WO2010092882A1 - Organic el light emitting device - Google Patents

Organic el light emitting device Download PDF

Info

Publication number
WO2010092882A1
WO2010092882A1 PCT/JP2010/051295 JP2010051295W WO2010092882A1 WO 2010092882 A1 WO2010092882 A1 WO 2010092882A1 JP 2010051295 W JP2010051295 W JP 2010051295W WO 2010092882 A1 WO2010092882 A1 WO 2010092882A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
auxiliary electrode
light emitting
electrode
Prior art date
Application number
PCT/JP2010/051295
Other languages
French (fr)
Japanese (ja)
Inventor
宮林毅
井上豊和
別所久美
日比野真吾
Original Assignee
ブラザー工業株式会社
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社, 東海ゴム工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010092882A1 publication Critical patent/WO2010092882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate

Definitions

  • the present disclosure relates to an organic EL light emitting device in which a plurality of cells including an organic EL used as a display unit or a backlight of various electronic devices are arranged, and in particular, an organic EL light emitting device whose dimensions can be changed by cutting. About.
  • a thin Electro-Luminescence (EL) light emitting device that can be cut with scissors or the like has been proposed. By cutting with scissors or the like, the user can easily change the dimensions of the EL light-emitting device, so that the EL light-emitting device can be used for various purposes.
  • the EL light emitting device described in Patent Document 1 after the back electrode voltage drop prevention band and its connecting portion are formed on the back electrode layer, the back electrode layer is divided vertically and horizontally by stacking on this connecting portion. An insulating band is formed. On the insulating band, an auxiliary transparent electrode voltage drop prevention band is formed that divides the back electrode layer into a cross shape (lattice shape) vertically and horizontally together with the insulating band.
  • a back electrode voltage drop prevention band is formed on the back electrode layer, and an insulating band is formed by stacking on the connecting portion, and further, an auxiliary is formed on the insulating band.
  • a transparent electrode voltage drop prevention zone is formed.
  • the EL light emitting device described in Patent Document 1 is cut into a grid-divided region so that the auxiliary transparent electrode voltage drop prevention bands remain in each other, thereby preventing a back electrode voltage drop prevention located below the insulation band.
  • the connecting part of the band remains on the cut surface. Therefore, it is possible to connect to a drive circuit or the like using the connecting portion remaining in the cut surface.
  • the light-emitting elements used in EL light-emitting devices can be broadly classified into inorganic EL and organic EL.
  • a light-emitting device using an organic EL has an advantage that the light-emitting device can be made thinner than a light-emitting device using an inorganic EL because the light-emitting layer has a very thin thickness of about 100 nm.
  • the EL light-emitting device disclosed in Patent Document 1 is an inorganic EL light-emitting device that uses, as a light-emitting layer, a light-emitting body obtained by doping copper sulfide into zinc fluorescent material. In order to reduce the thickness of the light emitting device, a method of replacing a light emitting layer using inorganic EL with a light emitting layer using organic EL can be considered.
  • a back electrode voltage drop prevention band is formed on the back electrode layer, and an insulating band is formed by stacking on the connecting portion, and further, an auxiliary transparent electrode voltage drop is formed thereon. Since the prevention band is formed, the structure is inevitably thick.
  • the insulating band needs to have a thickness on the order of several mm, which is disclosed in Patent Document 1. It is difficult to reduce the thickness of the EL light emitting device.
  • This disclosure is intended to provide an organic EL light emitting device that can be cut in size and can be thinned.
  • a flat light emitting layer made of organic EL, a first electrode layer provided on one surface of the light emitting layer, and a second electrode layer provided on the other surface of the light emitting layer.
  • An organic EL cell including a plurality of organic EL cells arranged in a row, a base material in contact with the surface on the first electrode layer side, one adjacent organic EL cell, and the other adjacent A first insulating layer provided between the organic EL cell, the first electrode layer of the one adjacent organic EL cell, and the first electrode layer of the other adjacent organic EL cell.
  • a first auxiliary electrode, a second auxiliary electrode that bridges the second electrode layer of one of the adjacent organic EL cells, and the second electrode layer of the other adjacent organic EL cell, and 1 auxiliary electrode and 2nd auxiliary electrode are said 1st electrode layer of said base material When viewed from the opposite side and, to obtain an organic EL light-emitting device which is arranged so as not to overlap each other.
  • Such an organic EL light emitting device includes a first auxiliary electrode and a second auxiliary electrode.
  • the first auxiliary electrode bridges the first electrode layer of one adjacent organic EL cell and the first electrode layer of the other adjacent organic EL cell.
  • the second auxiliary electrode bridges the second electrode layer of one adjacent organic EL cell and the second electrode layer of the other adjacent organic EL cell.
  • the first auxiliary electrode and the second auxiliary electrode are arranged so as not to overlap each other when viewed from the side opposite to the first electrode layer side of the substrate. Therefore, even if the organic EL light emitting device is cut, the first auxiliary electrode and the second auxiliary electrode are not short-circuited.
  • a light emitting layer made of organic EL exists between the first electrode layer and the second electrode layer.
  • the first electrode layer and the second electrode layer may be short-circuited when the organic EL light emitting device is cut. Therefore, in the organic EL light emitting device described above, an insulating band is provided between one adjacent organic EL cell and the other adjacent organic EL cell. By cutting at the position of this insulating band, a short circuit between the first electrode layer and the second electrode layer can be prevented.
  • the adjacent organic EL cells are electrically connected by the first auxiliary electrode and the second auxiliary electrode, the first auxiliary electrode and the second auxiliary that are exposed to the cut surface even if the organic EL cells are cut at the position of the insulating band.
  • electrical connection can be made to the first electrode layer and the second electrode layer.
  • an organic EL light emitting device in which the first auxiliary electrode and the second auxiliary electrode are arranged in parallel to each other.
  • the first auxiliary electrode and the second auxiliary electrode are arranged so as to be parallel to each other.
  • the first auxiliary electrode and the second auxiliary electrode do not overlap each other when viewed from the side opposite to the side where the first electrode layer of the substrate contacts.
  • the first auxiliary electrode and the second auxiliary electrode need to be sufficiently separated from each other. Therefore, the position where the first auxiliary electrode and the second auxiliary electrode are arranged is limited.
  • first auxiliary electrode and the second auxiliary electrode are parallel to each other, even if the first auxiliary electrode and the second auxiliary electrode are not sufficiently separated from each other, the side opposite to the first electrode layer side of the base material
  • the first auxiliary electrode and the second auxiliary electrode can be arranged so as not to overlap each other.
  • the first electrode layer has a first covering portion that is provided at one end of the outer periphery of the first electrode layer and covers the first auxiliary electrode, and the second electrode layer
  • the electrode layer is provided at a position on one side of the outer periphery of the second electrode layer and opposite to the first covering portion, and has a second covering portion that covers the second auxiliary electrode,
  • One auxiliary electrode is connected to a surface of the first covering portion facing the second electrode layer
  • the second auxiliary electrode is connected to a surface of the second covering portion facing the first electrode layer.
  • the first auxiliary electrode is connected to the surface of the first covering portion provided at one end of the outer periphery of the first electrode layer, which faces the second electrode layer. Then, the second auxiliary electrode is connected to a surface of the second covering portion provided at one end of the outer periphery of the second electrode layer on the opposite side of the first covering portion and facing the first electrode layer. Is done. Therefore, the organic EL light emitting device can be further reduced in thickness.
  • a sealing member that seals the organic EL cell, the base material, the first auxiliary electrode, the second auxiliary electrode, and the insulating band.
  • the sealing member can provide an organic EL fermentation apparatus that seals the organic EL cell and the insulating band independently.
  • the organic EL cell and the insulating band are independently sealed by the sealing member. Therefore, even if the organic EL light emitting device is cut at the position of the insulating band, each cell is kept in a sealed state.
  • FIG. 1 is a perspective view illustrating a configuration of an organic EL light emitting device 1.
  • FIG. 1 is a perspective view showing a configuration of an organic EL cell 10.
  • FIG. FIG. 4 is a cross-sectional view of the organic EL light-emitting device 1 in a portion of an organic EL cell 10 taken along a line A-A ′ shown by a dashed line in FIG.
  • FIG. 4 is a cross-sectional view of the organic EL light emitting device 1 at a portion of an insulating band 30 taken along a B-B ′ line indicated by a one-dot chain line in FIG.
  • the organic EL light-emitting device 1 includes a plurality of organic EL cells 10, a light transmission film 20, an insulating band 30, an anode auxiliary electrode 41, a cathode auxiliary electrode 42, and a sealing film 60. It is comprised including.
  • the upper sealing member 61 and the lower sealing member 62 constituting the sealing film 60 are bonded.
  • the upper sealing member 61 and the lower sealing member 62 are shown apart from each other in order to show individual components of the organic EL light emitting device 1.
  • FIG. 1 the upper sealing member 61 and the lower sealing member 62 are shown apart from each other in order to show individual components of the organic EL light emitting device 1.
  • the horizontal direction is defined as the X axis
  • the depth direction is defined as the Y axis
  • the vertical direction is defined as the Z axis.
  • the plurality of organic EL cells 10 are arranged in parallel to the Y axis.
  • the positive directions of the X axis, Y axis, and Z axis are the right direction, the back direction, and the upward direction, respectively.
  • each component and the relationship between the components will be described.
  • the organic EL cell 10, the light transmission film 20, the insulating band 30, the anode auxiliary electrode 41, the cathode auxiliary electrode 42, and the sealing film 60 described above are the organic EL cell, substrate, insulating band, and first in the present invention, respectively. It is an example of an auxiliary electrode, a 2nd auxiliary electrode, and a sealing member.
  • an organic EL cell 10 that is one of the elements constituting the organic EL light-emitting device 1 will be described with reference to FIG. 2.
  • the organic EL cell 10 includes a light emitting layer 12, a cathode layer 11, and an anode layer 13.
  • the light emitting layer 12, the cathode layer 11, and the anode layer 13 are in contact with each other.
  • the light emitting layer 12, the cathode layer 11, and the anode layer 13 are shown separated from each other in order to show individual components of the organic EL cell 10.
  • the organic EL cell 10 is in contact with a light transmission film 20 described later on the Z axis negative direction side.
  • the cathode layer 11, the light emitting layer 12, and the anode layer 13 are examples of the second electrode layer, the light emitting layer, and the first electrode layer in the present invention.
  • the light emitting layer 12 is a rectangular flat layer containing organic EL.
  • the organic EL contained in the light emitting layer 12 include polymer light emitting materials such as polyparaphenylene vinylene derivatives, polyfluorene derivatives, polythiophene derivatives, tetraphenylbutadiene (TPB), perylene, coumarin, rubrene, Nile red, 4 -Dicyanomethylene-2-methyl-6-dimethylaminostyryl-4-pyran (DCM), 4-dicyanomethylene-6-cypiduridinostyryl-2-tertiarybutyl-4H-pyran (DCJTB), squarylium, aluminum A low molecular weight material such as a complex (for example, AlQ3) is used.
  • An electron injection layer (not shown) is provided on the surface of the light emitting layer 12 on the positive side in the Z-axis direction, that is, the surface in contact with the cathode layer 11.
  • the electron injection layer any of an oxadiazole derivative, a triazole type, and an aluminum complex is used.
  • the thickness of the light emitting layer 12 is about 30 to 150 nm.
  • the cathode layer 11 is a rectangular electrode layer that is in contact with the surface on the positive side of the Z-axis of the light emitting layer 12.
  • the cathode layer 11 includes, for example, aluminum (Al), lithium fluoride (LiF), a stack of Al and Ca, a stack of Al and LiF, a stack of Al and Ba, and the like.
  • Al aluminum
  • LiF lithium fluoride
  • the cathode layer 11 has a cathode covering portion 11 a extending in the positive direction of the X axis with respect to the light emitting layer 12 and the anode layer 13.
  • the cathode layer 11 injects electrons into the light emitting layer 12 through the electron injection layer by applying a voltage between the cathode layer 11 and the anode layer 13.
  • the said cathode covering part 11a is an example of the 2nd covering part in this invention.
  • the anode layer 13 is a rectangular transparent electrode layer that contacts the surface of the light emitting layer 12 on the negative side of the Z axis.
  • the anode layer 13 is made of indium titanium oxide (ITO), polyethylenedioxythiophene (PEDOT), or the like, which is a material for transparent electrodes.
  • the anode layer 13 has an anode covering portion 13 a that extends in the negative X-axis direction with respect to the light emitting layer 12 and the cathode layer 11.
  • the anode layer 13 injects holes into the light emitting layer 12 by applying a voltage between the cathode layer 11 and the anode layer 13.
  • the thickness of the anode layer 13 is about 150 nm.
  • the anode covering portion 13a is an example of the first covering portion in the present invention.
  • the light transmissive film 20 with which the anode layer 13 of the organic EL cell 10 is in contact is made of a material that has insulating properties and flexibility and can transmit light.
  • the light transmission film 20 for example, polyimide, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polystyrene (PS), polyethersulfone (PES), polycarbonate (PC), polypropylene (PP), or the like is used.
  • the light transmission film 20 is preferably made of a transparent material, but may be made of a translucent material that transmits light by scattering and diffusing light.
  • the thickness of the light transmission film 20 is, for example, about 5 to 200 ⁇ m.
  • the insulating band 30 is provided between adjacent organic EL cells 10.
  • the adjacent organic EL cells 10 are electrically insulated.
  • the insulating band 30 include poly-N-vinylcarbazole (PVK), PS, nylon, polyacetal, PC, PET, polybutylene terephthalate, polyphenylene oxide, polyarylate, polysulfone, polyphenylene sulfide, polyamideimide, polyimide, fluorine resin, and the like. Is used.
  • the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are conductive bands that connect adjacent organic EL cells 10. As shown in FIG. 1, the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 extend along the Y axis. Hereinafter, how the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 connect adjacent organic EL cells 10 will be described with reference to FIGS. 3 to 5.
  • the anode auxiliary electrode 41 is a surface on the positive side in the Z-axis direction of the anode covering portion 13a provided on the anode layer 13 in contact with the light transmission film 20, that is, the cathode layer of the anode covering portion 13a. 11 is connected to the surface facing 11.
  • the anode covering portion 13 a extends in the negative X-axis direction with respect to the light emitting layer 12 and the cathode layer 11. Therefore, the anode auxiliary electrode 41 is connected to the anode layer 13 via the anode covering portion 13 a without contacting the light emitting layer 12 and the cathode layer 11.
  • the anode covering portion 13a covers the anode auxiliary electrode 41 from the Z-axis negative direction side.
  • the anode auxiliary electrode 41 is connected to each anode covering portion 13a existing in the adjacent organic EL cell 10, so that the anode layer 13 of one adjacent organic EL cell 10 and the other adjacent organic EL cell. 10 anode layers 13 are cross-linked.
  • the anode auxiliary electrode 41 is spaced apart from the insulating band 30 in the negative X-axis direction, and each anode covering portion 13 a existing in the adjacent organic EL cell 10. Connected to.
  • the anode auxiliary electrode 41 is in contact with the light transmission film 20 while being separated from the insulating band 30.
  • the anode auxiliary electrode 41 is made of, for example, aluminum (Al), chromium (Cr), or the like.
  • the auxiliary cathode electrode 42 is provided on the light transmission film 20 so as to be separated from the anode layer 13 in the positive direction of the X axis.
  • the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are arranged so as not to overlap each other when viewed from the side opposite to the anode layer 13 side of the light transmission film 20.
  • the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are arranged so as to be parallel to each other.
  • the cathode auxiliary electrode 42 is connected to the surface on the negative side in the Z-axis direction of the cathode covering portion 11a, that is, the surface facing the anode layer 13 of the cathode covering portion 11a. Since the cathode covering portion 11 a extends in the positive X-axis direction with respect to the light emitting layer 12 and the anode layer 13, the cathode auxiliary electrode 42 does not contact the light emitting layer 12 and the anode layer 13, and the cathode covering portion 11 a. Is connected to the cathode layer 11. In other words, the cathode covering portion 11a covers the cathode auxiliary electrode 42 from the Z-axis positive direction side.
  • the cathode auxiliary electrode 42 is connected to each cathode covering portion 11a existing in the adjacent organic EL cell 10, so that the cathode layer 11 of one adjacent organic EL cell 10 and the other adjacent organic EL cell. 10 cathode layers 11 are cross-linked. Specifically, as shown in FIGS. 3 and 5, the auxiliary cathode electrode 42 is separated from the insulating band 30 in the positive direction of the X axis, and each cathode covering portion 11 a existing in the adjacent organic EL cell 10. Connected to.
  • the cathode auxiliary electrode 42 is made of, for example, Al, Cr or the like.
  • anode anode covering portion 13a and the cathode covering portion 11a there are the following advantageous effects. Since the anode covering portion 13a extends in the negative X-axis direction with respect to the light-emitting layer 12 and the anode layer 13, as shown in FIG. 12 and the cathode layer 11 do not exist. If there is no anode covering portion 13a, in order to ensure insulation between the anode electrode auxiliary electrode 41 and the light emitting layer 12 and the cathode layer 11, for example, on the surface of the anode electrode auxiliary electrode 41 on the Z axis positive direction side.
  • the cathode covering portion 11a extends in the positive X-axis direction, the light emitting layer 12 and the cathode layer 11 do not exist on the negative Z-axis side of the auxiliary cathode electrode 42. Therefore, the cathode covering portion 11a also contributes to the thinning of the organic EL light emitting device 1.
  • the sealing film 60 seals the organic EL cell 10, the light transmission film 20, the anode auxiliary electrode 41, the cathode auxiliary electrode 42, and the insulating band 30 so as not to come into contact with the outside air.
  • the sealing film 60 includes an upper sealing member 61 provided on the Z axis positive direction side and a lower sealing member 62 provided on the Z axis negative direction side.
  • PET, PEN, PS, PES a film such as polyimide, SiO 2, AL 2 O 3 , an acrylic resin film with an inorganic thin film and the flexibility of SiNx or the like, such as by overlaying a plurality of layers in layers
  • a film having gas barrier properties is used as the sealing film 60.
  • the upper sealing member 61 and the lower sealing member 62 are bonded to each other at the mutual bonding location BND.
  • the adhesion location BND is provided on the boundary between the organic EL cell 10 and the insulating band 30 and on the outside of the light transmission film 20 so as to seal the organic EL cell 10 and the insulating band 30 independently.
  • the position of the bonding location BND is indicated by a thick line in FIGS.
  • the bonding location BND is provided by, for example, bonding using an adhesive or fusion using ultrasonic waves.
  • the organic EL light emitting device 1 can be manufactured by the following method, for example.
  • the material of the anode layer 13 is uniformly deposited on the light transmission film 20.
  • ITO indium titanium oxide
  • a resist for exposure is applied by spin coating, and a pattern corresponding to the anode layer 13 is subjected to mask exposure.
  • the anode layer 13 is formed by removing unexposed resist and ITO by etching using aqua regia, which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid.
  • aqua regia is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid.
  • the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are formed by mask vapor deposition.
  • Al is mask-deposited.
  • the anode auxiliary electrode 41 is formed on the anode covering portion 13 a of the anode layer 13.
  • the cathode auxiliary electrode 42 is formed on the light transmission film 20 so as to be separated from the anode layer 13 in the positive direction of the X axis.
  • the surface of the anode layer 13 is sequentially cleaned by neutral detergent cleaning, acetone cleaning, isopropyl alcohol cleaning, and UV ozone cleaning.
  • the purpose of these cleanings is (1) removing dirt on the surface of the anode layer 13 and (2) reducing oxygen defects on the surface of the anode layer 13 and lowering the hole injection barrier.
  • UV ozone cleaning can remove organic contaminants that cannot be removed by wet cleaning.
  • the entire portion of the light transmission film 20 where the insulating band 30 is formed is insulated by using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an inkjet method.
  • the material of the band 30 is applied.
  • PVK poly-N-vinylcarbazole
  • the light emitting layer 12 is formed by using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method.
  • a spin coating method a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method.
  • the formation process will be described by taking a spin coating method as an example.
  • An ink for forming the light emitting layer 12 is applied on the anode layer 13 formed on the light transmitting film 20.
  • This ink is prepared by adding 2 wt% of a polyfluorene polymer as a display composition to a tetralin solvent or a cyclohexylbenzene solvent. After the ink is applied on the entire surface of the anode layer 13, the light transmission film 20 is rotated horizontally. Thereafter, the solvent in the ink solution is evaporated by drying at 50 to 60 ° C. for 30 minutes. By this drying, the display composition that is a non-volatile component of the ink solution is solidified in a state of being electrically connected to the anode layer 13. This solidified display composition is the light emitting layer 12. Note that the light emitting layer 12 can be formed in a desired region even if ink is applied over the entire surface of the anode layer 13. However, a mask or the like may be used to form the light emitting layer 12 in a desired region.
  • an electron injection layer that is one of an oxadizole derivative, a triazole type, and an aluminum complex is applied on the light emitting layer 12.
  • This application is performed using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method.
  • the electron injection layer so that the surface opposite to the side in contact with the light emitting layer 12 and the insulating band 30 in the electron injection layer after coating is flatter than the surface formed of the light emitting layer 12 and the insulating band 30. Is applied.
  • the cathode layer 11 formed in advance is attached onto the light emitting layer 12 by a laminating method. This lamination is performed using a film laminator at a pressure of about 10 5 Pa at a temperature of about 130 ° C.
  • the cathode covering portion 11 a is attached to the cathode auxiliary electrode 42 provided on the light transmission film 20.
  • the cathode layer 11 is obtained by forming a laminate of Al and lithium fluoride (LiF) on a film substrate by vacuum deposition.
  • stacked continuously is 100 nm and 1 nm, respectively as an example.
  • the cathode layer 11 may be formed by any one of a stack of Al, LiF, Al and Ca, and a stack of Al and Ba instead of the stack of LiF and Al.
  • the upper sealing member 61 and the lower sealing member 62 sandwich the light transmissive film 20 on which the organic EL cell 10, the anode auxiliary electrode 41, the cathode auxiliary electrode 42, and the insulating band 30 are formed.
  • the upper sealing member 61 and the lower sealing member 62 are bonded to each other at the above-mentioned bonding location BND using a two-component epoxy adhesive in a dry N 2 gas glow box at room temperature for 1 hour.
  • the organic EL light emitting device 1 emits light when a DC voltage is applied between the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 such that the anode auxiliary electrode 41 has a higher potential than the cathode auxiliary electrode 42.
  • the process will be described below.
  • the potentials of the anode auxiliary electrode 41 and the anode layer 13 are equal, and the potentials of the cathode auxiliary electrode 42 and the cathode layer 11 are equal. Therefore, the potential difference between the anode auxiliary electrode 41 and the cathode auxiliary electrode 42, that is, the applied voltage is equal to the potential difference between the anode layer 13 and the cathode layer 11.
  • the dimensions of the organic EL light emitting device 1 can be changed by cutting with a scissors or the like. Specifically, the organic EL light-emitting device 1 can separate adjacent organic EL cells 10 by being cut at the position of the insulating band 30. At this time, since the organic EL cell 10 and the insulating band 30 are sealed independently, each separated organic EL cell 10 can be used. Further, when the insulation band 30 is cut, the organic EL light emitting device 1 can emit light by supplying power to the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 exposed on the cut surface.
  • the organic EL cell 10 may be configured to include a film-like humidity adjusting agent.
  • This humectant is formed, for example, by applying and drying a film material obtained by pasting an alkali metal oxide such as Ca, Ba or the like or a humidity-controlling organic substance.
  • the anode layer 13 is formed directly on the light transmission film 20.
  • the light transmission film 20 may be in contact with the surface of the organic EL cell 10 on the anode layer 13 side, and the anode layer 13 and the light transmission film 20 are not necessarily in contact with each other.
  • a gas barrier layer that shields moisture and gas may be provided between the anode 13 and the light transmission film 20.
  • the organic EL light emitting device 1 includes two adjacent organic EL cells 10 as shown in FIG.
  • the organic EL light emitting device 1 may include more than two organic EL cells 10.
  • the organic EL cells 10 may be arranged in a line.
  • the organic EL light emitting device 1 includes the insulating band 30.
  • the individual organic EL cells 10 are sealed by the upper sealing member 61 and the lower sealing member 62, the adjacent organic EL cells 10 are electrically insulated even if the insulating band 30 is not present. Is done.
  • a part of the sealed sealing member 60 located between the adjacent organic EL cells 10 is an example of the insulating band of the present invention.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL light emitting device is equipped with organic EL cells, a base material, an insulating strip, a first auxiliary electrode, and a second auxiliary electrode. The organic EL cell includes a planar light emitting layer made from an organic EL, a first electrode layer disposed on one surface of the light emitting layer, and a second electrode layer disposed on the other surface of the light emitting layer. The base material is in contact with the first electrode layer side surfaces of a multiplicity of the organic EL cells which are arranged in a line. The insulating strip is disposed between one of adjacent organic EL cells and the other of adjacent organic EL cells. The first auxiliary electrode crosses between the aforementioned first electrode layer of one of adjacent organic EL cells and the first electrode layer of the other of adjacent organic EL cells. The second auxiliary electrode crosses between the second electrode layer of one of adjacent organic EL cells and the second electrode layer of the other of adjacent organic EL cells. In addition, the first auxiliary electrode and second auxiliary electrode are disposed so as not to overlap one another when viewed from the side of the base material opposite from the side of the first electrode layer.

Description

有機EL発光装置Organic EL light emitting device
 本開示は、各種電子機器の表示部やバックライト等として使用される有機ELを含むセルを複数配置した有機EL発光装置に関するものであり、特に裁断することで寸法を変更可能な有機EL発光装置に関する。 The present disclosure relates to an organic EL light emitting device in which a plurality of cells including an organic EL used as a display unit or a backlight of various electronic devices are arranged, and in particular, an organic EL light emitting device whose dimensions can be changed by cutting. About.
 従来、はさみ等によって裁断可能な、薄型のElectro―Luminescence(EL)発光装置が提案されている。はさみ等で裁断することで使用者がEL発光装置の寸法を簡単に変更できるので、様々な用途に合わせたEL発光装置の利用が可能になる。例えば、特許文献1に記載のEL発光装置では、背面電極層上に、背面電極電圧降下防止帯及びその連結部が形成された後、この連結部に積層して背面電極層を縦横に区分する絶縁帯が形成される。そして、絶縁帯上には、絶縁帯と共に背面電極層を縦横に十字状(格子状)に区分する補助透明電極電圧降下防止帯が形成される。つまり、特許文献1に記載のEL発光装置では、背面電極層上に、背面電極電圧降下防止帯が形成され、その連結部に積層して絶縁帯が形成され、さらにその絶縁帯の上に補助透明電極電圧降下防止帯が形成される。前記補助透明電極電圧降下防止帯が互いに残るように、特許文献1に記載のEL発光装置を格子状に区分された領域に裁断することで、絶縁帯の下に位置する、背面電極電圧降下防止帯の連結部が裁断面に残る。従って、裁断面に残った連結部を用いて、駆動回路等と接続することができる。 Conventionally, a thin Electro-Luminescence (EL) light emitting device that can be cut with scissors or the like has been proposed. By cutting with scissors or the like, the user can easily change the dimensions of the EL light-emitting device, so that the EL light-emitting device can be used for various purposes. For example, in the EL light emitting device described in Patent Document 1, after the back electrode voltage drop prevention band and its connecting portion are formed on the back electrode layer, the back electrode layer is divided vertically and horizontally by stacking on this connecting portion. An insulating band is formed. On the insulating band, an auxiliary transparent electrode voltage drop prevention band is formed that divides the back electrode layer into a cross shape (lattice shape) vertically and horizontally together with the insulating band. That is, in the EL light emitting device described in Patent Document 1, a back electrode voltage drop prevention band is formed on the back electrode layer, and an insulating band is formed by stacking on the connecting portion, and further, an auxiliary is formed on the insulating band. A transparent electrode voltage drop prevention zone is formed. The EL light emitting device described in Patent Document 1 is cut into a grid-divided region so that the auxiliary transparent electrode voltage drop prevention bands remain in each other, thereby preventing a back electrode voltage drop prevention located below the insulation band. The connecting part of the band remains on the cut surface. Therefore, it is possible to connect to a drive circuit or the like using the connecting portion remaining in the cut surface.
特開平9-92469号公報Japanese Patent Laid-Open No. 9-92469
 EL発光装置に用いられる発光素子は、無機ELと有機ELとに大別できる。有機ELを用いた発光装置は、発光層の厚さが100nm程度と非常に薄いため、無機ELを用いた発光装置と比較して発光装置の薄型化が可能という利点がある。 The light-emitting elements used in EL light-emitting devices can be broadly classified into inorganic EL and organic EL. A light-emitting device using an organic EL has an advantage that the light-emitting device can be made thinner than a light-emitting device using an inorganic EL because the light-emitting layer has a very thin thickness of about 100 nm.
 特許文献1に開示のEL発光装置は、蛍光物質である硫化亜鉛に銅をドープしてなる発光体を発光層に利用した、無機EL発光装置である。この発光装置の薄型化のためには、無機ELを用いた発光層を、有機ELを用いた発光層に置き換える方法が考えられる。しかし、特許文献1に開示のEL発光装置は、背面電極層上に背面電極電圧降下防止帯が形成され、その連結部に積層して絶縁帯が形成され、さらにその上に補助透明電極電圧降下防止帯が形成されるため、構造上どうしても厚くなる。特に、裁断時に生じるダレによって補助透明電極電圧降下防止帯と背面電極電圧降下防止帯とが短絡すること防止するためには、絶縁帯は数mmオーダーの厚さが必要となり、特許文献1に開示のEL発光装置の構造では、薄型化が困難である。 The EL light-emitting device disclosed in Patent Document 1 is an inorganic EL light-emitting device that uses, as a light-emitting layer, a light-emitting body obtained by doping copper sulfide into zinc fluorescent material. In order to reduce the thickness of the light emitting device, a method of replacing a light emitting layer using inorganic EL with a light emitting layer using organic EL can be considered. However, in the EL light emitting device disclosed in Patent Document 1, a back electrode voltage drop prevention band is formed on the back electrode layer, and an insulating band is formed by stacking on the connecting portion, and further, an auxiliary transparent electrode voltage drop is formed thereon. Since the prevention band is formed, the structure is inevitably thick. In particular, in order to prevent the auxiliary transparent electrode voltage drop prevention band and the back electrode voltage drop prevention band from being short-circuited due to sagging that occurs during cutting, the insulating band needs to have a thickness on the order of several mm, which is disclosed in Patent Document 1. It is difficult to reduce the thickness of the EL light emitting device.
 本開示は、裁断することで寸法を変更可能で、薄型化が可能な有機EL発光装置を提供することを目的とする。 This disclosure is intended to provide an organic EL light emitting device that can be cut in size and can be thinned.
 本開示の一側面によれば、有機ELからなる平板状の発光層と、前記発光層の一方の面に設けられる第1電極層と、前記発光層の他方の面に設けられる第2電極層と、を含む有機ELセルと、一列に配置された複数の前記有機ELセルの、前記第1電極層側の面に接触する基材と、隣り合う一方の前記有機ELセルと、隣り合う他方の前記有機ELセルとの間に設けられる絶縁帯と、隣り合う一方の前記有機ELセルの前記第1電極層と、隣り合う他方の前記有機ELセルの前記第1電極層とを架橋する第1補助電極と、隣り合う一方の前記有機ELセルの前記第2電極層と、隣り合う他方の前記有機ELセルの前記第2電極層とを架橋する第2補助電極と、を備え、前記第1補助電極及び前記第2補助電極は、前記基材の前記第1電極層側と反対側から見て、互いに重ならないように配置される有機EL発光装置を得ることができる。 According to one aspect of the present disclosure, a flat light emitting layer made of organic EL, a first electrode layer provided on one surface of the light emitting layer, and a second electrode layer provided on the other surface of the light emitting layer. An organic EL cell including a plurality of organic EL cells arranged in a row, a base material in contact with the surface on the first electrode layer side, one adjacent organic EL cell, and the other adjacent A first insulating layer provided between the organic EL cell, the first electrode layer of the one adjacent organic EL cell, and the first electrode layer of the other adjacent organic EL cell. A first auxiliary electrode, a second auxiliary electrode that bridges the second electrode layer of one of the adjacent organic EL cells, and the second electrode layer of the other adjacent organic EL cell, and 1 auxiliary electrode and 2nd auxiliary electrode are said 1st electrode layer of said base material When viewed from the opposite side and, to obtain an organic EL light-emitting device which is arranged so as not to overlap each other.
 このような有機EL発光装置は、第1補助電極と、第2補助電極とを備える。第1補助電極は、隣り合う一方の有機ELセルの第1電極層と、隣り合う他方の有機ELセルの前記第1電極層とを架橋する。第2補助電極は、隣り合う一方の有機ELセルの第2電極層と、隣り合う他方の有機ELセルの第2電極層とを架橋する。そして、第1補助電極及び第2補助電極は、基材の第1電極層側と反対側から見て、互いに重ならないように配置される。従って、有機EL発光装置が裁断されても、第1補助電極と第2補助電極とは短絡しない。さらに、特許文献1のように、間に絶縁層を挟んだ状態で第1補助電極と第2補助電極とを積層する必要がないので、有機EL発光装置の薄型化が可能になる。 Such an organic EL light emitting device includes a first auxiliary electrode and a second auxiliary electrode. The first auxiliary electrode bridges the first electrode layer of one adjacent organic EL cell and the first electrode layer of the other adjacent organic EL cell. The second auxiliary electrode bridges the second electrode layer of one adjacent organic EL cell and the second electrode layer of the other adjacent organic EL cell. The first auxiliary electrode and the second auxiliary electrode are arranged so as not to overlap each other when viewed from the side opposite to the first electrode layer side of the substrate. Therefore, even if the organic EL light emitting device is cut, the first auxiliary electrode and the second auxiliary electrode are not short-circuited. Furthermore, unlike Patent Document 1, it is not necessary to stack the first auxiliary electrode and the second auxiliary electrode with an insulating layer interposed therebetween, so that the organic EL light emitting device can be made thinner.
 また、第1電極層と第2電極層との間には、有機ELからなる発光層が存在する。有機ELからなる発光層は薄型化が可能であるが、有機EL発光装置が裁断された際に、第1電極層と第2電極層とが短絡する可能性がある。そこで、上記した有機EL発光装置においては、隣り合う一方の有機ELセルと、隣り合う他方の有機ELセルとの間に絶縁帯が設けられる。この絶縁帯の位置で裁断されることで、第1電極層と第2電極層との短絡が防止できる。さらに、第1補助電極及び第2補助電極によって隣接する有機ELセル同士は電気的に接続されるため、絶縁帯の位置で裁断されても、裁断面に露出する第1補助電極及び第2補助電極を用いて、第1の電極層及び第2の電極層に電気的接続が可能になる。 In addition, a light emitting layer made of organic EL exists between the first electrode layer and the second electrode layer. Although the light emitting layer made of organic EL can be thinned, the first electrode layer and the second electrode layer may be short-circuited when the organic EL light emitting device is cut. Therefore, in the organic EL light emitting device described above, an insulating band is provided between one adjacent organic EL cell and the other adjacent organic EL cell. By cutting at the position of this insulating band, a short circuit between the first electrode layer and the second electrode layer can be prevented. Furthermore, since the adjacent organic EL cells are electrically connected by the first auxiliary electrode and the second auxiliary electrode, the first auxiliary electrode and the second auxiliary that are exposed to the cut surface even if the organic EL cells are cut at the position of the insulating band. Using the electrode, electrical connection can be made to the first electrode layer and the second electrode layer.
 本開示の他の側面によれば、前記第1補助電極及び前記第2補助電極は、互いに平行になるように配置される有機EL発光装置を得ることができる。 According to another aspect of the present disclosure, it is possible to obtain an organic EL light emitting device in which the first auxiliary electrode and the second auxiliary electrode are arranged in parallel to each other.
 このような有機EL発光装置では、第1補助電極と第2補助電極とが、互いに平行になる様に配置される。第1補助電極と第2補助電極とが互いに平行でない場合、基材の第1電極層が接触する側と反対側から見て、第1補助電極と第2補助電極とが互いに重ならないように配置されるためには、第1補助電極と第2補助電極とが十分に離間される必要がある。そのため、第1補助電極と第2補助電極とが配置される位置が制限される。しかし、第1補助電極と第2補助電極とが互いに平行であれば、第1補助電極と第2補助電極とが十分に離間されていなくても、基材の第1電極層側と反対側から見て、第1補助電極と第2補助電極とが互いに重ならないように配置することができる。 In such an organic EL light emitting device, the first auxiliary electrode and the second auxiliary electrode are arranged so as to be parallel to each other. When the first auxiliary electrode and the second auxiliary electrode are not parallel to each other, the first auxiliary electrode and the second auxiliary electrode do not overlap each other when viewed from the side opposite to the side where the first electrode layer of the substrate contacts. In order to be disposed, the first auxiliary electrode and the second auxiliary electrode need to be sufficiently separated from each other. Therefore, the position where the first auxiliary electrode and the second auxiliary electrode are arranged is limited. However, if the first auxiliary electrode and the second auxiliary electrode are parallel to each other, even if the first auxiliary electrode and the second auxiliary electrode are not sufficiently separated from each other, the side opposite to the first electrode layer side of the base material The first auxiliary electrode and the second auxiliary electrode can be arranged so as not to overlap each other.
 本開示のさらに他の側面によれば、前記第1電極層は、前記第1電極層の外周の一端に設けられ、前記第1補助電極を覆う第1覆設部を有し、前記第2電極層は、前記第2電極層の外周の一端であって前記第1覆設部とは反対側の位置に設けられ、前記第2補助電極を覆う第2覆設部を有し、前記第1補助電極は、前記第1覆設部の前記第2電極層に対向する面に接続され、前記第2補助電極は、前記第2覆設部の前記第1電極層に対向する面に接続される有機EL発光装置を得ることができる。 According to still another aspect of the present disclosure, the first electrode layer has a first covering portion that is provided at one end of the outer periphery of the first electrode layer and covers the first auxiliary electrode, and the second electrode layer The electrode layer is provided at a position on one side of the outer periphery of the second electrode layer and opposite to the first covering portion, and has a second covering portion that covers the second auxiliary electrode, One auxiliary electrode is connected to a surface of the first covering portion facing the second electrode layer, and the second auxiliary electrode is connected to a surface of the second covering portion facing the first electrode layer. An organic EL light emitting device can be obtained.
 このような有機EL発光装置では、第1補助電極が、第1電極層の外周の一端に設けられる第1覆設部の、第2電極層に対向する面に接続される。そして、第2補助電極が、第2電極層の外周の一端であって第1覆設部とは反対側の位置に設けられる第2覆設部の、第1電極層に対向する面に接続される。従って、有機EL発光装置の更なる薄型化が可能になる。 In such an organic EL light emitting device, the first auxiliary electrode is connected to the surface of the first covering portion provided at one end of the outer periphery of the first electrode layer, which faces the second electrode layer. Then, the second auxiliary electrode is connected to a surface of the second covering portion provided at one end of the outer periphery of the second electrode layer on the opposite side of the first covering portion and facing the first electrode layer. Is done. Therefore, the organic EL light emitting device can be further reduced in thickness.
 本開示のさらに他の側面によれば、前記有機ELセルと、前記基材と、前記第1補助電極と、前記第2補助電極と、前記絶縁帯と、を封止する封止部材をさらに備え、前記封止部材は、前記有機ELセルと前記絶縁帯とを独立に封止する有機EL発酵装置を得ることができる。 According to still another aspect of the present disclosure, there is further provided a sealing member that seals the organic EL cell, the base material, the first auxiliary electrode, the second auxiliary electrode, and the insulating band. The sealing member can provide an organic EL fermentation apparatus that seals the organic EL cell and the insulating band independently.
 このような有機EL発光装置では、有機ELセルと絶縁帯とが封止部材によって独立に封止される。従って、絶縁帯の位置で有機EL発光装置が裁断されても、個々のセルは封止状態に保たれる。 In such an organic EL light emitting device, the organic EL cell and the insulating band are independently sealed by the sealing member. Therefore, even if the organic EL light emitting device is cut at the position of the insulating band, each cell is kept in a sealed state.
有機EL発光装置1の構成を示す斜視図。1 is a perspective view illustrating a configuration of an organic EL light emitting device 1. FIG. 有機ELセル10の構成を示す斜視図。1 is a perspective view showing a configuration of an organic EL cell 10. FIG. 有機EL発光装置1を、上部封止部材61を取り除いた状態でZ軸正方向側から見た平面図。The top view which looked at the organic electroluminescent light-emitting device 1 from the Z-axis positive direction side in the state which removed the upper sealing member 61. FIG. 有機EL発光装置1の、図3に一点鎖線で示すA-A’線に従う有機ELセル10の部分における断面図。FIG. 4 is a cross-sectional view of the organic EL light-emitting device 1 in a portion of an organic EL cell 10 taken along a line A-A ′ shown by a dashed line in FIG. 有機EL発光装置1の、図3に一点鎖線で示すB-B’線に従う絶縁帯30の部分における断面図。FIG. 4 is a cross-sectional view of the organic EL light emitting device 1 at a portion of an insulating band 30 taken along a B-B ′ line indicated by a one-dot chain line in FIG.
 本開示を反映した実施形態について、図面を用いて以下に詳細に説明する。なお、本開示は、以下に記載の構成に限定されるものではなく、同一の技術的思想において種々の構成を採用することができる。例えば、以下に説明する各構成において、所定の構成を省略することができる。 Embodiments reflecting the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited to the configurations described below, and various configurations can be employed in the same technical idea. For example, in each configuration described below, a predetermined configuration can be omitted.
 <実施形態>
[有機EL発光装置1の構造]
 図1に示されるように、有機EL発光装置1は、複数の有機ELセル10と、光透過フィルム20と、絶縁帯30と、陽極補助電極41と、陰極補助電極42と、封止フィルム60とを含んで構成される。本実施形態において、封止フィルム60を構成する上部封止部材61と下部封止部材62とは接着される。しかし、図1では有機EL発光装置1の個々の構成要素を示すために、上部封止部材61と下部封止部材62とが離間して示される。図1において、左右方向がX軸、奥行き方向がY軸、上下方向がZ軸と、それぞれ定義される。ここで、複数の有機ELセル10は、Y軸に平行に配列される。X軸,Y軸,Z軸の正方向は、それぞれ右方向,奥方向,上方向である。以下、個々の構成要素と構成要素間の関係を説明する。尚、前記した有機ELセル10,光透過フィルム20,絶縁帯30,陽極補助電極41,陰極補助電極42,封止フィルム60が、それぞれ本発明における有機ELセル,基材,絶縁帯,第1補助電極,第2補助電極,封止部材の一例である。
<Embodiment>
[Structure of organic EL light emitting device 1]
As shown in FIG. 1, the organic EL light-emitting device 1 includes a plurality of organic EL cells 10, a light transmission film 20, an insulating band 30, an anode auxiliary electrode 41, a cathode auxiliary electrode 42, and a sealing film 60. It is comprised including. In the present embodiment, the upper sealing member 61 and the lower sealing member 62 constituting the sealing film 60 are bonded. However, in FIG. 1, the upper sealing member 61 and the lower sealing member 62 are shown apart from each other in order to show individual components of the organic EL light emitting device 1. In FIG. 1, the horizontal direction is defined as the X axis, the depth direction is defined as the Y axis, and the vertical direction is defined as the Z axis. Here, the plurality of organic EL cells 10 are arranged in parallel to the Y axis. The positive directions of the X axis, Y axis, and Z axis are the right direction, the back direction, and the upward direction, respectively. Hereinafter, each component and the relationship between the components will be described. The organic EL cell 10, the light transmission film 20, the insulating band 30, the anode auxiliary electrode 41, the cathode auxiliary electrode 42, and the sealing film 60 described above are the organic EL cell, substrate, insulating band, and first in the present invention, respectively. It is an example of an auxiliary electrode, a 2nd auxiliary electrode, and a sealing member.
 有機EL発光装置1の全体を説明する前に、先ず図2を用いて、有機EL発光装置1を構成する要素の一つである有機ELセル10について説明を行う。図2において、X軸,Y軸,Z軸が、図1と同様に定義される。有機ELセル10は、発光層12と、陰極層11と、陽極層13とを含んで構成される。本実施形態において、発光層12、陰極層11及び陽極層13は互いに接する。しかし、図2において、有機ELセル10の個々の構成要素を示すために、発光層12、陰極層11及び陽極層13は互いに離間して示される。有機ELセル10は、Z軸負方向側において、後記する光透過フィルム20に接触する。尚、前記した陰極層11,発光層12,陽極層13が、本発明における第2電極層,発光層,第1電極層の一例である。 Before describing the entire organic EL light-emitting device 1, first, an organic EL cell 10 that is one of the elements constituting the organic EL light-emitting device 1 will be described with reference to FIG. 2. In FIG. 2, the X axis, the Y axis, and the Z axis are defined in the same manner as in FIG. The organic EL cell 10 includes a light emitting layer 12, a cathode layer 11, and an anode layer 13. In the present embodiment, the light emitting layer 12, the cathode layer 11, and the anode layer 13 are in contact with each other. However, in FIG. 2, the light emitting layer 12, the cathode layer 11, and the anode layer 13 are shown separated from each other in order to show individual components of the organic EL cell 10. The organic EL cell 10 is in contact with a light transmission film 20 described later on the Z axis negative direction side. The cathode layer 11, the light emitting layer 12, and the anode layer 13 are examples of the second electrode layer, the light emitting layer, and the first electrode layer in the present invention.
 発光層12は、有機ELを含む矩形平板状の層である。陰極層11と陽極層13との間に電圧が印加されることで、発光層12は発光する。発光層12に含まれる有機ELとしては、例えばポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体、ポリチオフェン誘導体等の高分子発光材料、及び、テトラフェニルブタジエン(TPB)、ペリレン、クマリン、ルブレン、ナイルレッド、4-ジシアノメチレン-2-メチル-6-ジメチルアミノスチリル-4-ピラン(DCM)、4-ジシアノメチレン-6-シーピージュロリジノスチリル-2-ターシャルブチル-4H-ピラン(DCJTB)、スクアリリウム、アルミニウム錯体(例えばAlQ3)等の低分子系材料が用いられる。発光層12のZ軸正方向側の面、即ち陰極層11に接する面には、図示されない電子注入層が設けられる。電子注入層は、オキサジゾール誘導体、トリアゾール系、及びアルミニウム錯体のいずれかが用いられる。発光層12の厚さは、一例として、30~150nm程度である。 The light emitting layer 12 is a rectangular flat layer containing organic EL. When a voltage is applied between the cathode layer 11 and the anode layer 13, the light emitting layer 12 emits light. Examples of the organic EL contained in the light emitting layer 12 include polymer light emitting materials such as polyparaphenylene vinylene derivatives, polyfluorene derivatives, polythiophene derivatives, tetraphenylbutadiene (TPB), perylene, coumarin, rubrene, Nile red, 4 -Dicyanomethylene-2-methyl-6-dimethylaminostyryl-4-pyran (DCM), 4-dicyanomethylene-6-cypiduridinostyryl-2-tertiarybutyl-4H-pyran (DCJTB), squarylium, aluminum A low molecular weight material such as a complex (for example, AlQ3) is used. An electron injection layer (not shown) is provided on the surface of the light emitting layer 12 on the positive side in the Z-axis direction, that is, the surface in contact with the cathode layer 11. For the electron injection layer, any of an oxadiazole derivative, a triazole type, and an aluminum complex is used. For example, the thickness of the light emitting layer 12 is about 30 to 150 nm.
 陰極層11は、発光層12のZ軸正方向側の面に接触する、矩形状の電極層である。陰極層11は、例えばアルミニウム(Al),フッ化リチウム(LiF),AlとCaとの積層,AlとLiFとの積層及びAlとBaとの積層等で構成される。陰極層11の厚さの一例は、AlとLiFとの積層が陰極層11として用いられる場合、Al層が100nm、Li層が1nmである。陰極層11は、発光層12及び陽極層13に対してX軸正方向に延出する陰極覆設部11aを有する。陰極層11は、陰極層11と陽極層13との間に電圧が印加されることで、前記した電子注入層を介して発光層12に電子を注入する。尚、前記陰極覆設部11aが、本発明における第2覆設部の一例である。 The cathode layer 11 is a rectangular electrode layer that is in contact with the surface on the positive side of the Z-axis of the light emitting layer 12. The cathode layer 11 includes, for example, aluminum (Al), lithium fluoride (LiF), a stack of Al and Ca, a stack of Al and LiF, a stack of Al and Ba, and the like. As an example of the thickness of the cathode layer 11, when a laminate of Al and LiF is used as the cathode layer 11, the Al layer is 100 nm and the Li layer is 1 nm. The cathode layer 11 has a cathode covering portion 11 a extending in the positive direction of the X axis with respect to the light emitting layer 12 and the anode layer 13. The cathode layer 11 injects electrons into the light emitting layer 12 through the electron injection layer by applying a voltage between the cathode layer 11 and the anode layer 13. In addition, the said cathode covering part 11a is an example of the 2nd covering part in this invention.
 陽極層13は、発光層12のZ軸負方向側の面に接触する、矩形状の透明電極層である。陽極層13は、透明電極用の材料であるインジウムチタンオキサイド(ITO)や、ポリエチレンジオキシチオフェン(PEDOT)などで構成される。陽極層13は、発光層12及び陰極層11に対してX軸負方向に延出する陽極覆設部13aを有する。陽極層13は、陰極層11と陽極層13との間に電圧が印加されることで、発光層12に正孔を注入する。陽極層13の厚さは、一例として、150nm程度である。尚、前記陽極覆設部13aが、本発明における第1覆設部の一例である。 The anode layer 13 is a rectangular transparent electrode layer that contacts the surface of the light emitting layer 12 on the negative side of the Z axis. The anode layer 13 is made of indium titanium oxide (ITO), polyethylenedioxythiophene (PEDOT), or the like, which is a material for transparent electrodes. The anode layer 13 has an anode covering portion 13 a that extends in the negative X-axis direction with respect to the light emitting layer 12 and the cathode layer 11. The anode layer 13 injects holes into the light emitting layer 12 by applying a voltage between the cathode layer 11 and the anode layer 13. As an example, the thickness of the anode layer 13 is about 150 nm. The anode covering portion 13a is an example of the first covering portion in the present invention.
 図1~図5を用いて、再び有機EL発光装置1の全体構成を説明する。有機ELセル10の陽極層13が接する光透過フィルム20は、絶縁性と可撓性とを備え、光を透過することが可能な材料で構成される。光透過フィルム20としては、例えばポリイミド、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリエーテルサルフォン(PES)、ポリカーボネート(PC)、ポリプロピレン(PP)等が用いられる。光透過フィルム20は、透明な材料で構成されるのが望ましいが、光を散乱・拡散させることで光を透過する半透明な材料で構成されても良い。光透過フィルム20の厚さは、一例として、5~200μm程度である。 The overall configuration of the organic EL light emitting device 1 will be described again with reference to FIGS. The light transmissive film 20 with which the anode layer 13 of the organic EL cell 10 is in contact is made of a material that has insulating properties and flexibility and can transmit light. As the light transmission film 20, for example, polyimide, polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polystyrene (PS), polyethersulfone (PES), polycarbonate (PC), polypropylene (PP), or the like is used. The light transmission film 20 is preferably made of a transparent material, but may be made of a translucent material that transmits light by scattering and diffusing light. The thickness of the light transmission film 20 is, for example, about 5 to 200 μm.
 図3に示されるように、絶縁帯30は、隣り合う有機ELセル10の間に設けられる。絶縁帯30が設けられることで、隣り合う有機ELセル10は電気的に絶縁される。絶縁帯30としては、例えばポリ―N―ビニルカルバゾール(PVK),PS,ナイロン,ポリアセタール,PC,PET,ポリブチレンテレフタレート,ポリフェニレンオキシド,ポリアリレート,ポリスルホン,ポリフェニレンスルフィド,ポリアミドイミド,ポリイミド,フッ素樹脂等が用いられる。 As shown in FIG. 3, the insulating band 30 is provided between adjacent organic EL cells 10. By providing the insulating band 30, the adjacent organic EL cells 10 are electrically insulated. Examples of the insulating band 30 include poly-N-vinylcarbazole (PVK), PS, nylon, polyacetal, PC, PET, polybutylene terephthalate, polyphenylene oxide, polyarylate, polysulfone, polyphenylene sulfide, polyamideimide, polyimide, fluorine resin, and the like. Is used.
 陽極補助電極41及び陰極補助電極42は、隣り合う有機ELセル10を繋ぐ導電帯である。図1に示されるように、陽極補助電極41及び陰極補助電極42は、Y軸に沿って延びる。以下、図3~図5を用いて、陽極補助電極41及び陰極補助電極42がどのように隣り合う有機ELセル10を繋ぐかを説明する。 The anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are conductive bands that connect adjacent organic EL cells 10. As shown in FIG. 1, the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 extend along the Y axis. Hereinafter, how the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 connect adjacent organic EL cells 10 will be described with reference to FIGS. 3 to 5.
 図4に示される様に、陽極補助電極41は、光透過フィルム20に接する陽極層13に設けられた陽極覆設部13aのZ軸正方向側の面、即ち陽極覆設部13aの陰極層11に対向する面に接続される。陽極覆設部13aは、発光層12及び陰極層11に対してX軸負方向に延出する。そのため、陽極補助電極41は、発光層12及び陰極層11に接することなく、陽極覆設部13aを介して陽極層13に接続される。言い換えると、陽極覆設部13aは、陽極補助電極41をZ軸負方向側から覆う。陽極補助電極41は、隣り合う有機ELセル10に存在する夫々の陽極覆設部13aに接続されることで、隣り合う一方の有機ELセル10の陽極層13と、隣り合う他方の有機ELセル10の陽極層13とを架橋する。具体的には図3及び図5に示される様に、陽極補助電極41は、絶縁帯30からX軸負方向に離間して、隣り合う有機ELセル10に存在する夫々の陽極覆設部13aに接続される。図5に示すように、絶縁帯30から離間している状態で、陽極補助電極41は、光透過フィルム20に接触する。陽極補助電極41は、例えば、アルミニウム(Al),クロム(Cr)等で構成される。 As shown in FIG. 4, the anode auxiliary electrode 41 is a surface on the positive side in the Z-axis direction of the anode covering portion 13a provided on the anode layer 13 in contact with the light transmission film 20, that is, the cathode layer of the anode covering portion 13a. 11 is connected to the surface facing 11. The anode covering portion 13 a extends in the negative X-axis direction with respect to the light emitting layer 12 and the cathode layer 11. Therefore, the anode auxiliary electrode 41 is connected to the anode layer 13 via the anode covering portion 13 a without contacting the light emitting layer 12 and the cathode layer 11. In other words, the anode covering portion 13a covers the anode auxiliary electrode 41 from the Z-axis negative direction side. The anode auxiliary electrode 41 is connected to each anode covering portion 13a existing in the adjacent organic EL cell 10, so that the anode layer 13 of one adjacent organic EL cell 10 and the other adjacent organic EL cell. 10 anode layers 13 are cross-linked. Specifically, as shown in FIGS. 3 and 5, the anode auxiliary electrode 41 is spaced apart from the insulating band 30 in the negative X-axis direction, and each anode covering portion 13 a existing in the adjacent organic EL cell 10. Connected to. As shown in FIG. 5, the anode auxiliary electrode 41 is in contact with the light transmission film 20 while being separated from the insulating band 30. The anode auxiliary electrode 41 is made of, for example, aluminum (Al), chromium (Cr), or the like.
 図4に示される様に、陰極補助電極42は、陽極層13からX軸正方向に離間して、光透過フィルム20上に設けられる。陽極補助電極41及び陰極補助電極42は、光透過フィルム20の陽極層13側と反対側から見て、互いに重ならないように配置される。この配置の一例として、本実施形態においては、陽極補助電極41及び陰極補助電極42は、互いに平行になるように配置される。陰極補助電極42は、陰極覆設部11aのZ軸負方向側の面、即ち陰極覆設部11aの陽極層13に対向する面に接続される。陰極覆設部11aは、発光層12及び陽極層13に対してX軸正方向に延出するので、陰極補助電極42は、発光層12及び陽極層13に接することなく、陰極覆設部11aを介して陰極層11に接続される。言い換えると、陰極覆設部11aは、陰極補助電極42をZ軸正方向側から覆う。陰極補助電極42は、隣り合う有機ELセル10に存在する夫々の陰極覆設部11aに接続されることで、隣り合う一方の有機ELセル10の陰極層11と、隣り合う他方の有機ELセル10の陰極層11とを架橋する。具体的には図3及び図5に示される様に、陰極補助電極42は、絶縁帯30からX軸正方向に離間して、隣り合う有機ELセル10に存在する夫々の陰極覆設部11aに接続される。陰極補助電極42は、例えば、Al,Cr等で構成される。 As shown in FIG. 4, the auxiliary cathode electrode 42 is provided on the light transmission film 20 so as to be separated from the anode layer 13 in the positive direction of the X axis. The anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are arranged so as not to overlap each other when viewed from the side opposite to the anode layer 13 side of the light transmission film 20. As an example of this arrangement, in this embodiment, the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are arranged so as to be parallel to each other. The cathode auxiliary electrode 42 is connected to the surface on the negative side in the Z-axis direction of the cathode covering portion 11a, that is, the surface facing the anode layer 13 of the cathode covering portion 11a. Since the cathode covering portion 11 a extends in the positive X-axis direction with respect to the light emitting layer 12 and the anode layer 13, the cathode auxiliary electrode 42 does not contact the light emitting layer 12 and the anode layer 13, and the cathode covering portion 11 a. Is connected to the cathode layer 11. In other words, the cathode covering portion 11a covers the cathode auxiliary electrode 42 from the Z-axis positive direction side. The cathode auxiliary electrode 42 is connected to each cathode covering portion 11a existing in the adjacent organic EL cell 10, so that the cathode layer 11 of one adjacent organic EL cell 10 and the other adjacent organic EL cell. 10 cathode layers 11 are cross-linked. Specifically, as shown in FIGS. 3 and 5, the auxiliary cathode electrode 42 is separated from the insulating band 30 in the positive direction of the X axis, and each cathode covering portion 11 a existing in the adjacent organic EL cell 10. Connected to. The cathode auxiliary electrode 42 is made of, for example, Al, Cr or the like.
 陽極陽極覆設部13a及び陰極覆設部11aが設けられることで、以下の様な有利な効果がある。陽極覆設部13aが発光層12及び陽極層13に対してX軸負方向に延出するので、図4に示される様に、陽極極補助電極41のZ軸正方向側には、発光層12及び陰極層11が存在しない。仮に、陽極覆設部13aが存在しなければ、陽極極補助電極41と発光層12及び陰極層11との絶縁を確保するために、例えば陽極極補助電極41のZ軸正方向側の面に絶縁帯を設けることや、陽極層13のZ軸負方向側の面に陽極極補助電極41を接続すること等が必要になる。その結果、Z軸方向に積み重なる層の数が増加することになり、有機EL発光装置1の薄型化が困難になる。しかし、陽極覆設部13aが設けられることにより、Z軸方向に積み重なる層の数を減らすことが可能となる。従って、有機EL発光装置1の薄型化が可能になる。同様に、陰極覆設部11aはX軸正方向に延出するので、陰極補助電極42のZ軸負方向側には発光層12及び陰極層11が存在しない。従って、陰極覆設部11aも、有機EL発光装置1の薄型化に寄与する。 By providing the anode anode covering portion 13a and the cathode covering portion 11a, there are the following advantageous effects. Since the anode covering portion 13a extends in the negative X-axis direction with respect to the light-emitting layer 12 and the anode layer 13, as shown in FIG. 12 and the cathode layer 11 do not exist. If there is no anode covering portion 13a, in order to ensure insulation between the anode electrode auxiliary electrode 41 and the light emitting layer 12 and the cathode layer 11, for example, on the surface of the anode electrode auxiliary electrode 41 on the Z axis positive direction side. It is necessary to provide an insulating band, and to connect the anode electrode auxiliary electrode 41 to the surface of the anode layer 13 on the negative side of the Z axis. As a result, the number of layers stacked in the Z-axis direction increases, making it difficult to reduce the thickness of the organic EL light-emitting device 1. However, by providing the anode covering portion 13a, the number of layers stacked in the Z-axis direction can be reduced. Therefore, the organic EL light emitting device 1 can be thinned. Similarly, since the cathode covering portion 11a extends in the positive X-axis direction, the light emitting layer 12 and the cathode layer 11 do not exist on the negative Z-axis side of the auxiliary cathode electrode 42. Therefore, the cathode covering portion 11a also contributes to the thinning of the organic EL light emitting device 1.
 封止フィルム60は、有機ELセル10と、光透過フィルム20と、陽極補助電極41と、陰極補助電極42と、絶縁帯30とを、外気に接触させないように封止する。封止フィルム60は、Z軸正方向側に設けられる上部封止部材61と、Z軸負方向側に設けられる下部封止部材62とで構成される。具体例には、PET,PEN,PS,PES,ポリイミド等のフィルムに、SiO,AL,SiNx等の無機薄膜と柔軟性のあるアクリル樹脂薄膜などを層状に複数層重ね合わせることでガスバリア性を備えたものが、封止フィルム60として用いられる。 The sealing film 60 seals the organic EL cell 10, the light transmission film 20, the anode auxiliary electrode 41, the cathode auxiliary electrode 42, and the insulating band 30 so as not to come into contact with the outside air. The sealing film 60 includes an upper sealing member 61 provided on the Z axis positive direction side and a lower sealing member 62 provided on the Z axis negative direction side. Specific examples, PET, PEN, PS, PES , a film such as polyimide, SiO 2, AL 2 O 3 , an acrylic resin film with an inorganic thin film and the flexibility of SiNx or the like, such as by overlaying a plurality of layers in layers A film having gas barrier properties is used as the sealing film 60.
 上部封止部材61と下部封止部材62とは、相互の接着箇所BNDにおいて互いに接着される。接着箇所BNDは、有機ELセル10と絶縁帯30とを独立に封止するように、有機ELセル10と絶縁帯30との境目及び光透過フィルム20の外側に設けられる。接着箇所BNDの位置は、図1及び図3において、太線で示される。尚、接着箇所BNDは、例えば接着剤を用いての接着や、超音波を用いての融着によって設けられる。 The upper sealing member 61 and the lower sealing member 62 are bonded to each other at the mutual bonding location BND. The adhesion location BND is provided on the boundary between the organic EL cell 10 and the insulating band 30 and on the outside of the light transmission film 20 so as to seal the organic EL cell 10 and the insulating band 30 independently. The position of the bonding location BND is indicated by a thick line in FIGS. The bonding location BND is provided by, for example, bonding using an adhesive or fusion using ultrasonic waves.
 [有機EL発光装置1の製造方法]
 有機EL発光装置1は、例えば以下に示す様な方法によって製造することができる。
[Method for Manufacturing Organic EL Light Emitting Device 1]
The organic EL light emitting device 1 can be manufactured by the following method, for example.
 まず、光透過フィルム20上に陽極層13の材料が一様に蒸着される。ここでは、一例としてインジウムチタンオキサイド(ITO)が150nmの厚みで蒸着される。次いで、露光用のレジストがスピンコートにより塗布され、陽極層13に対応する箇所のパターンがマスク露光される。その後、濃硝酸と濃塩酸の混合液である王水を用いたエッチングにより、露光されていない部分のレジスト及びITOを取り除くことで、陽極層13が形成される。このとき、陽極層13のシート抵抗は30Ω/cmであった。 First, the material of the anode layer 13 is uniformly deposited on the light transmission film 20. Here, as an example, indium titanium oxide (ITO) is deposited with a thickness of 150 nm. Next, a resist for exposure is applied by spin coating, and a pattern corresponding to the anode layer 13 is subjected to mask exposure. Then, the anode layer 13 is formed by removing unexposed resist and ITO by etching using aqua regia, which is a mixed solution of concentrated nitric acid and concentrated hydrochloric acid. At this time, the sheet resistance of the anode layer 13 was 30 Ω / cm 2 .
 陽極層13の形成後、陽極補助電極41及び陰極補助電極42がマスク蒸着により形成される。ここでは、一例としてAlがマスク蒸着される。陽極補助電極41は、陽極層13の陽極覆設部13a上に形成される。一方、陰極補助電極42は、陽極層13からX軸正方向に離間して、光透過フィルム20上に形成される。 After the anode layer 13 is formed, the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 are formed by mask vapor deposition. Here, as an example, Al is mask-deposited. The anode auxiliary electrode 41 is formed on the anode covering portion 13 a of the anode layer 13. On the other hand, the cathode auxiliary electrode 42 is formed on the light transmission film 20 so as to be separated from the anode layer 13 in the positive direction of the X axis.
 次いで、陽極層13の表面が、中性洗剤洗浄、アセトン洗浄、イソプロピルアルコール洗浄、及びUVオゾン洗浄により順次洗浄される。なお、これらの洗浄の目的は、(1)陽極層13の表面の汚れを除去すること、(2)陽極層13の表面の酸素欠陥を減らし、正孔注入障壁を低下させること、である。中でも、UVオゾン洗浄は、湿式洗浄ではとれない有機物の汚れを除去することができる。 Next, the surface of the anode layer 13 is sequentially cleaned by neutral detergent cleaning, acetone cleaning, isopropyl alcohol cleaning, and UV ozone cleaning. The purpose of these cleanings is (1) removing dirt on the surface of the anode layer 13 and (2) reducing oxygen defects on the surface of the anode layer 13 and lowering the hole injection barrier. In particular, UV ozone cleaning can remove organic contaminants that cannot be removed by wet cleaning.
 陽極層13が形成された後、光透過フィルム20の絶縁帯30が形成される部分全体に、スピンコート法,ディップ法,カーテンコート法,バーコート法,印刷法もしくはインクジェット法を用いて、絶縁帯30の材料が塗布される。ここでは、一例としてポリ―N―ビニルカルバゾール(PVK)が塗布される。 After the anode layer 13 is formed, the entire portion of the light transmission film 20 where the insulating band 30 is formed is insulated by using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an inkjet method. The material of the band 30 is applied. Here, poly-N-vinylcarbazole (PVK) is applied as an example.
 絶縁帯30の形成後、スピンコート法、ディップ法、カーテンコート法、バーコート法、印刷法もしくはインクジェット法を用いて、発光層12が形成される。ここでは、スピンコート法を例にとって、その形成工程を説明する。 After the formation of the insulating band 30, the light emitting layer 12 is formed by using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method. Here, the formation process will be described by taking a spin coating method as an example.
 光透過フィルム20上に形成された陽極層13の上に、発光層12を形成するためのインクが塗布される。このインクは、表示用組成物としてポリフルオレンポリマーを2wt%、テトラリン溶媒又はシクロヘキシルベンゼン溶媒に加えることで調合される。インクが陽極層13の上に全面塗布された後、光透過フィルム20を水平に回転させる。その後、50~60℃で30分間乾燥させることにより、インク溶液中の溶媒が蒸発する。この乾燥によって、インク溶液の不揮発成分である表示用組成物が、陽極層13と電気的接合を持った状態で固化する。この固化した表示用組成物が、発光層12である。尚、インクを陽極層13の上に全面塗布しても、発光層12を所望の領域に形成することは可能である。しかし、発光層12を所望の領域に形成するために、マスク等が用いられても良い。 An ink for forming the light emitting layer 12 is applied on the anode layer 13 formed on the light transmitting film 20. This ink is prepared by adding 2 wt% of a polyfluorene polymer as a display composition to a tetralin solvent or a cyclohexylbenzene solvent. After the ink is applied on the entire surface of the anode layer 13, the light transmission film 20 is rotated horizontally. Thereafter, the solvent in the ink solution is evaporated by drying at 50 to 60 ° C. for 30 minutes. By this drying, the display composition that is a non-volatile component of the ink solution is solidified in a state of being electrically connected to the anode layer 13. This solidified display composition is the light emitting layer 12. Note that the light emitting layer 12 can be formed in a desired region even if ink is applied over the entire surface of the anode layer 13. However, a mask or the like may be used to form the light emitting layer 12 in a desired region.
 次いで、オキサジゾール誘導体、トリアゾール系、及びアルミニウム錯体のいずれかである電子注入層が、発光層12上に塗布される。この塗布は、スピンコート法、ディップ法、カーテンコート法、バーコート法、印刷法もしくはインクジェット法を用いて行われる。この塗布の際、塗布後の電子注入層において、発光層12及び絶縁帯30に接する側と反対側の面が、発光層12及び絶縁帯30からなる面より平らになるように、電子注入層が塗布される。 Next, an electron injection layer that is one of an oxadizole derivative, a triazole type, and an aluminum complex is applied on the light emitting layer 12. This application is performed using a spin coating method, a dip method, a curtain coating method, a bar coating method, a printing method, or an ink jet method. At the time of coating, the electron injection layer so that the surface opposite to the side in contact with the light emitting layer 12 and the insulating band 30 in the electron injection layer after coating is flatter than the surface formed of the light emitting layer 12 and the insulating band 30. Is applied.
 次いで、予め形成された陰極層11が、ラミネート法によって発光層12上に貼り付けられる。このラミネートは、フィルムラミネーターを用いて、130℃程度の温度下において,10Pa程度の押圧力で行われる。このとき、陰極覆設部11aは、光透過フィルム20上に設けられた陰極補助電極42に貼り付けられる。ここで、陰極層11は、フィルム基板上に真空蒸着によって、Alとフッ化リチウム(LiF)との積層が形成されることで得られる。尚、連続的に積層されるAl層及びLiF層の厚みは、それぞれ、例示として100nm、1nmである。また、LiFとAlとの積層の代わりに、Al,LiF,AlとCaとの積層及びAlとBaとの積層のいずれかで陰極層11が形成されてもよい。 Next, the cathode layer 11 formed in advance is attached onto the light emitting layer 12 by a laminating method. This lamination is performed using a film laminator at a pressure of about 10 5 Pa at a temperature of about 130 ° C. At this time, the cathode covering portion 11 a is attached to the cathode auxiliary electrode 42 provided on the light transmission film 20. Here, the cathode layer 11 is obtained by forming a laminate of Al and lithium fluoride (LiF) on a film substrate by vacuum deposition. In addition, the thickness of the Al layer and LiF layer which are laminated | stacked continuously is 100 nm and 1 nm, respectively as an example. Further, the cathode layer 11 may be formed by any one of a stack of Al, LiF, Al and Ca, and a stack of Al and Ba instead of the stack of LiF and Al.
 次に、上部封止部材61及び下部封止部材62が、有機ELセル10と、陽極補助電極41と、陰極補助電極42と、絶縁帯30とが形成された光透過フィルム20を挟み込む。上部封止部材61及び下部封止部材62は、前記した接着箇所BNDにおいて、2液性エポキシ接着剤を用い、乾燥Nガスグローボックス中で常温1時間かけて接着される。 Next, the upper sealing member 61 and the lower sealing member 62 sandwich the light transmissive film 20 on which the organic EL cell 10, the anode auxiliary electrode 41, the cathode auxiliary electrode 42, and the insulating band 30 are formed. The upper sealing member 61 and the lower sealing member 62 are bonded to each other at the above-mentioned bonding location BND using a two-component epoxy adhesive in a dry N 2 gas glow box at room temperature for 1 hour.
 [有機EL発光装置1の使用方法]
 有機EL発光装置1は、陽極補助電極41と陰極補助電極42との間に、陽極補助電極41が陰極補助電極42よりも高電位になるように、直流電圧が印加されることで発光する。以下、その過程を説明する。陽極補助電極41と陽極層13との電位は等しく、陰極補助電極42と陰極層11との電位は等しい。従って、陽極補助電極41と陰極補助電極42との間の電位差、即ち印加される電圧は、陽極層13と陰極層11との電位差に等しい。陽極層13と陰極層11との間に電位差が存在すると、陽極層13から正孔が発光層12に供給され、陰極層11から電子が電子注入層を介して発光層12に供給される。そして、陽極層13から供給された正孔と、陰極層11から供給された電子とが、発光層12で再結合する。電子は伝導帯を流れ、正孔は価電子帯を流れるので、正孔と電子との再結合によって、バンドギャップに相当するエネルギーを有する光子が放出される。即ち、発光層12が発光する。発光層12からの光は、光透過フィルム20を透過して、有機EL発光装置1の外部に放出される。
[Usage method of organic EL light emitting device 1]
The organic EL light emitting device 1 emits light when a DC voltage is applied between the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 such that the anode auxiliary electrode 41 has a higher potential than the cathode auxiliary electrode 42. The process will be described below. The potentials of the anode auxiliary electrode 41 and the anode layer 13 are equal, and the potentials of the cathode auxiliary electrode 42 and the cathode layer 11 are equal. Therefore, the potential difference between the anode auxiliary electrode 41 and the cathode auxiliary electrode 42, that is, the applied voltage is equal to the potential difference between the anode layer 13 and the cathode layer 11. When a potential difference exists between the anode layer 13 and the cathode layer 11, holes are supplied from the anode layer 13 to the light emitting layer 12, and electrons are supplied from the cathode layer 11 to the light emitting layer 12 through the electron injection layer. Then, the holes supplied from the anode layer 13 and the electrons supplied from the cathode layer 11 are recombined in the light emitting layer 12. Since electrons flow in the conduction band and holes flow in the valence band, photons having energy corresponding to a band gap are emitted by recombination of holes and electrons. That is, the light emitting layer 12 emits light. The light from the light emitting layer 12 passes through the light transmission film 20 and is emitted to the outside of the organic EL light emitting device 1.
 有機EL発光装置1は、鋏等を用いて裁断することで、寸法を変更可能である。具体的には、有機EL発光装置1は、絶縁帯30の位置で裁断されることで、隣り合う有機ELセル10同士を分離可能である。このとき、有機ELセル10と、絶縁帯30とは独立に封止されているので、分離された有機ELセル10は各々利用可能である。また、絶縁帯30で裁断されたときに、裁断面に露出した陽極補助電極41及び陰極補助電極42に給電することで、有機EL発光装置1を発光させることが可能となる。 The dimensions of the organic EL light emitting device 1 can be changed by cutting with a scissors or the like. Specifically, the organic EL light-emitting device 1 can separate adjacent organic EL cells 10 by being cut at the position of the insulating band 30. At this time, since the organic EL cell 10 and the insulating band 30 are sealed independently, each separated organic EL cell 10 can be used. Further, when the insulation band 30 is cut, the organic EL light emitting device 1 can emit light by supplying power to the anode auxiliary electrode 41 and the cathode auxiliary electrode 42 exposed on the cut surface.
 <変形例>
 本発明は、今までに述べた実施形態に限定されることは無く、その趣旨を逸脱しない範囲において種々の変形・変更が可能である。以下にその変形の一例を述べる。
<Modification>
The present invention is not limited to the embodiments described so far, and various modifications and changes can be made without departing from the spirit of the present invention. An example of the modification will be described below.
 封止された有機ELセル10内の湿度を取り除くために、有機ELセル10が、フィルム状の調湿剤を含んで構成されても良い。この調湿剤は、例えばフィルム素材に、Ca,Ba等のアルカリ金属酸化物をペスト化したもの、もしくは調湿性の有機物を塗布乾燥することで形成される。 In order to remove the humidity in the sealed organic EL cell 10, the organic EL cell 10 may be configured to include a film-like humidity adjusting agent. This humectant is formed, for example, by applying and drying a film material obtained by pasting an alkali metal oxide such as Ca, Ba or the like or a humidity-controlling organic substance.
 前記した実施形態において、陽極層13は光透過フィルム20上に直接形成される。しかし、光透過フィルム20は、有機ELセル10の陽極層13側の面に接触すれば良く、必ずしも陽極層13と光透過フィルム20とが接触している必要はない。例えば、陽極13と光透過フィルム20との間に、水分やガスを遮蔽するガスバリア層等が設けられても良い。 In the above-described embodiment, the anode layer 13 is formed directly on the light transmission film 20. However, the light transmission film 20 may be in contact with the surface of the organic EL cell 10 on the anode layer 13 side, and the anode layer 13 and the light transmission film 20 are not necessarily in contact with each other. For example, a gas barrier layer that shields moisture and gas may be provided between the anode 13 and the light transmission film 20.
 前記した実施形態において、有機EL発光装置1は、図1に示される様に、隣り合う2つの有機ELセル10を備える。しかし、有機EL発光装置1は、有機ELセル10を2つよりも多く備えても良い。要は、有機ELセル10が一列に配置されていれば良い。 In the above-described embodiment, the organic EL light emitting device 1 includes two adjacent organic EL cells 10 as shown in FIG. However, the organic EL light emitting device 1 may include more than two organic EL cells 10. In short, the organic EL cells 10 may be arranged in a line.
 前記した実施形態において、有機EL発光装置1は絶縁帯30を備える。しかし、上部封止部材61と下部封止部材62とで個々の有機ELセル10は封止されているので、絶縁帯30が存在しなくても、隣り合う有機ELセル10は電気的に絶縁される。この場合、隣り合う有機ELセル10の間に位置する、封止された封止部材60の一部が、本発明の絶縁帯の一例となる。 In the above-described embodiment, the organic EL light emitting device 1 includes the insulating band 30. However, since the individual organic EL cells 10 are sealed by the upper sealing member 61 and the lower sealing member 62, the adjacent organic EL cells 10 are electrically insulated even if the insulating band 30 is not present. Is done. In this case, a part of the sealed sealing member 60 located between the adjacent organic EL cells 10 is an example of the insulating band of the present invention.
1 有機EL発光装置
10 有機ELセル
11 陰極層
11a 陰極覆設部
12 発光層
13 陽極層
13a 陽極覆設部
20 光透過フィルム
30 絶縁帯
41 陽極補助電極
42 陰極補助電極
60 封止フィルム
61 上部封止部材
62 下部封止部材
BND 接着箇所
DESCRIPTION OF SYMBOLS 1 Organic EL light-emitting device 10 Organic EL cell 11 Cathode layer 11a Cathode covering part 12 Light emitting layer 13 Anode layer 13a Anode covering part 20 Light transmission film 30 Insulation band 41 Anode auxiliary electrode 42 Cathode auxiliary electrode 60 Sealing film 61 Upper sealing Stop member 62 Lower sealing member BND Bonding location

Claims (4)

  1.  有機ELからなる平板状の発光層と、前記発光層の一方の面に設けられる第1電極層と、前記発光層の他方の面に設けられる第2電極層と、を含む有機ELセルと、
     一列に配置された複数の前記有機ELセルの、前記第1電極層側の面に接触する基材と、
     隣り合う一方の前記有機ELセルと、隣り合う他方の前記有機ELセルとの間に設けられる絶縁帯と、
     隣り合う一方の前記有機ELセルの前記第1電極層と、隣り合う他方の前記有機ELセルの前記第1電極層とを架橋する第1補助電極と、
     隣り合う一方の前記有機ELセルの前記第2電極層と、隣り合う他方の前記有機ELセルの前記第2電極層とを架橋する第2補助電極と、
    を備え、
     前記第1補助電極及び前記第2補助電極は、前記基材の前記第1電極層側と反対側から見て、互いに重ならないように配置される、
    ことを特徴とする有機EL発光装置。
    An organic EL cell including a flat light emitting layer made of organic EL, a first electrode layer provided on one surface of the light emitting layer, and a second electrode layer provided on the other surface of the light emitting layer;
    A plurality of organic EL cells arranged in a row, a base material in contact with the surface on the first electrode layer side, and
    An insulating band provided between the one adjacent organic EL cell and the other adjacent organic EL cell;
    A first auxiliary electrode that bridges the first electrode layer of the adjacent one of the organic EL cells and the first electrode layer of the other adjacent organic EL cell;
    A second auxiliary electrode that bridges the second electrode layer of the adjacent one of the organic EL cells and the second electrode layer of the other adjacent organic EL cell;
    With
    The first auxiliary electrode and the second auxiliary electrode are disposed so as not to overlap each other when viewed from the side opposite to the first electrode layer side of the substrate.
    An organic EL light emitting device.
  2.  前記第1補助電極及び前記第2補助電極は、互いに平行になるように配置される、請求項1に記載の有機EL発光装置。 The organic EL light-emitting device according to claim 1, wherein the first auxiliary electrode and the second auxiliary electrode are arranged so as to be parallel to each other.
  3.  前記第1電極層は、前記第1電極層の外周の一端に設けられ、前記第1補助電極を覆う第1覆設部を有し、
     前記第2電極層は、前記第2電極層の外周の一端であって前記第1覆設部とは反対側の位置に設けられ、前記第2補助電極を覆う第2覆設部を有し、
     前記第1補助電極は、前記第1覆設部の前記第2電極層に対向する面に接続され、
     前記第2補助電極は、前記第2覆設部の前記第1電極層に対向する面に接続される、請求項1または2に記載の有機EL発光装置。
    The first electrode layer is provided at one end of the outer periphery of the first electrode layer, and has a first covering portion that covers the first auxiliary electrode,
    The second electrode layer has a second covering portion that is provided at one end of the outer periphery of the second electrode layer and at a position opposite to the first covering portion, and covers the second auxiliary electrode. ,
    The first auxiliary electrode is connected to a surface of the first covering portion facing the second electrode layer;
    3. The organic EL light emitting device according to claim 1, wherein the second auxiliary electrode is connected to a surface of the second covering portion that faces the first electrode layer.
  4.  前記有機ELセルと、前記基材と、前記第1補助電極と、前記第2補助電極と、前記絶縁帯と、を封止する封止部材をさらに備え、
     前記封止部材は、前記有機ELセルと前記絶縁帯とを独立に封止する、
    ことを特徴とする請求項1または2に記載の有機EL発光装置。
    A sealing member that seals the organic EL cell, the substrate, the first auxiliary electrode, the second auxiliary electrode, and the insulating band;
    The sealing member seals the organic EL cell and the insulating band independently;
    The organic EL light-emitting device according to claim 1 or 2.
PCT/JP2010/051295 2009-02-11 2010-01-30 Organic el light emitting device WO2010092882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-029222 2009-02-11
JP2009029222A JP2010186609A (en) 2009-02-11 2009-02-11 Organic el light-emitting device

Publications (1)

Publication Number Publication Date
WO2010092882A1 true WO2010092882A1 (en) 2010-08-19

Family

ID=42561726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051295 WO2010092882A1 (en) 2009-02-11 2010-01-30 Organic el light emitting device

Country Status (2)

Country Link
JP (1) JP2010186609A (en)
WO (1) WO2010092882A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229090A (en) * 1985-07-30 1987-02-07 日本精機株式会社 El panel
JPH0992469A (en) * 1995-09-28 1997-04-04 Seikosha Co Ltd Electroluminescent device
JPH11260565A (en) * 1998-03-13 1999-09-24 Seiko Precision Inc El element
JP2007147725A (en) * 2005-11-24 2007-06-14 Matsushita Electric Works Ltd Method of mounting organic el panel on wall surface, mounting structure, and organic el panel system
JP2008513958A (en) * 2004-09-15 2008-05-01 ワールド・プロパティーズ・インコーポレイテッド Large area EL lamp
JP2009016186A (en) * 2007-07-05 2009-01-22 Panasonic Electric Works Co Ltd El panel and illumination device using this

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185366A (en) * 1999-12-24 2001-07-06 Teikoku Tsushin Kogyo Co Ltd Electroluminescent sheet
TWI273722B (en) * 2000-01-27 2007-02-11 Gen Electric Organic light emitting device and method for mounting
US6936964B2 (en) * 2002-09-30 2005-08-30 Eastman Kodak Company OLED lamp
US7271534B2 (en) * 2003-11-04 2007-09-18 3M Innovative Properties Company Segmented organic light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229090A (en) * 1985-07-30 1987-02-07 日本精機株式会社 El panel
JPH0992469A (en) * 1995-09-28 1997-04-04 Seikosha Co Ltd Electroluminescent device
JPH11260565A (en) * 1998-03-13 1999-09-24 Seiko Precision Inc El element
JP2008513958A (en) * 2004-09-15 2008-05-01 ワールド・プロパティーズ・インコーポレイテッド Large area EL lamp
JP2007147725A (en) * 2005-11-24 2007-06-14 Matsushita Electric Works Ltd Method of mounting organic el panel on wall surface, mounting structure, and organic el panel system
JP2009016186A (en) * 2007-07-05 2009-01-22 Panasonic Electric Works Co Ltd El panel and illumination device using this

Also Published As

Publication number Publication date
JP2010186609A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP6336569B2 (en) ORGANIC LIGHT-EMITTING ELEMENT AND MANUFACTURING METHOD
JP4732084B2 (en) SUBSTRATE FOR LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, ELECTRODE FOR LIGHT EMITTING ELEMENT, AND LIGHT EMITTING ELEMENT HAVING THE SAME
JP4612009B2 (en) Organic light-emitting display device and method for manufacturing the same
KR101745644B1 (en) Organic light emitting diode display and manufacturing method thereof
US7837822B2 (en) Laser induced thermal imaging apparatus and method of fabricating organic light emitting display using the same
JP6570707B2 (en) Organic electroluminescence lighting panel, manufacturing method thereof, and organic electroluminescence lighting device
JP6163483B2 (en) Organic EL device and manufacturing method thereof
US8029684B2 (en) Self-emission panel and method of manufacturing the same
KR20140031003A (en) Organic light emitting display apparatus and method of manufacturing thereof
US8247274B2 (en) Organic light-emitting display apparatus and method of manufacturing the same
JP2015111505A (en) Organic electroluminescent device
KR101671304B1 (en) Method for producing an optoelectronic assembly, and optoelectronic assembly
JP2007095518A (en) Organic electroluminescent display
JP2006172837A (en) Sealing member, selfluminous panel and manufacturing method for selfluminous panel
JP4918633B1 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE
WO2010092882A1 (en) Organic el light emitting device
TWI262742B (en) Method for manufacturing organic electroluminescence device and electronic apparatus
WO2010113727A1 (en) Organic el element and manufacturing method therefor
US20090015146A1 (en) Organic el display device
JP5177570B2 (en) Manufacturing method of organic EL panel
WO2013030919A1 (en) Organic electroluminescence device
WO2014041616A1 (en) Organic el device
JPWO2012124025A1 (en) Organic electroluminescence device
JP2006086084A (en) Method of manufacturing self-luminous panel
WO2023103000A1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741160

Country of ref document: EP

Kind code of ref document: A1