a hygroscopic substance, and an exterior covering and sealing the element part
  • An organic EL element composed of a body, wherein the second electrode has a hole, and the moisture absorption layer is provided on the side where the light emitting layer is provided with respect to the second electrode; Is formed on the opposite surface.
  • An organic EL device is the organic EL element according to the first aspect, wherein the first electrode is an anode that injects holes into the light emitting layer, and the first The second electrode is a cathode for injecting electrons into the light emitting layer.
  • a method for manufacturing an organic EL element comprising: a light emitting layer made of an organic light emitting material; a first electrode formed on one surface of the light emitting layer; and the light emitting layer.
  • a second electrode having a hole formed on the other surface of the first electrode, and a moisture absorption formed on a surface opposite to the side on which the light emitting layer is provided with respect to the second electrode.
  • the second electrode is formed by attaching an electrode film having a hole to the light emitting layer by a laminating method.
  • the light-absorbing layer is formed by forming the light-emitting layer on one surface of the second electrode having a hole and forming the moisture-absorbing layer on the other surface. Since it is close to the light-emitting layer through a hole in the electrode, moisture mixed in the light-emitting layer can be effectively absorbed by the moisture-absorbing layer, and there is no need to provide an internal space for the moisture-absorbing layer to absorb moisture. . As a result, a thin organic EL element with little deterioration and long life can be obtained.
  • the organic EL element according to claim 2 causes the organic EL element to emit light more efficiently by using the first electrode without a hole as an anode. It becomes possible.
  • a material having a higher work function than the cathode can drive the organic EL element more efficiently.
  • a material having a higher work function than the metal electrode is used for the anode, Can make the anode a transparent electrode with a high work function.
  • the second electrode having a hole can be formed more easily and inexpensively by forming the second electrode by a laminating method.
  • FIG. 3 is a longitudinal sectional view of a central portion of the organic EL element 1, and is a sectional view taken along line AA ′ of FIG. It is a top view of the organic EL element 1 which removed the upper sealing film 21.
  • FIG. It is a longitudinal cross-sectional view of the electrode film 31 required during manufacture of the organic EL element 1.
  • FIG. 3 is a flowchart showing manufacturing steps of the organic EL element 1. It is a flowchart which shows the 2nd electrode formation process in the organic EL element 1 manufacturing process. It is the schematic diagram of the 2nd electrode formation process which showed a mode that the 2nd electrode was formed using the electrode film 31.
  • FIG. 3 is a longitudinal sectional view of a central portion of the organic EL element 1, and is a sectional view taken along line AA ′ of FIG. It is a top view of the organic EL element 1 which removed the upper sealing film 21.
  • FIG. It is a longitudinal cross-sectional view of the electrode film 31 required during manufacture of the organic EL
  • FIG. 1 is a longitudinal sectional view of the A-A ′ portion shown in FIG. In FIG. 2, the upper sealing film 21 is removed.
  • the organic EL element 1 includes a film substrate 11, a first electrode 12 formed on the film substrate 11, a light emitting layer 13 formed on the upper surface of the first electrode 12, and a light emitting layer. 13, the second electrode 14 having a large number of holes 18, the first auxiliary electrode 15 for inputting a potential from the outside of the organic EL element 1 to the first electrode 12, the second electrode The electrode 14 includes a second auxiliary electrode 16 for inputting a potential from the outside of the organic EL element 1 to the electrode 14, and a moisture absorption layer 17 formed on the surface of the second electrode 14 opposite to the light emitting layer 13.
  • the sealing portion 20 configured by the upper sealing film 21, the lower sealing film 22, and the sealing adhesive layer 25 that seal the element portion 10 from the upper, lower, left, and right sides.
  • the sealing part 20 is an example of the exterior body of the present invention.
  • the moisture absorption layer 17 absorbs moisture in the light emitting layer 13 through the holes 18. Further, the moisture contained in the space in the sealing portion 20 is also absorbed by the moisture absorption layer 17. Further, since the upper sealing film 21 is in close contact with the moisture absorbing layer 17 and the lower sealing film 22 is in close contact with the film substrate 11 and is sealed on all sides by the sealing adhesive layer 25, new moisture is not generated in the element portion 10. Does not invade.
  • first auxiliary electrode 15 and the second auxiliary electrode 16 extend to the outside of the sealing adhesive layer 25 and are used to input driving power.
  • the upper side of the drawing in FIG. 1 is described as the upper side, and the lower side of the drawing is described as the lower side.
  • the upper side of the drawing will be described as the upper side and the lower side of the drawing will be described as the lower side.
  • the film substrate 11 may be a film-like substance having transparency. Examples thereof include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polystyrene (PS), polyethersulfone (PES), polyimide (PI), and polyester.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PS polystyrene
  • PS polyethersulfone
  • PI polyimide
  • a first electrode 12 is provided on the upper surface of the film substrate 11.
  • a light-transmitting conductive oxide such as indium tin oxide (ITO) can be applied.
  • the light emitting layer 13 is provided on the surface opposite to the side on which the film substrate 11 is provided with respect to the first electrode 12.
  • polymer light emitting materials such as polyparaphenylene vinylene derivatives, polyfluorene derivatives and polythiophene derivatives, TPB (tetraphenylbutadiene), perylene, coumarin, rubrene, Nile red, DCM (4- Dicyanomethylene-2-methyl-6-dimethylaminostyryl-4-pyran), DCJTB (4-dicyanomethylene-6-cypressuridinostyryl-2-tert-butyl-4H-pyran), squarylium, aluminum complexes (eg A low molecular weight light emitting material such as AlQ3) can be used.
  • the thickness of the light emitting layer is preferably 20 to 100 nm.
  • the first auxiliary electrode 15 is connected to the outside of the organic EL element 1 continuously from the first electrode 12 to the film substrate 11 on which the first electrode 12 is not formed. Is formed.
  • Examples of the material of the first auxiliary electrode 15 include Al and Cr.
  • the second electrode 14 is provided on the surface of the light emitting layer 13 opposite to the side on which the first electrode 12 is provided.
  • a number of holes 18 are opened in the second electrode 14.
  • the material of the second electrode 14 include aluminum, lithium fluoride (LiF), MgAg alloy, Al / LiF laminate, Al / Ca laminate, Al / Ba laminate, and Al / MgAg laminate.
  • the shape of the hole 18 is shown as a circle in FIG. 2, but is not limited to this, and may be an arbitrary shape such as a rectangle or an ellipse. Further, the number and area of the holes 18 are not particularly limited, and may be any number and area that can obtain necessary luminance.
  • a moisture absorption layer 17 is provided on the surface opposite to the side on which the light emitting layer 13 is provided with respect to the second electrode 14.
  • the material of the moisture absorption layer 17 may be a paste made of an alkali metal oxide such as Ca or Ba, or a mixture of a moisture-adjusting organic substance (such as an Al metal complex).
  • the second electrode 14 is continuously connected to the film substrate 11 on which the second electrode 14 is not formed so as to be electrically connected to the outside of the organic EL element 1.
  • the second auxiliary electrode 16 is provided so as not to contact the first electrode 12.
  • the material of the second auxiliary electrode 16 is the same as that of the first auxiliary electrode 15.
  • the upper sealing film 21 and the lower sealing film 22 are provided so as to sandwich the element portion 10.
  • the upper sealing film 21 and the lower sealing film 22 need to have gas barrier properties.
  • a material for example, a film made of PET, PEN, PS, PES, PI or the like and a plurality of layers of an inorganic thin film such as SiO2, Al2O3, SiNx and a flexible acrylic resin thin film laminated in layers. Can be mentioned.
  • the upper sealing film 21 and the lower sealing film 22 are bonded and sealed with a sealing adhesive layer 25.
  • a sealing adhesive layer 25 As the adhesive that forms the sealing adhesive layer 25, a two-component epoxy adhesive, a one-component photocurable epoxy adhesive, or the like is used.
  • the first auxiliary electrode 15 and the second auxiliary electrode The electrode 16 and a part of the film substrate 11 on which these are formed are performed so as to extend outside the sealing adhesive layer 25.
  • the moisture absorption layer 17 also absorbs moisture that appears to be generated from the adhesive used in this step.
  • the first electrode 12 functions as an anode. Further, the second electrode 14 functions as a cathode.
  • the electrode film 31 is formed by laminating a perforated film substrate 32 formed with holes, an Al layer 34 formed on the perforated film substrate 32, and a LiF layer 33 formed on the Al layer 34. It is comprised by the Al / LiF layer 35 comprised by this.
  • the manufacturing process of the organic EL element 1 includes a first electrode forming step (S1) for forming the first electrode 12 on the film substrate 11, and a first electrode 12 in contact with the first electrode 12.
  • the element part forming process configured by the moisture absorption layer forming process (S6) for forming the layer 17 and the element part 10 formed by the element part forming process are divided into the upper sealing film 21, the lower sealing film 22, and the sealing.
  • the first electrode forming step of S1 is performed.
  • the first electrode 12 is formed on the upper surface of the film substrate 11.
  • ITO is vacuum-deposited with a thickness of 150 nm on the film substrate 11 (PEN film).
  • a positive resist for exposure is applied on the deposited ITO by spin coating. This resist was subjected to mask exposure using a mask on which a predetermined pattern was formed. Thereafter, etching was performed using aqua regia, which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid, to form a first electrode 12 on which a desired electrode pattern was formed.
  • aqua regia which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid
  • the first auxiliary electrode forming step of S2 is performed.
  • the first auxiliary electrode 15 that contacts the end portion of the first electrode 12 and is electrically connected to the outside of the element portion 10 is formed.
  • Al is formed by mask vapor deposition, and an Al electrode to be the first auxiliary electrode 15 is formed.
  • the second auxiliary electrode forming step of S3 is performed.
  • the second auxiliary electrode 16 is formed so as to contact the end portion of the second electrode 14 and to conduct to the outside of the element portion 10.
  • the specific method is the same as in the first auxiliary electrode forming step (S2).
  • the first auxiliary electrode forming step (S2) and the second auxiliary electrode forming step (S3) can be performed simultaneously.
  • the light emitting layer forming step of S4 is performed.
  • This step includes an electrode surface cleaning step and a light emitting layer forming operation step for actually forming the light emitting layer.
  • the electrode surface cleaning step the surface of the first electrode 12 is sequentially cleaned by neutral detergent cleaning, acetone cleaning, isopropyl alcohol (IPA) cleaning, and UV ozone cleaning.
  • the light emitting layer forming operation step the light emitting layer 13 was formed on the upper surface of the first electrode 12 after the cleaning by a spin coating method.
  • the ink used was a cyclohexylbenzene solution in which 2 wt% of a polyfluorene derivative that is an organic light emitting material was dissolved.
  • the second electrode forming step of S5 is performed. This step is divided into an electrode film forming step (S51) and an electrode sticking step (S52) as shown in FIG.
  • the electrode film forming step of S51 is a step for preparing the electrode film 31 used for forming the second electrode by the laminating method. First, an Al layer 34 is deposited on the perforated film substrate 32 by vacuum deposition. Next, the LiF layer 33 is deposited. As a result, the electrode film 31 on which the Al / LiF layer 35 that forms the base of the second electrode 14 with holes is formed. At this time, the thicknesses of the Al layer and the LiF layer were 1000 mm and 10 mm, respectively.
  • the electrode film 31 prepared in the electrode film forming step (S51) is rolled on the light emitting layer 13 and the second auxiliary electrode 16 with a roller. It is a step of applying and forming the second electrode 14. Specifically, the electrode film 31 in which the Al / LiF laminated structure is formed is pasted on the light emitting layer 13 and the second auxiliary electrode 16 by a laminating method in which the electrode film 31 is heated to 130 ° C. and pressed with 105 Pascals. . In this way, the second electrode 14 was formed on the light emitting layer 13 and the second auxiliary electrode 16.
  • a moisture absorption layer forming step of S6 is performed.
  • the hygroscopic layer 17 was formed by pasting a film-like humidity adjusting agent obtained by pasting Ca on the second electrode 14.
  • the element part sealing process of S7 is performed.
  • the element portion 10 formed in the steps up to S5 is sandwiched between two PEN films and vacuum laminated with a two-component epoxy adhesive (Araldite: manufactured by Ciba Specialty Chemicals). Sealing films 21 and 22 were formed.
  • Comparative Example 1 which is an organic EL element different from the example of the present invention in that an electrode having no hole 18 is used for the second electrode 14.
  • Table 1 shows the results of the performance evaluation.
  • the initial luminance is set to 300 cd / m2
  • the luminance half-time which is the time until the luminance of the light emitting layer 13 deteriorates and the luminance is reduced to half when the current is continuously supplied and continuously driven, is measured. went. The longer the brightness half-life, the longer the lifetime is evaluated. This evaluation was performed under a normal temperature and normal pressure environment.
  • the organic EL device of Comparative Example 1 had half the luminance half time compared to the organic EL device of the example. That is, it is possible to double the lifetime of the organic EL element that is thinned by directly attaching the moisture absorbing layer 17 to the second electrode 14. By opening the hole 18 in the second electrode 14, the moisture absorption layer 17 comes close to the light emitting layer 13 through the hole 18, so that moisture and oxygen mixed in the light emitting layer 13 can be effectively absorbed. As a result, the lifetime of the organic EL element can be extended.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an organic EL element designed to be even thinner and longer lasting, and a manufacturing method therefor. The organic EL element (1) is configured from an element component (10) comprising a film base (11), a first electrode (12) formed upon the film base (11), a light-emitting layer (13) formed upon the top surface of the first electrode (12), a second electrode (14) with open pores (18) formed upon the light-emitting layer (13), a first auxiliary electrode (15) for inputting electric potential from the outside of the organic EL element (1) to the first electrode (12), a second auxiliary electrode (16) for inputting electric potential from the outside of the organic EL element (1) to the second electrode (14), and a moisture absorbent layer (17) formed upon the reverse surface of the second electrode (14) from the light-emitting layer (13); and a sealing component (20) which seals the element component (10) from all sides and which comprises a top sealing film (21), a bottom sealing film (22), and an adhesive sealant layer (25).

Description

有機EL素子及び有機EL素子の製造方法ORGANIC EL ELEMENT AND METHOD FOR PRODUCING ORGANIC EL ELEMENT
 本発明は、薄型の有機EL素子及び有機EL素子の製造方法に関する。 The present invention relates to a thin organic EL element and a method for manufacturing the organic EL element.
 有機EL素子を利用した平面ディスプレイは、次世代のディスプレイとして大きな注目を浴びており、これについての研究開発が盛んに行われている。特に、有機EL素子を利用すれば、直流低電圧駆動、高視野角、自発光などの特徴を有する高解像度ディスプレイが実現可能であり、その利用価値は非常に高いと考えられている。 The flat display using the organic EL element has attracted a great deal of attention as the next generation display, and research and development on this has been actively conducted. In particular, if an organic EL element is used, a high-resolution display having characteristics such as direct current low voltage driving, high viewing angle, and self-luminous emission can be realized, and its utility value is considered to be very high.
 この有機EL素子は、例えばガラス基板上に、透明電極(陽極)/発光層/金属電極(陰極)を積層形成した構成を有している。また、陽極には仕事関数の大きな物質が用いられ、陰極には仕事関数の小さな物質が用いられる。そして、発光層に有機材料が用いられ、両電極から注入される正孔と電子が発光層において、再結合することによって発光する。 This organic EL element has a configuration in which, for example, a transparent electrode (anode) / a light emitting layer / a metal electrode (cathode) are laminated on a glass substrate. A material having a high work function is used for the anode, and a material having a low work function is used for the cathode. An organic material is used for the light emitting layer, and holes and electrons injected from both electrodes recombine in the light emitting layer to emit light.
 ここで、発光層に利用する固体有機材料は、水分などに侵されやすく、大気中で有機EL素子を駆動するとその発光特性が急激に劣化する。そこで、ガラス基板上に形成された透明電極と、これに対向する対向電極の間に有機材料からなる発光層を狭持し、両電極からキャリアを発光層に注入することによって発光層を発光させる有機EL素子において、上記少なくとも発光層及び対向電極を囲う封止ガラス板により密封室を形成し、この密封室内に不活性ガスを封入すると共に、封止ガラス板と対向電極との間に吸湿性多孔質層を設けることにより、素子中の水分を吸収させ、有機EL素子の発光特性の劣化を防止し、素子の長寿命化をはかる提案が特許文献1に示されている。 Here, the solid organic material used for the light-emitting layer is easily affected by moisture and the like, and when the organic EL element is driven in the air, the light-emitting characteristics are rapidly deteriorated. Therefore, a light emitting layer made of an organic material is sandwiched between a transparent electrode formed on a glass substrate and a counter electrode facing the transparent electrode, and carriers are injected into the light emitting layer from both electrodes to cause the light emitting layer to emit light. In the organic EL element, a sealing chamber is formed by a sealing glass plate surrounding at least the light emitting layer and the counter electrode, and an inert gas is sealed in the sealing chamber, and a hygroscopic property is provided between the sealing glass plate and the counter electrode. Patent Document 1 discloses a proposal for providing a porous layer to absorb moisture in the element, preventing deterioration of light emission characteristics of the organic EL element, and extending the life of the element.
特開平10-275679号公報Japanese Patent Laid-Open No. 10-275679
 しかしながら、特許文献1に示される構造では、封止ガラス板の内面に吸湿性多孔質層を設けているため、吸湿性多孔質層と対向電極との間には、吸湿性多孔質層が吸湿を行えるように、ある程度の内部空間を設ける必要があり、このことが有機EL素子の薄型化を図る際の制約となってしまった。 However, in the structure shown in Patent Document 1, since the hygroscopic porous layer is provided on the inner surface of the sealing glass plate, the hygroscopic porous layer is hygroscopic between the hygroscopic porous layer and the counter electrode. It is necessary to provide a certain amount of internal space so that the thickness of the organic EL element can be reduced.
 また、もっとも水分に侵されたくない部位である発光層は、ほとんど内部空間に露出していないため、製造工程にて発光層に混入してしまった水分や、電極間の発光層の露出面から発光層に侵入する湿気に対し、有効な吸湿ができるとは必ずしも言えないものであった。 In addition, since the light emitting layer, which is the most unaffected by moisture, is hardly exposed in the internal space, moisture that has been mixed in the light emitting layer during the manufacturing process, or from the exposed surface of the light emitting layer between the electrodes. It cannot always be said that effective moisture absorption can be performed with respect to moisture entering the light emitting layer.
 本発明は、これらの問題点を解決し、より一層の薄型化を図りつつ、発光層の水分をより効果的に吸収させることで有機EL素子の劣化を防止し、長寿命化をはかった有機EL素子及びその製造方法を提供することを目的とする。 The present invention solves these problems, further reduces the thickness, and more effectively absorbs moisture in the light emitting layer, thereby preventing deterioration of the organic EL element and extending the life. An object of the present invention is to provide an EL element and a manufacturing method thereof.
 上記目的を達成するために、本発明の請求項1に係る発明の有機EL素子は、有機発光材料により構成される平面形状の発光層と、前記発光層の一方の面に形成される第1の電極と、前記発光層の他方の面に形成される第2の電極と、吸湿物質により構成される吸湿層と、により構成される素子部と、前記素子部を被覆して封止する外装体とにより構成される有機EL素子であって、前記第2の電極には孔が空いており、前記吸湿層が、前記第2の電極に対して、前記発光層が設けられている側とは反対側の面に形成されることを特徴とする。 In order to achieve the above object, an organic EL device according to a first aspect of the present invention includes a planar light emitting layer made of an organic light emitting material, and a first formed on one surface of the light emitting layer. An element part composed of a first electrode, a second electrode formed on the other surface of the light emitting layer, and a hygroscopic layer composed of a hygroscopic substance, and an exterior covering and sealing the element part An organic EL element composed of a body, wherein the second electrode has a hole, and the moisture absorption layer is provided on the side where the light emitting layer is provided with respect to the second electrode; Is formed on the opposite surface.
 また、本発明の請求項2に係る発明の有機EL素子は、請求項1に記載の発明の構成に加え、前記第1の電極は前記発光層に正孔を注入する陽極であり、前記第2の電極は前記発光層に電子を注入する陰極であることを特徴とする。 An organic EL device according to a second aspect of the present invention is the organic EL element according to the first aspect, wherein the first electrode is an anode that injects holes into the light emitting layer, and the first The second electrode is a cathode for injecting electrons into the light emitting layer.
 また、本発明の請求項3に係る発明の有機EL素子製造方法は、有機発光材料により構成される発光層と、前記発光層の一方の面に形成される第1の電極と、前記発光層の他方の面に形成される、孔が空いている第2の電極と、前記第2の電極に対して、前記発光層が設けられている側とは反対側の面に形成される、吸湿物質により構成される吸湿層と、により構成される素子部と、前記素子部を被覆して封止する外装体とにより構成される有機EL素子を製造する有機EL素子製造方法であって、前記第2の電極は、前記発光層に対し、孔の空いている電極フィルムを、ラミネート法にて貼り付けることにより形成されることを特徴とする。 According to a third aspect of the present invention, there is provided a method for manufacturing an organic EL element, comprising: a light emitting layer made of an organic light emitting material; a first electrode formed on one surface of the light emitting layer; and the light emitting layer. A second electrode having a hole formed on the other surface of the first electrode, and a moisture absorption formed on a surface opposite to the side on which the light emitting layer is provided with respect to the second electrode. An organic EL element manufacturing method for manufacturing an organic EL element configured by a moisture absorbing layer configured by a substance, an element unit configured by the material, and an exterior body that covers and seals the element unit, The second electrode is formed by attaching an electrode film having a hole to the light emitting layer by a laminating method.
 請求項1に係る発明の有機EL素子は、孔の空いている第2の電極の一方の面に発光層が形成され、他方の面に吸湿層が形成されることにより、吸湿層が第2の電極に空いている孔を通じて発光層と近接するため、発光層に混入した水分を吸湿層によって効果的に吸収することができ、かつ吸湿層が吸湿を行うために内部空間を設ける必要がなくなる。このことにより、劣化が少なく長寿命で、かつ薄型の有機EL素子を得ることができる。 In the organic EL element of the invention according to claim 1, the light-absorbing layer is formed by forming the light-emitting layer on one surface of the second electrode having a hole and forming the moisture-absorbing layer on the other surface. Since it is close to the light-emitting layer through a hole in the electrode, moisture mixed in the light-emitting layer can be effectively absorbed by the moisture-absorbing layer, and there is no need to provide an internal space for the moisture-absorbing layer to absorb moisture. . As a result, a thin organic EL element with little deterioration and long life can be obtained.
 請求項2に係る発明の有機EL素子は、請求項1に記載の発明の効果に加え、孔の空いていない第1の電極を陽極とすることで、有機EL素子をより効率的に発光させることが可能となる。陽極には、陰極よりも仕事関数の高い物質を用いた方が有機EL素子を効率的に駆動できることが知られているが、たとえば、金属電極よりも仕事関数が高い物質を陽極に用いる場合には、陽極を仕事関数が高い透明電極とすることができる。 In addition to the effect of the invention according to claim 1, the organic EL element according to claim 2 causes the organic EL element to emit light more efficiently by using the first electrode without a hole as an anode. It becomes possible. For the anode, it is known that a material having a higher work function than the cathode can drive the organic EL element more efficiently. For example, when a material having a higher work function than the metal electrode is used for the anode, Can make the anode a transparent electrode with a high work function.
 請求項3に係る発明の有機EL素子の製造方法は、第2の電極がラミネート法により形成されることにより、孔の空いた第2の電極を、より簡便かつ安価に形成することができる。 In the method for producing an organic EL element of the invention according to claim 3, the second electrode having a hole can be formed more easily and inexpensively by forming the second electrode by a laminating method.
有機EL素子1の中央部の縦断面図であり、図2のA-A‘線断面図である。FIG. 3 is a longitudinal sectional view of a central portion of the organic EL element 1, and is a sectional view taken along line AA ′ of FIG. 上部封止フィルム21を取り除いた有機EL素子1の平面図である。It is a top view of the organic EL element 1 which removed the upper sealing film 21. FIG. 有機EL素子1製造中に必要な電極フィルム31の縦断面図である。It is a longitudinal cross-sectional view of the electrode film 31 required during manufacture of the organic EL element 1. FIG. 有機EL素子1の製造工程を示すフローチャートである。3 is a flowchart showing manufacturing steps of the organic EL element 1. 有機EL素子1製造工程中の第2の電極形成工程を示すフローチャートである。It is a flowchart which shows the 2nd electrode formation process in the organic EL element 1 manufacturing process. 電極フィルム31を使用して第2の電極を形成する様子を示した、第2の電極形成工程の模式図である。It is the schematic diagram of the 2nd electrode formation process which showed a mode that the 2nd electrode was formed using the electrode film 31. FIG.
 以下、本発明の有機EL素子について、図面を参照して説明する。なお、図1の縦断面図は、図2で示すA-A’部の縦断面図である。また、図2においては、上部封止フィルム21は取り除いた図面とした。 Hereinafter, the organic EL element of the present invention will be described with reference to the drawings. The longitudinal sectional view of FIG. 1 is a longitudinal sectional view of the A-A ′ portion shown in FIG. In FIG. 2, the upper sealing film 21 is removed.
 有機EL素子1は、図1及び図2に示す通り、フィルム基板11、フィルム基板11上に形成された第1の電極12、第1の電極12の上面に形成された発光層13、発光層13上に形成された、多数の孔18が空いている第2の電極14、第1の電極12へ有機EL素子1の外部から電位を入力するための第1の補助電極15、第2の電極14へ有機EL素子1の外部から電位を入力するための第2の補助電極16、及び第2の電極14の発光層13とは反対側の面に形成されている吸湿層17により構成される素子部10と、素子部10を上下左右から封止する、上部封止フィルム21、下部封止フィルム22、及び封止接着剤層25により構成される封止部20とによって構成される。封止部20は、本発明の外装体の一例である。吸湿層17は、孔18を通じて発光層13中の水分を吸湿する。また、吸湿層17によって封止部20中の空間に含まれる湿気も吸湿する。また、上部封止フィルム21は吸湿層17と、下部封止フィルム22はフィルム基板11と密着し、かつ封止接着剤層25により四方を封止するため、素子部10には新たな湿気は侵入しない。また、第1の補助電極15、第2の補助電極16は、封止接着剤層25の外部へ延出しており、駆動電力の投入に使用される。以下の説明では、図1において図面上側を上側、図面下側を下側として説明する。なお、以降の図面においても、同様にして図面上側を上側、図面下側を下側として説明する。 As shown in FIGS. 1 and 2, the organic EL element 1 includes a film substrate 11, a first electrode 12 formed on the film substrate 11, a light emitting layer 13 formed on the upper surface of the first electrode 12, and a light emitting layer. 13, the second electrode 14 having a large number of holes 18, the first auxiliary electrode 15 for inputting a potential from the outside of the organic EL element 1 to the first electrode 12, the second electrode The electrode 14 includes a second auxiliary electrode 16 for inputting a potential from the outside of the organic EL element 1 to the electrode 14, and a moisture absorption layer 17 formed on the surface of the second electrode 14 opposite to the light emitting layer 13. And the sealing portion 20 configured by the upper sealing film 21, the lower sealing film 22, and the sealing adhesive layer 25 that seal the element portion 10 from the upper, lower, left, and right sides. The sealing part 20 is an example of the exterior body of the present invention. The moisture absorption layer 17 absorbs moisture in the light emitting layer 13 through the holes 18. Further, the moisture contained in the space in the sealing portion 20 is also absorbed by the moisture absorption layer 17. Further, since the upper sealing film 21 is in close contact with the moisture absorbing layer 17 and the lower sealing film 22 is in close contact with the film substrate 11 and is sealed on all sides by the sealing adhesive layer 25, new moisture is not generated in the element portion 10. Does not invade. Further, the first auxiliary electrode 15 and the second auxiliary electrode 16 extend to the outside of the sealing adhesive layer 25 and are used to input driving power. In the following description, the upper side of the drawing in FIG. 1 is described as the upper side, and the lower side of the drawing is described as the lower side. In the following drawings, similarly, the upper side of the drawing will be described as the upper side and the lower side of the drawing will be described as the lower side.
 フィルム基板11は、透明性を持つフィルム状の物質であればよい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリスチレン(PS)、ポリエーテルスルホン(PES)、ポリイミド(PI)、ポリエステルが挙げられる。 The film substrate 11 may be a film-like substance having transparency. Examples thereof include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polystyrene (PS), polyethersulfone (PES), polyimide (PI), and polyester.
 フィルム基板11上面には第1の電極12が設けられている。この第1の電極12の材質としては、酸化インジウムスズ(ITO)などの透光性のある導電性酸化物などが適用可能である。 A first electrode 12 is provided on the upper surface of the film substrate 11. As a material of the first electrode 12, a light-transmitting conductive oxide such as indium tin oxide (ITO) can be applied.
 発光層13は、第1の電極12に対して、フィルム基板11が設けられた側とは反対側の面に設けられている。発光層13の材質としては、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体、ポリチオフェン誘導体等の高分子系発光材料、及び、TPB(テトラフェニルブタジエン)、ペリレン、クマリン、ルブレン、ナイルレッド、DCM(4-ジシアノメチレン-2-メチル-6-ジメチルアミノスチリル-4-ピラン)、DCJTB(4-ジシアノメチレン-6-シーピージュロリジノスチリル-2-ターシャルブチル-4H-ピラン)、スクアリリウム、アルミニウム錯体(例えばAlQ3)等の低分子系発光材料が利用可能である。発光層の厚みは20~100nmであることが好ましい。 The light emitting layer 13 is provided on the surface opposite to the side on which the film substrate 11 is provided with respect to the first electrode 12. As the material of the light emitting layer 13, polymer light emitting materials such as polyparaphenylene vinylene derivatives, polyfluorene derivatives and polythiophene derivatives, TPB (tetraphenylbutadiene), perylene, coumarin, rubrene, Nile red, DCM (4- Dicyanomethylene-2-methyl-6-dimethylaminostyryl-4-pyran), DCJTB (4-dicyanomethylene-6-cypressuridinostyryl-2-tert-butyl-4H-pyran), squarylium, aluminum complexes (eg A low molecular weight light emitting material such as AlQ3) can be used. The thickness of the light emitting layer is preferably 20 to 100 nm.
 図2に示す通り、第1の電極12から、第1の電極12の形成されていないフィルム基板11へ連続して、有機EL素子1の外部に導通するように、第1の補助電極15が形成されている。第1の補助電極15の材質としては、Al、Crなどが挙げられる。 As shown in FIG. 2, the first auxiliary electrode 15 is connected to the outside of the organic EL element 1 continuously from the first electrode 12 to the film substrate 11 on which the first electrode 12 is not formed. Is formed. Examples of the material of the first auxiliary electrode 15 include Al and Cr.
 発光層13に対して、第1の電極12が設けられた側とは反対側の面には、第2の電極14が設けられている。第2の電極14には、多数の孔18が空けられている。第2の電極14の材質としては、アルミニウム、フッ化リチウム(LiF)、MgAg合金、Al/LiF積層物、Al/Ca積層物、Al/Ba積層物、及びAl/MgAg積層物などが挙げられる。孔18の形状は、図2では円形で示したがこれには限定されず、四角形、楕円形など任意の形状をとることができる。また、孔18の数、面積についても特に限定されず、必要な輝度を得ることのできる数、面積であればよい。 The second electrode 14 is provided on the surface of the light emitting layer 13 opposite to the side on which the first electrode 12 is provided. A number of holes 18 are opened in the second electrode 14. Examples of the material of the second electrode 14 include aluminum, lithium fluoride (LiF), MgAg alloy, Al / LiF laminate, Al / Ca laminate, Al / Ba laminate, and Al / MgAg laminate. . The shape of the hole 18 is shown as a circle in FIG. 2, but is not limited to this, and may be an arbitrary shape such as a rectangle or an ellipse. Further, the number and area of the holes 18 are not particularly limited, and may be any number and area that can obtain necessary luminance.
 第2の電極14に対して、発光層13が設けられた側とは反対側の面には、吸湿層17が設けられている。吸湿層17の材質としては、Ca、Ba等のアルカリ金属酸化物をペースト化したもの、またはそれに調湿性の有機物(Al金属錯体等)を混合したものでもよい。 A moisture absorption layer 17 is provided on the surface opposite to the side on which the light emitting layer 13 is provided with respect to the second electrode 14. The material of the moisture absorption layer 17 may be a paste made of an alkali metal oxide such as Ca or Ba, or a mixture of a moisture-adjusting organic substance (such as an Al metal complex).
 また、フィルム基板11上には、図2に示す通り、第2の電極14から、第2の電極14の形成されていないフィルム基板11へ連続して、有機EL素子1の外部に導通するように、第2の補助電極16が、第1の電極12と接触しないように設けられている。第2の補助電極16の材質は、第1の補助電極15と同様である。 On the film substrate 11, as shown in FIG. 2, the second electrode 14 is continuously connected to the film substrate 11 on which the second electrode 14 is not formed so as to be electrically connected to the outside of the organic EL element 1. In addition, the second auxiliary electrode 16 is provided so as not to contact the first electrode 12. The material of the second auxiliary electrode 16 is the same as that of the first auxiliary electrode 15.
 上部封止フィルム21、及び下部封止フィルム22は、素子部10を挟み込む形で設けられている。上部封止フィルム21、及び下部封止フィルム22は、ガスバリア性を具備している必要がある。そのような材質としては、例えば、PET、PEN、PS、PES、PI等のフィルムにSiO2、Al2O3、SiNx等の無機薄膜と柔軟性のあるアクリル樹脂薄膜などを層状に複数層重ね合わせたものが挙げられる。 The upper sealing film 21 and the lower sealing film 22 are provided so as to sandwich the element portion 10. The upper sealing film 21 and the lower sealing film 22 need to have gas barrier properties. As such a material, for example, a film made of PET, PEN, PS, PES, PI or the like and a plurality of layers of an inorganic thin film such as SiO2, Al2O3, SiNx and a flexible acrylic resin thin film laminated in layers. Can be mentioned.
 上部封止フィルム21、及び下部封止フィルム22は、封止接着剤層25により接着、封止されている。封止接着剤層25を形成する接着剤としては、二液性のエポキシ接着剤または一液性光硬化型エポキシ接着剤等が使用される。なお、上部封止フィルム21、下部封止フィルム22、及び封止接着剤層25により素子部10を封止する際には、図2に示す通り、第1の補助電極15、第2の補助電極16、及びこれらが形成されているフィルム基板11の一部が封止接着剤層25の外側に延出するように行う。なお、この工程にて使用する接着剤から発生すると思われる水分についても、吸湿層17にて吸湿する。 The upper sealing film 21 and the lower sealing film 22 are bonded and sealed with a sealing adhesive layer 25. As the adhesive that forms the sealing adhesive layer 25, a two-component epoxy adhesive, a one-component photocurable epoxy adhesive, or the like is used. When the element portion 10 is sealed with the upper sealing film 21, the lower sealing film 22, and the sealing adhesive layer 25, as shown in FIG. 2, the first auxiliary electrode 15 and the second auxiliary electrode The electrode 16 and a part of the film substrate 11 on which these are formed are performed so as to extend outside the sealing adhesive layer 25. Note that the moisture absorption layer 17 also absorbs moisture that appears to be generated from the adhesive used in this step.
 本発明の有機EL素子1において、第1の電極12は陽極として作用する。また、第2の電極14は陰極として作用する。 In the organic EL element 1 of the present invention, the first electrode 12 functions as an anode. Further, the second electrode 14 functions as a cathode.
 ついで、本発明の有機EL素子を製造する工程中にて使用する電極フィルムについて、図3を参照して説明する。電極フィルム31は、孔が空いて形成されている孔空きフィルム基板32と、孔空きフィルム基板32上に形成されたAl層34とAl層34上に形成されたLiF層33とが積層されることで構成されるAl/LiF層35とにより構成される。 Next, an electrode film used in the process of manufacturing the organic EL element of the present invention will be described with reference to FIG. The electrode film 31 is formed by laminating a perforated film substrate 32 formed with holes, an Al layer 34 formed on the perforated film substrate 32, and a LiF layer 33 formed on the Al layer 34. It is comprised by the Al / LiF layer 35 comprised by this.
 次に、有機EL素子1の製造工程について説明する。有機EL素子1の製造工程は、図4に示すように、フィルム基板11上に第1の電極12を形成する第1の電極形成工程(S1)と、第1の電極12に接触して第1の補助電極15を形成する第1の補助電極形成工程(S2)と、フィルム基板11上に第2の補助電極16を形成する第2の補助電極形成工程(S3)と、第1の電極12上に発光層13を形成する発光層形成工程(S4)と、発光層13上に第2の電極14を形成する第2の電極形成工程(S5)と、第2の電極14上に吸湿層17を形成する吸湿層形成工程(S6)とにより構成される素子部形成工程と、素子部形成工程により形成された素子部10を、上部封止フィルム21、下部封止フィルム22、及び封止接着剤層25によって封止する素子部封止工程(S7)とからなる。 Next, the manufacturing process of the organic EL element 1 will be described. As shown in FIG. 4, the manufacturing process of the organic EL element 1 includes a first electrode forming step (S1) for forming the first electrode 12 on the film substrate 11, and a first electrode 12 in contact with the first electrode 12. A first auxiliary electrode forming step (S2) for forming one auxiliary electrode 15, a second auxiliary electrode forming step (S3) for forming a second auxiliary electrode 16 on the film substrate 11, and a first electrode A light emitting layer forming step (S4) for forming the light emitting layer 13 on the light emitting layer 13, a second electrode forming step (S5) for forming the second electrode 14 on the light emitting layer 13, and a moisture absorption on the second electrode 14; The element part forming process configured by the moisture absorption layer forming process (S6) for forming the layer 17 and the element part 10 formed by the element part forming process are divided into the upper sealing film 21, the lower sealing film 22, and the sealing. Element portion sealing step (S7) for sealing with the adhesive layer 25 It made.
 はじめに、S1の第1の電極形成工程が行われる。この工程では、フィルム基板11の上面に第1の電極12が形成される。本実施形態では、フィルム基板11(PENのフィルム)上に、ITOを150nmの厚みで真空成膜する。次に成膜したITO上に露光用のポジ型レジストをスピンコートにより塗布する。このレジストを、所定のパターンを形成してあるマスクを使用してマスク露光した。その後、濃硝酸と濃塩酸の混合液である王水を用いてエッチングを行い、所望の電極パターンが形成された第1の電極12を成膜した。 First, the first electrode forming step of S1 is performed. In this step, the first electrode 12 is formed on the upper surface of the film substrate 11. In this embodiment, ITO is vacuum-deposited with a thickness of 150 nm on the film substrate 11 (PEN film). Next, a positive resist for exposure is applied on the deposited ITO by spin coating. This resist was subjected to mask exposure using a mask on which a predetermined pattern was formed. Thereafter, etching was performed using aqua regia, which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid, to form a first electrode 12 on which a desired electrode pattern was formed.
 次に、S2の第1の補助電極形成工程が行われる。この工程では、第1の電極12の端部に接触し、素子部10の外部に導通するような第1の補助電極15が形成される。具体的には、Alをマスク蒸着にて形成し、第1の補助電極15となるAl電極を形成する。 Next, the first auxiliary electrode forming step of S2 is performed. In this step, the first auxiliary electrode 15 that contacts the end portion of the first electrode 12 and is electrically connected to the outside of the element portion 10 is formed. Specifically, Al is formed by mask vapor deposition, and an Al electrode to be the first auxiliary electrode 15 is formed.
 次に、S3の第2の補助電極形成工程が行われる。この工程では、第2の電極14の端部に接触し、素子部10の外部に導通するような第2の補助電極16が形成される。具体的方法は第1の補助電極形成工程(S2)と同じである。第1の補助電極形成工程(S2)と第2の補助電極形成工程(S3)は同時に行うこともできる。 Next, the second auxiliary electrode forming step of S3 is performed. In this step, the second auxiliary electrode 16 is formed so as to contact the end portion of the second electrode 14 and to conduct to the outside of the element portion 10. The specific method is the same as in the first auxiliary electrode forming step (S2). The first auxiliary electrode forming step (S2) and the second auxiliary electrode forming step (S3) can be performed simultaneously.
 次に、S4の発光層形成工程が行われる。この工程は、電極表面洗浄工程と発光層を実際に形成する発光層形成作業工程とからなる。まず、電極表面洗浄工程では、第1の電極12の表面を、中性洗剤洗浄、アセトン洗浄、イソプロピルアルコール(IPA)洗浄、及びUVオゾン洗浄にて順次洗浄する。次いで、発光層形成作業工程において、洗浄の終わった第1の電極12上面に、スピンコート法にて発光層13を形成した。使用したインクは、有機発光材料であるポリフルオレン誘導体を2wt%溶解させた、シクロヘキシルベンゼン溶液であった。 Next, the light emitting layer forming step of S4 is performed. This step includes an electrode surface cleaning step and a light emitting layer forming operation step for actually forming the light emitting layer. First, in the electrode surface cleaning step, the surface of the first electrode 12 is sequentially cleaned by neutral detergent cleaning, acetone cleaning, isopropyl alcohol (IPA) cleaning, and UV ozone cleaning. Next, in the light emitting layer forming operation step, the light emitting layer 13 was formed on the upper surface of the first electrode 12 after the cleaning by a spin coating method. The ink used was a cyclohexylbenzene solution in which 2 wt% of a polyfluorene derivative that is an organic light emitting material was dissolved.
 次に、S5の第2の電極形成工程が行われる。この工程は、図5にて示す通り、電極フィルム形成工程(S51)と、電極貼付工程(S52)とにわかれる。 Next, the second electrode forming step of S5 is performed. This step is divided into an electrode film forming step (S51) and an electrode sticking step (S52) as shown in FIG.
 S51の電極フィルム形成工程は、ラミネート法による第2の電極形成に用いる電極フィルム31を用意するための工程である。孔空きフィルム基板32上に真空蒸着にて、まずAl層34を蒸着する。次に、LiF層33を蒸着する。このことにより、孔の空いた第2の電極14の基となるAl/LiF層35が形成された電極フィルム31が形成される。この際、Al層とLiF層の厚みはそれぞれ1000Å、10Åとなるように形成した。 The electrode film forming step of S51 is a step for preparing the electrode film 31 used for forming the second electrode by the laminating method. First, an Al layer 34 is deposited on the perforated film substrate 32 by vacuum deposition. Next, the LiF layer 33 is deposited. As a result, the electrode film 31 on which the Al / LiF layer 35 that forms the base of the second electrode 14 with holes is formed. At this time, the thicknesses of the Al layer and the LiF layer were 1000 mm and 10 mm, respectively.
 S52の電極貼付工程は、図6に示す通り、電極フィルム形成工程(S51)にて用意された電極フィルム31を、発光層13及び第2の補助電極16上にローラにて転圧をかけながら貼付し、第2の電極14を形成する工程である。具体的には、Al/LiF積層構造を形成しておいた電極フィルム31を、130℃に加熱、105パスカルにて押圧したラミネート法にて発光層13及び第2の補助電極16上に貼付する。このようにして発光層13及び第2の補助電極16上に第2の電極14を形成した。 In the electrode pasting step of S52, as shown in FIG. 6, the electrode film 31 prepared in the electrode film forming step (S51) is rolled on the light emitting layer 13 and the second auxiliary electrode 16 with a roller. It is a step of applying and forming the second electrode 14. Specifically, the electrode film 31 in which the Al / LiF laminated structure is formed is pasted on the light emitting layer 13 and the second auxiliary electrode 16 by a laminating method in which the electrode film 31 is heated to 130 ° C. and pressed with 105 Pascals. . In this way, the second electrode 14 was formed on the light emitting layer 13 and the second auxiliary electrode 16.
 次に、S6の吸湿層形成工程が行われる。この工程では、第2の電極14上にCaをペースト化したフィルム状の調湿剤を貼り付けることで吸湿層17を形成した。 Next, a moisture absorption layer forming step of S6 is performed. In this step, the hygroscopic layer 17 was formed by pasting a film-like humidity adjusting agent obtained by pasting Ca on the second electrode 14.
 次に、S7の素子部封止工程が行われる。この工程では、S5までの工程にて形成された素子部10を、2枚のPENフィルムにて挟み込み、二液性のエポキシ接着剤(アラルダイト:チバスペシャリティケミカルズ製)にて真空ラミネートすることで各封止フィルム21、22を形成した。 Next, the element part sealing process of S7 is performed. In this step, the element portion 10 formed in the steps up to S5 is sandwiched between two PEN films and vacuum laminated with a two-component epoxy adhesive (Araldite: manufactured by Ciba Specialty Chemicals). Sealing films 21 and 22 were formed.
 次に、上述の製造方法によって形成された有機EL素子1の効果を確認するため、有機EL素子1の性能評価を行った。この性能評価では、比較例として、第2の電極14に孔18の空いていない電極を用いるという点で本発明の実施例と異なる有機EL素子である比較例1について比較性能評価を行った。性能評価を行った結果を表1に示す。なお、性能評価は、初期輝度は300cd/m2とし、そのまま電流を流し続けて連続駆動した場合に発光層13が劣化して輝度が半分になるまでの時間である輝度半減時間を測定することで行った。輝度半減時間が長ければ長い程、寿命が長いものと評価される。なお、この評価は、常温、常圧環境下にて行った。 Next, in order to confirm the effect of the organic EL element 1 formed by the above manufacturing method, the performance of the organic EL element 1 was evaluated. In this performance evaluation, as a comparative example, comparative performance evaluation was performed on Comparative Example 1 which is an organic EL element different from the example of the present invention in that an electrode having no hole 18 is used for the second electrode 14. Table 1 shows the results of the performance evaluation. In the performance evaluation, the initial luminance is set to 300 cd / m2, and the luminance half-time, which is the time until the luminance of the light emitting layer 13 deteriorates and the luminance is reduced to half when the current is continuously supplied and continuously driven, is measured. went. The longer the brightness half-life, the longer the lifetime is evaluated. This evaluation was performed under a normal temperature and normal pressure environment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した通り、実施例の有機EL素子に対し、比較例1の有機EL素子では、輝度半減時間が半分であった。つまり、吸湿層17を第2の電極14に直接貼付することで薄型化した有機EL素子の寿命を、倍とすることが可能となった。第2の電極14に孔18を空けることで、吸湿層17が孔18を通じて発光層13と近接するため、発光層13に混入した水分や酸素を効果的に吸収することが可能となり、そのことにより有機EL素子の寿命を延ばすことが可能となる。 As shown in Table 1, the organic EL device of Comparative Example 1 had half the luminance half time compared to the organic EL device of the example. That is, it is possible to double the lifetime of the organic EL element that is thinned by directly attaching the moisture absorbing layer 17 to the second electrode 14. By opening the hole 18 in the second electrode 14, the moisture absorption layer 17 comes close to the light emitting layer 13 through the hole 18, so that moisture and oxygen mixed in the light emitting layer 13 can be effectively absorbed. As a result, the lifetime of the organic EL element can be extended.
1   有機EL素子
10  素子部
11  フィルム基板
12  第1の電極
13  発光層
14  第2の電極
15  第1の補助電極
16  第2の補助電極
17  吸湿層
18  孔
20  封止部
21  上部封止フィルム
22  下部封止フィルム
25  封止接着剤層
31  電極フィルム
32  孔空きフィルム基板
33  LiF層
34  Al層
35  Al/LiF層
DESCRIPTION OF SYMBOLS 1 Organic EL element 10 Element part 11 Film substrate 12 1st electrode 13 Light emitting layer 14 2nd electrode 15 1st auxiliary electrode 16 2nd auxiliary electrode 17 Hygroscopic layer 18 Hole 20 Sealing part 21 Upper sealing film 22 Lower sealing film 25 Sealing adhesive layer 31 Electrode film 32 Perforated film substrate 33 LiF layer 34 Al layer 35 Al / LiF layer

Claims (3)

  1.  有機発光材料により構成される平面形状の発光層と、
     前記発光層の一方の面に形成される第1の電極と、
     前記発光層の他方の面に形成される第2の電極と、
     吸湿物質により構成される吸湿層と
    により構成される素子部と、
     前記素子部を被覆して封止する外装体と
     により構成される有機EL素子であって、
     前記第2の電極には孔が空いており、
     前記吸湿層が、前記第2の電極に対して、前記発光層が設けられた側とは反対側の面に形成されることを特徴とする有機EL素子。
    A planar light emitting layer composed of an organic light emitting material;
    A first electrode formed on one surface of the light emitting layer;
    A second electrode formed on the other surface of the light emitting layer;
    An element part constituted by a moisture absorbing layer constituted by a moisture absorbing substance;
    An organic EL element constituted by an exterior body that covers and seals the element part,
    The second electrode is perforated;
    The organic EL element, wherein the moisture absorption layer is formed on a surface opposite to the side where the light emitting layer is provided with respect to the second electrode.
  2.  前記第1の電極は前記発光層に正孔を注入する陽極であり、前記第2の電極は前記発光層に電子を注入する陰極であることを特徴とする請求項1に記載の有機EL素子。 2. The organic EL device according to claim 1, wherein the first electrode is an anode for injecting holes into the light emitting layer, and the second electrode is a cathode for injecting electrons into the light emitting layer. .
  3.  有機発光材料により構成される発光層と、
     前記発光層の一方の面に形成される第1の電極と、
     前記発光層の他方の面に形成される、孔が空いている第2の電極と、
     前記第2の電極に対して、前記発光層が設けられた側とは反対側の面に形成される、吸湿物質により構成される吸湿層と
    により構成される素子部と、
     前記素子部を被覆して封止する外装体とにより構成される有機EL素子を製造する有機EL素子製造方法であって、
     前記第2の電極は、前記発光層に対し、孔の空いている電極フィルムを、ラミネート法にて貼り付けることにより形成されることを特徴とする有機EL素子製造方法。
    A light emitting layer composed of an organic light emitting material;
    A first electrode formed on one surface of the light emitting layer;
    A second electrode having a hole formed on the other surface of the light emitting layer;
    An element part constituted by a hygroscopic layer made of a hygroscopic substance formed on a surface opposite to the side on which the light emitting layer is provided with respect to the second electrode;
    An organic EL element manufacturing method for manufacturing an organic EL element constituted by an exterior body covering and sealing the element portion,
    The method for producing an organic EL element, wherein the second electrode is formed by laminating an electrode film having a hole to the light emitting layer by a laminating method.
PCT/JP2010/055124 2009-03-31 2010-03-24 Organic el element and manufacturing method therefor WO2010113727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-084235 2009-03-31
JP2009084235A JP2010238479A (en) 2009-03-31 2009-03-31 Organic el element and manufacturing method of organic el element

Publications (1)

Publication Number Publication Date
WO2010113727A1 true WO2010113727A1 (en) 2010-10-07

Family

ID=42828022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055124 WO2010113727A1 (en) 2009-03-31 2010-03-24 Organic el element and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2010238479A (en)
WO (1) WO2010113727A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033035A1 (en) * 2011-08-26 2013-03-07 Sumitomo Chemical Co., Ltd. Permeable electrodes for high performance organic electronic devices
US10243167B2 (en) 2013-08-14 2019-03-26 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
JPH10275679A (en) * 1997-03-31 1998-10-13 Toyota Central Res & Dev Lab Inc Organic el element
WO2005034586A1 (en) * 2003-10-02 2005-04-14 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
JP2007335099A (en) * 2006-06-12 2007-12-27 Fujikura Ltd Light-emitting element and its manufacturing method
JP3138967U (en) * 2007-11-09 2008-01-24 伊藤電子工業株式会社 Organic electroluminescence element and display device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338946A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288185A (en) * 1994-04-20 1995-10-31 Dainippon Printing Co Ltd Organic thin film electroluminescent (el) element
JPH10275679A (en) * 1997-03-31 1998-10-13 Toyota Central Res & Dev Lab Inc Organic el element
WO2005034586A1 (en) * 2003-10-02 2005-04-14 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
JP2007335099A (en) * 2006-06-12 2007-12-27 Fujikura Ltd Light-emitting element and its manufacturing method
JP3138967U (en) * 2007-11-09 2008-01-24 伊藤電子工業株式会社 Organic electroluminescence element and display device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033035A1 (en) * 2011-08-26 2013-03-07 Sumitomo Chemical Co., Ltd. Permeable electrodes for high performance organic electronic devices
US9525152B2 (en) 2011-08-26 2016-12-20 Sumitomo Chemical Company Limited Permeable electrodes for high performance organic electronic devices
US10243167B2 (en) 2013-08-14 2019-03-26 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same
US10944071B2 (en) 2013-08-14 2021-03-09 Samsung Display Co., Ltd. Organic light-emitting display apparatus and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010238479A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4732084B2 (en) SUBSTRATE FOR LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, ELECTRODE FOR LIGHT EMITTING ELEMENT, AND LIGHT EMITTING ELEMENT HAVING THE SAME
JP2006303476A (en) Bottom emission type organic light emitting device
JP2004319103A (en) Organic electroluminescent element
JP2007103164A (en) Self-luminous panel and method of manufacturing self-luminous panel
TWI466286B (en) Planar light emitting device
JP2010103082A (en) Organic electroluminescent device and method for manufacturing the same
US8129903B2 (en) Organic electroluminescent display device
WO2010113727A1 (en) Organic el element and manufacturing method therefor
JP2007095518A (en) Organic electroluminescent display
JP2007287613A (en) Organic electroluminescence element and its manufacturing method
JP2004095251A (en) El device and its manufacturing method
JP2006054147A (en) Organic electroluminescent element
JP2007250251A (en) Optical device and manufacturing method of optical device
TWI262742B (en) Method for manufacturing organic electroluminescence device and electronic apparatus
JP6098090B2 (en) Method for manufacturing organic electroluminescence panel
JP5177570B2 (en) Manufacturing method of organic EL panel
JP2006228493A (en) Organic electroluminescent element and its manufacturing method
JP6171713B2 (en) Method for manufacturing organic electroluminescence panel
JP2006054146A (en) Organic electroluminescent element
JP2007095414A (en) Manufacturing method of top-emission type organic electroluminescent element
JP2008041255A (en) Organic electroluminescent element and its manufacturing method
JP5330655B2 (en) Organic EL display device
WO2014041616A1 (en) Organic el device
JP4622357B2 (en) Organic EL device and electronic device
WO2010092882A1 (en) Organic el light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758501

Country of ref document: EP

Kind code of ref document: A1