WO2013030919A1 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
WO2013030919A1
WO2013030919A1 PCT/JP2011/069442 JP2011069442W WO2013030919A1 WO 2013030919 A1 WO2013030919 A1 WO 2013030919A1 JP 2011069442 W JP2011069442 W JP 2011069442W WO 2013030919 A1 WO2013030919 A1 WO 2013030919A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
electrode
void
substrate
Prior art date
Application number
PCT/JP2011/069442
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 綾子
宮口 敏
石塚 真一
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/069442 priority Critical patent/WO2013030919A1/en
Publication of WO2013030919A1 publication Critical patent/WO2013030919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present invention relates to an organic electroluminescence device.
  • An organic electroluminescence device (hereinafter referred to as an organic EL device) is a self-luminous surface light-emitting device, and has high visibility, can be driven at a low voltage, and has a broad emission spectrum. Research into the practical use of this is being actively conducted.
  • the organic EL device is configured, for example, by sequentially laminating a first electrode (anode), a hole transport layer, a light emitting layer, an electron transport layer, and a second electrode (cathode) on a glass substrate.
  • An organic EL device is a device that obtains electroluminescence by current injection, and requires a larger current to flow than an electric field device such as a liquid crystal display.
  • the layer thickness of the organic functional layer provided between the anode and the cathode is on the order of submicron, current leakage may occur due to minute dust or defects in the organic functional layer.
  • the peripheral cell may be damaged.
  • Patent Document 1 discloses that each of a plurality of pixels is provided with an electrode having a disconnection function that leads to disconnection due to an overcurrent at the time of a short circuit. A technique for blocking is described.
  • Patent Document 2 describes a technique for self-repairing a short-circuit portion by applying a reverse bias voltage between electrodes to evaporate an electrode material.
  • Patent Document 3 discloses a technique for repairing a short-circuited part by irradiating a laser to the short-circuited part and removing it by melting.
  • An organic EL device has a sealing structure because it rapidly deteriorates due to oxygen or moisture.
  • a hollow sealing structure such as a sealing can is common.
  • the sealing structure that enables the device to be thinned includes a sealing structure that seals with a plate material such as a glass plate, or a thin film made of an inorganic material such as SiO 2 or SiN x and covers the entire organic EL element.
  • a sealing structure to stop.
  • a resin film is used for the substrate when the device is made flexible. Since the resin film cannot have high moisture-proof performance, it is necessary to form a moisture-proof film on the resin film surface.
  • an object of the present invention is to provide an organic electroluminescence device capable of preventing damage to the sealing layer and recurrence of leakage.
  • the organic electroluminescence device of the present invention includes a substrate, a first electrode layer provided on the substrate, an organic functional layer including an organic material provided on the first electrode layer, and the organic function A second electrode layer provided on the layer, a connection wiring provided on the substrate and connected to the first electrode layer or the second electrode layer, and the first and second electrodes And a sealing layer that covers the laminated structure including the connection wiring and the organic functional layer, and the connection wiring has a fuse portion that is broken by an overcurrent, and at least includes a void in the fuse portion. It is characterized by being in contact with a void-containing layer having a structure.
  • FIG. 2A is a plan view showing a partial configuration of the organic EL device according to Example 1 of the invention
  • FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2 (c) is an enlarged plan view of the fuse portion according to the embodiment of the present invention
  • 3A to 3F are plan views showing a method for manufacturing an organic EL device according to Example 1 of the invention.
  • 4 (a) to 4 (f) are respectively the 4a-4a line, 4b-4b line, 4c-4c line, 4d-4d line, 4e-4e line, 4f- in FIG. 3 (a) to (f). It is sectional drawing along 4f line.
  • An organic electroluminescent device includes a substrate, a first electrode layer provided on the substrate, an organic functional layer including an organic material provided on the first electrode layer, and an organic functional layer.
  • a second electrode layer provided on the substrate; connection wiring provided on the substrate and connected to the first electrode layer or the second electrode layer; first and second electrode layers; connection wiring; and organic And a sealing layer that covers the laminated structure including the functional layer.
  • the connection wiring has a fuse part that is broken by an overcurrent, and is in contact with a void-containing layer having a void-containing structure at least in the fuse part.
  • FIG. 1 is a plan view showing a configuration of an organic EL device 1 according to an embodiment of the present invention.
  • 2A is an enlarged plan view showing a partial configuration of the organic EL device 1
  • FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2A
  • FIG. It is the top view which expanded and displayed the fuse part which concerns on the Example of invention.
  • the configuration excluding the insulating film 26 and the sealing layer 50 is shown for easy understanding.
  • the organic EL device 1 is a display device having a so-called dot matrix type display form in which each of the plurality of organic EL elements 100 functions as a pixel. That is, on the substrate 10, the plurality of power supply wirings 22 and the plurality of second electrodes 40 are arranged so as to intersect with each other, and the organic EL element 100 is disposed in the vicinity of each of these intersections.
  • Each of the organic EL elements 100 has a stacked structure in which the first electrode 20, the organic functional layer 30, and the second electrode 40 are stacked.
  • the second electrode 40 extends in a direction orthogonal to the power supply wiring 22 and is commonly used for a plurality of organic EL elements.
  • Driving power is supplied to each of the organic EL elements 100 via the power supply wiring 22 and the connection wiring 24.
  • the organic EL device 1 is a so-called bottom emission type display device that extracts light generated in the organic functional layer 30 from the substrate 10 side.
  • the substrate 10 is made of a light transmissive material such as glass.
  • the first electrode 20 provided on the substrate 10 is an anode, and a conductive metal oxide having a light transmission property such as ITO (Indium Tin Oxide) or IZO (registered trademark) (Indium Zinc Oxide) having a thickness of about 100 nm. Is formed by patterning in a rectangular shape.
  • a power supply wiring 22 for supplying driving power to the organic EL element 100 is provided on the substrate 10 so as to be separated from the first electrode 20.
  • connection wiring 24 electrically connects the power supply wiring 22 and the first electrode 20 on the substrate 10.
  • the connection wiring 24 has a disconnection function that leads to disconnection when the current injected from the power supply wiring 22 into the organic EL element 100 becomes excessive, and blocks the short-circuit current from flowing into the organic EL element 100.
  • the connection wiring 24 can be disconnected at a desired current, for example, an alloy mainly composed of tin, bismuth, lead or the like, more specifically, a solder that is a tin-based alloy, wood metal, or rose alloy , Composed of a low melting point metal such as Newton alloy.
  • connection wiring 24 has a fuse portion 24a whose line width is narrower than that of the other portion, and thereby has a current withstand capability lower than that of the other portion. That is, when the organic EL element 100 is short-circuited and an overcurrent flows through the connection wiring 24, a disconnection occurs in the fuse portion 24a.
  • the fuse portion can be configured by making the layer thickness of the connection wiring 24 smaller than that of other portions or using a material having a lower melting point. Since each organic EL element 100 is connected to the connection wiring 24 having the fuse portion 24a, even if a short circuit occurs in a specific organic EL element, damage is not spread to other organic EL elements. It has become.
  • the organic functional layer 30 is formed by laminating a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer in this order on the first electrode 20.
  • the hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 10 nm
  • the hole transport layer is made of, for example, ⁇ -NPD (Bis [N- (1-naphthyl) -N-pheny] benzidine) having a thickness of about 50 nm.
  • the light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 50 nm
  • the electron injection layer is made of, for example, lithium fluoride (LiF) having a thickness of about 1 nm.
  • the second electrode 40 serving as a cathode is made of, for example, Al and is provided so as to cover the organic functional layer 30.
  • the second electrode 40 extends in a direction orthogonal to the extending direction of the power supply wiring 22.
  • the insulating layer 26 is formed on the substrate 10 on which the first electrode 20, the power supply wiring 22, and the connection wiring 24 are formed. At least the end of the first electrode 20, the upper surface of the connection wiring 24 excluding the fuse portion 24a, the power supply wiring 22 is covered, and the second electrode 40 and these are electrically insulated.
  • an alloy having a relatively low work function such as Mg—Ag or Al—Li is preferable.
  • the sealing layer 50 is composed of a thin film made of an inorganic material such as SiNx, SiON, SiOx, AlOx, or AlN.
  • the sealing layer 50 covers the respective components of the organic EL device 1 described above and plays a role of preventing entry of oxygen and moisture from the outside.
  • the sealing layer 50 is formed so as to be in close contact with the organic EL element 100.
  • a void-containing layer 60 made up of a plurality of voids is interposed between the sealing layer 50 and the fuse portion 24a. That is, the connection wiring 24 is in contact with the void-containing layer 60 at least in the portion where the fuse portion 24a is formed.
  • gap content layer 60 is a layer which has a space
  • Polysilazane is usually baked at about 400 ° C., but a porous SiO 2 film can be obtained by setting the baking temperature to about 100 ° C., for example.
  • the void-containing layer 60 can be formed by applying polysilazane on the fuse portion 24a and firing at a low temperature before forming the sealing layer 50.
  • the sealing layer 50 is formed so as to cover the surface of the void-containing layer 60.
  • connection wiring 24 is connected to the first electrode 20 that is an anode.
  • connection wiring 24 may be connected to the second electrode 40 that is a cathode. In this case, it is necessary to form an insulating film between the connection wiring 24 and the first electrode 20.
  • FIGS. 3 (a) to (f) are plan views showing a method for manufacturing the organic EL device 1 having the above-described configuration
  • FIGS. 4 (a) to (f) are views in FIGS. 3 (a) to (f), respectively.
  • FIG. 4 is a sectional view taken along lines 4a-4a, 4b-4b, 4c-4c, 4d-4d, 4e-4e, and 4f-4f.
  • a light-transmitting conductive metal oxide such as ITO or IZO is deposited on the light-transmitting substrate 10 made of glass or the like by a sputtering method, for example, to a thickness of about 100 nm, and this is patterned into a rectangular shape by etching.
  • the electrode 20 is formed (FIGS. 3A and 4A).
  • a power supply wiring 22 made of a low resistance metal such as Al, Cu, Ag, Au or the like is formed on the substrate 10 at a position separated from the first electrode 20 by the same method as that for the first electrode 20.
  • alloys such as tin, bismuth, lead, etc. as the main component by mask vapor deposition, etc., more specifically, tin-based alloys such as solder, low melting point metals such as wood metal, rose alloy, and Newton alloy are used.
  • the connection wiring 24 is formed. Patterning is performed to form the fuse portion 24 a on the connection wiring 24. That is, the connection wiring 24 is patterned so that the line width is locally narrowed in the fuse portion 24a (FIGS. 3B and 4B).
  • a photosensitive resist (or polyimide) that is a material of the insulating film 26 is applied so as to cover the surfaces of the first electrode 20, the power supply wiring 22, and the connection wiring 24. Thereafter, the photosensitive resist is patterned through exposure and development. Thereby, the insulating film 26 having an opening exposing the surface of the first electrode 20 and the surface of the fuse portion 24a is formed.
  • the material of the insulating film 26 and the patterning method of the insulating film 26 are not limited to this.
  • the insulating film 26 may be an inorganic material such as SiO 2 and can be patterned by a known lift-off method or an etching method using a resist mask formed by a known photolithography technique.
  • polysilazane is applied on the fuse portion 24a exposed in the opening of the insulating film 26, and is fired at a low temperature of about 100.degree.
  • a void-containing layer 60 made of a porous SiO 2 film covering the fuse portion 24a is formed (FIGS. 3C and 4C).
  • a hole injection layer, a hole transport layer, a light-emitting layer, and an electron injection layer are sequentially formed on the first electrode 20 exposed at the opening of the insulating film 26 by an ink-jet method, a mask vapor deposition method, or the like.
  • the functional layer 30 is formed.
  • the hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 10 nm
  • the hole transport layer is made of, for example, ⁇ -NPD (Bis [N- (1-naphthyl) -N-phenyl] benzidine) having a thickness of about 50 nm.
  • the light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 50 nm
  • the electron injection layer is made of, for example, lithium fluoride (LiF) having a thickness of about 1 nm (FIG. 3). (D), FIG. 4 (d)).
  • Al which is an electrode material
  • Al is deposited in a desired pattern on the structure obtained through each of the above steps by vapor deposition using a mask having an opening corresponding to the pattern of the second electrode 40.
  • the second electrode 40 connected to the organic functional layer 30 and extending in a direction perpendicular to the extending direction of the power supply wiring 22 is formed. That is, the organic functional layer 30 is sandwiched between the first electrode 20 and the second electrode 40, and the second electrode 40 is insulated from the power supply wiring 22 and the connection wiring 24 by the insulating layer 26 (FIG. 3 (e), FIG. 4 (e)).
  • the sealing layer 50 is formed.
  • the sealing layer 50 is formed in close contact with the organic EL element 100.
  • the sealing layer 50 is formed so as to cover the void-containing layer 60 (FIGS. 3 (f) and 4 (f)).
  • the organic EL device 1 is completed through the above steps.
  • the organic EL device 1 when an overcurrent flows from the power supply wiring 22 to the organic EL element 100 via the connection wiring 24 due to a short circuit between the first and second electrodes.
  • the connection wiring 24 In the fuse portion 24a, the connection wiring 24 is disconnected, and the current supply to the organic EL element 100 is interrupted.
  • the connection wiring 24 is broken, the metal constituting the connection wiring 24 generates heat and melts and evaporates. Since the void-containing layer 60 is porous, the molten metal of the connection wiring 24 impregnates the void-containing layer 60 by capillary action.
  • the void-containing layer 60 Since the void-containing layer 60 has a plurality of voids that take in the molten metal, the void-containing layer 60 does not expand or deform significantly by absorbing the molten metal. Therefore, the sealing layer 50 covering the void-containing layer 60 is not damaged with the disconnection of the connection wiring 24, and the sealing performance is not impaired. As described above, according to the organic EL device according to the present embodiment, even when the connection wiring 24 is disconnected by the fuse function, heat and impact due to the disconnection of the connection wiring are blocked by the void-containing layer 60. The layer 50 is not destroyed and the sealing performance is maintained. Moreover, since the disconnection location of the connection wiring 24 is absorbed by the space
  • the void-containing layer 60 is composed of a porous SiO 2 film, but is not limited thereto.
  • Several other structural examples of the void-containing layer 60 having a void-containing structure including a plurality of voids are shown below.
  • the void-containing layer 60 can be composed of a fibrous material having a fine three-dimensional network structure. Specifically, a glass fiber, a ceramic fiber, an organic fiber, a bio-nanofiber or the like woven in a mesh shape can be used. A plurality of voids are formed in the network structure.
  • the fibrous material may have a network structure using a binder made of novolac resin or the like. The network structure made of such a fibrous material is fixed on the fuse portion 24a using a resin-based bonding material or the like before the sealing layer 50 is formed.
  • the molten metal can be impregnated into the void-containing layer 60 by a capillary phenomenon, and the connection wiring 24 is caused by overcurrent. Even when a disconnection occurs, the performance of the sealing layer 50 can be maintained.
  • the void-containing layer 60 can be constituted by a layer containing a large number of granular materials such as glass particles and ceramic particles. In this case, a plurality of voids are formed between adjacent granular materials.
  • the granular material can be formed using a resin binder or the like. By adjusting the particle size of the granular material, the viscosity of the binder, etc., it is possible to form a film while leaving a void.
  • the void-containing layer 60 is composed of a layer containing a plurality of granular materials, it is possible to impregnate the molten metal into the void-containing layer 60 by capillary action, and the connection wiring 24 is disconnected due to overcurrent. Even when this occurs, the performance of the sealing layer 50 can be maintained.
  • the void-containing layer 60 is composed of a material that exhibits good wettability with respect to the wiring material, or at least has voids. It is preferable that the wall portion to be defined is covered with a material that exhibits good wettability with respect to the wiring material. For example, by using aluminum oxide or aluminum oxynitride exhibiting good wettability to the molten metal, the void-containing layer 60 is formed, or the partition walls separating the air gaps are coated with aluminum oxide or aluminum oxynitride. Wetability can be secured.
  • a connection wiring 24 having a first electrode 20, a power supply wiring 22, and a fuse portion 24a is formed on the substrate 10.
  • an insulating film 26 having an opening is formed on the first electrode 20 and the fuse portion 24a.
  • a bank (partition wall) 27 is formed so as to surround the fuse portion 24a.
  • the bank 27 is formed by depositing an organic material such as photosensitive polyimide and patterning it by an exposure / development process.
  • the bank 27 forms a partition wall that surrounds the fuse portion 24a.
  • the bank 27 can be formed on the first electrode 20 and the power supply wiring 22.
  • polysilazane is applied to the upper surface of the fuse portion 24a surrounded by the bank 27, and is fired at a low temperature of about 100.degree.
  • a void-containing layer 60 made of a porous SiO 2 film covering the fuse portion 24a is formed (FIG. 5A).
  • the organic functional layer 30 is formed on the first electrode 20.
  • the second electrode 40 connected to the organic functional layer 30 and extending in a direction orthogonal to the extending direction of the power supply wiring 22 is formed (FIG. 5B).
  • a sealing layer 50 made of an inorganic material is formed so as to entirely cover the structure obtained through the above steps.
  • the sealing layer 50 is formed in close contact with the organic EL element 100.
  • the sealing layer 50 is formed so as to cover the void-containing layer 60 (FIG. 5C).
  • the organic EL device 1 is completed through the above steps.
  • a similar bank may be used for patterning the second electrode 40.
  • This partition wall is formed in a non-formed portion of the second electrode 40 and can be formed on the void-containing layer 60.
  • FIG. 6 is a cross-sectional view showing a configuration of an organic EL device 2 according to Example 2 of the present invention.
  • the organic EL device 2 is different from the organic EL device according to Example 1 in that it has a sealing structure for sealing with a plate-shaped sealing plate.
  • the organic EL element 100, the power supply wiring 22, and the connection wiring 24 having the fuse portion 24a are provided, and the void-containing layer 60 is provided so as to cover the fuse portion 24a.
  • a sealing plate 54 made of a plate material such as a glass plate, a plastic plate, or a metal plate is provided on the substrate 10 via an adhesive layer 52.
  • the adhesive layer 52 is made of, for example, a thermosetting or ultraviolet curable silicone resin.
  • the organic EL element 100 is embedded in the adhesive layer 52.
  • the gap-containing layer 60 is provided on the fuse portion 24a as in the case of the film sealing structure.
  • the adhesive layer 52 and the sealing member 54 covering the void-containing layer 60 are not damaged, the sealing performance is not impaired, and the leak does not recur.
  • FIG. 7 is a plan view showing a configuration of the organic EL device 3 in which the arrangement of electrodes, wirings, and organic EL elements is modified.
  • connection wires 24 are connected to one of the power supply wires 22 formed on the substrate 10.
  • the plurality of connection wirings 24 are juxtaposed at equal intervals in a state of being collected at one place (or a plurality of places), and each has a fuse portion 24a as in the above embodiments.
  • Each of the connection wirings 24 is connected to the first electrode 20 patterned in a strip shape.
  • a strip-shaped organic functional layer 30 is also provided on the first electrode 20.
  • a second electrode 40 common to the plurality of organic EL elements 100 is provided on the organic functional layer 30. The second electrode 40 extends in parallel with the extending direction of the power supply wiring 22.
  • the 2nd electrode 40 is isolate
  • FIG. According to such a layout in which the connection wirings 24 are gathered in one place, the fuse portions 24a can be gathered in one place, so that patterning of the sealing layer (that is, formation of the void layer) is facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This organic electroluminescence device contains: a substrate; a first electrode layer disposed on the substrate; a connection wire disposed on the substrate and connected to the first electrode layer; an organic functional layer disposed on the first electrode layer and containing an organic material; a second electrode layer disposed on the organic functional layer; and a sealing layer for covering a laminate structure containing the first and second electrode layers, the connection wire, and the organic functional layer. The connection wire has a fuse part for disconnecting when there is an over-current, and comes into contact with a gap-containing layer having a gap-containing structure at least at the fuse part.

Description

有機エレクトロルミネッセンスデバイスOrganic electroluminescence device
 本発明は、有機エレクトロルミネッセンスデバイスに関する。 The present invention relates to an organic electroluminescence device.
従来技術Conventional technology
 有機エレクトロルミネッセンスデバイス(以下有機ELデバイスと称する)は、自己発光型の面発光デバイスであり、視認性が高い、低電圧駆動が可能、ブロードな発光スペクトルを有するといった理由から、ディスプレイや照明用途への実用化の研究が積極的に行われている。有機ELデバイスは、例えば、ガラス基板上に第1電極(陽極)、正孔輸送層、発光層、電子輸送層、第2電極(陰極)を順次積層して構成される。有機ELデバイスは電流注入によりエレクトロルミネッセンスを得るデバイスであり、液晶ディスプレイのような電界デバイスに比して大きな電流を流す必要がある。 An organic electroluminescence device (hereinafter referred to as an organic EL device) is a self-luminous surface light-emitting device, and has high visibility, can be driven at a low voltage, and has a broad emission spectrum. Research into the practical use of this is being actively conducted. The organic EL device is configured, for example, by sequentially laminating a first electrode (anode), a hole transport layer, a light emitting layer, an electron transport layer, and a second electrode (cathode) on a glass substrate. An organic EL device is a device that obtains electroluminescence by current injection, and requires a larger current to flow than an electric field device such as a liquid crystal display.
 有機ELデバイスでは、陽極と陰極との間に設けられる有機機能層の層厚がサブミクロンオーダーであるため、微小なゴミや有機機能層の欠陥に起因して電流リークが発生する可能性がある。例えば、ディスプレイ装置において、画素を構成する1つのセルに電流リークが生じると、周辺セルにもダメージが及ぶ可能性がある。 In the organic EL device, since the layer thickness of the organic functional layer provided between the anode and the cathode is on the order of submicron, current leakage may occur due to minute dust or defects in the organic functional layer. . For example, in a display device, if a current leak occurs in one cell that constitutes a pixel, the peripheral cell may be damaged.
 このような周辺セルへのダメージの波及を防止する技術として、特許文献1には、複数の画素の各々に、短絡時における過電流によって断線に至る断線機能を有する電極を設けることにより短絡電流を遮断する手法が記載されている。 As a technique for preventing such damage from spreading to peripheral cells, Patent Document 1 discloses that each of a plurality of pixels is provided with an electrode having a disconnection function that leads to disconnection due to an overcurrent at the time of a short circuit. A technique for blocking is described.
 特許文献2には、電極間に逆バイアス電圧を印加して電極材料を蒸発させることにより短絡箇所を自己修復する技術が記載されている。 Patent Document 2 describes a technique for self-repairing a short-circuit portion by applying a reverse bias voltage between electrodes to evaporate an electrode material.
 特許文献3には、短絡箇所にレーザを照射して溶融除去することにより、短絡箇所の修復を行う技術を開示している。 Patent Document 3 discloses a technique for repairing a short-circuited part by irradiating a laser to the short-circuited part and removing it by melting.
特開2001-196190号公報JP 2001-196190 A 特開2004-214084号公報Japanese Patent Laid-Open No. 2004-214084 特開2003-229262号公報JP 2003-229262 A
 有機ELデバイスは、酸素や水分によって急速に劣化することから封止構造を有する。封止構造としては、封止缶の如き中空封止構造が一般的である。しかしながら、近年デバイスの薄型化やフレキシブル化の要求が高まりつつあるところ、中空封止構造ではこれらの要求に対応するのが困難である。デバイスの薄型化を可能とする封止構造としては、ガラス板等の板材で封止を行う封止構造やSiO2やSiNx等の無機材料からなる薄膜で有機EL素子全体を被覆して封止する封止構造がある。一方、デバイスのフレキシブル化に対応する場合、基板に樹脂フィルムを使用する。樹脂フィルムは高い防湿性能を望めないため、樹脂フィルム表面に防湿膜を形成する必要がある。 An organic EL device has a sealing structure because it rapidly deteriorates due to oxygen or moisture. As the sealing structure, a hollow sealing structure such as a sealing can is common. However, in recent years, there is an increasing demand for thinner and more flexible devices, and it is difficult to meet these requirements with a hollow sealing structure. The sealing structure that enables the device to be thinned includes a sealing structure that seals with a plate material such as a glass plate, or a thin film made of an inorganic material such as SiO 2 or SiN x and covers the entire organic EL element. There is a sealing structure to stop. On the other hand, a resin film is used for the substrate when the device is made flexible. Since the resin film cannot have high moisture-proof performance, it is necessary to form a moisture-proof film on the resin film surface.
 このような膜封止構造を有するデバイスやフレキシブル基板を用いたデバイスにおいて、上記特許文献1に記載されているような過電流により断線を生じる電極を設けると、以下のような問題が生じることが考えられる。すなわち、過電流により電極が断線に至る際には電極材料は変形・膨張を伴って溶融する。上記したような固体封止構造または膜封止構造を有するデバイスやフレキシブル基板を有するデバイスにおいては、デバイスを構成する各層が密着して形成されるため、溶融した電極材料が飛散する空間が存在しない。従って、断線機能を有する電極に隣接して封止層や防湿膜が設けられている場合、電極が断線に至る際の衝撃や熱によって封止層や防湿膜が破壊され、封止性能または防湿性能が害されるおそれがある。また、一旦断線に至った電極が封止層からの押圧によって再度繋がって、リークが再発する懸念もある。 In a device having such a film sealing structure or a device using a flexible substrate, if an electrode that causes disconnection due to overcurrent as described in Patent Document 1 is provided, the following problems may occur. Conceivable. That is, when the electrode breaks due to overcurrent, the electrode material melts with deformation and expansion. In a device having a solid sealing structure or a film sealing structure as described above or a device having a flexible substrate, since each layer constituting the device is formed in close contact, there is no space for the molten electrode material to scatter. . Therefore, when a sealing layer or a moisture-proof film is provided adjacent to an electrode having a disconnection function, the sealing layer or the moisture-proof film is destroyed by impact or heat when the electrode is disconnected, resulting in a sealing performance or moisture-proof property. Performance may be harmed. In addition, there is a concern that the electrode once disconnected is reconnected by pressing from the sealing layer, and the leak recurs.
 本発明は、上記した点に鑑みてなされたものであり、過電流が流れたときに断線に至る断線機能を有する配線を備えた有機エレクトロルミネッセンスデバイスにおいて、上記配線が過電流により断線に至った場合でも、封止層の損傷およびリークの再発を防止することができる有機エレクトロルミネッセンスデバイスを提供することを目的とする。 The present invention has been made in view of the above points, and in an organic electroluminescence device including a wiring having a disconnection function that leads to disconnection when an overcurrent flows, the wiring has been disconnected due to an overcurrent. Even in such a case, an object of the present invention is to provide an organic electroluminescence device capable of preventing damage to the sealing layer and recurrence of leakage.
 本発明の有機エレクトロルミネッセンスデバイスは、基板と、前記基板上に設けられた第1の電極層と、前記第1の電極層の上に設けられた有機材料を含む有機機能層と、前記有機機能層の上に設けられた第2の電極層と、前記基板上に設けられて前記第1の電極層または前記第2の電極層に接続された接続配線と、前記第1および第2の電極層、前記接続配線および前記有機機能層を含む積層構造体を被覆する封止層と、を含み、前記接続配線は、過電流により断線に至るヒューズ部を有し、少なくとも前記ヒューズ部において空隙含有構造を有する空隙含有層と接していることを特徴としている。 The organic electroluminescence device of the present invention includes a substrate, a first electrode layer provided on the substrate, an organic functional layer including an organic material provided on the first electrode layer, and the organic function A second electrode layer provided on the layer, a connection wiring provided on the substrate and connected to the first electrode layer or the second electrode layer, and the first and second electrodes And a sealing layer that covers the laminated structure including the connection wiring and the organic functional layer, and the connection wiring has a fuse portion that is broken by an overcurrent, and at least includes a void in the fuse portion. It is characterized by being in contact with a void-containing layer having a structure.
本発明の実施例に係る有機ELデバイスの構成を示す平面図である。It is a top view which shows the structure of the organic EL device which concerns on the Example of this invention. 図2(a)は本発明の実施例1に係る有機ELデバイスの部分的な構成を示す平面図、図2(b)は図2(a)における2b-2b線に沿った断面図、図2(c)は本発明の実施例に係るヒューズ部を拡大した平面図である。2A is a plan view showing a partial configuration of the organic EL device according to Example 1 of the invention, FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2 (c) is an enlarged plan view of the fuse portion according to the embodiment of the present invention. 図3(a)~(f)は、本発明の実施例1に係る有機ELデバイスの製造方法を示す平面図である。3A to 3F are plan views showing a method for manufacturing an organic EL device according to Example 1 of the invention. 図4(a)~(f)は、それぞれ、図3(a)~(f)における4a-4a線、4b-4b線、4c-4c線、4d-4d線、4e-4e線、4f-4f線に沿った断面図である。4 (a) to 4 (f) are respectively the 4a-4a line, 4b-4b line, 4c-4c line, 4d-4d line, 4e-4e line, 4f- in FIG. 3 (a) to (f). It is sectional drawing along 4f line. 本発明の実施例1に係る有機ELデバイスの他の製造方法を示す断面図である。It is sectional drawing which shows the other manufacturing method of the organic EL device which concerns on Example 1 of this invention. 本発明の実施例2に係る有機ELデバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the organic EL device which concerns on Example 2 of this invention. 本発明の他の実施例に係る有機ELデバイスの構成を示す平面図である。It is a top view which shows the structure of the organic EL device which concerns on the other Example of this invention.
 本発明に係る有機エレクトロルミネッセンスデバイスは、基板と、基板上に設けられた第1の電極層と、第1の電極層の上に設けられた有機材料を含む有機機能層と、有機機能層の上に設けられた第2の電極層と、基板上に設けられて第1の電極層または第2の電極層に接続された接続配線と、第1および第2の電極層、接続配線および有機機能層を含む積層構造体を被覆する封止層と、を含む。接続配線は、過電流により断線に至るヒューズ部を有し、少なくともヒューズ部において空隙含有構造を有する空隙含有層と接している。このような、本発明の構成によれば、膜封止構造を有するデバイスに断線機能を有する配線を導入した場合において、現実に配線に断線が生じた場合でも、封止層の損傷を防ぐことができ、封止層の性能維持が可能となる。 An organic electroluminescent device according to the present invention includes a substrate, a first electrode layer provided on the substrate, an organic functional layer including an organic material provided on the first electrode layer, and an organic functional layer. A second electrode layer provided on the substrate; connection wiring provided on the substrate and connected to the first electrode layer or the second electrode layer; first and second electrode layers; connection wiring; and organic And a sealing layer that covers the laminated structure including the functional layer. The connection wiring has a fuse part that is broken by an overcurrent, and is in contact with a void-containing layer having a void-containing structure at least in the fuse part. According to such a configuration of the present invention, when a wiring having a disconnection function is introduced into a device having a film sealing structure, damage to the sealing layer is prevented even when the wiring is actually disconnected. And the performance of the sealing layer can be maintained.
 以下、本発明の実施例について図面を参照しつつ説明する。尚、以下に示す図において、実質的に同一又は等価な構成要素、部分には同一の参照符を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings shown below, substantially the same or equivalent components and parts are denoted by the same reference numerals.
 図1は、本発明の実施例に係る有機ELデバイス1の構成を示す平面図である。図2(a)は有機ELデバイス1の部分的な構成を示す拡大平面図、図2(b)は図2(a)における2b-2b線に沿った断面図、図2(c)は本発明の実施例に係るヒューズ部を拡大表示した平面図である。尚、図1においては、理解を容易にするために、絶縁膜26および封止層50を除いた構成が示されている。 FIG. 1 is a plan view showing a configuration of an organic EL device 1 according to an embodiment of the present invention. 2A is an enlarged plan view showing a partial configuration of the organic EL device 1, FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2A, and FIG. It is the top view which expanded and displayed the fuse part which concerns on the Example of invention. In FIG. 1, the configuration excluding the insulating film 26 and the sealing layer 50 is shown for easy understanding.
 有機ELデバイス1は、複数の有機EL素子100の各々が画素として機能する所謂ドットマトリクス方式の表示形態を有する表示デバイスである。すなわち、基板10には、複数の給電配線22と、複数の第2電極40とが互いに交差するように配置され、これらの各交差部の近傍に有機EL素子100が配置されている。有機EL素子100の各々は、第1電極20、有機機能層30、第2電極40を積層した積層構造を有する。第2電極40は、給電配線22と直交する方向に伸長しており複数の有機EL素子に共通に用いられる。有機EL素子100の各々には、給電配線22および接続配線24を介して駆動電力が供給される。有機ELデバイス1は、有機機能層30において生成された光を基板10側から取り出す所謂ボトムエミッション型の表示デバイスである。 The organic EL device 1 is a display device having a so-called dot matrix type display form in which each of the plurality of organic EL elements 100 functions as a pixel. That is, on the substrate 10, the plurality of power supply wirings 22 and the plurality of second electrodes 40 are arranged so as to intersect with each other, and the organic EL element 100 is disposed in the vicinity of each of these intersections. Each of the organic EL elements 100 has a stacked structure in which the first electrode 20, the organic functional layer 30, and the second electrode 40 are stacked. The second electrode 40 extends in a direction orthogonal to the power supply wiring 22 and is commonly used for a plurality of organic EL elements. Driving power is supplied to each of the organic EL elements 100 via the power supply wiring 22 and the connection wiring 24. The organic EL device 1 is a so-called bottom emission type display device that extracts light generated in the organic functional layer 30 from the substrate 10 side.
 基板10は、ガラス等の光透過性を有する材料により構成される。基板10上に設けられた第1電極20は陽極であり、厚さ100nm程度のITO(Indium Tin Oxide)またはIZO(登録商標)(Indium Zinc Oxide)等の光透過性を有する導電性金属酸化物を矩形状にパターニングすることにより形成される。また、基板10上には、有機EL素子100に駆動電力を供給するための給電配線22が第1電極20と離間して設けられている。 The substrate 10 is made of a light transmissive material such as glass. The first electrode 20 provided on the substrate 10 is an anode, and a conductive metal oxide having a light transmission property such as ITO (Indium Tin Oxide) or IZO (registered trademark) (Indium Zinc Oxide) having a thickness of about 100 nm. Is formed by patterning in a rectangular shape. A power supply wiring 22 for supplying driving power to the organic EL element 100 is provided on the substrate 10 so as to be separated from the first electrode 20.
 接続配線24は、基板10上において給電配線22と第1電極20とを電気的に接続する。接続配線24は、給電配線22から有機EL素子100に注入される電流が過大となったときに断線に至る断線機能を有し、有機EL素子100への短絡電流の流入を遮断する。接続配線24は、所望の電流で断線し得るように、例えば、スズ、ビスマス、鉛などを主成分とした合金、より具体的には、錫基の合金であるはんだや、ウッドメタル、ローズ合金、ニュートン合金などの低融点金属により構成される。また、接続配線24は、線幅が他の部分よりも狭く、これによって電流耐量が他の部分よりも低くなっているヒューズ部24aを有する。すなわち、有機EL素子100が短絡し、接続配線24に過電流が流れた場合、ヒューズ部24aにおいて断線が生じるようになっている。尚、接続配線24において層厚を他の部分よりも小さくしたり、より融点の低い材料を用いることによりヒューズ部を構成することも可能である。各有機EL素子100にはヒューズ部24aを有する接続配線24が接続されているので、特定の有機EL素子に短絡が生じた場合であっても、他の有機EL素子に被害が波及しないようになっている。 The connection wiring 24 electrically connects the power supply wiring 22 and the first electrode 20 on the substrate 10. The connection wiring 24 has a disconnection function that leads to disconnection when the current injected from the power supply wiring 22 into the organic EL element 100 becomes excessive, and blocks the short-circuit current from flowing into the organic EL element 100. The connection wiring 24 can be disconnected at a desired current, for example, an alloy mainly composed of tin, bismuth, lead or the like, more specifically, a solder that is a tin-based alloy, wood metal, or rose alloy , Composed of a low melting point metal such as Newton alloy. In addition, the connection wiring 24 has a fuse portion 24a whose line width is narrower than that of the other portion, and thereby has a current withstand capability lower than that of the other portion. That is, when the organic EL element 100 is short-circuited and an overcurrent flows through the connection wiring 24, a disconnection occurs in the fuse portion 24a. It is to be noted that the fuse portion can be configured by making the layer thickness of the connection wiring 24 smaller than that of other portions or using a material having a lower melting point. Since each organic EL element 100 is connected to the connection wiring 24 having the fuse portion 24a, even if a short circuit occurs in a specific organic EL element, damage is not spread to other organic EL elements. It has become.
 有機機能層30は、第1電極20上にホール注入層、ホール輸送層、発光層、電子注入層をこの順で積層することにより形成される。ホール注入層は例えば厚さ10nm程度の銅フタロシアニン(CuPc)により構成され、ホール輸送層は例えば厚さ50nm程度のα-NPD(Bis[N-(1-naphthyl)-N-pheny]benzidine)により構成され、発光層は例えば厚さ50nm程度のAlq3(tris-(8-hydroxyquinoline)aluminum)により構成され、電子注入層は例えば厚さ1nm程度のフッ化リチウム(LiF)により構成される。 The organic functional layer 30 is formed by laminating a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer in this order on the first electrode 20. The hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 10 nm, and the hole transport layer is made of, for example, α-NPD (Bis [N- (1-naphthyl) -N-pheny] benzidine) having a thickness of about 50 nm. The light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 50 nm, and the electron injection layer is made of, for example, lithium fluoride (LiF) having a thickness of about 1 nm.
 陰極である第2電極40は、例えばAl等からなり、有機機能層30を覆うように設けられる。第2電極40は、給電配線22の伸長方向に対して直交する方向に伸長している。絶縁層26は、第1電極20、給電配線22および接続配線24が形成された基板10上に形成され、少なくとも第1電極20の端部、ヒューズ部24aを除く接続配線24の上面、給電配線22の上面を覆い、第2電極40とこれらを電気的に絶縁する。第2電極40の他の材料としては、Mg-AgやAl-Li等の比較的仕事関数の低い合金が好適である。 The second electrode 40 serving as a cathode is made of, for example, Al and is provided so as to cover the organic functional layer 30. The second electrode 40 extends in a direction orthogonal to the extending direction of the power supply wiring 22. The insulating layer 26 is formed on the substrate 10 on which the first electrode 20, the power supply wiring 22, and the connection wiring 24 are formed. At least the end of the first electrode 20, the upper surface of the connection wiring 24 excluding the fuse portion 24a, the power supply wiring 22 is covered, and the second electrode 40 and these are electrically insulated. As another material of the second electrode 40, an alloy having a relatively low work function such as Mg—Ag or Al—Li is preferable.
 封止層50は、SiNx、SiON、SiOx、AlOx、AlN等の無機材料からなる薄膜により構成される。封止層50は、上記した有機ELデバイス1の各構成部分を全体的に覆い、外部からの酸素や水分の侵入を防止する役割を担う。封止層50は、有機EL素子100に密着するように形成される。一方、封止層50とヒューズ部24aとの間には、複数の空隙の集合体からなる空隙含有層60が介在している。すなわち、接続配線24は少なくともヒューズ部24aの形成部分において空隙含有層60と接している。 The sealing layer 50 is composed of a thin film made of an inorganic material such as SiNx, SiON, SiOx, AlOx, or AlN. The sealing layer 50 covers the respective components of the organic EL device 1 described above and plays a role of preventing entry of oxygen and moisture from the outside. The sealing layer 50 is formed so as to be in close contact with the organic EL element 100. On the other hand, a void-containing layer 60 made up of a plurality of voids is interposed between the sealing layer 50 and the fuse portion 24a. That is, the connection wiring 24 is in contact with the void-containing layer 60 at least in the portion where the fuse portion 24a is formed.
 空隙含有層60は、空隙含有構造を有する層であり、例えば、内部に多数の空隙を有する多孔質材料により構成される。より具体的には、空隙含有層60は、例えば、ポリシラザンなどの絶縁性を有する材料を低温で焼成することによって形成され得るポーラスなSiO2膜等により構成される。ポリシラザンは、有機溶剤に可溶な無機ポリマーであり、有機溶媒溶液を塗布液として用い、大気中または水蒸気含有雰囲気で焼成することにより、アモルファスSiO2膜が得られる。ポリシラザンは通常400℃程度で焼成を行うが、焼成温度を例えば100℃程度とすることにより多孔質のSiO2膜が得られる。空隙含有層60は、封止層50を形成する前にヒューズ部24a上にポリシラザンを塗布し、低温焼成して形成することができる。封止層50は、空隙含有層60の表面をも覆うように形成される。 The space | gap content layer 60 is a layer which has a space | gap content structure, for example, is comprised by the porous material which has many space | gap inside. More specifically, the void-containing layer 60 is composed of, for example, a porous SiO 2 film that can be formed by baking an insulating material such as polysilazane at a low temperature. Polysilazane is an inorganic polymer that is soluble in an organic solvent, and an amorphous SiO 2 film can be obtained by baking in the atmosphere or water vapor-containing atmosphere using an organic solvent solution as a coating solution. Polysilazane is usually baked at about 400 ° C., but a porous SiO 2 film can be obtained by setting the baking temperature to about 100 ° C., for example. The void-containing layer 60 can be formed by applying polysilazane on the fuse portion 24a and firing at a low temperature before forming the sealing layer 50. The sealing layer 50 is formed so as to cover the surface of the void-containing layer 60.
 尚、上記した例では、接続配線24は、陽極である第1電極20に接続される構成としたが、接続配線24は、陰極である第2電極40に接続されていてもよい。この場合、接続配線24と第1電極20との間に絶縁膜を形成する必要がある。 In the above example, the connection wiring 24 is connected to the first electrode 20 that is an anode. However, the connection wiring 24 may be connected to the second electrode 40 that is a cathode. In this case, it is necessary to form an insulating film between the connection wiring 24 and the first electrode 20.
 図3(a)~(f)は、上記した構成を有する有機ELデバイス1の製造方法を示す平面図、図4(a)~(f)はそれぞれ、図3(a)~(f)における4a-4a線、4b-4b線、4c-4c線、4d-4d線、4e-4e、4f-4f線に沿った断面図である。 3 (a) to (f) are plan views showing a method for manufacturing the organic EL device 1 having the above-described configuration, and FIGS. 4 (a) to (f) are views in FIGS. 3 (a) to (f), respectively. FIG. 4 is a sectional view taken along lines 4a-4a, 4b-4b, 4c-4c, 4d-4d, 4e-4e, and 4f-4f.
 ガラス等からなる光透過性を有する基板10上に例えばスパッタ法によりITOやIZO等の光透過性を有する導電性金属酸化物を100nm程度堆積させ、エッチングによりこれを矩形状にパターニングして第1電極20を形成する(図3(a)、図4(a))。 A light-transmitting conductive metal oxide such as ITO or IZO is deposited on the light-transmitting substrate 10 made of glass or the like by a sputtering method, for example, to a thickness of about 100 nm, and this is patterned into a rectangular shape by etching. The electrode 20 is formed (FIGS. 3A and 4A).
 次に、第1電極20の場合と同様の手法により、基板10上にAl、Cu、Ag、Au等の低抵抗金属からなる給電配線22を第1電極20から離間した位置に形成する。続いて、マスク蒸着法などによりスズ、ビスマス、鉛などを主成分とした合金、より具体的には、錫基の合金であるはんだや、ウッドメタル、ローズ合金、ニュートン合金などの低融点金属からなる接続配線24を形成する。接続配線24上にヒューズ部24aを形成するべくパターニングを行う。すなわち、接続配線24は、ヒューズ部24aにおいて線幅が局所的に狭くなるようにパターニングされる(図3(b)、図4(b))。 Next, a power supply wiring 22 made of a low resistance metal such as Al, Cu, Ag, Au or the like is formed on the substrate 10 at a position separated from the first electrode 20 by the same method as that for the first electrode 20. Subsequently, alloys such as tin, bismuth, lead, etc. as the main component by mask vapor deposition, etc., more specifically, tin-based alloys such as solder, low melting point metals such as wood metal, rose alloy, and Newton alloy are used. The connection wiring 24 is formed. Patterning is performed to form the fuse portion 24 a on the connection wiring 24. That is, the connection wiring 24 is patterned so that the line width is locally narrowed in the fuse portion 24a (FIGS. 3B and 4B).
 次に、第1電極20、給電配線22、接続配線24の表面を覆うように絶縁膜26の材料である感光性レジスト(又はポリイミド)を塗布する。その後、露光、現像処理を経て、感光性レジストをパターニングする。これにより、第1電極20の表面およびヒューズ部24aの表面を露出せしめる開口部を有する絶縁膜26が形成される。尚、絶縁膜26の材料や、絶縁膜26のパターニング方法は、これに限定されるものではない。例えば、絶縁膜26はSiO2などの無機材料であってもよく、公知のリフトオフ法や、公知のフォトリソグラフィ技術で形成されたレジストマスクを用いたエッチング法によりパターニングすることも可能である。 Next, a photosensitive resist (or polyimide) that is a material of the insulating film 26 is applied so as to cover the surfaces of the first electrode 20, the power supply wiring 22, and the connection wiring 24. Thereafter, the photosensitive resist is patterned through exposure and development. Thereby, the insulating film 26 having an opening exposing the surface of the first electrode 20 and the surface of the fuse portion 24a is formed. The material of the insulating film 26 and the patterning method of the insulating film 26 are not limited to this. For example, the insulating film 26 may be an inorganic material such as SiO 2 and can be patterned by a known lift-off method or an etching method using a resist mask formed by a known photolithography technique.
 次に、絶縁膜26の開口部において露出しているヒューズ部24a上にポリシラザンを塗布し、約100℃程度で低温焼成する。これにより、ヒューズ部24aを覆うポーラスなSiO2膜からなる空隙含有層60を形成する(図3(c)、図4(c))。 Next, polysilazane is applied on the fuse portion 24a exposed in the opening of the insulating film 26, and is fired at a low temperature of about 100.degree. As a result, a void-containing layer 60 made of a porous SiO 2 film covering the fuse portion 24a is formed (FIGS. 3C and 4C).
 次に、インクジェット法やマスク蒸着法等により、絶縁膜26の開口部において露出している第1電極20上にホール注入層、ホール輸送層、発光層、電子注入層を順次成膜して有機機能層30を形成する。ホール注入層は例えば厚さ10nm程度の銅フタロシアニン(CuPc)により構成され、ホール輸送層は例えば厚さ50nm程度のα-NPD (Bis[N-(1-naphthyl)-N-phenyl]benzidine)により構成され、発光層は例えば厚さ50nm程度のAlq3(tris-(8-hydroxyquinoline)aluminum)により構成され、電子注入層は例えば厚さ1nm程度のフッ化リチウム(LiF)により構成される(図3(d)、図4(d))。 Next, a hole injection layer, a hole transport layer, a light-emitting layer, and an electron injection layer are sequentially formed on the first electrode 20 exposed at the opening of the insulating film 26 by an ink-jet method, a mask vapor deposition method, or the like. The functional layer 30 is formed. The hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 10 nm, and the hole transport layer is made of, for example, α-NPD (Bis [N- (1-naphthyl) -N-phenyl] benzidine) having a thickness of about 50 nm. The light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 50 nm, and the electron injection layer is made of, for example, lithium fluoride (LiF) having a thickness of about 1 nm (FIG. 3). (D), FIG. 4 (d)).
 次に、第2電極40のパターンに対応する開口部を有するマスクを用いて蒸着法等により上記各工程を経て得られた構造体の上に電極材料であるAlを所望のパターンに堆積させる。これにより、有機機能層30に接続され且つ給電配線22の伸長方向と直交する方向に伸長する第2電極40が形成される。すなわち、有機機能層30は、第1電極20と第2電極40に挟持され、第2電極40は、絶縁層26により給電配線22および接続配線24から絶縁される(図3(e)、図4(e))。 Next, Al, which is an electrode material, is deposited in a desired pattern on the structure obtained through each of the above steps by vapor deposition using a mask having an opening corresponding to the pattern of the second electrode 40. Thereby, the second electrode 40 connected to the organic functional layer 30 and extending in a direction perpendicular to the extending direction of the power supply wiring 22 is formed. That is, the organic functional layer 30 is sandwiched between the first electrode 20 and the second electrode 40, and the second electrode 40 is insulated from the power supply wiring 22 and the connection wiring 24 by the insulating layer 26 (FIG. 3 (e), FIG. 4 (e)).
 次に、等方的な成膜が可能なプラズマCVD法などにより、上記各工程を経て得られた構造体を全体的に覆うようにSiNx、SiON、SiOx、AlOx、AlN等の無機材料からなる封止層50を形成する。封止層50は、有機EL素子100に密着して形成される。封止層50は、空隙含有層60をも被覆するように形成される(図3(f)、図4(f))。以上の各工程を経ることにより有機ELデバイス1が完成する。 Next, it is made of an inorganic material such as SiNx, SiON, SiOx, AlOx, AlN so as to entirely cover the structure obtained through each of the above steps by a plasma CVD method capable of isotropic film formation. The sealing layer 50 is formed. The sealing layer 50 is formed in close contact with the organic EL element 100. The sealing layer 50 is formed so as to cover the void-containing layer 60 (FIGS. 3 (f) and 4 (f)). The organic EL device 1 is completed through the above steps.
 本実施例に係る有機ELデバイス1によれば、第1および第2電極間のショート等に起因して、給電配線22から接続配線24を経由して有機EL素子100に過電流が流れた場合、ヒューズ部24aにおいて接続配線24が断線し、有機EL素子100への電流供給が遮断される。接続配線24が断線に至る際、接続配線24を構成する金属は、発熱して溶融・蒸発する。空隙含有層60は、多孔質であるため溶融した接続配線24の金属は、毛細管現象により空隙含有層60に含浸する。空隙含有層60は、溶融した金属を取り込む複数の空隙を有する故、溶融金属を吸収したことにより空隙含有層60が膨張したり、形状が大きく変形することはない。従って、接続配線24の断線に伴って空隙含有層60上を覆う封止層50が損傷することもなく、封止性能が害されることもない。このように、本実施例に係る有機ELデバイスによれば、ヒューズ機能によって接続配線24が断線した場合でも、接続配線の断線に伴う熱や衝撃が空隙含有層60によって遮断されるので、封止層50は破壊されず、封止性能が維持される。また、接続配線24の断線箇所は、空隙含有層60に吸収される故、断線箇所が再度繋がることはなく、リークが再発することはない。 According to the organic EL device 1 according to the present embodiment, when an overcurrent flows from the power supply wiring 22 to the organic EL element 100 via the connection wiring 24 due to a short circuit between the first and second electrodes. In the fuse portion 24a, the connection wiring 24 is disconnected, and the current supply to the organic EL element 100 is interrupted. When the connection wiring 24 is broken, the metal constituting the connection wiring 24 generates heat and melts and evaporates. Since the void-containing layer 60 is porous, the molten metal of the connection wiring 24 impregnates the void-containing layer 60 by capillary action. Since the void-containing layer 60 has a plurality of voids that take in the molten metal, the void-containing layer 60 does not expand or deform significantly by absorbing the molten metal. Therefore, the sealing layer 50 covering the void-containing layer 60 is not damaged with the disconnection of the connection wiring 24, and the sealing performance is not impaired. As described above, according to the organic EL device according to the present embodiment, even when the connection wiring 24 is disconnected by the fuse function, heat and impact due to the disconnection of the connection wiring are blocked by the void-containing layer 60. The layer 50 is not destroyed and the sealing performance is maintained. Moreover, since the disconnection location of the connection wiring 24 is absorbed by the space | gap content layer 60, a disconnection location is not connected again and a leak does not recur.
 上記した実施例では、空隙含有層60をポーラスなSiO2膜により構成したが、これに限定されるものではない。以下に複数の空隙を含んだ空隙含有構造を有する空隙含有層60の他の構成例をいくつか示す。 In the above-described embodiment, the void-containing layer 60 is composed of a porous SiO 2 film, but is not limited thereto. Several other structural examples of the void-containing layer 60 having a void-containing structure including a plurality of voids are shown below.
 空隙含有層60は、微細な三次元網目構造を有する繊維状材料により構成することができる。具体的には、ガラス繊維、セラミック繊維、有機繊維、バイオナノファイバ等を網目状に織ったものなどが挙げられる。網目構造内において複数の空隙が形成される。上記の繊維状材料は、ノボラック樹脂等からなるバインダを用いて網目構造が保持されていてもよい。このような繊維状材料からなる網目構造体は、封止層50を形成する前に樹脂系接合材等を用いてヒューズ部24a上に固定される。このように、空隙含有層60を三次元網目構造を有する繊維状材料で構成する場合でも、溶融した金属を毛細管現象によって空隙含有層60に含浸させることが可能であり、過電流により接続配線24に断線が生じた場合でも、封止層50の性能維持が可能となる。 The void-containing layer 60 can be composed of a fibrous material having a fine three-dimensional network structure. Specifically, a glass fiber, a ceramic fiber, an organic fiber, a bio-nanofiber or the like woven in a mesh shape can be used. A plurality of voids are formed in the network structure. The fibrous material may have a network structure using a binder made of novolac resin or the like. The network structure made of such a fibrous material is fixed on the fuse portion 24a using a resin-based bonding material or the like before the sealing layer 50 is formed. Thus, even when the void-containing layer 60 is formed of a fibrous material having a three-dimensional network structure, the molten metal can be impregnated into the void-containing layer 60 by a capillary phenomenon, and the connection wiring 24 is caused by overcurrent. Even when a disconnection occurs, the performance of the sealing layer 50 can be maintained.
 また、空隙含有層60は、ガラス粒子やセラミック粒子等の粒状体を多数含む層により構成することができる。この場合、隣接する粒状体の間に複数の空隙が形成される。粒状体は、樹脂バインダ等を用いて成膜することができる。粒状体の粒径やバインダの粘度等を調整することにより、空隙を残したまま成膜することが可能である。このように、空隙含有層60を複数の粒状体を含む層で構成する場合でも、溶融した金属を毛細管現象によって空隙含有層60に含浸させることが可能であり、過電流により接続配線24に断線が生じた場合でも、封止層50の性能維持が可能となる。 Moreover, the void-containing layer 60 can be constituted by a layer containing a large number of granular materials such as glass particles and ceramic particles. In this case, a plurality of voids are formed between adjacent granular materials. The granular material can be formed using a resin binder or the like. By adjusting the particle size of the granular material, the viscosity of the binder, etc., it is possible to form a film while leaving a void. As described above, even when the void-containing layer 60 is composed of a layer containing a plurality of granular materials, it is possible to impregnate the molten metal into the void-containing layer 60 by capillary action, and the connection wiring 24 is disconnected due to overcurrent. Even when this occurs, the performance of the sealing layer 50 can be maintained.
 また、空隙含有層60は、溶融した配線材料(金属)を吸収する機能を高めるために、空隙含有層自体が配線材料に対して良好な濡れ性を示す材料で構成されるか、少なくとも空隙を確定する壁部が配線材料に対して良好な濡れ性を示す材料で被覆されていることが好ましい。例えば、溶融金属に良好な濡れ性を示す酸化アルミニウムや酸窒化アルミニウムを用いて、空隙含有層60を構成するか、空隙間を隔てる隔壁を酸化アルミニウムまたは酸窒化アルミニウムでコーティングすることにより、良好な濡れ性を確保する事ができる。 Further, in order to enhance the function of absorbing the melted wiring material (metal), the void-containing layer 60 is composed of a material that exhibits good wettability with respect to the wiring material, or at least has voids. It is preferable that the wall portion to be defined is covered with a material that exhibits good wettability with respect to the wiring material. For example, by using aluminum oxide or aluminum oxynitride exhibiting good wettability to the molten metal, the void-containing layer 60 is formed, or the partition walls separating the air gaps are coated with aluminum oxide or aluminum oxynitride. Wetability can be secured.
 以下に、有機ELデバイス1の他の製造方法を図5(a)~図5(c)を参照しつつ説明する。 Hereinafter, another method for manufacturing the organic EL device 1 will be described with reference to FIGS. 5 (a) to 5 (c).
 基板10上に第1電極20、給電配線22、ヒューズ部24aを有する接続配線24を形成する。次に、第1電極20およびヒューズ部24a上において開口部を有する絶縁膜26を形成する。次に、ヒューズ部24aを囲むようにバンク(隔壁部)27を形成する。バンク27は、例えば感光性ポリイミド等の有機材料を成膜した後、露光・現像プロセスによってパターニングすることにより形成される。バンク27は、ヒューズ部24aを囲む隔壁を形成する。バンク27は例えば第1電極20および給電配線22上に形成することができる。次に、バンク27に囲まれた、ヒューズ部24aの上面にポリシラザンを塗布し、約100℃程度で低温焼成する。これにより、ヒューズ部24aを覆うポーラスなSiO2膜からなる空隙含有層60を形成する(図5(a))。 A connection wiring 24 having a first electrode 20, a power supply wiring 22, and a fuse portion 24a is formed on the substrate 10. Next, an insulating film 26 having an opening is formed on the first electrode 20 and the fuse portion 24a. Next, a bank (partition wall) 27 is formed so as to surround the fuse portion 24a. The bank 27 is formed by depositing an organic material such as photosensitive polyimide and patterning it by an exposure / development process. The bank 27 forms a partition wall that surrounds the fuse portion 24a. For example, the bank 27 can be formed on the first electrode 20 and the power supply wiring 22. Next, polysilazane is applied to the upper surface of the fuse portion 24a surrounded by the bank 27, and is fired at a low temperature of about 100.degree. As a result, a void-containing layer 60 made of a porous SiO 2 film covering the fuse portion 24a is formed (FIG. 5A).
 次に、第1電極20上に有機機能層30を形成する。次に、有機機能層30に接続され且つ給電配線22の伸長方向と直交する方向に伸長する第2電極40を形成する(図5(b))。 Next, the organic functional layer 30 is formed on the first electrode 20. Next, the second electrode 40 connected to the organic functional layer 30 and extending in a direction orthogonal to the extending direction of the power supply wiring 22 is formed (FIG. 5B).
 次に、上記各工程を経て得られた構造体を全体的に覆うように無機材料からなる封止層50を形成する。封止層50は、有機EL素子100に密着して形成される。封止層50は、空隙含有層60をも被覆するように形成される(図5(c))。以上の各工程を経ることにより有機ELデバイス1が完成する。 Next, a sealing layer 50 made of an inorganic material is formed so as to entirely cover the structure obtained through the above steps. The sealing layer 50 is formed in close contact with the organic EL element 100. The sealing layer 50 is formed so as to cover the void-containing layer 60 (FIG. 5C). The organic EL device 1 is completed through the above steps.
 尚、第2電極40のパターニングのために、同様のバンクを用いてもよい。この隔壁は、第2電極40の非形成部分に形成され、空隙含有層60上に形成することも可能である。 A similar bank may be used for patterning the second electrode 40. This partition wall is formed in a non-formed portion of the second electrode 40 and can be formed on the void-containing layer 60.
 図6は、本発明の実施例2に係る有機ELデバイス2の構成を示す断面図である。有機ELデバイス2は、板状の封止板で封止を行う封止構造を有する点が上記実施例1に係る有機ELデバイスと異なる。基板10上には、有機EL素子100、給電配線22およびヒューズ部24aを有する接続配線24が設けられ、ヒューズ部24aを覆うように空隙含有層60が設けられている。基板10上には接着層52を介して例えば、ガラス板、プラスチック板または金属板等の板材からなる封止板54が設けられている。接着層52は、例えば熱硬化型または紫外線硬化型のシリコーン樹脂等により構成される。有機EL素子100は、接着層52の内部に埋設される。 FIG. 6 is a cross-sectional view showing a configuration of an organic EL device 2 according to Example 2 of the present invention. The organic EL device 2 is different from the organic EL device according to Example 1 in that it has a sealing structure for sealing with a plate-shaped sealing plate. On the substrate 10, the organic EL element 100, the power supply wiring 22, and the connection wiring 24 having the fuse portion 24a are provided, and the void-containing layer 60 is provided so as to cover the fuse portion 24a. A sealing plate 54 made of a plate material such as a glass plate, a plastic plate, or a metal plate is provided on the substrate 10 via an adhesive layer 52. The adhesive layer 52 is made of, for example, a thermosetting or ultraviolet curable silicone resin. The organic EL element 100 is embedded in the adhesive layer 52.
 このような、板材で封止を行う封止構造を有する有機ELデバイスにおいても膜封止構造の場合と同様、ヒューズ部24a上に空隙含有層60が設けられる故、接続配線24の断線に伴って空隙含有層60上を覆う接着層52や封止部材54が損傷することもなく、封止性能が害されることもなく、また、リークが再発することもない。 In such an organic EL device having a sealing structure for sealing with a plate material, the gap-containing layer 60 is provided on the fuse portion 24a as in the case of the film sealing structure. Thus, the adhesive layer 52 and the sealing member 54 covering the void-containing layer 60 are not damaged, the sealing performance is not impaired, and the leak does not recur.
 尚、上記各実施例においては、給電配線22と第2電極40とを格子状に配列し、これらの各交差部に有機EL素子100を配置する所謂ドットマトリックスの表示形態を有する表示デバイスを例に説明したが、本発明は、そのような構成に限定されるものではない。図7は、電極、配線および有機EL素子の配置が改変された有機ELデバイス3の構成を示す平面図である。 In each of the above-described embodiments, a display device having a so-called dot matrix display form in which the power supply wiring 22 and the second electrode 40 are arranged in a lattice pattern and the organic EL elements 100 are arranged at respective intersections thereof is taken as an example. As described above, the present invention is not limited to such a configuration. FIG. 7 is a plan view showing a configuration of the organic EL device 3 in which the arrangement of electrodes, wirings, and organic EL elements is modified.
 有機ELデバイス3において、基板10上に形成された給電配線22の1つに、複数の接続配線24が接続されている。複数の接続配線24は、1箇所(または複数個所)にまとめられた状態で等間隔に並置され、それぞれ、上記各実施例と同様、ヒューズ部24aを有する。接続配線24の各々は、短冊状にパターニングされた第1電極20に接続されている。第1電極20上には、同じく短冊状の有機機能層30が設けられている。有機機能層30上には複数の有機EL素子100に共通の第2電極40が設けられている。第2電極40は、給電配線22の伸長方向と平行に伸長している。尚、第2電極40は、有機EL素子毎に 分離され、第1電極20や有機機能層30と同様、短冊形状を有していてもよい。このような接続配線24を1箇所に集約したレイアウトによれば、ヒューズ部24aを1箇所にまとめることができるので、封止層のパターニング(すなわち空隙層の形成)が容易となる。 In the organic EL device 3, a plurality of connection wires 24 are connected to one of the power supply wires 22 formed on the substrate 10. The plurality of connection wirings 24 are juxtaposed at equal intervals in a state of being collected at one place (or a plurality of places), and each has a fuse portion 24a as in the above embodiments. Each of the connection wirings 24 is connected to the first electrode 20 patterned in a strip shape. A strip-shaped organic functional layer 30 is also provided on the first electrode 20. A second electrode 40 common to the plurality of organic EL elements 100 is provided on the organic functional layer 30. The second electrode 40 extends in parallel with the extending direction of the power supply wiring 22. In addition, the 2nd electrode 40 is isolate | separated for every organic EL element, and may have a strip shape similarly to the 1st electrode 20 and the organic functional layer 30. FIG. According to such a layout in which the connection wirings 24 are gathered in one place, the fuse portions 24a can be gathered in one place, so that patterning of the sealing layer (that is, formation of the void layer) is facilitated.
 1、2、3、4 有機ELデバイス
 10 基板
 20 第1電極
 22 給電配線
 24 接続配線
 24a ヒューズ部
 30 有機機能層
 40 第2電極
 50 封止層
 60 空隙含有層
1, 2, 3, 4 Organic EL device 10 Substrate 20 First electrode 22 Power supply wiring 24 Connection wiring 24a Fuse portion 30 Organic functional layer 40 Second electrode 50 Sealing layer 60 Void-containing layer

Claims (5)

  1.  基板と、
     前記基板上に設けられた第1の電極層と、
     前記第1の電極層の上に設けられた有機材料を含む有機機能層と、
     前記有機機能層の上に設けられた第2の電極層と、
     前記基板上に設けられて前記第1の電極層または前記第2の電極層に接続された接続配線と、
     前記第1および第2の電極層、前記有機機能層および前記接続配線を含む積層構造体を被覆する封止層と、を含み、
     前記接続配線は、過電流により断線に至るヒューズ部を有し、少なくとも前記ヒューズ部において空隙含有構造を有する空隙含有層と接していることを特徴とする有機エレクトロルミネッセンスデバイス。
    A substrate,
    A first electrode layer provided on the substrate;
    An organic functional layer containing an organic material provided on the first electrode layer;
    A second electrode layer provided on the organic functional layer;
    A connection wiring provided on the substrate and connected to the first electrode layer or the second electrode layer;
    A sealing layer covering the laminated structure including the first and second electrode layers, the organic functional layer, and the connection wiring,
    The connection wiring has a fuse portion that is broken by an overcurrent, and is in contact with a void-containing layer having a void-containing structure at least in the fuse portion.
  2.  前記空隙含有層は、多孔質材料を含むことを特徴とする請求項1に記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescent device according to claim 1, wherein the void-containing layer contains a porous material.
  3.  前記空隙含有層は、繊維状材料からなる網目構造を有することを特徴とする請求項1に記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescent device according to claim 1, wherein the void-containing layer has a network structure made of a fibrous material.
  4.  前記空隙含有層は、複数の粒状体を含むことを特徴とする請求項1に記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescent device according to claim 1, wherein the void-containing layer includes a plurality of granular materials.
  5.  前記空隙含有層は、前記ヒューズ部を囲むバンクの内側に設けられていることを特徴とする請求項1乃至4のいずれか1つに記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescence device according to any one of claims 1 to 4, wherein the void-containing layer is provided inside a bank surrounding the fuse portion.
PCT/JP2011/069442 2011-08-29 2011-08-29 Organic electroluminescence device WO2013030919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069442 WO2013030919A1 (en) 2011-08-29 2011-08-29 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069442 WO2013030919A1 (en) 2011-08-29 2011-08-29 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2013030919A1 true WO2013030919A1 (en) 2013-03-07

Family

ID=47755474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069442 WO2013030919A1 (en) 2011-08-29 2011-08-29 Organic electroluminescence device

Country Status (1)

Country Link
WO (1) WO2013030919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105103330A (en) * 2013-04-01 2015-11-25 株式会社Lg化学 Organic light emitting element and manufacturing method therefor
CN105210206A (en) * 2013-05-16 2015-12-30 株式会社Lg化学 Organic light-emitting device and method of manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196190A (en) * 2000-01-14 2001-07-19 Fuji Electric Co Ltd Organic thin film luminous display
JP2005209633A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Display device and method for manufacturing display device
JP2005209647A (en) * 1998-12-16 2005-08-04 Cambridge Display Technol Ltd Organic light-emitting device
JP2007207569A (en) * 2006-02-01 2007-08-16 Tohoku Pioneer Corp Optical device and manufacturing method of the same
JP2009245708A (en) * 2008-03-31 2009-10-22 Hitachi Displays Ltd Organic el display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209647A (en) * 1998-12-16 2005-08-04 Cambridge Display Technol Ltd Organic light-emitting device
JP2001196190A (en) * 2000-01-14 2001-07-19 Fuji Electric Co Ltd Organic thin film luminous display
JP2005209633A (en) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd Display device and method for manufacturing display device
JP2007207569A (en) * 2006-02-01 2007-08-16 Tohoku Pioneer Corp Optical device and manufacturing method of the same
JP2009245708A (en) * 2008-03-31 2009-10-22 Hitachi Displays Ltd Organic el display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105103330A (en) * 2013-04-01 2015-11-25 株式会社Lg化学 Organic light emitting element and manufacturing method therefor
US9825249B2 (en) 2013-04-01 2017-11-21 Lg Display Co., Ltd. Organic light emitting device and method for manufacturing the same
CN105210206A (en) * 2013-05-16 2015-12-30 株式会社Lg化学 Organic light-emitting device and method of manufacturing same
TWI594475B (en) * 2013-05-16 2017-08-01 樂金顯示科技股份有限公司 Organic light emitting diode, method for manufacturing the same and application thereof
US9793333B2 (en) 2013-05-16 2017-10-17 Lg Display Co., Ltd. Organic light-emitting device and method of manufacturing same

Similar Documents

Publication Publication Date Title
KR101065409B1 (en) Organic light emitting diode lighting apparatus
EP2483944B1 (en) Process for fabricating a monolithic parallel interconnect structure of an optoelectronic device
KR101315086B1 (en) Organic electronic device and method for manufacture thereof
US9508959B2 (en) Organic EL device and method for manufacturing same
JP2006093123A (en) Substrate for light emitting element, its manufacturing method, electrode for light emitting element and light emitting element with the same
CN102144314A (en) Method for producing an organic radiation-emitting component and organic radiation-emitting component
KR101726731B1 (en) Method for producing an optoelectronic component and method for patterning an organic, optoelectronic component
US9444071B2 (en) Organic electroluminescent panel
JPWO2012086758A1 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE
JP2005056846A (en) Organic electroluminescence device and its manufacturing method
WO2012140924A1 (en) Organic electroluminescence device and method for manufacturing organic electroluminescence device
JP4918633B1 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE
WO2013030919A1 (en) Organic electroluminescence device
KR20160135166A (en) Optoelectronic component and method for producing an optoelectronic component
US10454057B2 (en) Optoelectronic component and method for producing an optoelectronic component
WO2012102268A1 (en) Organic electroluminescent element and illumination device
JP4976595B1 (en) Organic electroluminescence device
WO2013098951A1 (en) Organic electroluminescence device and method for manufacturing same
KR20170038003A (en) Method for producing an optoelectronic component
JP5177570B2 (en) Manufacturing method of organic EL panel
US10068958B2 (en) Organic light-emitting component and method for producing an organic light-emitting component
JP5912037B2 (en) Organic electroluminescence device
JP6228624B2 (en) Organic electroluminescence device
WO2017050630A1 (en) Flat light-emitting component and method for producing a flat light-emitting component
JP2018156722A (en) Organic EL panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP