WO2012140924A1 - Organic electroluminescence device and method for manufacturing organic electroluminescence device - Google Patents

Organic electroluminescence device and method for manufacturing organic electroluminescence device Download PDF

Info

Publication number
WO2012140924A1
WO2012140924A1 PCT/JP2012/050826 JP2012050826W WO2012140924A1 WO 2012140924 A1 WO2012140924 A1 WO 2012140924A1 JP 2012050826 W JP2012050826 W JP 2012050826W WO 2012140924 A1 WO2012140924 A1 WO 2012140924A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic
layer
low
point material
Prior art date
Application number
PCT/JP2012/050826
Other languages
French (fr)
Japanese (ja)
Inventor
崇人 小山田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2012140924A1 publication Critical patent/WO2012140924A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present invention relates to an organic electroluminescence device and a manufacturing method thereof.
  • An organic electroluminescence device (hereinafter referred to as an organic EL device) is a self-luminous surface light-emitting device, and has high visibility, can be driven at a low voltage, and has a broad emission spectrum. Research into the practical use of this is being actively conducted.
  • the organic EL device is configured, for example, by sequentially laminating a first electrode (anode), a hole transport layer, a light emitting layer, an electron transport layer, and a second electrode (cathode) on a glass substrate.
  • An organic EL device is a device that obtains electroluminescence by current injection, and requires a larger current to flow than an electric field device such as a liquid crystal display.
  • a dark spot is an irreversible non-light emitting portion that occurs in a light emitting area when an organic EL device is used for a long time.
  • the dark spot is considered to be generated by partial deactivation of the organic EL element due to moisture and oxygen entering from the outside, and outgas emitted from the constituent material of the device.
  • Such intrusion and outgas such as moisture and oxygen from the outside are dealt with by adopting a hollow sealing structure in which the organic EL element is sealed with a metal can together with an adsorption desiccant (Patent Document 1). reference).
  • Another problem with organic EL devices is current leakage between electrodes.
  • the thickness of the organic functional layer provided between the anode and the cathode is on the order of submicron, current leakage may occur due to minute dust or defects in the organic functional layer.
  • the foreign substance may form a leak path, or the pattern may be lost in the electrode due to the foreign substance, resulting in contact between the anode and the cathode.
  • a current leak occurs, a non-light emitting portion may be generated, or damage may spread to surrounding cells due to heat generation.
  • Patent Documents 2 and 3 disclose a technique for repairing a short-circuit portion by applying a reverse bias voltage between electrodes to melt and evaporate an electrode material that forms a leak portion.
  • Patent Document 4 a peeling suppression film made of an organic conductive material is formed between a lower electrode and an organic light emitting layer, and the peeling suppression layer is evaporated by laser irradiation to form a cavity, thereby repairing a short circuit portion.
  • Techniques for performing are disclosed.
  • a solid sealing structure is known as a sealing structure that can reduce the thickness of a device.
  • Some solid sealing structures are sealed with a plate made of glass, metal, or the like, and others are sealed with a thin film made of an inorganic material such as SiO 2 or SiN x .
  • the sealing layer is in intimate contact with the upper electrode, it is possible to reduce the thickness, and there is an advantage that the device has high heat dissipation, while the electrode is interposed between the upper electrode and the sealing layer. Since there is no space for evaporating and scattering the material, it is difficult to repair the short-circuit portion by reverse bias or laser irradiation.
  • the sealing layer When such a repair is performed in the solid sealing structure, the sealing layer may be destroyed by an impact accompanying the fracture of the upper electrode, and the sealing function may be impaired. Moreover, even when such a repair is performed and the current leak is resolved, there is a possibility that the current leak may reoccur due to the upper electrode and the lower electrode coming into contact again by pressing from the sealing layer that is in close contact with the upper electrode.
  • the solid sealing structure has advantages such as thinning of the device and improvement of heat dissipation, but it is difficult to execute the repair method performed in the hollow sealing structure such as reverse bias and laser irradiation. ing.
  • An object of the present invention is to provide an organic electroluminescent device and a method for producing such an organic electroluminescent device.
  • An organic electroluminescence device includes a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and a first electrode provided on the organic functional layer.
  • An organic EL structure including two electrodes, and an insulation provided on the second electrode and having a melting point lower than a glass transition temperature of an organic material that exhibits a solid state at room temperature and constitutes the organic functional layer
  • a low-melting-point material layer, and a sealing layer that seals the laminate composed of the organic EL structure and the low-melting-point material layer, and the low-melting-point material layer has a general formula of C n F 2n + 2 It is characterized by comprising a compound containing a chain saturated fluorine represented by the formula:
  • Another organic electroluminescence device includes a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and the organic functional layer.
  • the organic electroluminescence device manufacturing method includes a step of forming a first electrode on a substrate, a step of forming an organic functional layer including at least one layer on the first electrode, and the organic function.
  • another method of manufacturing an organic electroluminescence device includes a step of forming a first electrode on a substrate, a step of forming an organic functional layer including at least one layer on the first electrode, A step of forming a second electrode on the organic functional layer; and an insulator that exhibits a solid state at room temperature on the second electrode and has a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer Forming a low-melting-point material layer, and forming a sealing layer that seals the laminate composed of the first electrode, the organic functional layer, the second electrode, and the low-melting-point material layer to obtain an intermediate device A step of identifying a short-circuit portion between the first and second electrodes, and a step of irradiating the short-circuit portion with a laser to remove the short-circuit portion.
  • Another method for manufacturing an organic electroluminescent device is a method for manufacturing an organic electroluminescent device, comprising: forming a first electrode on a substrate; and at least one layer on the first electrode.
  • FIG. 2A is a cross-sectional view of an organic electroluminescence device according to an embodiment of the present invention in which a short circuit has occurred
  • FIG. 2B is a cross-sectional view of the organic electroluminescence device according to an embodiment of the present invention after the repair of the short circuit portion.
  • 3A is a cross-sectional view of an organic electroluminescence device according to an embodiment of the present invention in which a short circuit has occurred
  • FIG. 3B is a cross-sectional view of the organic electroluminescence device according to an embodiment of the present invention after the repair of the short circuit portion. It is sectional drawing.
  • FIG. 3A is a cross-sectional view of an organic electroluminescence device according to an embodiment of the present invention in which a short circuit has occurred
  • FIG. 3B is a cross-sectional view of the organic electroluminescence device according to an embodiment of the present invention after the repair of the short circuit portion. It is sectional drawing.
  • FIG. 3A is a cross-sectional view of
  • FIG. 4 is a manufacturing process flow diagram of an organic electroluminescence device according to an embodiment of the present invention.
  • FIG. 5 is a manufacturing process flow diagram of an organic electroluminescence device according to an embodiment of the present invention.
  • FIG. 6 is a manufacturing process flow diagram of an organic electroluminescence device according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a configuration of an organic electroluminescence device according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a configuration of an organic electroluminescence device according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a configuration of an organic electroluminescence device according to another embodiment of the present invention.
  • FIG. 10 is a diagram showing a specific example of the fluorinated alkane constituting the low melting point material layer according to the example of the present invention. It is a figure which shows the characteristic evaluation result after high temperature leaving of the organic electroluminescent device which concerns on the Example of this invention.
  • An organic electroluminescence device includes a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and a second electrode provided on the organic functional layer.
  • a low-melting-point material layer made of an insulator provided on the second electrode and having a melting point lower than the glass transition temperature of the organic material that exhibits a solid state at room temperature and constitutes the organic functional layer, and the first electrode, And a sealing layer that seals the laminate composed of the organic functional layer, the second electrode, and the low-melting-point material layer.
  • the organic electroluminescence device of the present invention it is possible to easily and effectively repair the short circuit portion. That is, when the foreign matter mixed between the first electrode and the second electrode forms a current leak path, the foreign matter is reduced by heating the organic electroluminescence device and melting the low melting point material layer. It is embedded with an insulator constituting the melting point material layer. Thereafter, the temperature is lowered to solidify the low-melting-point material layer, so that the state where the foreign matter is embedded with the insulator is maintained. Therefore, current leakage between the first electrode and the second electrode can be prevented.
  • the second electrode can be broken so as to open toward the low melting point material layer.
  • FIG. 1 is a cross-sectional view showing the structure of an organic EL device 1 according to an embodiment of the present invention.
  • the organic EL device 1 is formed by sequentially laminating a first electrode (lower electrode) 12, an organic functional layer 14, a second electrode (upper electrode) 16, a low melting point material layer 18, and a sealing layer 20 on a substrate 10. Is done.
  • the organic EL device 1 is a so-called bottom emission type light emitting device that extracts light generated in the organic functional layer 14 from the substrate 10 side.
  • the substrate 10 is made of a light transmissive material such as glass.
  • a conductive oxide having a light transmission property such as ITO (Indium (Tin Oxide) or IZO (Indium Zinc Oxide) having a thickness of about 100 nm is formed on the substrate 10 by sputtering, for example. Thereafter, it is formed by patterning by etching.
  • the organic functional layer 14 is configured by laminating a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer in this order so as to cover the first electrode 12 on the substrate 10.
  • the hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 25 nm
  • the hole transport layer is made of, for example, ⁇ -NPD (Bis [N- (1-naphthyl) -N-pheny] benzidine) having a thickness of about 40 nm.
  • the light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 60 nm
  • the electron injection layer is made of, for example, lithium oxide (Li 2 O) having a thickness of about 0.5 nm.
  • the Each of the layers constituting the organic functional layer 14 can be formed by, for example, a mask vapor deposition method or an ink jet method.
  • the second electrode 16 serving as a cathode is formed by depositing Al having a thickness of about 100 nm on the substrate 10 so as to cover the organic functional layer 14 by a mask vapor deposition method or the like.
  • an alloy having a relatively low work function such as Mg—Ag or Al—Li is preferable.
  • the second electrode 16 have a laminated structure of Al and Ag, it is possible to improve the light extraction efficiency while maintaining high adhesion to the organic functional layer 14 regardless of the lamination order.
  • An organic EL structure is formed by the first electrode 12, the organic functional layer 14, and the second electrode 16.
  • the low melting point material layer 18 is made of an insulator that exhibits a solid state at room temperature (about room temperature, for example, around 25 ° C.) and has a melting point lower than the glass transition temperature Tg of each of the above materials constituting the organic functional layer 14. .
  • the low melting point material layer 18 can be made of, for example, a material (for example, wax) mainly composed of paraffin. Paraffin is a mixture of methane-based hydrocarbons having 16 to 40 carbon atoms, and has a melting point of about 50 to 75 ° C.
  • tri-p-tolylamine can be used as another material of the low melting point material layer 18, for example. Tri-p-tolylamine has a melting point of 117 ° C. and is an organic polymer soluble in an organic solvent, and can form a film using an organic solvent solution as a coating solution.
  • the low melting point material layer 18 is formed so as to cover the entire upper surface of the second electrode 16.
  • the sealing layer 20 is composed of a thin film made of an inorganic material such as SiNx, SiON, SiOx, AlOx, or AlN.
  • the sealing layer 20 is provided in close contact with the low-melting-point material layer 18 and seals a laminate including the first electrode 12, the organic functional layer 14, the second electrode 16, and the low-melting-point material layer 18 on the substrate 10. Stop.
  • the sealing layer 20 plays a role of preventing entry of oxygen and moisture from the outside. Examples of the method for forming the sealing layer 20 include vapor deposition, sputtering, and CVD. In particular, the CVD method has good coverage and can easily form a highly moisture-proof film.
  • the short-circuit portion can be repaired by two repair methods. First, the first repair method will be described.
  • FIG. 2A shows that the organic functional layer 14 between the first electrode 12 and the second electrode 14 is mixed with the conductive foreign matter 30, thereby causing a pattern defect in the organic functional layer 14 and the second electrode 16.
  • the second electrode 16 can be electrically connected to the first electrode 12 through the conductive foreign material 30. That is, in the case shown in FIG. 2A, the conductive foreign material 30 can be a short-circuit portion that forms a current leak path.
  • a current leak path is formed between the first electrode 12 and the second electrode 16, current injection into the organic function 14 is hindered, resulting in a decrease in light emission luminance or no light emission.
  • the heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14.
  • a hot plate, a constant temperature layer, a belt furnace, or the like can be used for the heat treatment.
  • the low melting point material constituting the low melting point material layer 18 is melted to become a liquid.
  • the liquid low melting point material is impregnated into the gap between the conductive foreign matter 30 and the organic functional layer 14 and the second electrode 14 to embed the conductive foreign matter 30.
  • FIG. 2B is a cross-sectional view of the organic EL device 1 repaired by the first repairing method. After the low melting point material is solidified, as long as the organic EL device 1 is used in a room temperature environment, the state shown in FIG. Further, since the heating temperature is set to be equal to or lower than the glass transition temperature Tg of each material constituting the organic functional layer 14, the organic functional layer 14 is not damaged.
  • the low melting point material layer 18 is melted by heating the organic EL device 1, and the foreign matter mixed between the first electrode 12 and the second electrode 16 is removed from the low melting point material. By covering with the insulator constituting the layer 18, the occurrence of current leakage is prevented.
  • the repair of the short circuit portion is completed only by the heat treatment of the organic EL device 1.
  • the low melting point material layer 18 is generated by applying a power so as to be forward biased or reverse biased between the first electrode 12 and the second electrode 16 so as to cause a local current to flow through the shorted part to generate heat. May be melted.
  • Such power application can be performed instead of the above heat treatment or together with the heat treatment.
  • FIG. 3A is a cross-sectional view showing a state in which the second electrode 16 has entered a defect (pinhole) or the like generated in the organic functional layer 14 and the first electrode 12 and the second electrode 16 are short-circuited. is there.
  • the heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14.
  • a hot plate, a constant temperature layer, a belt furnace, or the like can be used. By performing such heat treatment, the low melting point material constituting the low melting point material layer 18 is melted to become a liquid.
  • the short-circuit part 31 is irradiated with laser light while the organic EL device 1 is heated at the above heating temperature.
  • the position of the short-circuit portion 31 can be specified by digitizing an output image of a camera that captures the light emitting area of the organic EL device 1 and performing image processing on the digital image.
  • the laser beam is irradiated from the substrate 10 side with a power for melting and evaporating the second electrode 16.
  • the metal that is the constituent material of the second electrode 16 forming the short-circuit portion 31 absorbs the laser beam and generates heat to melt and evaporate.
  • the second electrode 16 is positioned upward (low melting point material layer as shown in FIG.
  • the short-circuit portion 31 is removed by melting and evaporation together with the second electrode 16 by laser irradiation.
  • the defective portion of the organic functional layer 14 from which the short-circuit portion 31 has been removed is impregnated with a liquid low melting point material.
  • FIG. 3B is a cross-sectional view of the organic EL device 1 repaired by the second repair method. After the low melting point material is solidified, as long as the organic EL device 1 is used in a room temperature environment, the state shown in FIG.
  • the heating temperature is set to be equal to or lower than the glass transition temperature Tg of each material constituting the organic functional layer 14, the organic functional layer 14 is not damaged. Further, since the laser irradiation is performed while heating the organic EL device 1, the impact due to the fracture of the second electrode is absorbed by the liquid low-melting-point material layer 18. Thereby, destruction of the sealing layer 20 is prevented.
  • the organic EL device 1 is heated to melt the low melting point material layer 18 so that the second electrode 16 is opened upward (low melting point material layer side). While maintaining the obtained state, the short circuit part is melted and evaporated together with the second electrode 16 to remove the short circuit part.
  • a current is caused to flow locally in the short-circuit portion 31 and the short-circuit portion 31. It is also possible to remove this by melting and evaporating. Such power application can be performed in place of or with the laser irradiation described above.
  • the case where the short-circuit portion formed by the electrode material invading the defect portion generated in the organic functional layer 14 is illustrated as an example. As illustrated in FIG. Even when the foreign matter mixed between the electrode 12 and the second electrode 16 is removed, the repair by the second repair method is possible.
  • the laser irradiation is performed while heating the organic EL device. However, the laser irradiation can be performed alone. Also in this case, since the low melting point material layer 18 is heated and melted by the laser irradiation, it is possible to remove the short-circuit portion as in the case involving the heat treatment described above.
  • FIG. 4 is a manufacturing process flow chart of the organic EL device according to the embodiment of the present invention including the repair process of the short circuit portion by the first repair method described above.
  • a light-transmitting conductive oxide such as ITO or IZO is deposited on the light-transmitting substrate 10 made of glass or the like by a sputtering method, for example, to a thickness of about 100 nm, and this is patterned into a desired shape by etching.
  • the electrode 12 is formed (step S1).
  • an organic functional layer 14 is formed by sequentially forming a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer on the first electrode 12 by an inkjet method, a mask vapor deposition method, or the like.
  • the hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 25 nm
  • the hole transport layer is made of, for example, ⁇ -NPD (Bis [N- (1-naphthyl) -N-pheny] benzidine) having a thickness of about 40 nm.
  • the light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 60 nm
  • the electron injection layer is made of, for example, lithium oxide (Li 2 O) having a thickness of about 0.5 nm.
  • a resist mask having an opening is formed in the formation region of the second electrode, and Al as an electrode material is deposited on the structure obtained through each of the above steps by vapor deposition or the like. Thereafter, the resist mask is removed together with unnecessary portions of Al to pattern the Al film, thereby forming the second electrode 16 on the organic functional layer 14 (step S3).
  • a low melting point material layer 18 is formed on the second electrode 16. Specifically, paraffin, which is a low melting point material, is heated and melted, and liquid paraffin is applied and formed on the second electrode 16. At this time, by heating the structure through the above steps at a temperature higher than the melting point of paraffin, the liquid paraffin uniformly spreads on the second electrode 16 and the layer thickness of the low melting point material layer 18 is uniform. (Step S4).
  • Another method for forming the low melting point material layer 18 is a method in which powder paraffin is dispersed on the second electrode 16 and then the substrate 10 is heated to melt the powder paraffin to form a film.
  • Tri-p-tolylamine can also be used as the material of the low melting point material layer 18.
  • a film formed by dissolving tri-p-tolylamine in an organic solvent is applied onto the second electrode 16 as a coating solution. Thereafter, a heat treatment at about 50 ° C. is performed to dry the coating solution.
  • Step S5 it is made of an inorganic material such as SiNx, SiON, SiOx, AlOx, AlN so as to entirely cover the structure obtained through each of the above steps by a plasma CVD method capable of isotropic film formation.
  • the sealing layer 20 is formed (Step S5).
  • the heating temperature is set to a temperature not lower than the melting point of the low melting point material constituting the low melting point material layer 18 and not higher than the glass transition temperature Tg of each material constituting the organic functional layer 14.
  • a hot plate, a thermostatic layer, a belt furnace, or the like that can heat the intermediate device as a whole can be used.
  • the low-melting-point material layer 18 is made of, for example, paraffin, for example, heat treatment at 80 ° C. for 30 minutes is performed on the intermediate device.
  • the low melting point material constituting the low melting point material layer 18 is melted into a liquid by this heat treatment.
  • the low-melting-point material that has become liquid can be embedded when conductive foreign matter is mixed between the first electrode 12 and the second electrode 16 (step S6).
  • step S7 the organic EL device is completed.
  • the current leakage between the first and second electrodes is prevented in advance by performing the heat treatment after forming each component of the organic EL device. ing.
  • Such heat treatment can be performed on all products regardless of the presence or absence of conductive foreign matter.
  • batch processing of a large number of products is relatively easy, so productivity can be improved by making all products subject to heat treatment without checking the presence or absence of conductive foreign matter in the inspection process. It is possible to improve.
  • FIG. 5 is a flow chart of the manufacturing process of the organic EL device according to the embodiment of the present invention including the repair process of the short circuit part by the above-described second repair method.
  • the process of forming each component of the organic EL device (steps S11 to S15) is the same as the above-described steps S1 to S5, and the description thereof is omitted.
  • step S16 After each component of the organic EL device 1 is formed, an inspection is performed to confirm the presence or absence of a short circuit between the first and second electrodes. And when it is confirmed that the short circuit has arisen, the short circuit location is specified.
  • the identification of the short-circuit location can be realized by using, for example, an image recognition technique (step S16).
  • the heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14.
  • a hot plate, a constant temperature layer, a belt furnace, or the like can be used for the heat treatment. By performing such heat treatment, the low melting point material constituting the low melting point material layer 18 is melted to become a liquid.
  • the laser beam is irradiated to the short-circuit portion specified in step S16. The laser beam is irradiated from the substrate 10 side with power that melts and evaporates the short-circuited portion.
  • the metal or the like that forms the short circuit part absorbs the laser beam and generates heat to melt and evaporate.
  • the second electrode 16 is located upward (on the low melting point material layer side) as shown in FIG. Can be broken and deformed to open toward The short-circuit portion is removed by melting and evaporation together with the second electrode 16 by laser irradiation.
  • the defective portion of the organic functional layer 14 from which the short-circuit portion has been removed is impregnated with a liquid low-melting-point material (step S17).
  • the laser irradiation is performed while heating the intermediate device. However, the laser irradiation can be performed independently. Also in this case, since the low melting point material layer 18 is heated and melted by laser irradiation, the short-circuit portion can be removed in the same manner as in the case with heat treatment.
  • the intermediate device is at room temperature (about room temperature).
  • the low-melting-point material constituting the low-melting-point material layer 18 is solidified in a state where the fracture portion of the second electrode 16 is embedded.
  • the defective portion of the organic functional layer 14 is filled with a low-melting material in a solid state.
  • the organic EL device is completed through the above steps.
  • step S17 it is checked whether or not the short circuit between the first and second electrodes has been resolved. If it is confirmed that the short circuit has not been resolved, the process of step S17 is repeated. It is good.
  • FIG. 6 is a manufacturing process flow chart of the organic EL device according to the embodiment of the present invention including the repair process of the short-circuit portion by the second repair method described above. Since the steps of forming each component of the organic EL device (steps S21 to S25) are the same as steps S1 to S5 described above, the description thereof is omitted.
  • step S26 After each component of the organic EL device 1 is formed, an inspection is performed to confirm the presence or absence of a short circuit between the first and second electrodes. And when it is confirmed that the short circuit has arisen, the short circuit location is specified.
  • the identification of the short-circuited location can be realized by using, for example, an image recognition technique (step S26).
  • the heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14.
  • a hot plate, a constant temperature layer, a belt furnace, or the like can be used for the heat treatment.
  • the low melting point material constituting the low melting point material layer 18 is melted to become a liquid.
  • electric power is applied between the first and second electrodes so that a current flows through the short-circuited part specified in step S26.
  • the applied power is set to a power at which the short circuit part can be melted and evaporated.
  • the second electrode 16 is located upward (on the low melting point material layer side) as shown in FIG. Can be broken and deformed to open toward The short-circuit portion is removed by melting and evaporation together with the second electrode 16 by applying electric power.
  • the defective portion of the organic functional layer 14 from which the short-circuit portion has been removed is impregnated with a liquid low melting point material (step S27).
  • the power application is performed while heating the intermediate device. However, the power application can be performed independently. Also in this case, since the low melting point material layer 18 is heated and melted by application of electric power, it is possible to remove the short-circuit portion in the same manner as when heat treatment is involved.
  • the intermediate device is at room temperature (about room temperature).
  • the low-melting-point material constituting the low-melting-point material layer 18 is solidified in a state where the fracture portion of the second electrode 16 is embedded.
  • the defective portion of the organic functional layer 14 is filled with a low-melting material in a solid state.
  • the organic EL device is completed through the above steps.
  • step S27 an inspection is performed to determine whether or not the short circuit between the first and second electrodes has been eliminated. If it is confirmed that the short circuit has not been eliminated, the process of step S27 is repeated. It is good.
  • the organic EL device 1 is an organic that exhibits a solid state at room temperature between the second electrode 16 and the sealing layer 20 and constitutes an organic functional layer.
  • a low melting point material layer 18 made of an insulator having a melting point lower than the glass transition temperature of the material is interposed. Since the organic EL device 1 has a solid sealing structure, the organic EL device 1 can be reduced in thickness as compared with a device having a hollow sealing structure, and high heat dissipation can be obtained.
  • the low melting-point material layer 18 is comprised by heating the organic EL device 1 and melting the low-melting-point material layer 18. Foreign materials can be embedded with an insulator. As a result, it is possible to prevent the occurrence of current leakage due to foreign matter contamination. According to such a method for repairing a short-circuit portion, since the repair of the short-circuit portion is completed only by heat treatment, the number of steps in the repair process of the short-circuit portion can be significantly reduced as compared with the conventional method.
  • the second electrode 16 can be ruptured so as to open upward (low melting point material layer side). Even in the stop structure, it is possible to remove the short-circuit portion by laser irradiation, power application, or the like. That is, since the impact due to the breakage of the second electrode 16 is absorbed by the liquid low-melting-point material layer 18, the sealing layer 20 can be prevented from being broken. Further, since the low melting point material layer 18 is in a solid state at room temperature, the low melting point material layer 18 is solidified to maintain the state after the repair of the short-circuit portion. Therefore, recurrence of current leak can be prevented. Thus, according to the organic EL device 1 according to the present embodiment, it is possible to easily and effectively repair the short circuit portion in the organic EL device having the solid sealing structure.
  • FIG. 7 is a cross-sectional view showing a configuration of an organic EL device 2 according to Example 2 of the present invention.
  • the organic EL device 2 is different from the organic EL device 1 according to Example 1 in which sealing is performed with a thin film in that a sealing plate 22 that is a plate material is used as a sealing member. That is, on the substrate 10, a laminated body including the first electrode 12, the organic functional layer 14, and the second electrode 16 is provided, and a low melting point material layer 18 is provided so as to cover the laminated body. The material and forming method of each layer are the same as those of the organic EL device 1 described above.
  • a sealing plate 22 is provided on the substrate 10 via an adhesive 24.
  • the adhesive 24 is made of, for example, a thermosetting or ultraviolet curable silicone resin.
  • the sealing plate 22 is a plate material such as a glass plate, a plastic plate, or a metal plate. Even in such a device using a plate-shaped sealing member, it is possible to repair the short-circuit portion as in the case of the organic EL device 1 having the inorganic sealing film described above.
  • a sealing layer made of a thin film of an inorganic material may be further provided between the sealing plate 22 and the low melting point material layer 18.
  • FIG. 8 is a cross-sectional view showing the configuration of the organic EL device 3 according to Example 3 of the present invention.
  • the organic EL device 3 is different from the organic EL device 1 according to Example 1 described above in that the solid sealing structure has a hollow sealing structure. That is, on the substrate 10, a laminated body including the first electrode 12, the organic functional layer 14, and the second electrode 16 is provided, and a low melting point material layer 18 is provided so as to cover the laminated body. The material and forming method of each layer are the same as those of the organic EL device 1 described above.
  • a metal can 26 is provided that seals a laminate including the first electrode 12, the organic functional layer 14, the second electrode 16, and the low-melting-point material layer through a gap.
  • the hollow portion 40 extends above the low melting point material layer 18.
  • the metal can 26 is bonded to the substrate 10 by an adhesive 28 made of an ultraviolet curable epoxy resin or the like.
  • an adsorption drying agent made of BaO or CaO may be provided. Even in the device having such a hollow sealing structure, it is possible to repair the short-circuit portion as in the case of the organic EL device 1 having the solid sealing structure.
  • a foreign material mixed between the first electrode 12 and the second electrode 16 or a fracture portion of the second electrode caused by laser irradiation or the like can be used as a low melting point material layer. Therefore, it is possible to ensure the prevention of recurrence of current leakage.
  • FIG. 9 is a cross-sectional view illustrating a configuration of an organic EL device 4 according to Example 4 of the invention.
  • the organic EL device 4 is different from the organic EL device 1 according to Example 1 described above in that a cover layer 50 is provided between the second electrode 16 and the low melting point material layer 18.
  • the cover layer 50 covers the upper surface and the side surface of the laminate including the first electrode 12, the organic functional layer 14, and the second electrode 16. If the cover layer 50 is not present, a portion where the low melting point material layer 18 and the organic functional layer 14 are in direct contact may be formed depending on the pattern of the second electrode 16.
  • Paraffin and tri-p-tolylamine exemplified above as constituent materials of the low-melting-point material layer 18 are organic materials, and thus have a property of being mixed with the organic materials constituting the organic functional layer 14. For this reason, when the low melting point material layer 18 and the organic functional layer 14 are in direct contact, the organic functional layer 14 is dissolved, and as a result, the second electrode 16 may be peeled off from the organic functional layer 14.
  • the cover layer 50 covers the second electrode 16, and the low melting point material layer 18 and the organic functional layer 14 are not in direct contact with each other in the absence region of the second electrode 16. Is intervening. Thereby, peeling of the 2nd electrode 16 is prevented.
  • the cover layer 50 is made of an inorganic material such as MoO 3 , Al 2 O 3 , SiO 2 , MgF 2 , or AlF, and is formed using a sputtering method or the like.
  • the cover layer 50 is formed with a thickness that can be broken together with the second electrode 16 by laser irradiation for repairing the short-circuit portion.
  • the sealing layer 20 is provided so as to cover the stacked body including the cover layer 50.
  • ⁇ Other candidate materials for low melting point material layer> In addition to paraffin and tri-p-tolylamine, some examples of other suitable materials constituting the low melting point material layer 18 are given. Since paraffin and tri-p-tolylamine exemplified above as constituent materials of the low melting point material layer 18 are organic materials, the organic material 14 is dissolved and the second electrode 16 may be peeled off from the organic functional layer 14. There is. Accordingly, the material constituting the low melting point material layer 18 is preferably a material that is difficult to mix with the organic functional layer 14 and does not dissolve the organic functional layer 14 from the viewpoint of preventing electrode peeling.
  • Examples of such a material include a compound containing or combined with a chain saturated fluorocarbon whose general formula can be represented by C n F 2n + 2 .
  • a chain saturated fluorocarbon whose general formula can be represented by C n F 2n + 2 .
  • such a compound will be referred to as a fluorinated alkane derivative.
  • FIG. 10 shows a specific example of a fluorinated alkane derivative suitable as a material for the low melting point material layer 18.
  • These fluorinated alkane derivatives are materials that exhibit liquid repellency with respect to the organic functional layer 14 in a liquid state, and the organic functional layer 14 is not dissolved by these materials, and thus prevents the second electrode 16 from being peeled off. Can do. Further, these materials are in a solid state at room temperature (about room temperature, for example, around 25 ° C.) and have a melting point lower than the glass transition temperature Tg of each material constituting the organic functional layer 14. Repair processing of the short-circuited portion is possible.
  • a method of coating the fluorinated alkane derivative as a liquid by heating, or forming a powdered fluorinated alkane derivative is used. After spraying on the two electrodes 16, a method of forming a film by heating the substrate 10 to melt the powdered fluorinated alkane derivative can be used.
  • an organic EL device having a solid sealing structure having the low-melting-point material layer 18 made of 2- (henicosfluorodecyl) ethyl acrylate described above was manufactured and subjected to a high temperature durability test. Specifically, after four samples of organic EL devices having different configurations of the second electrode (cathode) 16 are left in an atmosphere at 100 ° C. for 50 hours, the presence or absence of peeling of the second electrode 16, electrical characteristics, and The light emission characteristics were evaluated.
  • the configuration of the second electrode 16 includes an Al single layer, an Ag single layer, a stack of Ag and Al (the side in contact with the organic functional layer is Ag), and a stack of Al and Ag (organic functional layer). There are four types of Al) on the side in contact with.
  • FIG. 11 shows the evaluation results of each sample.
  • the use of 2- (henikosafluorodecyl) ethyl acrylate as the material of the low-melting-point material layer 18 can prevent the second electrode 16 from being peeled off and is effective in improving the reliability. confirmed.
  • the luminance spot was originated in the adhesive force of Ag and the organic functional layer 14 being small.
  • the luminance unevenness is eliminated regardless of the stacking order when the second electrode has a stacked structure of Ag and Al. Since Ag has a relatively high reflectance, it is effective for improving the light extraction efficiency of the organic EL device.
  • the second electrode By making the second electrode a laminated structure of Ag and Al, it is possible to improve the light extraction efficiency of the organic EL device while ensuring high adhesion to the organic functional layer 14.
  • the electrode material having high adhesion to the organic functional layer 14 include easily oxidized Al and MgAg alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This organic electroluminescence device includes: a first electrode disposed on a substrate; an organic functional layer comprising at least one layer disposed on the first electrode; a second electrode disposed on the organic functional layer; a low-melting-point material layer, which is disposed on the second electrode, and which comprises an insulator that takes on a solid state at normal temperature and has a lower melting point than the glass transition temperature of the organic material constituting the organic functional layer; and a sealing layer for sealing a laminate comprising the first electrode, the organic functional layer, the second electrode and the low-melting-point material layer.

Description

有機エレクトロルミネッセンスデバイスおよび有機エレクトロルミネッセンスデバイスの製造方法ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE
 本発明は、有機エレクトロルミネッセンスデバイスおよびその製造方法に関する。 The present invention relates to an organic electroluminescence device and a manufacturing method thereof.
従来技術Conventional technology
 有機エレクトロルミネッセンスデバイス(以下有機ELデバイスと称する)は、自己発光型の面発光デバイスであり、視認性が高い、低電圧駆動が可能、ブロードな発光スペクトルを有するといった理由から、ディスプレイや照明用途への実用化の研究が積極的に行われている。有機ELデバイスは、例えば、ガラス基板上に第1電極(陽極)、正孔輸送層、発光層、電子輸送層、第2電極(陰極)を順次積層して構成される。有機ELデバイスは電流注入によりエレクトロルミネッセンスを得るデバイスであり、液晶ディスプレイのような電界デバイスに比して大きな電流を流す必要がある。 An organic electroluminescence device (hereinafter referred to as an organic EL device) is a self-luminous surface light-emitting device, and has high visibility, can be driven at a low voltage, and has a broad emission spectrum. Research into the practical use of this is being actively conducted. The organic EL device is configured, for example, by sequentially laminating a first electrode (anode), a hole transport layer, a light emitting layer, an electron transport layer, and a second electrode (cathode) on a glass substrate. An organic EL device is a device that obtains electroluminescence by current injection, and requires a larger current to flow than an electric field device such as a liquid crystal display.
 有機ELデバイスの問題として、ダークスポット不良が挙げられる。ダークスポットとは、有機ELデバイスを長時間使用した場合に発光エリアに発生する非可逆性非発光部である。ダークスポットは、外部から浸入する水分や酸素、デバイスの構成材料から発せられるアウトガスによって有機EL素子が部分的に失活することにより発生するものと考えられている。このような外部からの水分や酸素等の侵入やアウトガスに対しては、有機EL素子を吸着乾燥剤とともに金属缶で封止する中空封止構造を採用することで対処している(特許文献1参照)。 問題 Dark spot defects are a problem with organic EL devices. A dark spot is an irreversible non-light emitting portion that occurs in a light emitting area when an organic EL device is used for a long time. The dark spot is considered to be generated by partial deactivation of the organic EL element due to moisture and oxygen entering from the outside, and outgas emitted from the constituent material of the device. Such intrusion and outgas such as moisture and oxygen from the outside are dealt with by adopting a hollow sealing structure in which the organic EL element is sealed with a metal can together with an adsorption desiccant (Patent Document 1). reference).
 有機ELデバイスの他の問題として、電極間の電流リークが挙げられる。有機ELデバイスでは、陽極と陰極との間に設けられる有機機能層の厚さがサブミクロンオーダーであるため微小なゴミや有機機能層の欠陥に起因して電流リークが発生する可能性がある。例えば、陽極と陰極との間に異物が混入した場合には、当該異物がリークパスを形成し、または、当該異物によって電極にパターンくずれが生じた結果、陽極と陰極とが接触する場合がある。電流リークが生じると、非発光部を生じたり、発熱により周辺のセルにダメージが波及する場合もある。 Another problem with organic EL devices is current leakage between electrodes. In the organic EL device, since the thickness of the organic functional layer provided between the anode and the cathode is on the order of submicron, current leakage may occur due to minute dust or defects in the organic functional layer. For example, when a foreign substance is mixed between the anode and the cathode, the foreign substance may form a leak path, or the pattern may be lost in the electrode due to the foreign substance, resulting in contact between the anode and the cathode. When a current leak occurs, a non-light emitting portion may be generated, or damage may spread to surrounding cells due to heat generation.
 特許文献2および3には、電極間に逆バイアス電圧を印加してリーク部を形成する電極材料を融解・蒸発させることにより、短絡部を修復する技術が開示されている。 Patent Documents 2 and 3 disclose a technique for repairing a short-circuit portion by applying a reverse bias voltage between electrodes to melt and evaporate an electrode material that forms a leak portion.
 特許文献4には、下部電極と有機発光層との間に有機導電性材料からなる剥離抑制膜を形成し、レーザ照射により剥離抑制層を蒸発させて空洞部を形成することにより短絡部の修復を行う技術が開示されている。 In Patent Document 4, a peeling suppression film made of an organic conductive material is formed between a lower electrode and an organic light emitting layer, and the peeling suppression layer is evaporated by laser irradiation to form a cavity, thereby repairing a short circuit portion. Techniques for performing are disclosed.
特開平9-148066号公報Japanese Patent Laid-Open No. 9-148066 特開平11-305727号公報Japanese Patent Laid-Open No. 11-305727 特開2003-229262号公報JP 2003-229262 A 特開2006-269108号公報JP 2006-269108 A
 上記した逆バイアスまたはレーザ照射による短絡部の修復は、有機ELデバイスの封止構造が中空封止構造である場合には有効であると考えられる。中空封止構造の場合、除去すべき電極材料(金属)や異物をレーザ照射によって蒸発・飛散させるための空間が存在するからである。しかしながら、近年デバイスの薄型化やフレキシブル化の要求が高まりつつあるところ、中空封止構造ではこれらの要求に対応するのが困難である。 The above-described repair of the short-circuit portion by reverse bias or laser irradiation is considered to be effective when the sealing structure of the organic EL device is a hollow sealing structure. This is because, in the case of the hollow sealing structure, there is a space for evaporating and scattering the electrode material (metal) and foreign matter to be removed by laser irradiation. However, in recent years, demands for thinner and more flexible devices are increasing, and it is difficult to meet these requirements with a hollow sealing structure.
 デバイスの薄型化を可能とする封止構造として固体封止構造が知られている。固体封止構造は、ガラスや金属等からなる板材で封止するものやSiOやSiN等の無機材料からなる薄膜で封止するものがある。固体封止構造では、封止層は上部電極と密着していることから、薄型化が可能であり、デバイスの放熱性が高いという利点がある一方、上部電極と封止層との間に電極材料を蒸発・飛散させるための空間が存在しない故、上記した逆バイアスまたはレーザ照射による短絡部の修復は困難である。固体封止構造においてそのような修復を行うと、上部電極の破断に伴う衝撃によって封止層が破壊され、封止機能が害されるおそれがある。また、そのような修復を行って、電流リークが解消した場合でも、上部電極に密着する封止層からの押圧によって上部電極と下部電極が再び接触して電流リークが再発するおそれもある。 A solid sealing structure is known as a sealing structure that can reduce the thickness of a device. Some solid sealing structures are sealed with a plate made of glass, metal, or the like, and others are sealed with a thin film made of an inorganic material such as SiO 2 or SiN x . In the solid sealing structure, since the sealing layer is in intimate contact with the upper electrode, it is possible to reduce the thickness, and there is an advantage that the device has high heat dissipation, while the electrode is interposed between the upper electrode and the sealing layer. Since there is no space for evaporating and scattering the material, it is difficult to repair the short-circuit portion by reverse bias or laser irradiation. When such a repair is performed in the solid sealing structure, the sealing layer may be destroyed by an impact accompanying the fracture of the upper electrode, and the sealing function may be impaired. Moreover, even when such a repair is performed and the current leak is resolved, there is a possibility that the current leak may reoccur due to the upper electrode and the lower electrode coming into contact again by pressing from the sealing layer that is in close contact with the upper electrode.
 このように、固体封止構造は、デバイスの薄型化や放熱性の改善といった利点を有する一方、逆バイアスやレーザ照射といった中空封止構造で行われている修復方法の実行が困難なものとなっている。 As described above, the solid sealing structure has advantages such as thinning of the device and improvement of heat dissipation, but it is difficult to execute the repair method performed in the hollow sealing structure such as reverse bias and laser irradiation. ing.
 本発明は、かかる点に鑑みてなされたものであり、固体封止構造を有するデバイスであっても上部電極と下部電極との間で生ずる短絡部の修復を容易且つ効果的に行うことができる有機エレクトロルミネッセンスデバイスおよびそのような有機エレクトロルミネッセンスデバイスの製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and even in a device having a solid sealing structure, it is possible to easily and effectively repair a short-circuit portion generated between the upper electrode and the lower electrode. An object of the present invention is to provide an organic electroluminescent device and a method for producing such an organic electroluminescent device.
 本発明に係る有機エレクトロルミネッセンスデバイスは、基板上に設けられた第1電極と、前記第1電極上に設けられた少なくとも1層からなる有機機能層と、前記有機機能層上に設けられた第2電極と、を含む有機EL構造体と、前記第2電極上に設けられて、常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層と、前記有機EL構造体および前記低融点材料層からなる積層体を封止する封止層と、を含み、前記低融点材料層は、一般式がC2n+2で表される鎖式飽和炭化フッ素を含有またはこれを結合した化合物からなることを特徴としている。 An organic electroluminescence device according to the present invention includes a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and a first electrode provided on the organic functional layer. An organic EL structure including two electrodes, and an insulation provided on the second electrode and having a melting point lower than a glass transition temperature of an organic material that exhibits a solid state at room temperature and constitutes the organic functional layer A low-melting-point material layer, and a sealing layer that seals the laminate composed of the organic EL structure and the low-melting-point material layer, and the low-melting-point material layer has a general formula of C n F 2n + 2 It is characterized by comprising a compound containing a chain saturated fluorine represented by the formula:
 また、本発明に係る他の有機エレクトロルミネッセンスデバイスは、基板上に設けられた第1電極と、前記第1電極上に設けられた少なくとも1層からなる有機機能層と、前記有機機能層上に設けられた第2電極と、を含む有機EL構造体と、前記有機EL構造体を被覆する無機材料からなるカバー層と、前記カバー層上に設けられて、常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層と、前記有機EL構造体、前記カバー層および前記低融点材料層からなる積層体を封止する封止層と、を含むことを特徴としている。 Another organic electroluminescence device according to the present invention includes a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and the organic functional layer. An organic EL structure including the second electrode provided; a cover layer made of an inorganic material that covers the organic EL structure; provided on the cover layer; and exhibiting a solid state at room temperature; Sealing a low-melting-point material layer made of an insulator having a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer, and a laminate comprising the organic EL structure, the cover layer, and the low-melting-point material layer And a sealing layer.
 また、本発明に係る有機エレクトロルミネッセンスデバイスの製造方法は、基板上に第1電極を形成する工程と、前記第1電極上に少なくとも1層からなる有機機能層を形成する工程と、前記有機機能層上に第2電極を形成する工程と、前記第2電極上に常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層を形成する工程と、前記第1電極、前記有機機能層、前記第2電極および前記低融点材料層からなる積層体を封止する封止層を形成して中間デバイスを得る工程と、前記中間デバイスを前記低融点材料層を構成する低融点材料の融点よりも高い温度で加熱する加熱工程と、を含むことを特徴としている。 In addition, the organic electroluminescence device manufacturing method according to the present invention includes a step of forming a first electrode on a substrate, a step of forming an organic functional layer including at least one layer on the first electrode, and the organic function. A step of forming a second electrode on the layer, and a low-resistance comprising an insulator that exhibits a solid state at room temperature on the second electrode and has a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer Forming a melting point material layer; and forming an intermediate device by forming a sealing layer that seals a laminate including the first electrode, the organic functional layer, the second electrode, and the low melting point material layer; And heating the intermediate device at a temperature higher than the melting point of the low melting point material constituting the low melting point material layer.
 また、本発明に係る有機エレクトロルミネッセンスデバイスの他の製造方法は、基板上に第1電極を形成する工程と、前記第1電極上に少なくとも1層からなる有機機能層を形成する工程と、前記有機機能層上に第2電極を形成する工程と、前記第2電極上に常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層を形成する工程と、前記第1電極、前記有機機能層、前記第2電極および前記低融点材料層からなる積層体を封止する封止層を形成して中間デバイスを得る工程と、前記第1および第2電極間における短絡箇所を特定する工程と、前記短絡箇所にレーザを照射して短絡部を除去する工程と、を含むことを特徴としている。 In addition, another method of manufacturing an organic electroluminescence device according to the present invention includes a step of forming a first electrode on a substrate, a step of forming an organic functional layer including at least one layer on the first electrode, A step of forming a second electrode on the organic functional layer; and an insulator that exhibits a solid state at room temperature on the second electrode and has a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer Forming a low-melting-point material layer, and forming a sealing layer that seals the laminate composed of the first electrode, the organic functional layer, the second electrode, and the low-melting-point material layer to obtain an intermediate device A step of identifying a short-circuit portion between the first and second electrodes, and a step of irradiating the short-circuit portion with a laser to remove the short-circuit portion.
 また、本発明に係る有機エレクトロルミネッセンスデバイスの他の製造方法は、有機エレクトロルミネッセンスデバイスの製造方法であって、基板上に第1電極を形成する工程と、前記第1電極上に少なくとも1層からなる有機機能層を形成する工程と、前記有機機能層上に第2電極を形成する工程と、前記第2電極上に常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層を形成する工程と、前記第1電極、前記有機機能層、前記第2電極および前記低融点材料層からなる積層体を封止する封止層を形成して中間デバイスを得る工程と、前記第1および第2電極間における短絡箇所を特定する工程と、前記短絡箇所に電流を流すべく前記第1および第2電極間に電力を印加して短絡部を除去する工程と、を含むことを特徴としている。 Another method for manufacturing an organic electroluminescent device according to the present invention is a method for manufacturing an organic electroluminescent device, comprising: forming a first electrode on a substrate; and at least one layer on the first electrode. A step of forming an organic functional layer, a step of forming a second electrode on the organic functional layer, a glass of an organic material that forms a solid state on the second electrode at room temperature and constitutes the organic functional layer A step of forming a low-melting-point material layer made of an insulator having a melting point lower than a transition temperature, and a laminate made up of the first electrode, the organic functional layer, the second electrode, and the low-melting-point material layer; Forming a sealing layer to obtain an intermediate device; identifying a short-circuit location between the first and second electrodes; and passing the first and second currents through the short-circuit location. It is characterized in that it comprises a step of removing the short-circuit portion by applying a power, the between 2 electrodes.
本発明の実施例に係る有機エレクトロルミネッセンスデバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the organic electroluminescent device which concerns on the Example of this invention. 図2(a)は短絡を生じている本発明の実施例に係る有機エレクトロルミネッセンスデバイスの断面図、図2(b)は短絡部の修復後における本発明の実施例に係る有機エレクトロルミネッセンスデバイスの断面図である。2A is a cross-sectional view of an organic electroluminescence device according to an embodiment of the present invention in which a short circuit has occurred, and FIG. 2B is a cross-sectional view of the organic electroluminescence device according to an embodiment of the present invention after the repair of the short circuit portion. It is sectional drawing. 図3(a)は短絡を生じている本発明の実施例に係る有機エレクトロルミネッセンスデバイスの断面図、図3(b)は短絡部の修復後における本発明の実施例に係る有機エレクトロルミネッセンスデバイスの断面図である。3A is a cross-sectional view of an organic electroluminescence device according to an embodiment of the present invention in which a short circuit has occurred, and FIG. 3B is a cross-sectional view of the organic electroluminescence device according to an embodiment of the present invention after the repair of the short circuit portion. It is sectional drawing. 図4は、本発明の実施例に係る有機エレクトロルミネッセンスデバイスの製造工程フロー図である。FIG. 4 is a manufacturing process flow diagram of an organic electroluminescence device according to an embodiment of the present invention. 図5は、本発明の実施例に係る有機エレクトロルミネッセンスデバイスの製造工程フロー図である。FIG. 5 is a manufacturing process flow diagram of an organic electroluminescence device according to an embodiment of the present invention. 図6は、本発明の実施例に係る有機エレクトロルミネッセンスデバイスの製造工程フロー図である。FIG. 6 is a manufacturing process flow diagram of an organic electroluminescence device according to an embodiment of the present invention. 図7は、本発明の他の実施例に係る有機エレクトロルミネッセンスデバイスの構成を示す断面図である。FIG. 7 is a cross-sectional view showing a configuration of an organic electroluminescence device according to another embodiment of the present invention. 図8は、本発明の他の実施例に係る有機エレクトロルミネッセンスデバイスの構成を示す断面図である。FIG. 8 is a cross-sectional view showing a configuration of an organic electroluminescence device according to another embodiment of the present invention. 図9は、本発明の他の実施例に係る有機エレクトロルミネッセンスデバイスの構成を示す断面図である。FIG. 9 is a cross-sectional view showing a configuration of an organic electroluminescence device according to another embodiment of the present invention. 図10は、本発明の実施例に係る低融点材料層を構成するフッ化アルカンの具体例を示す図である。FIG. 10 is a diagram showing a specific example of the fluorinated alkane constituting the low melting point material layer according to the example of the present invention. 本発明の実施例に係る有機エレクトロルミネッセンスデバイスの高温放置後の特性評価結果を示す図である。It is a figure which shows the characteristic evaluation result after high temperature leaving of the organic electroluminescent device which concerns on the Example of this invention.
 本発明に係る有機エレクトロルミネッセンスデバイスは、基板上に設けられた第1電極と、第1電極上に設けられた少なくとも1層からなる有機機能層と、有機機能層上に設けられた第2電極と、第2電極上に設けられて、常温において固体状態を呈し且つ有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層と、第1電極、前記有機機能層、前記第2電極および前記低融点材料層からなる積層体を封止する封止層と、を含んでいる。 An organic electroluminescence device according to the present invention includes a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and a second electrode provided on the organic functional layer. A low-melting-point material layer made of an insulator provided on the second electrode and having a melting point lower than the glass transition temperature of the organic material that exhibits a solid state at room temperature and constitutes the organic functional layer, and the first electrode, And a sealing layer that seals the laminate composed of the organic functional layer, the second electrode, and the low-melting-point material layer.
 本発明の有機エレクトロルミネッセンスデバイスの構成によれば、短絡部の修復を容易且つ効果的に行うことが可能となる。すなわち、第1電極と第2電極との間に混入した異物が電流リークパスを形成している場合において、有機エレクトロルミネッセンスデバイスを加熱して低融点材料層を融解させることにより、当該異物は、低融点材料層を構成する絶縁体で包埋される。その後、温度を降下させて低融点材料層を凝固させることにより、当該異物が絶縁体で包埋された状態が維持される。従って、第1電極と第2電極間における電流リークを防止することが可能となる。 According to the configuration of the organic electroluminescence device of the present invention, it is possible to easily and effectively repair the short circuit portion. That is, when the foreign matter mixed between the first electrode and the second electrode forms a current leak path, the foreign matter is reduced by heating the organic electroluminescence device and melting the low melting point material layer. It is embedded with an insulator constituting the melting point material layer. Thereafter, the temperature is lowered to solidify the low-melting-point material layer, so that the state where the foreign matter is embedded with the insulator is maintained. Therefore, current leakage between the first electrode and the second electrode can be prevented.
 また、有機エレクトロルミネッセンスデバイスを加熱して低融点材料層を融解させることにより、第2電極が低融点材料層の側に向けて開くように破断し得る状態となるので、固体封止構造であってもレーザ照射や電力印加等による短絡部の除去が可能となる。 In addition, by heating the organic electroluminescence device to melt the low melting point material layer, the second electrode can be broken so as to open toward the low melting point material layer. However, it is possible to remove the short-circuit portion by laser irradiation, power application, or the like.
 以下、本発明の実施例について図面を参照しつつ説明する。尚、以下に示す図において、実質的に同一又は等価な構成要素、部分には同一の参照符を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings shown below, substantially the same or equivalent components and parts are denoted by the same reference numerals.
 図1は、本発明の実施例に係る有機ELデバイス1の構造を示す断面図である。有機ELデバイス1は、基板10上に第1電極(下部電極)12、有機機能層14、第2電極(上部電極)16、低融点材料層18、封止層20を順次積層することにより形成される。有機ELデバイス1は、有機機能層14において生成された光を基板10側から光を取り出す所謂ボトムエミッション型の発光デバイスである。 FIG. 1 is a cross-sectional view showing the structure of an organic EL device 1 according to an embodiment of the present invention. The organic EL device 1 is formed by sequentially laminating a first electrode (lower electrode) 12, an organic functional layer 14, a second electrode (upper electrode) 16, a low melting point material layer 18, and a sealing layer 20 on a substrate 10. Is done. The organic EL device 1 is a so-called bottom emission type light emitting device that extracts light generated in the organic functional layer 14 from the substrate 10 side.
 基板10は、ガラス等の光透過性を有する材料により構成される。陽極である第1電極12は、例えばスパッタリング法により厚さ100nm程度のITO(Indium Tin Oxide)またはIZO(Indium Zinc Oxide)などの光透過性を有する導電性酸化物を基板10上に成膜した後、エッチングによりパターニングすることで形成される。 The substrate 10 is made of a light transmissive material such as glass. For the first electrode 12 as an anode, a conductive oxide having a light transmission property such as ITO (Indium (Tin Oxide) or IZO (Indium Zinc Oxide) having a thickness of about 100 nm is formed on the substrate 10 by sputtering, for example. Thereafter, it is formed by patterning by etching.
 有機機能層14は、基板10上において第1電極12を覆うようにホール注入層、ホール輸送層、発光層、電子注入層をこの順で積層することにより構成される。ホール注入層は例えば厚さ25nm程度の銅フタロシアニン(CuPc)により構成され、ホール輸送層は例えば厚さ40nm程度のα-NPD(Bis[N-(1-naphthyl)-N-pheny]benzidine)により構成され、発光層は例えば厚さ60nm程度のAlq3(tris-(8-hydroxyquinoline)aluminum)により構成され、電子注入層は例えば厚さ0.5nm程度の酸化化リチウム(LiO)により構成される。有機機能層14を構成する上記各層は例えばマスク蒸着法やインクジェット法などにより成膜することができる。 The organic functional layer 14 is configured by laminating a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer in this order so as to cover the first electrode 12 on the substrate 10. The hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 25 nm, and the hole transport layer is made of, for example, α-NPD (Bis [N- (1-naphthyl) -N-pheny] benzidine) having a thickness of about 40 nm. The light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 60 nm, and the electron injection layer is made of, for example, lithium oxide (Li 2 O) having a thickness of about 0.5 nm. The Each of the layers constituting the organic functional layer 14 can be formed by, for example, a mask vapor deposition method or an ink jet method.
 陰極である第2電極16は、マスク蒸着法等により基板10上において有機機能層14を覆うように厚さ100nm程度のAlを成膜することで形成される。第2電極16の他の材料としては、Mg-AgやAl-Li等の比較的仕事関数の低い合金が好適である。また、第2電極16をAlとAgの積層構造とすることにより、その積層順序に関わらず有機機能層14に対する高い密着性を保持しつつ光取り出し効率の向上を図ることができる。第1電極12、有機機能層14および第2電極16によって、有機EL構造体が形成される。 The second electrode 16 serving as a cathode is formed by depositing Al having a thickness of about 100 nm on the substrate 10 so as to cover the organic functional layer 14 by a mask vapor deposition method or the like. As another material of the second electrode 16, an alloy having a relatively low work function such as Mg—Ag or Al—Li is preferable. Further, by making the second electrode 16 have a laminated structure of Al and Ag, it is possible to improve the light extraction efficiency while maintaining high adhesion to the organic functional layer 14 regardless of the lamination order. An organic EL structure is formed by the first electrode 12, the organic functional layer 14, and the second electrode 16.
 低融点材料層18は、常温(室温程度、例えば25℃前後)において固体状態を呈し且つ有機機能層14を構成する上記各材料のガラス転移温度Tgよりも低い融点を有する絶縁体により構成される。低融点材料層18は、例えばパラフィンを主成分とする材料(例えば蝋)などにより構成することができる。パラフィンは、炭素数16~40のメタン系炭化水素の混合物であり、融点は50~75℃程度である。低融点材料層18の他の材料として、例えばトリ-p-トリルアミンを使用することができる。トリ-p-トリルアミンは、融点が117℃であり、有機溶剤に可溶な有機ポリマーであり、有機溶媒溶液を塗布液として成膜することが可能である。低融点材料層18は、第2電極16の上面全体を覆うように形成される。 The low melting point material layer 18 is made of an insulator that exhibits a solid state at room temperature (about room temperature, for example, around 25 ° C.) and has a melting point lower than the glass transition temperature Tg of each of the above materials constituting the organic functional layer 14. . The low melting point material layer 18 can be made of, for example, a material (for example, wax) mainly composed of paraffin. Paraffin is a mixture of methane-based hydrocarbons having 16 to 40 carbon atoms, and has a melting point of about 50 to 75 ° C. As another material of the low melting point material layer 18, for example, tri-p-tolylamine can be used. Tri-p-tolylamine has a melting point of 117 ° C. and is an organic polymer soluble in an organic solvent, and can form a film using an organic solvent solution as a coating solution. The low melting point material layer 18 is formed so as to cover the entire upper surface of the second electrode 16.
 封止層20は、SiNx、SiON、SiOx、AlOx、AlN等の無機材料からなる薄膜により構成される。封止層20は、低融点材料層18上に密着して設けられ、基板10上において第1電極12、有機機能層14、第2電極16、および低融点材料層18からなる積層体を封止する。封止層20は、外部からの酸素や水分の侵入を防止する役割を担う。封止層20の成膜方法としては、蒸着法、スパッタ法、CVD法などが挙げられる。特にCVD法はカバレッジ性が良好であり、防湿性の高い膜を容易に形成することができる。 The sealing layer 20 is composed of a thin film made of an inorganic material such as SiNx, SiON, SiOx, AlOx, or AlN. The sealing layer 20 is provided in close contact with the low-melting-point material layer 18 and seals a laminate including the first electrode 12, the organic functional layer 14, the second electrode 16, and the low-melting-point material layer 18 on the substrate 10. Stop. The sealing layer 20 plays a role of preventing entry of oxygen and moisture from the outside. Examples of the method for forming the sealing layer 20 include vapor deposition, sputtering, and CVD. In particular, the CVD method has good coverage and can easily form a highly moisture-proof film.
 以下に、本実施例に係る有機ELデバイス1における短絡部の修復方法について説明する。本実施例に係る有機ELデバイス1では、2つの修復方法で短絡部の修復を行うことが可能である。はじめに第1の修復方法について説明する。 Hereinafter, a method for repairing the short-circuit portion in the organic EL device 1 according to the present embodiment will be described. In the organic EL device 1 according to the present embodiment, the short-circuit portion can be repaired by two repair methods. First, the first repair method will be described.
 図2(a)は、第1電極12と第2電極14との間の有機機能層14に導電性異物30が混入したことにより、有機機能層14および第2電極16にパターンくずれが生じている状態を例示する断面図である。かかる状態においては、第2電極16は、導電性異物30を介して第1電極12に電気的に接続され得る。すなわち、図2(a)に示す場合においては、導電性異物30が電流リークパスを形成する短絡部となり得る。第1電極12と第2電極16との間に電流リークパスが形成されると、有機機能14への電流注入が阻害され、発光輝度が低下し、または非発光となる。 FIG. 2A shows that the organic functional layer 14 between the first electrode 12 and the second electrode 14 is mixed with the conductive foreign matter 30, thereby causing a pattern defect in the organic functional layer 14 and the second electrode 16. It is sectional drawing which illustrates the state which exists. In such a state, the second electrode 16 can be electrically connected to the first electrode 12 through the conductive foreign material 30. That is, in the case shown in FIG. 2A, the conductive foreign material 30 can be a short-circuit portion that forms a current leak path. When a current leak path is formed between the first electrode 12 and the second electrode 16, current injection into the organic function 14 is hindered, resulting in a decrease in light emission luminance or no light emission.
 はじめに、図2(a)に示す状態にある有機ELデバイス1を加熱する。加熱温度は、低融点材料層18を構成する低融点材料の融点以上且つ有機機能層14を構成する各材料のガラス転移温度Tg以下に設定される。加熱処理には、ホットプレート、恒温層、ベルト炉などを用いることができる。このような加熱処理を行うことにより低融点材料層18を構成する低融点材料は、融解して液体となる。液体となった低融点材料は、導電性異物30と、有機機能層14および第2電極14との隙間に含浸し、導電性異物30を包埋する。 First, the organic EL device 1 in the state shown in FIG. The heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14. For the heat treatment, a hot plate, a constant temperature layer, a belt furnace, or the like can be used. By performing such heat treatment, the low melting point material constituting the low melting point material layer 18 is melted to become a liquid. The liquid low melting point material is impregnated into the gap between the conductive foreign matter 30 and the organic functional layer 14 and the second electrode 14 to embed the conductive foreign matter 30.
 次に、有機ELデバイス1を常温(室温程度)に戻す。これにより、低融点材料は導電性異物30を包埋した状態で凝固する。導電性異物30は、絶縁体である低融点材料で被覆されて電流リークパスとして機能しなくなるので、電流リークを未然に防ぐことが可能となる。図2(b)は、第1の修復方法で修復された有機ELデバイス1の断面図である。低融点材料が凝固した後は、有機ELデバイス1を常温環境下で使用する限り、図2(b)に示す状態が維持される故、電流リークが再発するおそれもない。また、加熱温度は、有機機能層14を構成する各材料のガラス転移温度Tg以下に設定される故、有機機能層14にダメージを与えることもない。 Next, the organic EL device 1 is returned to room temperature (about room temperature). Thereby, the low melting point material is solidified in a state where the conductive foreign material 30 is embedded. Since the conductive foreign material 30 is covered with a low melting point material which is an insulator and does not function as a current leak path, it is possible to prevent current leakage. FIG. 2B is a cross-sectional view of the organic EL device 1 repaired by the first repairing method. After the low melting point material is solidified, as long as the organic EL device 1 is used in a room temperature environment, the state shown in FIG. Further, since the heating temperature is set to be equal to or lower than the glass transition temperature Tg of each material constituting the organic functional layer 14, the organic functional layer 14 is not damaged.
 このように、第1の修復方法は、有機ELデバイス1を加熱することにより低融点材料層18を融解させて、第1電極12と第2電極16との間に混入した異物を低融点材料層18を構成する絶縁体で被覆することにより電流リークの発生を防止するものである。第1の修復方法においては、短絡部の修復は、有機ELデバイス1の加熱処理のみで完了する。尚、第1電極12-第2電極16間に順バイアスまたは逆バイアスとなるように電力を印加することにより短絡部に局所的な電流を流して短絡部を発熱させることにより低融点材料層18を融解させてもよい。かかる電力印加は、上記した加熱処理に代えてまたは加熱処理とともに行うことが可能である。 As described above, in the first repair method, the low melting point material layer 18 is melted by heating the organic EL device 1, and the foreign matter mixed between the first electrode 12 and the second electrode 16 is removed from the low melting point material. By covering with the insulator constituting the layer 18, the occurrence of current leakage is prevented. In the first repair method, the repair of the short circuit portion is completed only by the heat treatment of the organic EL device 1. The low melting point material layer 18 is generated by applying a power so as to be forward biased or reverse biased between the first electrode 12 and the second electrode 16 so as to cause a local current to flow through the shorted part to generate heat. May be melted. Such power application can be performed instead of the above heat treatment or together with the heat treatment.
 次に、短絡部の第2の修復方法について説明する。図3(a)は、有機機能層14に生じた欠陥(ピンホール)等に第2電極16が侵入して第1電極12と第2電極16とが短絡している状態を示す断面図である。 Next, a second method for repairing the short circuit portion will be described. FIG. 3A is a cross-sectional view showing a state in which the second electrode 16 has entered a defect (pinhole) or the like generated in the organic functional layer 14 and the first electrode 12 and the second electrode 16 are short-circuited. is there.
 はじめに、図3(a)に示す状態にある有機ELデバイス1を加熱する。加熱温度は、低融点材料層18を構成する低融点材料の融点以上且つ有機機能層14を構成する各材料のガラス転移温度Tg以下に設定される。加熱処理には、ホットプレート、恒温層、ベルト炉などを用いることができる。このような熱処理を行うことにより低融点材料層18を構成する低融点材料は、融解して液体となる。 First, the organic EL device 1 in the state shown in FIG. The heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14. For the heat treatment, a hot plate, a constant temperature layer, a belt furnace, or the like can be used. By performing such heat treatment, the low melting point material constituting the low melting point material layer 18 is melted to become a liquid.
 次に、上記加熱温度で有機ELデバイス1を加熱しつつ短絡部31にレーザ光を照射する。短絡部31の位置は、例えば有機ELデバイス1の発光領域を撮影したカメラの出力画像をデジタル化し、そのデジタル画像を画像処理することによって特定することができる。レーザ光は、第2電極16を融解・蒸発せしめるパワーにて基板10側から照射される。短絡部31を形成する第2電極16の構成材料である金属はレーザ光を吸収して発熱して融解・蒸発する。このとき、低融点材料層18は、加熱処理によって融解しているので、封止層20の破壊を回避しつつ第2電極16は、図3(b)に示すように上方(低融点材料層側)に向けて開くように破断・変形することができる。レーザ照射により短絡部31は、第2電極16とともに融解・蒸発して除去される。短絡部31が除去された有機機能層14の欠陥部分には、液状の低融点材料が含浸する。 Next, the short-circuit part 31 is irradiated with laser light while the organic EL device 1 is heated at the above heating temperature. The position of the short-circuit portion 31 can be specified by digitizing an output image of a camera that captures the light emitting area of the organic EL device 1 and performing image processing on the digital image. The laser beam is irradiated from the substrate 10 side with a power for melting and evaporating the second electrode 16. The metal that is the constituent material of the second electrode 16 forming the short-circuit portion 31 absorbs the laser beam and generates heat to melt and evaporate. At this time, since the low melting point material layer 18 is melted by the heat treatment, the second electrode 16 is positioned upward (low melting point material layer as shown in FIG. 3B while avoiding the destruction of the sealing layer 20. It can be broken and deformed so as to open toward the side. The short-circuit portion 31 is removed by melting and evaporation together with the second electrode 16 by laser irradiation. The defective portion of the organic functional layer 14 from which the short-circuit portion 31 has been removed is impregnated with a liquid low melting point material.
 次に、有機ELデバイス1を常温(室温程度)に戻す。低融点材料層18を構成する低融点材料は、上方(低融点材料層側)に向けて開くように破断した第2電極16の破断部分を包埋した状態で凝固する。また、有機機能層14の欠陥部分は、固体状態の低融点材料で埋められる。これにより、電流リークの発生および再発を防止することが可能となる。図3(b)は、第2の修復方法で修復された有機ELデバイス1の断面図である。低融点材料が凝固した後は、有機ELデバイス1を常温環境下で使用する限り、図3(b)に示す状態が維持されるので、電流リークが再発するおそれもない。また、加熱温度は、有機機能層14を構成する各材料のガラス転移温度Tg以下に設定される故、有機機能層14にダメージを与えることもない。また、有機ELデバイス1を加熱しつつレーザ照射を行うので、第2電極の破断による衝撃は、液状の低融点材料層18に吸収される。これにより、封止層20の破壊が防止される。 Next, the organic EL device 1 is returned to room temperature (about room temperature). The low-melting-point material constituting the low-melting-point material layer 18 is solidified in a state of embedding the broken portion of the second electrode 16 that is broken so as to open upward (low-melting-point material layer side). The defective portion of the organic functional layer 14 is filled with a low-melting material in a solid state. As a result, occurrence and recurrence of current leakage can be prevented. FIG. 3B is a cross-sectional view of the organic EL device 1 repaired by the second repair method. After the low melting point material is solidified, as long as the organic EL device 1 is used in a room temperature environment, the state shown in FIG. Further, since the heating temperature is set to be equal to or lower than the glass transition temperature Tg of each material constituting the organic functional layer 14, the organic functional layer 14 is not damaged. Further, since the laser irradiation is performed while heating the organic EL device 1, the impact due to the fracture of the second electrode is absorbed by the liquid low-melting-point material layer 18. Thereby, destruction of the sealing layer 20 is prevented.
 このように、第2の修復方法は、有機ELデバイス1を加熱して低融点材料層18を融解させることにより第2電極16が上方(低融点材料層側)に向けて開くように破断し得る状態を維持しつつ短絡部を第2電極16とともに融解・蒸発させて短絡部を除去するものである。尚、有機ELデバイス1を加熱しつつ第1電極12-第2電極16間に順バイアスまたは逆バイアスとなるように電力を印加することにより短絡部31に局所的に電流を流して短絡部31を融解・蒸発させてこれを除去することも可能である。かかる電力印加は、上記したレーザ照射に代えてまたはレーザ照射とともに行うことが可能である。また、上記の説明では、有機機能層14に生じた欠陥部分に電極材料が侵入することにより形成された短絡部を修復する場合を例示したが、図2(a)に示すように、第1電極12と第2電極16との間に混入した異物を除去する場合でも第2の修復方法による修復が可能である。また、上記の説明では、有機ELデバイスを加熱しつつレーザ照射を行うこととしたが、レーザ照射を単独で行うことも可能である。この場合においても、低融点材料層18は、レーザ照射によって加熱されて融解するので、上記した加熱処理を伴う場合と同様に短絡部の除去が可能である。 As described above, in the second repairing method, the organic EL device 1 is heated to melt the low melting point material layer 18 so that the second electrode 16 is opened upward (low melting point material layer side). While maintaining the obtained state, the short circuit part is melted and evaporated together with the second electrode 16 to remove the short circuit part. In addition, by applying electric power so that the first electrode 12 and the second electrode 16 are forward-biased or reverse-biased while the organic EL device 1 is heated, a current is caused to flow locally in the short-circuit portion 31 and the short-circuit portion 31. It is also possible to remove this by melting and evaporating. Such power application can be performed in place of or with the laser irradiation described above. In the above description, the case where the short-circuit portion formed by the electrode material invading the defect portion generated in the organic functional layer 14 is illustrated as an example. As illustrated in FIG. Even when the foreign matter mixed between the electrode 12 and the second electrode 16 is removed, the repair by the second repair method is possible. In the above description, the laser irradiation is performed while heating the organic EL device. However, the laser irradiation can be performed alone. Also in this case, since the low melting point material layer 18 is heated and melted by the laser irradiation, it is possible to remove the short-circuit portion as in the case involving the heat treatment described above.
 以下に、本発明の実施例に係る有機ELデバイス1の製造方法について説明する。図4は、上記した第1の修復方法による短絡部の修復処理を含む本発明の実施例に係る有機ELデバイスの製造工程フロー図である。 Hereinafter, a method for manufacturing the organic EL device 1 according to an embodiment of the present invention will be described. FIG. 4 is a manufacturing process flow chart of the organic EL device according to the embodiment of the present invention including the repair process of the short circuit portion by the first repair method described above.
 ガラス等からなる光透過性を有する基板10上に例えばスパッタリング法によりITOやIZO等の光透過性を有する導電性酸化物を100nm程度堆積させ、エッチングによりこれを所望の形状にパターニングして第1電極12を形成する(ステップS1)。 A light-transmitting conductive oxide such as ITO or IZO is deposited on the light-transmitting substrate 10 made of glass or the like by a sputtering method, for example, to a thickness of about 100 nm, and this is patterned into a desired shape by etching. The electrode 12 is formed (step S1).
 次に、インクジェット法やマスク蒸着法等により第1電極12上にホール注入層、ホール輸送層、発光層、電子注入層を順次成膜して有機機能層14を形成する。ホール注入層は例えば厚さ25nm程度の銅フタロシアニン(CuPc)により構成され、ホール輸送層は例えば厚さ40nm程度のα-NPD(Bis[N-(1-naphthyl)-N-pheny]benzidine)により構成され、発光層は例えば厚さ60nm程度のAlq3(tris-(8-hydroxyquinoline)aluminum)により構成され、電子注入層は例えば厚さ0.5nm程度の酸化リチウム(LiO)により構成される(ステップS2)。 Next, an organic functional layer 14 is formed by sequentially forming a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection layer on the first electrode 12 by an inkjet method, a mask vapor deposition method, or the like. The hole injection layer is made of, for example, copper phthalocyanine (CuPc) having a thickness of about 25 nm, and the hole transport layer is made of, for example, α-NPD (Bis [N- (1-naphthyl) -N-pheny] benzidine) having a thickness of about 40 nm. The light emitting layer is made of, for example, Alq3 (tris- (8-hydroxyquinoline) aluminum) having a thickness of about 60 nm, and the electron injection layer is made of, for example, lithium oxide (Li 2 O) having a thickness of about 0.5 nm. (Step S2).
 次に、第2電極の形成領域において開口部を有するレジストマスクを形成し、蒸着法等により上記各工程を経て得られた構造体の上に電極材料であるAlを堆積させる。その後、レジストマスクを不要部分のAlとともに除去することによりAl膜をパターニングして有機機能層14上に第2電極16を形成する(ステップS3)。 Next, a resist mask having an opening is formed in the formation region of the second electrode, and Al as an electrode material is deposited on the structure obtained through each of the above steps by vapor deposition or the like. Thereafter, the resist mask is removed together with unnecessary portions of Al to pattern the Al film, thereby forming the second electrode 16 on the organic functional layer 14 (step S3).
 次に、第2電極16上に低融点材料層18を形成する。具体的には、低融点材料であるパラフィンを加熱して融解させ、液状のパラフィンを第2電極16上に塗布成膜する。このとき上記各工程を経た構造体をパラフィンの融点よりも高い温度で加熱しておくことにより、液状のパラフィンが第2電極16上に均一に濡れ広がり、低融点材料層18の層厚を均一にすることができる(ステップS4)。 Next, a low melting point material layer 18 is formed on the second electrode 16. Specifically, paraffin, which is a low melting point material, is heated and melted, and liquid paraffin is applied and formed on the second electrode 16. At this time, by heating the structure through the above steps at a temperature higher than the melting point of paraffin, the liquid paraffin uniformly spreads on the second electrode 16 and the layer thickness of the low melting point material layer 18 is uniform. (Step S4).
 低融点材料層18の他の形成方法としては、粉末のパラフィンを第2電極16上に散布した後、基板10を加熱して粉末のパラフィンを融解させて成膜する方法が挙げられる。 Another method for forming the low melting point material layer 18 is a method in which powder paraffin is dispersed on the second electrode 16 and then the substrate 10 is heated to melt the powder paraffin to form a film.
 低融点材料層18の材料としてトリ-p-トリルアミンを使用することもできる。この場合、トリ-p-トリルアミンを有機溶剤に溶解させたものを塗布液として第2電極16上に塗布成膜する。その後、約50℃程度の熱処理を施して塗布液を乾燥させる。 Tri-p-tolylamine can also be used as the material of the low melting point material layer 18. In this case, a film formed by dissolving tri-p-tolylamine in an organic solvent is applied onto the second electrode 16 as a coating solution. Thereafter, a heat treatment at about 50 ° C. is performed to dry the coating solution.
 次に、等方的な成膜が可能なプラズマCVD法などにより、上記各工程を経て得られた構造体を全体的に覆うようにSiNx、SiON、SiOx、AlOx、AlN等の無機材料からなる封止層20を形成する(ステップS5)。 Next, it is made of an inorganic material such as SiNx, SiON, SiOx, AlOx, AlN so as to entirely cover the structure obtained through each of the above steps by a plasma CVD method capable of isotropic film formation. The sealing layer 20 is formed (Step S5).
 次に、上記各工程を経て得られた中間デバイスを加熱する。加熱温度は、低融点材料層18を構成する低融点材料の融点以上且つ有機機能層14を構成する各材料のガラス転移温度Tg以下の温度に設定される。加熱処理には、中間デバイスを全体的に加熱することができるホットプレート、恒温層、ベルト炉などを用いることができる。低融点材料層18を例えばパラフィンで構成する場合、例えば80℃、30分間の加熱処理が中間デバイスに対して行われる。この加熱処理により低融点材料層18を構成する低融点材料は、融解して液体となる。液体となった低融点材料は、第1電極12と第2電極16との間に導電性異物が混入している場合、これを包埋することができる(ステップS6)。 Next, the intermediate device obtained through the above steps is heated. The heating temperature is set to a temperature not lower than the melting point of the low melting point material constituting the low melting point material layer 18 and not higher than the glass transition temperature Tg of each material constituting the organic functional layer 14. For the heat treatment, a hot plate, a thermostatic layer, a belt furnace, or the like that can heat the intermediate device as a whole can be used. When the low-melting-point material layer 18 is made of, for example, paraffin, for example, heat treatment at 80 ° C. for 30 minutes is performed on the intermediate device. The low melting point material constituting the low melting point material layer 18 is melted into a liquid by this heat treatment. The low-melting-point material that has become liquid can be embedded when conductive foreign matter is mixed between the first electrode 12 and the second electrode 16 (step S6).
 次に、中間デバイスを常温(室温程度)下に放置する。これにより、低融点材料は導電性異物を包埋した状態で凝固する。導電性異物は、絶縁体である低融点材料で被覆されて電流リークパスとして機能しなくなるので、電流リークを未然に防ぐことが可能となる。以上の各工程を経ることにより、有機ELデバイスが完成する(ステップS7)。 Next, leave the intermediate device at room temperature (about room temperature). Thereby, the low melting point material is solidified in a state where the conductive foreign matter is embedded. Since the conductive foreign matter is covered with a low-melting-point material that is an insulator and does not function as a current leak path, current leak can be prevented in advance. Through the above steps, the organic EL device is completed (step S7).
 このように、本実施例に係る有機ELデバイスの製造方法においては、有機ELデバイスの各構成要素を形成した後に加熱処理を施すことにより第1-第2電極間における電流リークを未然に防止している。かかる加熱処理は、導電性異物の存否に関わらず、全ての製品を対象として実施され得る。加熱工程においては、多数の製品の一括処理が比較的容易であることから、検査工程などによる導電性異物の存否確認を経ることなく、全ての製品を加熱処理の対象とすることにより生産性の向上を図ることが可能となる。 As described above, in the method of manufacturing the organic EL device according to this example, the current leakage between the first and second electrodes is prevented in advance by performing the heat treatment after forming each component of the organic EL device. ing. Such heat treatment can be performed on all products regardless of the presence or absence of conductive foreign matter. In the heating process, batch processing of a large number of products is relatively easy, so productivity can be improved by making all products subject to heat treatment without checking the presence or absence of conductive foreign matter in the inspection process. It is possible to improve.
 図5は、上記した第2の修復方法による短絡部の修復処理を含む本発明の実施例に係る有機ELデバイスの製造工程フロー図である。有機ELデバイスの各構成要素を形成する工程(ステップS11~S15)は、上記したステップS1~S5と同様であるのでその説明は省略する。 FIG. 5 is a flow chart of the manufacturing process of the organic EL device according to the embodiment of the present invention including the repair process of the short circuit part by the above-described second repair method. The process of forming each component of the organic EL device (steps S11 to S15) is the same as the above-described steps S1 to S5, and the description thereof is omitted.
 有機ELデバイス1の各構成要素が形成された後、第1-第2電極間における短絡の有無を確認するための検査が行われる。そして、短絡が生じていることが確認された場合には短絡箇所の特定がなされる。短絡箇所の特定は、例えば、画像認識技術を用いることにより実現することが可能である(ステップS16)。 After each component of the organic EL device 1 is formed, an inspection is performed to confirm the presence or absence of a short circuit between the first and second electrodes. And when it is confirmed that the short circuit has arisen, the short circuit location is specified. The identification of the short-circuit location can be realized by using, for example, an image recognition technique (step S16).
 次に、ステップS11~S15を経て得られた中間デバイスを加熱する。加熱温度は、低融点材料層18を構成する低融点材料の融点以上且つ有機機能層14を構成する各材料のガラス転移温度Tg以下に設定される。加熱処理には、ホットプレート、恒温層、ベルト炉などを用いることができる。このような熱処理を行うことにより低融点材料層18を構成する低融点材料は、融解して液体となる。上記加熱温度で中間デバイスを加熱しつつステップS16において特定された短絡箇所にレーザ光を照射する。レーザ光は、短絡部を融解・蒸発せしめるパワーにて基板10側から照射される。短絡部を形成する金属等はレーザ光を吸収して発熱して融解・蒸発する。このとき、低融点材料層18は、加熱により融解しているので、封止層20の破壊することなく第2電極16は、図3(b)に示すように上方(低融点材料層側)に向けて開くように破断・変形することができる。レーザ照射により短絡部は、第2電極16とともに融解・蒸発して除去される。短絡部が除去された有機機能層14の欠陥部分には、液状の低融点材料が含浸する(ステップS17)。尚、上記の説明では、中間デバイスを加熱しつつレーザ照射を行うこととしたが、レーザ照射を単独で行うことも可能である。この場合においても、低融点材料層18は、レーザ照射によって加熱されて融解するので、加熱処理を伴う場合と同様に短絡部の除去が可能である。 Next, the intermediate device obtained through steps S11 to S15 is heated. The heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14. For the heat treatment, a hot plate, a constant temperature layer, a belt furnace, or the like can be used. By performing such heat treatment, the low melting point material constituting the low melting point material layer 18 is melted to become a liquid. While the intermediate device is heated at the heating temperature, the laser beam is irradiated to the short-circuit portion specified in step S16. The laser beam is irradiated from the substrate 10 side with power that melts and evaporates the short-circuited portion. The metal or the like that forms the short circuit part absorbs the laser beam and generates heat to melt and evaporate. At this time, since the low melting point material layer 18 is melted by heating, the second electrode 16 is located upward (on the low melting point material layer side) as shown in FIG. Can be broken and deformed to open toward The short-circuit portion is removed by melting and evaporation together with the second electrode 16 by laser irradiation. The defective portion of the organic functional layer 14 from which the short-circuit portion has been removed is impregnated with a liquid low-melting-point material (step S17). In the above description, the laser irradiation is performed while heating the intermediate device. However, the laser irradiation can be performed independently. Also in this case, since the low melting point material layer 18 is heated and melted by laser irradiation, the short-circuit portion can be removed in the same manner as in the case with heat treatment.
 次に、中間デバイスを常温(室温程度)下に放置する。低融点材料層18を構成する低融点材料は、第2電極16の破断部分を包埋した状態で凝固する。また、有機機能層14の欠陥部分は、固体状態の低融点材料で埋められる。以上の各工程を経ることにより、有機ELデバイスが完成する。 Next, leave the intermediate device at room temperature (about room temperature). The low-melting-point material constituting the low-melting-point material layer 18 is solidified in a state where the fracture portion of the second electrode 16 is embedded. The defective portion of the organic functional layer 14 is filled with a low-melting material in a solid state. The organic EL device is completed through the above steps.
 尚、ステップS17の後に第1-第2電極間における短絡が解消されたか否かの検査を実施し、解消に至っていないことが確認された場合には、上記ステップS17の処理を繰り返し実施することとしてもよい。 It should be noted that after step S17, it is checked whether or not the short circuit between the first and second electrodes has been resolved. If it is confirmed that the short circuit has not been resolved, the process of step S17 is repeated. It is good.
 図6は、上記した第2の修復方法による短絡部の修復処理を含む本発明の実施例に係る有機ELデバイスの製造工程フロー図である。有機ELデバイスの各構成要素を形成する工程(ステップS21~S25)は、上記したステップS1~S5と同様であるのでその説明は省略する。 FIG. 6 is a manufacturing process flow chart of the organic EL device according to the embodiment of the present invention including the repair process of the short-circuit portion by the second repair method described above. Since the steps of forming each component of the organic EL device (steps S21 to S25) are the same as steps S1 to S5 described above, the description thereof is omitted.
 有機ELデバイス1の各構成要素が形成された後、第1-第2電極間における短絡の有無を確認するための検査が行われる。そして、短絡が生じていることが確認された場合には短絡箇所の特定がなされる。短絡箇所の特定は、例えば、画像認識技術を用いることにより実現することが可能である(ステップS26)。 After each component of the organic EL device 1 is formed, an inspection is performed to confirm the presence or absence of a short circuit between the first and second electrodes. And when it is confirmed that the short circuit has arisen, the short circuit location is specified. The identification of the short-circuited location can be realized by using, for example, an image recognition technique (step S26).
 次に、ステップS21~S25を経て得られた中間デバイスを加熱する。加熱温度は、低融点材料層18を構成する低融点材料の融点以上且つ有機機能層14を構成する各材料のガラス転移温度Tg以下に設定される。加熱処理には、ホットプレート、恒温層、ベルト炉などを用いることができる。このような熱処理を行うことにより低融点材料層18を構成する低融点材料は、融解して液体となる。上記加熱温度で中間デバイスを加熱しつつステップS26において特定された短絡箇所に電流を流すべく第1-第2電極間に電力を印加する。印加電力は、短絡部が融解、蒸発し得るパワーに設定される。このとき、低融点材料層18は、加熱により融解しているので、封止層20の破壊することなく第2電極16は、図3(b)に示すように上方(低融点材料層側)に向けて開くように破断・変形することができる。電力印加により短絡部は、第2電極16とともに融解・蒸発して除去される。短絡部が除去された有機機能層14の欠陥部分には、液状の低融点材料が含浸する(ステップS27)。尚、上記の説明では、中間デバイスを加熱しつつ電力印加を行うこととしたが、電力印加を単独で行うことも可能である。この場合においても、低融点材料層18は、電力印加によって加熱されて融解するので、加熱処理を伴う場合と同様に短絡部の除去が可能である。 Next, the intermediate device obtained through steps S21 to S25 is heated. The heating temperature is set to be not less than the melting point of the low melting point material constituting the low melting point material layer 18 and not more than the glass transition temperature Tg of each material constituting the organic functional layer 14. For the heat treatment, a hot plate, a constant temperature layer, a belt furnace, or the like can be used. By performing such heat treatment, the low melting point material constituting the low melting point material layer 18 is melted to become a liquid. While heating the intermediate device at the above heating temperature, electric power is applied between the first and second electrodes so that a current flows through the short-circuited part specified in step S26. The applied power is set to a power at which the short circuit part can be melted and evaporated. At this time, since the low melting point material layer 18 is melted by heating, the second electrode 16 is located upward (on the low melting point material layer side) as shown in FIG. Can be broken and deformed to open toward The short-circuit portion is removed by melting and evaporation together with the second electrode 16 by applying electric power. The defective portion of the organic functional layer 14 from which the short-circuit portion has been removed is impregnated with a liquid low melting point material (step S27). In the above description, the power application is performed while heating the intermediate device. However, the power application can be performed independently. Also in this case, since the low melting point material layer 18 is heated and melted by application of electric power, it is possible to remove the short-circuit portion in the same manner as when heat treatment is involved.
 次に、中間デバイスを常温(室温程度)下に放置する。低融点材料層18を構成する低融点材料は、第2電極16の破断部分を包埋した状態で凝固する。また、有機機能層14の欠陥部分は、固体状態の低融点材料で埋められる。以上の各工程を経ることにより、有機ELデバイスが完成する。 Next, leave the intermediate device at room temperature (about room temperature). The low-melting-point material constituting the low-melting-point material layer 18 is solidified in a state where the fracture portion of the second electrode 16 is embedded. The defective portion of the organic functional layer 14 is filled with a low-melting material in a solid state. The organic EL device is completed through the above steps.
 尚、ステップS27の後に第1-第2電極間における短絡が解消されたか否かの検査を実施し、解消に至っていないことが確認された場合には、上記ステップS27の処理を繰り返し実施することとしてもよい。 In addition, after step S27, an inspection is performed to determine whether or not the short circuit between the first and second electrodes has been eliminated. If it is confirmed that the short circuit has not been eliminated, the process of step S27 is repeated. It is good.
 以上の説明から明らかなように、本発明の実施例に係る有機ELデバイス1は、第2電極16と封止層20との間に常温下において固体状態を呈し且つ有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層18が介在している。有機ELデバイス1は、固体封止構造を有する故、中空封止構造のデバイスと比較して薄型化が可能であり、また高い放熱性を得ることができる。 As is clear from the above description, the organic EL device 1 according to the embodiment of the present invention is an organic that exhibits a solid state at room temperature between the second electrode 16 and the sealing layer 20 and constitutes an organic functional layer. A low melting point material layer 18 made of an insulator having a melting point lower than the glass transition temperature of the material is interposed. Since the organic EL device 1 has a solid sealing structure, the organic EL device 1 can be reduced in thickness as compared with a device having a hollow sealing structure, and high heat dissipation can be obtained.
 また、第1電極12と第2電極16との間に異物が混入した場合には、有機ELデバイス1を加熱して低融点材料層18を融解させることにより、低融点材料層18を構成する絶縁体で異物を包埋することができる。これにより、異物混入に起因する電流リークの発生を未然に防止することが可能となる。このような短絡部の修復方法によれば、加熱処理のみで短絡部の修復が完了するので、短絡部の修復工程の工数を従来よりも大幅に削減することが可能となる。 Moreover, when a foreign material mixes between the 1st electrode 12 and the 2nd electrode 16, the low melting-point material layer 18 is comprised by heating the organic EL device 1 and melting the low-melting-point material layer 18. Foreign materials can be embedded with an insulator. As a result, it is possible to prevent the occurrence of current leakage due to foreign matter contamination. According to such a method for repairing a short-circuit portion, since the repair of the short-circuit portion is completed only by heat treatment, the number of steps in the repair process of the short-circuit portion can be significantly reduced as compared with the conventional method.
 また、有機ELデバイス1を加熱して低融点材料層18を融解させることにより、第2電極16が上方(低融点材料層側)に向けて開くように破断し得る状態となるので、固体封止構造であってもレーザ照射や電力印加等による短絡部の除去が可能となる。すなわち、第2電極16の破断による衝撃は、液状の低融点材料層18に吸収されるので、封止層20の破壊を防止することができる。また、低融点材料層18は、常温下においては、固体状態を呈するので、低融点材料層18が凝固することにより短絡部の修復後の状態が維持される。従って、電流リークの再発を防止することができる。このように、本実施例に係る有機ELデバイス1によれば、固体封止構造を有する有機ELデバイスにおいて短絡部の修復を容易且つ効果的に行うことが可能となる。 Further, by heating the organic EL device 1 to melt the low melting point material layer 18, the second electrode 16 can be ruptured so as to open upward (low melting point material layer side). Even in the stop structure, it is possible to remove the short-circuit portion by laser irradiation, power application, or the like. That is, since the impact due to the breakage of the second electrode 16 is absorbed by the liquid low-melting-point material layer 18, the sealing layer 20 can be prevented from being broken. Further, since the low melting point material layer 18 is in a solid state at room temperature, the low melting point material layer 18 is solidified to maintain the state after the repair of the short-circuit portion. Therefore, recurrence of current leak can be prevented. Thus, according to the organic EL device 1 according to the present embodiment, it is possible to easily and effectively repair the short circuit portion in the organic EL device having the solid sealing structure.
 図7は、本発明の実施例2に係る有機ELデバイス2の構成を示す断面図である。有機ELデバイス2は、封止部材として板材である封止板22が用いられる点が薄膜で封止を行う上記した実施例1に係る有機ELデバイス1と異なる。すなわち、基板10上には、第1電極12、有機機能層14、第2電極16からなる積層体が設けられ、この積層体を覆うように低融点材料層18が設けられている。これらの各層の材料および形成方法は、上記の有機ELデバイス1と同様である。基板10上には接着剤24を介して封止板22が設けられている。接着剤24は、例えば熱硬化型または紫外線硬化型のシリコーン樹脂等により構成される。封止板22は、例えばガラス板、プラスチック板または金属板等の板材である。このような、板状の封止部材を用いるデバイスにおいても、上記した無機封止膜を有する有機ELデバイス1の場合と同様に短絡部の修復を行うことが可能である。尚、封止板22と低融点材料層18との間に無機材料の薄膜からなる封止層を更に設けることとしてもよい。 FIG. 7 is a cross-sectional view showing a configuration of an organic EL device 2 according to Example 2 of the present invention. The organic EL device 2 is different from the organic EL device 1 according to Example 1 in which sealing is performed with a thin film in that a sealing plate 22 that is a plate material is used as a sealing member. That is, on the substrate 10, a laminated body including the first electrode 12, the organic functional layer 14, and the second electrode 16 is provided, and a low melting point material layer 18 is provided so as to cover the laminated body. The material and forming method of each layer are the same as those of the organic EL device 1 described above. A sealing plate 22 is provided on the substrate 10 via an adhesive 24. The adhesive 24 is made of, for example, a thermosetting or ultraviolet curable silicone resin. The sealing plate 22 is a plate material such as a glass plate, a plastic plate, or a metal plate. Even in such a device using a plate-shaped sealing member, it is possible to repair the short-circuit portion as in the case of the organic EL device 1 having the inorganic sealing film described above. A sealing layer made of a thin film of an inorganic material may be further provided between the sealing plate 22 and the low melting point material layer 18.
 図8は、本発明の実施例3に係る有機ELデバイス3の構成を示す断面図である。有機ELデバイス3は、中空封止構造を有する点が固体封止構造を有する上記した実施例1に係る有機ELデバイス1と異なる。すなわち、基板10上には、第1電極12、有機機能層14、第2電極16からなる積層体が設けられ、この積層体を覆うように低融点材料層18が設けられている。これらの各層の材料および形成方法は、上記の有機ELデバイス1と同様である。基板10上には、第1電極12、有機機能層14、第2電極16および低融点材料層からなる積層体を空隙を介して封止する金属缶26が設けられている。すなわち、低融点材料層18の上方には中空部40が延在している。金属缶26は、紫外線硬化型のエポキシ樹脂等からなる接着剤28によって基板10に接合されている。尚、中空部40内にはBaOやCaOからなる吸着乾燥剤が設けられていてもよい。このような中空封止構造を有するデバイスにおいても、固体封止構造を有する上記の有機ELデバイス1の場合と同様に短絡部の修復を行うことが可能である。本発明を中空封止構造を有するデバイスに適用することにより、第1電極12と第2電極16との間に混入した異物やレーザ照射等によって生じた第2電極の破断部を低融点材料層を構成する絶縁体で包埋することが可能となるので、電流リークの再発防止を確実なものとすることができる。 FIG. 8 is a cross-sectional view showing the configuration of the organic EL device 3 according to Example 3 of the present invention. The organic EL device 3 is different from the organic EL device 1 according to Example 1 described above in that the solid sealing structure has a hollow sealing structure. That is, on the substrate 10, a laminated body including the first electrode 12, the organic functional layer 14, and the second electrode 16 is provided, and a low melting point material layer 18 is provided so as to cover the laminated body. The material and forming method of each layer are the same as those of the organic EL device 1 described above. On the substrate 10, a metal can 26 is provided that seals a laminate including the first electrode 12, the organic functional layer 14, the second electrode 16, and the low-melting-point material layer through a gap. That is, the hollow portion 40 extends above the low melting point material layer 18. The metal can 26 is bonded to the substrate 10 by an adhesive 28 made of an ultraviolet curable epoxy resin or the like. In the hollow portion 40, an adsorption drying agent made of BaO or CaO may be provided. Even in the device having such a hollow sealing structure, it is possible to repair the short-circuit portion as in the case of the organic EL device 1 having the solid sealing structure. By applying the present invention to a device having a hollow sealing structure, a foreign material mixed between the first electrode 12 and the second electrode 16 or a fracture portion of the second electrode caused by laser irradiation or the like can be used as a low melting point material layer. Therefore, it is possible to ensure the prevention of recurrence of current leakage.
 図9は、本発明の実施例4に係る有機ELデバイス4の構成を示す断面図である。有機ELデバイス4は、第2電極16と低融点材料層18との間に、カバー層50が設けられている点が上記した実施例1に係る有機ELデバイス1と異なる。カバー層50は、第1電極12、有機機能層14および第2電極16からなる積層体の上面および側面を覆っている。仮にカバー層50が存在しない場合には、第2電極16のパターンによっては低融点材料層18と有機機能層14とが直接接触する部分が生じ得る。低融点材料層18の構成材料として先に例示されたパラフィンおよびトリ-p-トリルアミンは、有機材料であることから有機機能層14を構成する有機材料と混ざり合う性質を有する。このため、低融点材料層18と有機機能層14とが直接接触すると、有機機能層14が溶解し、その結果、第2電極16が有機機能層14から剥離するおそれがある。カバー層50は、第2電極16上を覆うとともに、低融点材料層18と有機機能層14とが直接接触することがないように、第2電極16の不存在領域においてはこれらの層の間に介在している。これにより、第2電極16の剥離が防止される。カバー層50は、例えばMoO、Al、SiO、MgF、AlFなどの無機材料により構成され、スパッタ法などを用いて形成される。カバー層50は、短絡部の修復を行うためのレーザ照射によって第2電極16とともに破断し得る厚さで形成される。封止層20は、カバー層50を含む積層体を覆うように設けられる。 FIG. 9 is a cross-sectional view illustrating a configuration of an organic EL device 4 according to Example 4 of the invention. The organic EL device 4 is different from the organic EL device 1 according to Example 1 described above in that a cover layer 50 is provided between the second electrode 16 and the low melting point material layer 18. The cover layer 50 covers the upper surface and the side surface of the laminate including the first electrode 12, the organic functional layer 14, and the second electrode 16. If the cover layer 50 is not present, a portion where the low melting point material layer 18 and the organic functional layer 14 are in direct contact may be formed depending on the pattern of the second electrode 16. Paraffin and tri-p-tolylamine exemplified above as constituent materials of the low-melting-point material layer 18 are organic materials, and thus have a property of being mixed with the organic materials constituting the organic functional layer 14. For this reason, when the low melting point material layer 18 and the organic functional layer 14 are in direct contact, the organic functional layer 14 is dissolved, and as a result, the second electrode 16 may be peeled off from the organic functional layer 14. The cover layer 50 covers the second electrode 16, and the low melting point material layer 18 and the organic functional layer 14 are not in direct contact with each other in the absence region of the second electrode 16. Is intervening. Thereby, peeling of the 2nd electrode 16 is prevented. The cover layer 50 is made of an inorganic material such as MoO 3 , Al 2 O 3 , SiO 2 , MgF 2 , or AlF, and is formed using a sputtering method or the like. The cover layer 50 is formed with a thickness that can be broken together with the second electrode 16 by laser irradiation for repairing the short-circuit portion. The sealing layer 20 is provided so as to cover the stacked body including the cover layer 50.
 <低融点材料層の他の候補材料>
 パラフィンおよびトリ-p-トリルアミン以外に低融点材料層18を構成する他の材料として好適なものをいくつか例示する。低融点材料層18の構成材料として先に例示したパラフィンやトリ-p-トリルアミンは有機材料であることから、有機材料14が溶解され、第2電極16が有機機能層14から剥離してしまうおそれがある。従って、低融点材料層18を構成する材料としては、有機機能層14と混合し難く、有機機能層14を溶解しない材料であることが電極剥離防止の観点から好ましい。そのような材料として、一般式がC2n+2で表すことができる鎖式飽和炭化フッ素を含有または結合した化合物が挙げられる。以下において、そのような化合物をフッ化アルカン誘導体と称することとする。
<Other candidate materials for low melting point material layer>
In addition to paraffin and tri-p-tolylamine, some examples of other suitable materials constituting the low melting point material layer 18 are given. Since paraffin and tri-p-tolylamine exemplified above as constituent materials of the low melting point material layer 18 are organic materials, the organic material 14 is dissolved and the second electrode 16 may be peeled off from the organic functional layer 14. There is. Accordingly, the material constituting the low melting point material layer 18 is preferably a material that is difficult to mix with the organic functional layer 14 and does not dissolve the organic functional layer 14 from the viewpoint of preventing electrode peeling. Examples of such a material include a compound containing or combined with a chain saturated fluorocarbon whose general formula can be represented by C n F 2n + 2 . Hereinafter, such a compound will be referred to as a fluorinated alkane derivative.
 図10に低融点材料層18の材料として好適なフッ化アルカン誘導体の具体例を示す。アクリル酸2-(ヘニコサフルオロデシル)エチル(C1521、融点:48~53℃)、ヘンエイコサフルオロデシルヨージド(C1021I、融点:65~67℃)、ヘニコサフルオロウンデカン酸(C11HF21、融点:96~101℃)、1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9,10,10-ヘニコサフルオロデカン(C10HF21、融点:31℃)、4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-ヘニコサフルオロ-1,2-エポキシトリデカン(C1321O、融点:61~62℃)などのフッ化アルカン誘導体を低融点材料層18の材料として好適に用いることができる。これらのフッ化アルカン誘導体は、液体状態において有機機能層14に対して撥液性を示す材料であり、有機機能層14はこれらの材料によって溶解されないので、第2電極16の剥離を防止することができる。また、これらの材料は、常温下(室温程度、例えば25℃前後)において固体状態を呈し、有機機能層14を構成する各材料のガラス転移温度Tgよりも低い融点を有するので、上記したような短絡部の修復処理が可能である。 FIG. 10 shows a specific example of a fluorinated alkane derivative suitable as a material for the low melting point material layer 18. 2- (Henicosafluorodecyl) ethyl acrylate (C 15 H 7 F 21 O 2 , melting point: 48-53 ° C.), heneicosafluorodecyl iodide (C 10 F 21 I, melting point: 65-67 ° C.) , Henicosafluoroundecanoic acid (C 11 HF 21 O 2 , melting point: 96-101 ° C.), 1,1,1,2,2,3,3,4,4,5,5,6,6,7, 7,8,8,9,9,9,10,10-Henicosafluorodecane (C 10 HF 21 , melting point: 31 ° C.), 4,4,5,5,6,6,7,7,8, 8,9,9,10,10,11,11,12,12,13,13,13-Henicosafluoro-1,2-epoxytridecane (C 13 H 5 F 21 O, melting point: 61-62 ° C.), etc. Can be suitably used as the material of the low-melting-point material layer 18. These fluorinated alkane derivatives are materials that exhibit liquid repellency with respect to the organic functional layer 14 in a liquid state, and the organic functional layer 14 is not dissolved by these materials, and thus prevents the second electrode 16 from being peeled off. Can do. Further, these materials are in a solid state at room temperature (about room temperature, for example, around 25 ° C.) and have a melting point lower than the glass transition temperature Tg of each material constituting the organic functional layer 14. Repair processing of the short-circuited portion is possible.
 これらのフッ化アルカン誘導体を用いて低融点材料層18を形成する場合、パラフィンを用いる場合と同様、加熱によりフッ化アルカン誘導体を液状として塗布成膜する方法、または粉末のフッ化アルカン誘導体を第2電極16上に散布した後、基板10を加熱して粉末のフッ化アルカン誘導体を融解させて成膜する方法を使用することができる。 In the case of forming the low melting point material layer 18 using these fluorinated alkane derivatives, as in the case of using paraffin, a method of coating the fluorinated alkane derivative as a liquid by heating, or forming a powdered fluorinated alkane derivative is used. After spraying on the two electrodes 16, a method of forming a film by heating the substrate 10 to melt the powdered fluorinated alkane derivative can be used.
 <高温耐久性評価>
 フッ化アルカン誘導体の具体例として上述したアクリル酸2-(ヘニコサフルオロデシル)エチルからなる低融点材料層18を有する固体封止構造の有機ELデバイスを作製し、高温耐久試験を行った。具体的には、第2電極(陰極)16の構成が互いに異なる4種類の有機ELデバイスのサンプルを100℃の雰囲気中に50時間放置した後、第2電極16の剥離の有無、電気特性および発光特性について評価を行った。第2電極16の構成は、Al単層のもの、Ag単層のもの、AgとAlとを積層したもの(有機機能層と接する側がAg)、AlとAgとを積層したもの(有機機能層と接する側がAl)の4種類である。図11は、各サンプルの評価結果を示したものである。
<High temperature durability evaluation>
As a specific example of the fluorinated alkane derivative, an organic EL device having a solid sealing structure having the low-melting-point material layer 18 made of 2- (henicosfluorodecyl) ethyl acrylate described above was manufactured and subjected to a high temperature durability test. Specifically, after four samples of organic EL devices having different configurations of the second electrode (cathode) 16 are left in an atmosphere at 100 ° C. for 50 hours, the presence or absence of peeling of the second electrode 16, electrical characteristics, and The light emission characteristics were evaluated. The configuration of the second electrode 16 includes an Al single layer, an Ag single layer, a stack of Ag and Al (the side in contact with the organic functional layer is Ag), and a stack of Al and Ag (organic functional layer). There are four types of Al) on the side in contact with. FIG. 11 shows the evaluation results of each sample.
 100℃の雰囲気中に50時間放置した後、いずれの電極構成においても電極剥離は確認されなかった。電気特性は、いずれの電極構成においても高温放置前の初期からの変動はなく良好であった。発光特性は、第2電極16がAg単層で構成されたものにおいて、輝度斑(輝度むら)が確認されが、それ以外の電極構成のものについては、良好であった。 After leaving it in an atmosphere of 100 ° C. for 50 hours, no electrode peeling was confirmed in any of the electrode configurations. The electrical characteristics were good with no change from the initial stage before leaving at high temperature in any electrode configuration. Luminous spots (brightness unevenness) were confirmed in the case where the second electrode 16 was composed of an Ag single layer, and the light emission characteristics were good for the other electrode configurations.
 以上の結果より、低融点材料層18の材料としてアクリル酸2-(ヘニコサフルオロデシル)エチルを使用することにより、第2電極16の剥離を防止でき、信頼性の向上に有効であることが確認された。尚、第2電極をAg単層で構成したものにおいて、輝度斑が見られたのは、Agと有機機能層14との密着力が小さいことに起因するものと思われる。しかしながら、第2電極をAgとAlの積層構造とすることにより、その積層順序に関わらず、輝度斑が解消することが確認された。Agは、比較的高い反射率を有することから、有機ELデバイスの光取り出し効率の向上に有効である。第2電極をAgとAlの積層構造とすることにより、有機機能層14に対する高い密着性を確保しつつ有機ELデバイスの光取り出し効率の向上を図ることが可能となる。有機機能層14に対して高い密着性を有する電極材料としては、酸化しやすいAlやMgAg合金などが挙げられる。 From the above results, the use of 2- (henikosafluorodecyl) ethyl acrylate as the material of the low-melting-point material layer 18 can prevent the second electrode 16 from being peeled off and is effective in improving the reliability. confirmed. In addition, in what comprised the 2nd electrode by Ag single layer, it was thought that the luminance spot was originated in the adhesive force of Ag and the organic functional layer 14 being small. However, it has been confirmed that the luminance unevenness is eliminated regardless of the stacking order when the second electrode has a stacked structure of Ag and Al. Since Ag has a relatively high reflectance, it is effective for improving the light extraction efficiency of the organic EL device. By making the second electrode a laminated structure of Ag and Al, it is possible to improve the light extraction efficiency of the organic EL device while ensuring high adhesion to the organic functional layer 14. Examples of the electrode material having high adhesion to the organic functional layer 14 include easily oxidized Al and MgAg alloy.
 1~4 有機ELデバイス
 10 基板
 12 第1電極
 14 有機機能層
 16 第2電極
 18 低融点材料層
 20 封止層
 22 封止板
 26 金属缶
 30 導電性異物
 31 短絡部
 50 カバー層
1-4 Organic EL devices 10 Substrate 12 First electrode 14 Organic functional layer 16 Second electrode 18 Low melting point material layer 20 Sealing layer 22 Sealing plate 26 Metal can 30 Conductive foreign matter 31 Short-circuited part 50 Cover layer

Claims (14)

  1.  基板上に設けられた第1電極と、前記第1電極上に設けられた少なくとも1層からなる有機機能層と、前記有機機能層上に設けられた第2電極と、を含む有機EL構造体と、
     前記第2電極上に設けられて、常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層と、
     前記有機EL構造体および前記低融点材料層からなる積層体を封止する封止層と、を含み、
     前記低融点材料層は、一般式がC2n+2で表される鎖式飽和炭化フッ素を含有またはこれを結合した化合物からなることを特徴とする有機エレクトロルミネッセンスデバイス。
    An organic EL structure including a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and a second electrode provided on the organic functional layer When,
    A low-melting-point material layer that is provided on the second electrode and is made of an insulator that exhibits a solid state at room temperature and has a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer;
    A sealing layer that seals the laminate composed of the organic EL structure and the low-melting-point material layer,
    The low-melting-point material layer is made of a compound containing or combined with a chain saturated fluorine represented by a general formula of C n F 2n + 2 .
  2.  前記低融点材料層は、アクリル酸2-(ヘニコサフルオロデシル)エチルを含むことを特徴とする請求項1に記載の有機エレクトロルミネッセンスデバイス。 2. The organic electroluminescence device according to claim 1, wherein the low-melting-point material layer contains 2- (henicosafluorodecyl) ethyl acrylate.
  3.  前記有機EL構造体と前記低融点材料層の間に介在する無機材料からなるカバー層を更に有することを特徴とする請求項1に記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescence device according to claim 1, further comprising a cover layer made of an inorganic material interposed between the organic EL structure and the low-melting-point material layer.
  4.  基板上に設けられた第1電極と、前記第1電極上に設けられた少なくとも1層からなる有機機能層と、前記有機機能層上に設けられた第2電極と、を含む有機EL構造体と、
     前記有機EL構造体を被覆する無機材料からなるカバー層と、
     前記カバー層上に設けられて、常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層と、
     前記有機EL構造体、前記カバー層および前記低融点材料層からなる積層体を封止する封止層と、を含むことを特徴とする有機エレクトロルミネッセンスデバイス。
    An organic EL structure including a first electrode provided on a substrate, an organic functional layer including at least one layer provided on the first electrode, and a second electrode provided on the organic functional layer When,
    A cover layer made of an inorganic material covering the organic EL structure;
    A low-melting-point material layer made of an insulator provided on the cover layer and having a melting point lower than a glass transition temperature of an organic material that exhibits a solid state at room temperature and constitutes the organic functional layer;
    An organic electroluminescent device comprising: a sealing layer that seals a laminate including the organic EL structure, the cover layer, and the low-melting-point material layer.
  5.  前記低融点材料層は、パラフィンを含むことを特徴とする請求項4に記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescence device according to claim 4, wherein the low melting point material layer includes paraffin.
  6.  前記低融点材料層は、トリ-p-トリルアミンを含むことを特徴とする請求項4に記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescence device according to claim 4, wherein the low melting point material layer contains tri-p-tolylamine.
  7.  前記第2電極は、AlおよびAgを積層して構成されることを特徴とする請求項1乃至6のいずれか1つに記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescence device according to any one of claims 1 to 6, wherein the second electrode is configured by laminating Al and Ag.
  8.  前記封止層は、無機材料からなる薄膜を含むことを特徴とする請求項1乃至6のいずれか1つに記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescence device according to any one of claims 1 to 6, wherein the sealing layer includes a thin film made of an inorganic material.
  9.  前記封止層は、金属またはガラスからなる板材を含むことを特徴とする請求項1乃至6のいずれか1つに記載の有機エレクトロルミネッセンスデバイス。 The organic electroluminescent device according to any one of claims 1 to 6, wherein the sealing layer includes a plate material made of metal or glass.
  10.  有機エレクトロルミネッセンスデバイスの製造方法であって、
     基板上に第1電極を形成する工程と、
     前記第1電極上に少なくとも1層からなる有機機能層を形成する工程と、
     前記有機機能層上に第2電極を形成する工程と、
     前記第2電極上に常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層を形成する工程と、
     前記第1電極、前記有機機能層、前記第2電極および前記低融点材料層からなる積層体を封止する封止層を形成して中間デバイスを得る工程と、
     前記中間デバイスを前記低融点材料層を構成する低融点材料の融点よりも高い温度で加熱する加熱工程と、を含むことを特徴とする製造方法。
    A method for producing an organic electroluminescent device, comprising:
    Forming a first electrode on a substrate;
    Forming an organic functional layer comprising at least one layer on the first electrode;
    Forming a second electrode on the organic functional layer;
    Forming a low melting point material layer made of an insulator that exhibits a solid state at room temperature on the second electrode and has a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer;
    Forming an intermediate device by forming a sealing layer that seals the laminate composed of the first electrode, the organic functional layer, the second electrode, and the low-melting-point material layer;
    A heating step of heating the intermediate device at a temperature higher than the melting point of the low-melting-point material constituting the low-melting-point material layer.
  11.  有機エレクトロルミネッセンスデバイスの製造方法であって、
     基板上に第1電極を形成する工程と、
     前記第1電極上に少なくとも1層からなる有機機能層を形成する工程と、
     前記有機機能層上に第2電極を形成する工程と、
     前記第2電極上に常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層を形成する工程と、
     前記第1電極、前記有機機能層、前記第2電極および前記低融点材料層からなる積層体を封止する封止層を形成して中間デバイスを得る工程と、
     前記第1および第2電極間における短絡箇所を特定する工程と、
     前記短絡箇所にレーザを照射して短絡部を除去する工程と、を含むことを特徴とする製造方法。
    A method for producing an organic electroluminescent device, comprising:
    Forming a first electrode on a substrate;
    Forming an organic functional layer comprising at least one layer on the first electrode;
    Forming a second electrode on the organic functional layer;
    Forming a low melting point material layer made of an insulator that exhibits a solid state at room temperature on the second electrode and has a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer;
    Forming an intermediate device by forming a sealing layer that seals the laminate composed of the first electrode, the organic functional layer, the second electrode, and the low-melting-point material layer;
    Identifying a short-circuit location between the first and second electrodes;
    And a step of irradiating the short-circuit portion with a laser to remove the short-circuit portion.
  12.  前記短絡箇所にレーザを照射する工程において、前記短絡箇所へのレーザ照射に並行して、前記中間デバイスを前記低融点材料層を構成する低融点材料の融点よりも高い温度で加熱することを特徴とする請求項11に記載の製造方法。 In the step of irradiating the laser to the short-circuited portion, the intermediate device is heated at a temperature higher than the melting point of the low-melting-point material constituting the low-melting-point material layer in parallel with the laser irradiation to the short-circuited portion. The manufacturing method according to claim 11.
  13.  有機エレクトロルミネッセンスデバイスの製造方法であって、
     基板上に第1電極を形成する工程と、
     前記第1電極上に少なくとも1層からなる有機機能層を形成する工程と、
     前記有機機能層上に第2電極を形成する工程と、
     前記第2電極上に常温下において固体状態を呈し且つ前記有機機能層を構成する有機材料のガラス転移温度よりも低い融点を有する絶縁体からなる低融点材料層を形成する工程と、
     前記第1電極、前記有機機能層、前記第2電極および前記低融点材料層からなる積層体を封止する封止層を形成して中間デバイスを得る工程と、
     前記第1および第2電極間における短絡箇所を特定する工程と、
     前記短絡箇所に電流を流すべく前記第1および第2電極間に電力を印加して短絡部を除去する工程と、を含むことを特徴とする製造方法。
    A method for producing an organic electroluminescent device, comprising:
    Forming a first electrode on a substrate;
    Forming an organic functional layer comprising at least one layer on the first electrode;
    Forming a second electrode on the organic functional layer;
    Forming a low melting point material layer made of an insulator that exhibits a solid state at room temperature on the second electrode and has a melting point lower than the glass transition temperature of the organic material constituting the organic functional layer;
    Forming an intermediate device by forming a sealing layer that seals the laminate composed of the first electrode, the organic functional layer, the second electrode, and the low-melting-point material layer;
    Identifying a short-circuit location between the first and second electrodes;
    And applying a power between the first and second electrodes to remove the short-circuit portion in order to pass a current through the short-circuit portion.
  14.  前記第1および第2電極間に電力を印加する工程において、前記第1および第2電極間への電力印加に並行して、前記中間デバイスを前記低融点材料層を構成する低融点材料の融点よりも高い温度で加熱することを特徴とする請求項13に記載の製造方法。 In the step of applying power between the first and second electrodes, the melting point of the low-melting-point material constituting the low-melting-point material layer in parallel with the application of power between the first and second electrodes. The manufacturing method according to claim 13, wherein heating is performed at a higher temperature.
PCT/JP2012/050826 2011-04-12 2012-01-17 Organic electroluminescence device and method for manufacturing organic electroluminescence device WO2012140924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2011/059079 2011-04-12
PCT/JP2011/059079 WO2012140736A1 (en) 2011-04-12 2011-04-12 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2012140924A1 true WO2012140924A1 (en) 2012-10-18

Family

ID=47008943

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/059079 WO2012140736A1 (en) 2011-04-12 2011-04-12 Organic electroluminescence device
PCT/JP2012/050826 WO2012140924A1 (en) 2011-04-12 2012-01-17 Organic electroluminescence device and method for manufacturing organic electroluminescence device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059079 WO2012140736A1 (en) 2011-04-12 2011-04-12 Organic electroluminescence device

Country Status (1)

Country Link
WO (2) WO2012140736A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071311A (en) * 2017-10-05 2019-05-09 コニカミノルタ株式会社 Light-emitting system
US11910696B2 (en) * 2020-11-09 2024-02-20 Jdi Design And Development G.K. Self-luminous display panel and self-luminous display panel manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI568036B (en) * 2015-11-23 2017-01-21 財團法人工業技術研究院 Illumination device
CN107369781B (en) * 2017-08-29 2024-02-27 京东方科技集团股份有限公司 Package structure and organic light emitting display device
CN109841763B (en) * 2019-03-28 2022-02-08 京东方科技集团股份有限公司 Display panel repairing method, display panel and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275682A (en) * 1997-02-03 1998-10-13 Nec Corp Organic el element
JP2000058257A (en) * 1998-08-07 2000-02-25 Canon Inc Light-emitting device
JP2004199998A (en) * 2002-12-18 2004-07-15 Fuji Xerox Co Ltd Organic electroluminescent element
JP2006278230A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Organic light emitting display device, and protecting film forming method of organic light emitting display device
WO2008102866A1 (en) * 2007-02-22 2008-08-28 Konica Minolta Holdings, Inc. Process for producing organic electroluminescence device and organic electroluminescence device
JP2010102001A (en) * 2008-10-22 2010-05-06 Sony Corp Image display device and method for driving the image display device
JP2010135182A (en) * 2008-12-04 2010-06-17 Hitachi Displays Ltd Manufacturing method for organic el display device and organic el display device
JP2010147023A (en) * 2008-12-17 2010-07-01 Samsung Mobile Display Co Ltd Organic light emitting device, and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275682A (en) * 1997-02-03 1998-10-13 Nec Corp Organic el element
JP2000058257A (en) * 1998-08-07 2000-02-25 Canon Inc Light-emitting device
JP2004199998A (en) * 2002-12-18 2004-07-15 Fuji Xerox Co Ltd Organic electroluminescent element
JP2006278230A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Organic light emitting display device, and protecting film forming method of organic light emitting display device
WO2008102866A1 (en) * 2007-02-22 2008-08-28 Konica Minolta Holdings, Inc. Process for producing organic electroluminescence device and organic electroluminescence device
JP2010102001A (en) * 2008-10-22 2010-05-06 Sony Corp Image display device and method for driving the image display device
JP2010135182A (en) * 2008-12-04 2010-06-17 Hitachi Displays Ltd Manufacturing method for organic el display device and organic el display device
JP2010147023A (en) * 2008-12-17 2010-07-01 Samsung Mobile Display Co Ltd Organic light emitting device, and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE CHEMICAL SOCIETY OF JAPAN: "Kagaku Benran Oyo Kagaku Hen", KAGAKU BENRAN OYO KAGAKU HEN, 6TH EDITION, January 2003 (2003-01-01), pages 831, 1070 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019071311A (en) * 2017-10-05 2019-05-09 コニカミノルタ株式会社 Light-emitting system
JP7048246B2 (en) 2017-10-05 2022-04-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminous system
US11910696B2 (en) * 2020-11-09 2024-02-20 Jdi Design And Development G.K. Self-luminous display panel and self-luminous display panel manufacturing method

Also Published As

Publication number Publication date
WO2012140736A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5642277B2 (en) Method for manufacturing organic electroluminescent element and organic electroluminescent element
US8070546B2 (en) Laser irradiation apparatus for bonding and method of manufacturing display device using the same
EP2473009A1 (en) Integrated organic light emitting device, method for producing organic light emitting device, and organic light emitting device
JP6163483B2 (en) Organic EL device and manufacturing method thereof
JP2009117181A (en) Organic el display device, and manufacturing method thereof
JP2008235178A (en) Organic el display and manufacturing method therefor
WO2012140924A1 (en) Organic electroluminescence device and method for manufacturing organic electroluminescence device
US9698387B2 (en) Method for producing an optoelectronic component and method for patterning an organic, optoelectronic component
JP5760009B2 (en) Method for manufacturing organic electroluminescence element
JP2008235177A (en) Manufacturing method of organic el display, and organic el display
US9502684B2 (en) Organic electroluminescence device and method for manufacturing the same
US9444071B2 (en) Organic electroluminescent panel
JP2010147257A (en) Organic el device
JP2006286242A (en) Flexible organic electroluminescent element
US8610115B2 (en) Organic electroluminescent devices
KR100501313B1 (en) Organic electro luminescence display and method for fabricating the same
WO2013014790A1 (en) Organic electroluminescence device and production method for organic electroluminescence device
JP2001052863A (en) Organic el element and manufacture thereof
JP5729749B2 (en) Method for manufacturing organic electroluminescence element
JP4976595B1 (en) Organic electroluminescence device
WO2013030919A1 (en) Organic electroluminescence device
JP5912037B2 (en) Organic electroluminescence device
WO2013098951A1 (en) Organic electroluminescence device and method for manufacturing same
JP6228624B2 (en) Organic electroluminescence device
JP2011119176A (en) Organic electroluminescent display, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12772021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12772021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP