WO2010113258A1 - ガス状炭化水素の回収装置及び方法 - Google Patents

ガス状炭化水素の回収装置及び方法 Download PDF

Info

Publication number
WO2010113258A1
WO2010113258A1 PCT/JP2009/056661 JP2009056661W WO2010113258A1 WO 2010113258 A1 WO2010113258 A1 WO 2010113258A1 JP 2009056661 W JP2009056661 W JP 2009056661W WO 2010113258 A1 WO2010113258 A1 WO 2010113258A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline vapor
adsorption
gas
gasoline
desorption
Prior art date
Application number
PCT/JP2009/056661
Other languages
English (en)
French (fr)
Inventor
泰宏 谷村
猛 杉本
一幸 狩野
勝彦 関谷
Original Assignee
三菱電機株式会社
株式会社タツノ・メカトロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 株式会社タツノ・メカトロニクス filed Critical 三菱電機株式会社
Priority to KR1020117010138A priority Critical patent/KR101268694B1/ko
Priority to JP2011506883A priority patent/JP5693448B2/ja
Priority to PCT/JP2009/056661 priority patent/WO2010113258A1/ja
Priority to TW102112291A priority patent/TW201332635A/zh
Priority to TW102112289A priority patent/TWI471167B/zh
Priority to TW098122370A priority patent/TWI403354B/zh
Priority to TW102112286A priority patent/TWI471166B/zh
Priority to TW102112292A priority patent/TW201334853A/zh
Publication of WO2010113258A1 publication Critical patent/WO2010113258A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0051Regulation processes; Control systems, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/0093Removing and treatment of non condensable gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons

Definitions

  • the present invention relates to an apparatus and method for recovering gaseous hydrocarbons contained in an atmospheric emission gas, and more particularly to an apparatus and method for processing and recovering gasoline vapor (hereinafter referred to as gasoline vapor) that leaks during gasoline refueling. Is.
  • gasoline vapor gasoline vapor
  • the gas generated from the exhaust gas source (exhaust gas containing about 40 vol% gasoline vapor) is condensed from the exhaust gas feed pipe with blower or self-pressure.
  • exhaust gas containing about 40 vol% gasoline vapor
  • air containing gasoline vapor that has not been liquefied is sent to the adsorption tower, and the treated exhaust gas that has finished the adsorption process is removed from the adsorption tower (desorption).
  • air clean gas
  • purge gas is supplied to the adsorption tower after completion of the adsorption process through the purge gas supply pipe, and desorption is performed by suction with a vacuum pump.
  • a part of the clean gas discharged from the top of the adsorption tower during the adsorption operation is used as the purge gas, and the vacuum pump is operated so that the pressure in the adsorption tower becomes 100 to 300 Torr.
  • the purged exhaust gas containing gasoline vapor after being desorbed is mixed with the gasoline vapor-containing air generated from the exhaust gas generation source, and then sent to the condenser, where it is partially liquefied and purged as liquid (gasoline liquid) Collect gasoline vapor in the exhaust gas.
  • the gasoline vapor can be recovered almost as a liquid gasoline. Therefore, in the apparatus and method for recovering gaseous hydrocarbons having such a configuration, the concentration of gasoline vapor discharged from the adsorption tower is sufficiently low, and can be reduced to a level that does not cause air pollution (for example, patents). Reference 1).
  • Patent Document 1 since moisture in the air is mixed in the first condensing device, when the cooling temperature is set below the freezing point, the water is frozen in the first condensing device and the first condensing device is blocked. It will end up. Therefore, it was necessary to set the cooling temperature of the first condensing device above the freezing point.
  • JP 2006-198604 A pages 4 to 8, FIG. 2, and pages 9 to 16, FIG. 10.
  • the gasoline vapor sucked from the nozzle of the fueling device as in Patent Document 1 has a relatively low concentration.
  • the concentrated gasoline vapor desorbed from the adsorption tower will be mixed.
  • low-boiling hydrocarbons such as butane and isobutane with a high saturated vapor pressure concentration also have a low concentration in the gas, and are not condensed in the condensing tower, but are supplied again to the adsorption tower. Not only will it get worse, it will waste energy.
  • the present invention has been made to solve the above-described problems, and has an object to provide a gaseous hydrocarbon recovery apparatus and method capable of efficiently liquefying gasoline contained in gasoline vapor. It is.
  • the recovery apparatus for gaseous hydrocarbons includes a condensing device for cooling gasoline vapor, a gasoline liquid that is provided downstream of the condensing device, cooled by the condensing device, and condensed and liquefied, and a gasoline vapor that has not been liquefied.
  • a gas-liquid separator that is connected to the gas-liquid separator, an adsorption / desorption device that adsorbs and desorbs the gasoline vapor separated by the gas-liquid separator, and is connected to the adsorption / desorption device.
  • a second condensing device for supplying the gasoline vapor desorbed by the adsorption / desorption device and cooling the gasoline vapor.
  • the gaseous hydrocarbon recovery device includes a variable gas supply device capable of changing a gas flow rate of the sucked gasoline vapor, a condensing device for cooling the gasoline vapor supplied from the variable gas supply device, A gas-liquid separator that is provided on the downstream side of the condensing device, separates the gasoline liquid cooled and condensed into the liquefied gas and the gasoline vapor that has not been liquefied, and provided on the gas downstream side of the gas-liquid separator, An adsorption / desorption device for adsorbing and desorbing the gasoline vapor separated by the gas-liquid separator.
  • the recovery apparatus for gaseous hydrocarbons includes a condensing device for cooling gasoline vapor, a gasoline liquid that is provided downstream of the condensing device, cooled by the condensing device, and condensed and liquefied, and a gasoline vapor that has not been liquefied.
  • a gas-liquid separator for separating the gas vapor a refrigeration device provided on the gas downstream side of the gas-liquid separator, for cooling the gasoline vapor separated and discharged by the gas-liquid separator, and on the downstream side of the refrigeration device
  • an adsorption / desorption device that adsorbs / desorbs the gasoline vapor cooled by the refrigeration device.
  • the recovery apparatus for gaseous hydrocarbons includes a condensing device for cooling gasoline vapor, a gasoline liquid that is provided downstream of the condensing device, cooled by the condensing device, and condensed and liquefied, and a gasoline vapor that has not been liquefied.
  • a second condensing device for cooling the gasoline vapor pressurized and compressed by the compression pump.
  • the recovery apparatus for gaseous hydrocarbons includes a condensing device for cooling gasoline vapor, a gasoline liquid that is provided downstream of the condensing device, cooled by the condensing device, and condensed and liquefied, and a gasoline vapor that has not been liquefied.
  • a gas-liquid separator that separates the gas vapor from the gas-liquid separator, an adsorption / desorption device that adsorbs / desorbs the gasoline vapor separated by the gas-liquid separator, and an outflow from the adsorption / desorption device.
  • a second adsorption / desorption device for adsorbing and desorbing the gasoline vapor.
  • the method for recovering gaseous hydrocarbons according to the present invention is a method for recovering gaseous hydrocarbons using the above-described gaseous hydrocarbon recovery device, which contains concentrated gasoline vapor desorbed in a time zone in which refueling is not performed. In the time zone in which air is condensed and refueling is performed, the sucked gasoline vapor-containing air and the desorbed concentrated gasoline vapor-containing air are mixed and processed.
  • a method for recovering gaseous hydrocarbons according to the present invention is a method for recovering gaseous hydrocarbons using the above-described gaseous hydrocarbon recovery device, wherein the adsorption and desorption devices of the adsorption / desorption device are desorbed every predetermined time. The apparatus is switched. *
  • the gaseous hydrocarbon recovery device includes the second condensing device that condenses the gasoline vapor desorbed from the adsorption / desorption device, so that the gasoline vapor desorbed from the adsorption / desorption device can be individually condensed. Therefore, low boiling point hydrocarbons such as butane and isobutane having a high saturated vapor pressure concentration by mixing gasoline vapor sucked from the nozzle with concentrated gasoline vapor desorbed from the adsorption / desorption device. Therefore, it is possible to prevent the low-boiling hydrocarbons from being condensed and recovered with high efficiency.
  • the gas flow rate of the gasoline vapor-containing air can be changed by providing a variable gas supply device, so that low-boiling hydrocarbons are efficiently introduced into the adsorption / desorption device. It can be adsorbed, and the amount of adsorbent used in the adsorption / desorption device can be reduced. Therefore, an inexpensive and compact gaseous hydrocarbon recovery device can be obtained.
  • the refrigeration device is provided on the gas downstream side of the gas-liquid separator and cools the gasoline vapor separated and discharged by the gas-liquid separator.
  • the temperature of the gasoline vapor-containing air can be further lowered. Therefore, the ability to remove low boiling point hydrocarbons in the adsorption / desorption apparatus can be increased.
  • the gaseous hydrocarbon recovery device of the present invention it is possible to compress the gasoline vapor in two stages by providing a compression pump that compresses and compresses the gasoline vapor flowing out from the gas-liquid separator.
  • the gasoline component is independently supplied to each of the adsorption / desorption device and the second adsorption / desorption device. It can be desorbed and regenerated, and low boiling point hydrocarbons contained in the desorbed concentrated gasoline vapor can be efficiently recovered.
  • the function of the adsorption / desorption device as the adsorption device and the function as the desorption device are appropriately switched, so that the improvement of the recovery efficiency of gasoline vapor is realized. it can.
  • FIG. 1 is a schematic configuration diagram illustrating an overall circuit configuration of a gasoline vapor recovery device according to Embodiment 1.
  • FIG. It is a schematic block diagram which shows another structure of a gasoline vapor collection
  • FIG. FIG. 6 is a schematic configuration diagram illustrating an overall configuration of a gasoline vapor recovery device according to a third embodiment. It is a schematic block diagram which shows the whole structure of the gasoline vapor recovery apparatus which concerns on Embodiment 4. It is a schematic block diagram which shows the whole structure of the gasoline vapor collection apparatus which concerns on Embodiment 5. It is a schematic block diagram which shows the whole structure of the gasoline vapor recovery apparatus which concerns on Embodiment 6.
  • FIG. 10 is a schematic configuration diagram illustrating an overall configuration of a gasoline vapor recovery device according to a seventh embodiment. It is a graph which shows the relationship between the gasoline component and the quantity for every apparatus in a conventional system. It is a graph which shows the relationship between the gasoline component according to the length of the oiling time in a conventional system, and the quantity for every apparatus. It is a saturation concentration diagram which shows the saturation concentration at the time of 0.3 Mpa of a gasoline component. It is a saturation concentration diagram which shows the saturation concentration at the time of 5 degreeC of a gasoline component.
  • FIG. 1 is a schematic configuration diagram showing an overall circuit configuration of a gasoline vapor recovery device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram showing another configuration of the gasoline vapor recovery device 100. Based on FIG.1 and FIG.2, the circuit structure of the gasoline vapor collection apparatus 100 which is a gaseous hydrocarbon collection
  • the gasoline vapor recovery device 100 is installed in a gas station or the like together with the fuel supply device 1 for supplying gasoline to an automobile or the like.
  • the gasoline vapor recovery device 100 cools and recovers the gasoline vapor sucked from the vicinity of the oil supply section with the condensation pipe 3 and also absorbs or desorbs the gasoline vapor (an adsorption / desorption tower 7 and an adsorption / desorption tower 8).
  • the gas vapor is recovered (adsorbed) and reused (desorbed) by appropriately switching the functions of the two adsorption / desorption towers.
  • the gasoline vapor recovery apparatus 100 includes a gasoline vapor suction pump 2, a condenser tube 3, a heat medium storage tank 4, a heat exchanger 5, a refrigerator 6, and two adsorption / desorption towers (an adsorption / desorption tower 7, an adsorption / desorption tower 7).
  • Desorption tower 8 gas-liquid separator 9, liquid circulation pump 10, suction pump 11, gasoline tank 12, pressure controller 13, gasoline vapor feed pipe 14, purified air discharge pipe 15, and purge gas inflow
  • a pipe 16 a purge gas discharge pipe 17, a gas-liquid mixed gasoline outflow pipe 18, a gasoline vapor compression pump 19, a second condensing pipe 20, a second gas-liquid separator 21, and a second heat medium storage tank 22 , A second pressure controller 23.
  • the gasoline vapor suction pump 2 is for sucking gasoline vapor generated in the vicinity of the oil supply portion of the fuel supply device 1 into the gasoline vapor recovery device 100 through a nozzle (not shown).
  • the condensing pipe 3 cools the sucked gasoline vapor and condenses it.
  • the heat medium storage tank 4 stores the heat medium such as brine for cooling the condensing pipe 3 while the condensing pipe 3 is accommodated therein.
  • the heat exchanger 5 constitutes a part of the refrigerator 6 and is accommodated in the heat medium storage tank 4 to cool the heat medium in the heat medium storage tank 4.
  • the refrigerator 6 includes a refrigeration cycle, and supplies refrigerant to the heat exchanger 5 that constitutes the refrigeration cycle.
  • the adsorption / desorption tower 7 and the adsorption / desorption tower 8 are filled with an adsorbent (for example, silica gel, zeolite, activated carbon, etc.) for adsorbing and removing gasoline vapor in the gasoline vapor-containing air discharged from the condensation pipe 3.
  • an adsorbent for example, silica gel, zeolite, activated carbon, etc.
  • the adsorption / desorption tower 7 operates as an adsorption tower (hereinafter sometimes referred to as an adsorption tower 7), and the adsorption / desorption tower 8 is referred to as a desorption tower (hereinafter sometimes referred to as a desorption tower 8). As an example).
  • the gas-liquid separator 9 is connected to the downstream side of the condensing pipe 3 and separates the liquid gas liquefied in the condensing pipe 3 from the gasoline vapor.
  • the liquid circulation pump 10 is connected to the heat medium storage tank 4 and the two adsorption / desorption towers, and supplies the heat medium cooled by the heat exchanger 5 to the adsorption / desorption tower 7 and the adsorption / desorption tower 8. .
  • the suction pump 11 is provided in a pipe connected to the two adsorption / desorption towers, and sucks and desorbs the gasoline vapor adsorbed by the adsorbent in the adsorption / desorption tower 7 and the adsorption / desorption tower 8.
  • the gasoline tank 12 is connected to the gas-liquid separator 9 and the fueling device 1 and temporarily stores the gasoline liquid separated by the gas-liquid separator 9.
  • the pressure controller 13 is provided in the purified air discharge pipe 15 connected to the two adsorption / desorption towers, and has a function of adjusting the pressure in the two adsorption / desorption towers.
  • the gasoline vapor feed pipe 14 is a pipe that connects the gas-liquid separator 9 and the two adsorption / desorption towers, and guides the gasoline vapor separated by the gas-liquid separator 9 to the two adsorption / desorption towers.
  • the purified air discharge pipe 15 is connected to the two adsorption / desorption towers, and is a pipe that adsorbs gasoline vapor and sends the air discharged from the adsorption / desorption tower to the atmosphere.
  • the purge gas inflow pipe 16 is connected to two adsorption / desorption towers, and in order to use a part of the clean gas discharged from the adsorption / desorption tower 7 or the adsorption / desorption tower 8 to the atmosphere as the purge gas, the adsorption / desorption tower 8 or the adsorption / desorption tower 16 is used.
  • This is a pipe for sending to the desorption tower 7.
  • the purge gas discharge pipe 17 is a pipe that connects the suction pump 11 and the two adsorption / desorption towers, and conducts the purge gas after desorption of the adsorption / desorption tower 7 or the adsorption / desorption tower 8 to the second heat medium storage tank 22.
  • the gas-liquid mixed gasoline outflow pipe 18 is a pipe connected to the condensing pipe 3 and the gas-liquid separator 9.
  • the gasoline vapor compression pump 19 is provided between the suction pump 11 and the second heat medium storage tank 22 and compresses the concentrated gasoline vapor-containing air discharged from the suction pump 11.
  • the second condensing pipe 20 is connected to the purge gas discharge pipe 17 and condenses the gasoline component in the concentrated gasoline vapor-containing air compressed by the gasoline vapor compression pump 19.
  • the second gas-liquid separator 21 is connected to the downstream side of the second condensing pipe 20 and gas-liquid separates the gasoline liquid liquefied in the second condensing pipe 20 and the gasoline vapor.
  • the second heat medium storage tank 22 stores the heat medium such as brine for cooling the second condensing pipe 20 while the second condensing pipe 20 is accommodated therein.
  • the second pressure controller 23 is connected to the second gas-liquid separator 21 and adjusts the pressure in the second condensing pipe 20 by adjusting the pressure in the second gas-liquid separator 21.
  • a valve B1 provided between the fuel supply device 1 and the gasoline vapor suction pump 2, a valve B2 provided between the gas-liquid separator 9 and the gasoline tank 12, Desorption valve B 3 provided between the two adsorption / desorption towers and the suction pump 11, Adsorption discharge valve B 4 provided between the two adsorption / desorption towers and the pressure controller 13, and two adsorption / desorption towers
  • An adsorbing inflow valve B6 provided in the middle of the mass flow controller B5 provided in the purge gas inflow pipe 16 connected to the two, the gasoline vapor air supply pipe 14 connected to the two adsorption / desorption towers, and the second A valve B7 provided between the gas-liquid separator 21 and the gasoline tank 12 is provided.
  • bulb which is open is painted black
  • bulb which is closed is represented by white (a code
  • the valve B1 is opened in conjunction with the operation of the fueling device 1.
  • the valve B2 is opened when the gasoline liquid recovered by the gas-liquid separator 9 is supplied to the gasoline tank 12.
  • the desorption valve B3 is opened when the purge gas after desorption of the adsorption / desorption tower 7 or the adsorption / desorption tower 8 is conducted.
  • the adsorption discharge valve B4 is opened and closed to adjust the pressures of the two adsorption / desorption towers.
  • the mass flow controller B5 is opened and closed to adjust the amount of gas flowing through the purge gas inflow pipe 16.
  • the adsorption inflow valve B6 is opened when the gasoline vapor supplied from the gas-liquid separator 9 is conducted.
  • the valve B7 is opened when the gasoline liquid recovered by the second gas-liquid separator 21 is supplied to the gasoline tank 12.
  • the operation of the gasoline vapor recovery device 100 will be described.
  • the valve B1 is opened at the same time, and the gasoline vapor suction pump 2 starts operating.
  • the gasoline vapor (about 40 vol% at normal temperature) generated in the vicinity of the oil supply portion of the oil supply device 1 is sucked into the gasoline vapor recovery device 100 and compressed and compressed to about 0.2 to 0.4 MPa, for example. Is inflated.
  • the condenser tube 3 is provided in the heat medium storage tank 4 and is cooled by the heat medium stored in the heat medium storage tank 4. Therefore, the gasoline vapor is cooled when it passes through the condensation pipe 3.
  • the inside of the condensing tube 3 is maintained at about 0 ° C. to 5 ° C., and water contained in gasoline and gas is partially condensed. Then, it flows into the gas-liquid separator 9 and is separated into gas (gasoline vapor) and liquid (gasoline) by the gas-liquid separator 9.
  • the operating conditions of the condensing pipe 3 are a pressure of 0.3 MPa, a cooling temperature of 5 ° C., a gas flow rate of 100 L / min, and the gasoline vapor recovery device 100 is operated under these conditions, the gasoline vapor fed to the condensing pipe 3 is used.
  • the concentration of is about 10 vol%.
  • the saturated gasoline vapor concentration is about 10 vol% at a pressure of 0.3 MPa and a temperature of 5 ° C. Under these conditions, the gasoline vapor concentration is theoretically 10 vol%. It will never be Moreover, the gasoline vapor density
  • the valve B2 is opened. Thereby, the gasoline liquid collected in the lower part of the gas-liquid separator 9 is returned to the fuel supply device 1 via the gasoline tank 12. Thereafter, when a certain time elapses, the valve B2 is closed, and the gasoline liquid is stored again in the lower part of the gas-liquid separator 9. Thus, since the gasoline tank 12 is provided, it is possible to prevent gasoline vapor from flowing into the gas-liquid separator 9.
  • the gasoline tank 12 As shown in FIG. 1, in the gasoline tank 12, a certain amount of gasoline liquid is stored in the lower part, and the gasoline liquid separated by the gas-liquid separator 9 flows from the bottom and falls in the gasoline tank 12. It flows from the top to the top. As a result, the gasoline tank 12 has a structure in which gasoline vapor is present at the top. For this reason, even when the valve B2 is opened, the gasoline vapor does not flow into the gas-liquid separator 9 due to the flow of the gasoline liquid, and the high-concentration gasoline vapor does not enter the adsorption / desorption tower 7 or the adsorption / desorption tower 8. Will not be inflated.
  • Gasoline vapor of about 10 vol% that could not be processed in the condenser tube 3 is sent to the adsorption / desorption tower 7 or the adsorption / desorption tower 8 (the adsorption / desorption tower 7 operating as an adsorption tower in FIG. 1) and processed. Therefore, at this time, the detachment valve B3 is open (black), the detachment valve B3 ′ (white) is closed, the suction discharge valve B4 is open (black), and the suction discharge valve B4 ′. (White) is in a closed state, the suction inflow valve B6 is open (black), and the suction inflow valve B6 ′ (white) is controlled in a closed state.
  • the detachment valve B3, the suction discharge valve B4, and the suction inflow valve B6 are closed, and the detachment valve B3 ′, the suction discharge valve B4 ′, and the suction inflow valve B6 ′ are open. Used under control. Further, when the desorption is completed, it is used again as an adsorption tower, and this operation is repeated over time.
  • the adsorption / desorption switching is performed by switching between the desorption valve B3 and the desorption valve B3 ′, the adsorption discharge valve B4 and the adsorption discharge valve B4 ′, and the adsorption inflow valve B6 and the adsorption inflow valve B6 ′. To control.
  • the adsorption / desorption tower 7 and the adsorption / desorption tower 8 contain an adsorbent that adsorbs gasoline vapor as described above.
  • the adsorbent for adsorbing gasoline vapor silica gel having a pore size of 4 to 100 angstrom, synthetic zeolite alone or a mixture thereof is particularly effective.
  • the gasoline vapor passes through the adsorbent, the gasoline components are adsorbed and removed by the adsorbent, and become clean air having a gasoline concentration of 1 vol% or less and released to the atmosphere through the purified air discharge pipe 15.
  • the pressure controller 13 that controls the pressures of the adsorption / desorption tower 7 and the adsorption / desorption tower 8 to a specified value is disposed in the purified air discharge pipe 15 that discharges clean air to the atmosphere. Therefore, the pressure controller 13 maintains the pressure in the adsorption tower 7 at a specified value.
  • the adsorption capacity is greatly improved as compared with the case of adsorption at normal pressure because the adsorption is performed using the high-pressure (about 0.3 MPa) exhaust gas of the condensation tube 3.
  • the adsorption / desorption tower 7 and the adsorption / desorption tower 8 are always cooled to a constant temperature by a heat medium supplied by the liquid circulation pump 10 irrespective of the role of gasoline vapor adsorption / desorption. That is, the operation of the condenser pipe 3 and the cooling system of the two adsorption / desorption towers is always controlled so as to be maintained at a predetermined set temperature. This is because the adsorbent packed in the adsorption / desorption tower 7 and the adsorption / desorption tower 8 is cooled by heat transfer from the fin tube heat exchanger provided in the adsorption / desorption tower 7 and the adsorption / desorption tower 8.
  • the adsorption capacity of the adsorbent can be increased and the amount of adsorbent used can be reduced. Further, since the adsorption / desorption tower 7 and the adsorption / desorption tower 8 are maintained at a predetermined set temperature, the temperature of the adsorbent in the adsorption / desorption tower 7 and the adsorption / desorption tower 8 rises when the gasoline vapor recovery is stopped.
  • the suction pump 11 When desorbing the gasoline adsorbed on the adsorbent, the suction pump 11 sucks gas from the desorption tower 8 through the purge gas discharge pipe 17 to desorb the gasoline from the adsorbent. At this time, the detaching valve B3 is opened and the detaching valve B3 ′ is closed. At the time of adsorption, the adsorption tower (in this example, the adsorption tower 7) operates at a high pressure of 0.3 MPa, but at the time of desorption, the pressure is reduced to below atmospheric pressure by the suction pump 11. Gasoline is desorbed.
  • the desorbed gasoline vapor is compressed by the gasoline vapor compression pump 19 and the second pressure controller 23 and sent to the second condensing pipe 20.
  • the second condensing pipe 20 is provided in the second heat medium storage tank 22, and is cooled by the heat medium stored in the second heat medium storage tank 22. Therefore, the gasoline vapor is cooled when passing through the second condensing pipe 20.
  • the inside of the second condensing tube 20 is maintained at about 0 ° C. to 5 ° C., and water contained in gasoline and gas is partially condensed. Thereafter, the gas flows into the second gas-liquid separator 21 and is separated into gas and liquid (gasoline, water) by the second gas-liquid separator 21.
  • the valve B7 is opened.
  • the gasoline liquid collected in the lower part of the second gas-liquid separator 21 is returned to the fuel supply device 1 via the gasoline tank 12.
  • about 10 vol% of the gasoline vapor that could not be processed by the second condensing pipe 20 is returned to the adsorption tower 7 through the second pressure controller 23 and the gasoline vapor feed pipe 14. That is, the concentrated gasoline vapor taken out from the desorption tower 8 is supplied to the second condensing pipe 20 while maintaining a high concentration state and efficiently liquefied, and the gasoline vapor that has not been liquefied is adsorbed again in the adsorption tower 7. Removed.
  • the mass flow controller B5 and the mass flow controller B5 ' control the gas flow rate passing through the purge gas inflow pipe 16, and in this case, the mass flow controller B5 is in an open state and the mass flow controller B5' is in a closed state.
  • the mass flow controller B5 is in a state where a specified amount of gas can be circulated in an open state, and the mass flow controller B5 'is in a closed state so that no gas flows.
  • the moisture contained in the purge gas hardly affects the adsorbent in the desorption tower 8.
  • the gasoline vapor is adsorbed and removed by passing through the adsorption tower 7, so that the gasoline vapor becomes clean air having a gasoline concentration of 1 vol% or less and is released to the atmosphere through the purified air discharge pipe 15.
  • the adsorption capacity of the adsorption tower 7 gradually decreases. If this state continues and the gasoline concentration at the outlet of the adsorption tower 7 approaches 1 vol%, it is necessary to switch between the adsorption / desorption tower 7 and the adsorption / desorption tower 8.
  • the integrated value of the time during which the gasoline recovery apparatus 100 is operating reaches a predetermined time
  • the adsorption / desorption tower 7 and the adsorption / desorption tower 8 are switched, the integrated value is reset, and the operation time is again set. Start counting from the beginning.
  • the operation of the gasoline vapor suction pump 2 and the suction pump 11 can be cited.
  • the gasoline vapor suction pump 2 and the suction pump 11 are synchronized, there is no problem regardless of which operating time is integrated. Further, as the actual switching timing, even if the integration time reaches the predetermined value, the switching is not performed immediately, but may be performed after a certain time has elapsed.
  • FIG. 1 illustrates the case where the piping through which the heat medium supplied to the desorption tower 8 flows is branched and the heat medium is supplied to the second heat medium storage tank 22, the present invention is limited to this. It is not a thing. That is, it is sufficient that the heat medium is supplied in parallel to the second heat medium storage tank 22, the adsorption / desorption tower 7, and the adsorption / desorption tower 8. Therefore, the supply of the heat medium to the second heat medium storage tank 22 may be branched from a pipe through which the heat medium supplied to the adsorption tower 7 flows, and the outlet of the liquid circulation pump 10 is branched in three directions. May be.
  • the reason for supplying the heat medium to the second heat medium storage tank 22, the adsorption / desorption tower 7, and the adsorption / desorption tower 8 in parallel is that the second heat medium storage tank 22, the adsorption / desorption tower 7, the adsorption / desorption are performed.
  • the temperature of the heat medium is higher than a predetermined temperature in the last flowing equipment (equipment located at the most downstream side), so the performance in that equipment is This is because the performance of the gasoline vapor recovery device 100 as a whole is lowered.
  • a method of condensing the desorbed gasoline vapor which is a feature of the gasoline vapor recovery device 100 according to Embodiment 1, will be described in comparison with a conventional method.
  • the method of condensing the desorbed gasoline vapor alone is a method in which the gasoline vapor desorbed in the adsorption / desorption tower is condensed independently without being mixed with the gasoline vapor taken in from the fueling device (hereinafter, This method is called).
  • the conventional method to be compared is a method in which the desorbed gasoline vapor is mixed with the gasoline vapor taken in from the fueling device and then condensed.
  • FIG. 9 is a graph showing the relationship between the gasoline component (horizontal axis) and the amount (vertical axis) of each device in the conventional method.
  • FIG. 10 is a graph showing the relationship between the gasoline component (horizontal axis) according to the length of the refueling time in the conventional system and the amount (vertical axis) for each device.
  • FIG. 11 is a saturation concentration diagram (temperature [° C.] on the horizontal axis and saturation concentration [vol%] on the vertical axis) showing the saturation concentration of the gasoline component at 0.3 MPa.
  • FIG. 12 is a saturation concentration diagram (saturation concentration [vol%] on the horizontal axis and pressure [MPa] on the vertical axis) showing the saturation concentration of the gasoline component at 5 ° C. Based on FIGS. 9 to 11, the components of gasoline will be described, and the recovery of low-boiling hydrocarbons will be described.
  • FIG. 9 four elements (gasoline tank 12 (a), gasoline vapor compression pump 19 (b), gas-liquid separator 9 outlet (c), and adsorption / desorption tower outlet (d)) of the gasoline vapor recovery apparatus 100 are shown.
  • the amount of gasoline component is shown.
  • the amount of the gasoline component at the time of 250 L refueling is shown.
  • FIG. 9 shows that the amount of low boiling point hydrocarbons (C4 hydrocarbon and C5 hydrocarbon) is not reduced by the gas-liquid separator 9. Further, FIG. 9 shows that the amount of the low-boiling hydrocarbon adsorption / desorption tower outlet is not reduced.
  • FIG. 10 shows the amount (e) of the gasoline component at the adsorption / desorption tower outlet at the time of 50 L refueling and the amount (f) of the gasoline component at the adsorption / desorption tower outlet at the time of 285 L refueling.
  • the leakage amount of low boiling point hydrocarbons especially C4 hydrocarbons such as butane and isobutane and C5 hydrocarbons such as the Oldham ring far end and isopentane
  • Fig. 11 shows that the recovery efficiency of gasoline vapor can be improved by low temperature use.
  • This principle is utilized both in this method and in the conventional method by cooling the heat medium in the heat medium storage tank with a refrigerator and maintaining the adsorption / desorption tower at a predetermined temperature.
  • FIG. 12 it can be seen that the saturation concentration of gasoline vapor, particularly the saturation concentration of low-boiling hydrocarbons, depends on the effect of pressure.
  • FIG. 11 and FIG. 12 it can be seen that the use of low temperature and the use of pressure improve the recovery efficiency of low-boiling point hydrocarbons (second embodiment compression will be described in Embodiment 6).
  • the gas flow rate is 70 L / min
  • the isobutane concentration in the desorbed gasoline vapor-containing air is 70 vol%
  • the gas flow rate is 30 L / min.
  • the condensation conditions are a gas pressure of 0.3 MPa and a cooling temperature of 2 ° C.
  • the saturated vapor concentration of isobutane under these conditions is 56 vol%. Therefore, in the conventional system, the isobutane concentration of the gasoline vapor-containing air when mixed is 49 vol%, which is equal to or lower than the saturated vapor concentration. Under such conditions, isobutane cannot be recovered at all.
  • isobutane of gasoline vapor-containing air from the fueling device 1 cannot be recovered, but desorbed butane of gasoline vapor-containing air is 4.2 L / min [30 L / min ⁇ (70 vol% ⁇ 56 vol%)]. It can be recovered. In this way, this system can reduce the amount of low-boiling hydrocarbons such as butane and isobutane flowing into the adsorption tower, reduce the load on the adsorption tower, reduce the size of the adsorption tower, and switch adsorption / desorption. A longer time can be realized.
  • the gasoline recovery apparatus 100 condenses the condensing device (second condensing pipe 20) that condenses the desorbed concentrated gasoline vapor-containing air and the gasoline vapor-containing air taken in from the fuel supply device 1. Since the condensing device (condenser tube 3) is provided separately, low-boiling hydrocarbons such as butane and isobutane that could not be recovered by the conventional method can also be efficiently recovered.
  • the gasoline vapor recovery apparatus 100 can efficiently recover low boiling point hydrocarbons without lowering the condensation temperature or increasing the compression pressure, so that the refrigerator 6 can be operated with high cooling efficiency. Furthermore, since the gasoline vapor recovery device 100 can reduce the power of the gasoline vapor compression pump 19, it can recover gasoline efficiently and efficiently without consuming unnecessary energy. In addition, since the gasoline vapor recovery apparatus 100 can efficiently liquefy low boiling point hydrocarbons, the amount of adsorbent used can be reduced, and the adsorption tower can be made compact.
  • the second pressure controller 23 causes the pressure of the piping between the gasoline vapor compression pump 19 and the second pressure controller 23 to be provided at the subsequent stage of the adsorption / desorption tower 7 and the adsorption / desorption tower 8.
  • the same effect can be obtained without providing the second pressure controller 23 if it can be set to an equivalent value.
  • the set pressure of the second pressure controller 23 may be higher than the set pressure of the pressure controller 13.
  • the case where the second heat medium storage tank 22 is provided, the heat medium is supplied to the second heat medium storage tank 22 by the liquid circulation pump 10, and the second condensing pipe 20 is cooled is shown.
  • a heat medium storage tank 31 capable of simultaneously cooling the condensing pipe 3 and the second condensing pipe 20 is provided, and the heat medium is circulated and supplied to the adsorption / desorption tower 7 and the adsorption / desorption tower 8.
  • capacitance of the liquid circulation pump 10 can be made small. Therefore, the gasoline vapor recovery device 100 can reduce the amount of heat generated by the liquid circulation pump 10, and is inexpensive and consumes less energy.
  • FIG. FIG. 3 is a schematic configuration diagram showing an overall configuration of a gasoline vapor recovery device 100a according to Embodiment 2 of the present invention. Based on FIG. 3, the structure of the gasoline vapor collection apparatus 100a and the flow of the gasoline vapor will be described. Similarly to the gasoline vapor recovery apparatus 100 according to the first embodiment, the gasoline vapor recovery apparatus 100a also recovers the gasoline vapor by cooling it with the condenser tube 3, and also uses two adsorption / desorption towers that adsorb or desorb the gasoline vapor. The function is appropriately switched to recover (adsorb) and reuse (desorb) gasoline vapor. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment are denoted by the same reference numerals.
  • the case where the heat medium is cooled by the heat exchanger 5 and the refrigerator 6 and the condensing pipe 3 and the second condensing pipe 20 are cooled to the same temperature by the heat medium is shown as an example.
  • the second heat exchanger 32 and the second refrigerator 33 for cooling the heat medium are provided in the second heat medium storage tank (referred to as the second heat medium storage tank 22a), and the second condensation is performed.
  • the case where the tube (hereinafter referred to as the second condensing tube 20a) is cooled and the second condensing tube 20a is cooled at a temperature lower than that of the condensing tube 3 is shown as an example.
  • Such a configuration has an effect of efficiently liquefying low boiling point hydrocarbons such as butane and pentane in the second condensing pipe 20a. Since the concentrated gasoline vapor-containing air flowing through the second condensing pipe 20a does not contain moisture, the water in the gas freezes inside the second condensing pipe 20a, and the gas flow is delayed in the second condensing pipe 20a. There is nothing. Therefore, the gasoline vapor recovery apparatus 100a can efficiently recover low-boiling hydrocarbons contained in the desorbed concentrated gasoline vapor, and can be made more compact.
  • FIG. FIG. 4 is a schematic configuration diagram showing an overall configuration of a gasoline vapor recovery device 100b according to Embodiment 3 of the present invention. Based on FIG. 4, the structure of the gasoline vapor collection apparatus 100b and the flow of the gasoline vapor will be described. Similarly to the gasoline vapor recovery apparatus 100 according to the first embodiment, the gasoline vapor recovery apparatus 100b also recovers the gasoline vapor by cooling it with the condensing pipe 3, and also uses two adsorption / desorption towers that adsorb or desorb the gasoline vapor. The function is appropriately switched to recover (adsorb) and reuse (desorb) gasoline vapor. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments are denoted by the same reference numerals.
  • a condensing device (second condensing pipe) that condenses the desorbed concentrated gasoline vapor-containing air and a condensing device (condensing pipe 3) that condenses the gasoline vapor-containing air taken in from the fueling device 1.
  • the third embodiment is provided with a gas flow rate variable pump 41 that is a variable gas supply device that can change the gas flow rate of air containing gasoline vapor, and is taken in from the concentrated gasoline vapor desorbed from the desorption tower 8 and the fuel supply device 1.
  • a gas flow rate variable pump 41 that is a variable gas supply device that can change the gas flow rate of air containing gasoline vapor, and is taken in from the concentrated gasoline vapor desorbed from the desorption tower 8 and the fuel supply device 1.
  • An example is shown in which the gas is condensed in the condensing pipe 3 after being mixed with gasoline vapor.
  • the gasoline vapor recovery device 100b includes a gasoline vapor suction pump 2, a second condensing pipe, a second heat medium storage tank, a second heat exchanger, a second refrigerator, a gasoline vapor compression pump, and a second gas-liquid separator.
  • the second pressure controller is not provided, and the purge gas discharge pipe 17 is connected between the valve B1 and the gas flow rate variable pump 41.
  • the gas flow rate variable pump 41 can change the gas flow rate of the gasoline vapor-containing air taken in from the fueling device 1.
  • the operation of the gasoline vapor recovery device 100b will be described.
  • the gas flow rate variable pump 41 is driven in the large flow rate mode for a limited time during refueling, and the gasoline vapor in the vicinity of the nozzle (not shown) of the refueling device 1 is recovered.
  • the valve B1 is closed and the gas flow rate variable pump 41 is driven in the small flow rate mode.
  • the concentrated gasoline vapor-containing air drawn out from the desorption tower 8 by the suction pump 11 is supplied to the condensing pipe 3 via the gas flow rate variable pump 41.
  • the gasoline vapor recovery device 100b condenses only the desorbed concentrated gasoline vapor-containing air in the condenser 3 while refueling is not performed. By doing so, the gasoline vapor recovery apparatus 100b can efficiently recover the low-boiling hydrocarbons in the desorbed concentrated gasoline vapor-containing air. Therefore, by performing the desorption operation for a long time, the gasoline components stored in the adsorption / desorption tower can be reduced, and the amount of gasoline that can be adsorbed in the next round can be increased.
  • the suction pump 11 since the operation time of the suction pump 11 and the gas flow rate variable pump 41 is increased, the energy consumption is increased. For this reason, when the suction pump 11 is operated for a predetermined time, the suction pump 11 is preferably stopped, and the adsorption / desorption tower 7 and the adsorption / desorption tower 8 are switched at that time. By doing so, the gasoline vapor-containing air discharged from the gas-liquid separator 9 to the adsorption / desorption tower where the gasoline component is not always adsorbed, except when the gasoline vapor is continuously supplied from the fueling device 1. This makes it possible to adsorb and remove gasoline vapor with high efficiency.
  • the stop time of the fuel supply device 1 becomes longer than the operation time of the suction pump 11
  • low-boiling hydrocarbons that are not condensed in the condenser tube 3 are supplied to the adsorption / desorption tower (for example, the adsorption / desorption tower 7) in which no gasoline component remains. can do. Therefore, low-boiling point hydrocarbons can be efficiently adsorbed in the adsorption / desorption tower, and the amount of the adsorbent used in the adsorption / desorption tower can be reduced.
  • the gasoline vapor recovery device 100b is inexpensive and compact. Note that either or both of the feature items of the first embodiment and the feature items of the second embodiment may be applied to the third embodiment.
  • FIG. FIG. 5 is a schematic configuration diagram showing an overall configuration of a gasoline vapor recovery device 100c according to Embodiment 4 of the present invention. Based on FIG. 5, the structure of the gasoline vapor collection apparatus 100c and the flow of the gasoline vapor will be described. Similarly to the gasoline vapor recovery apparatus 100 according to the first embodiment, the gasoline vapor recovery apparatus 100c also recovers the gasoline vapor by cooling it with the condensing pipe 3, and also uses two adsorption / desorption towers that adsorb or desorb the gasoline vapor. The function is appropriately switched to recover (adsorb) and reuse (desorb) gasoline vapor. In the fourth embodiment, differences from the first to third embodiments will be mainly described, and the same parts as those in the first to third embodiments are denoted by the same reference numerals.
  • Embodiment 3 shows an example in which a gas flow rate variable pump 41 that can change the gas flow rate of air containing gasoline vapor is provided.
  • the gas outlet of the gas-liquid separator 9 is provided with a third heat exchanger 52 (refrigeration device) that is one of the components of the third refrigerator 51, and the third heat exchanger.
  • the gasoline vapor which flowed out from the gas-liquid separator 9 via 52 is cooled is shown as an example.
  • the second condensing pipe, the second heat medium storage tank, the second heat exchanger, the second refrigerator, the gasoline vapor compression pump, the second gas-liquid separator, and the second pressure controller are not provided.
  • This is the same as the gasoline vapor recovery apparatus 100b according to the second embodiment, but differs from the third embodiment in that the gasoline vapor suction pump 2 is used instead of the gas flow rate variable pump 41.
  • the gasoline vapor-containing air flowing out from the gas-liquid separator 9 can be cooled by the third heat exchanger 52.
  • the temperature of the gasoline vapor-containing air can be further lowered in the adsorption / desorption tower 7 and the adsorption / desorption tower 8. Therefore, the removal ability of low boiling point hydrocarbons in the adsorption / desorption tower 7 and the adsorption / desorption tower 8 can be increased.
  • the gasoline vapor recovery apparatus 100c can liquefy gasoline vapor with high efficiency.
  • the cooling performance of the adsorbent is increased.
  • the adsorption / removal performance of low-boiling hydrocarbons can be further enhanced.
  • the metal particles have good thermal conductivity, and aluminum or copper that is not corroded by gasoline vapor or the like is suitable.
  • any one or more of the feature items of the first embodiment to the third embodiment may be applied to the fourth embodiment.
  • FIG. FIG. 6 is a schematic configuration diagram showing an overall configuration of a gasoline vapor recovery device 100d according to Embodiment 5 of the present invention. Based on FIG. 6, the structure of the gasoline vapor collection apparatus 100d and the flow of the gasoline vapor will be described. Similarly to the gasoline vapor recovery apparatus 100 according to the first embodiment, the gasoline vapor recovery apparatus 100d also recovers the gasoline vapor by cooling it with the condensing pipe 3, and also uses two adsorption / desorption towers that adsorb or desorb the gasoline vapor. The function is appropriately switched to recover (adsorb) and reuse (desorb) gasoline vapor. In the fifth embodiment, differences from the first to fourth embodiments will be mainly described, and the same parts as those in the first to fourth embodiments are denoted by the same reference numerals.
  • the gasoline vapor recovery device 100 d is configured to connect the gas outlet of the gas-liquid separator 9 and the second condensing pipe 63, and to include a second gasoline vapor compression pump 61 that is a compression pump therebetween.
  • the gasoline vapor recovery device 100d further compresses the gasoline vapor-containing air that has passed through the condensing pipe 3 and the gas-liquid separator 9 with the second gasoline vapor compression pump 61, and then supplies the compressed air to the second condensing pipe 63. It is a thing.
  • the gasoline vapor-containing air recompressed by the second gasoline vapor compression pump 61 is supplied to the second condensing pipe 63 provided in the second heat medium storage tank 64, and the remaining low boiling point hydrocarbon is condensed. To do.
  • the gasoline vapor-containing air from which the low-boiling hydrocarbons have been condensed and removed is supplied to the adsorption / desorption tower 7 or the adsorption / desorption tower 8 via the second gas-liquid separator 62. Since the ultimate pressure is the same as when the target pressure is set in one stage and when the target pressure is set in two stages, the amount of gasoline vapor supplied to the adsorption / desorption tower 7 or the adsorption / desorption tower 8 is different. Absent. However, in the case of two-stage compression, there is a gasoline component that is liquefied in the first stage, so the amount of gasoline vapor-containing air that must be compressed in the second stage is reduced, and it is used when compressing gasoline vapor-containing air. Energy can be reduced.
  • the gasoline vapor-containing air from which the low-boiling point hydrocarbons are condensed and removed is supplied to the adsorption / desorption tower 7 or the adsorption / desorption tower 8, and is thus removed by the adsorption / desorption tower 7 and the adsorption / desorption tower 8.
  • Low boiling hydrocarbons that had to be reduced can be reduced. Therefore, the adsorbent filled in the adsorption / desorption tower 7 and the adsorption / desorption tower 8 can be reduced.
  • the gasoline vapor recovery device 100d is provided with a plurality of condensing devices (a condensing device composed of the condensing tube 3 and a condensing device composed of the second condensing tube 63), and is compressed in two stages. While reducing the energy required for compressing the vapor-containing air, the low-boiling hydrocarbons can be liquefied and removed with high efficiency, and the gasoline vapor can be recovered with high efficiency and energy saving. Note that any one or a plurality of the feature items of the first embodiment to the fourth embodiment may be applied to the fifth embodiment.
  • FIG. 7 is a schematic configuration diagram showing an overall configuration of a gasoline vapor recovery device 100e according to Embodiment 6 of the present invention. Based on FIG. 7, the structure of the gasoline vapor collection apparatus 100e and the flow of the gasoline vapor will be described. Similarly to the gasoline vapor recovery apparatus 100 according to the first embodiment, the gasoline vapor recovery apparatus 100e also recovers the gasoline vapor by cooling it with the condensation pipe 3, and adsorbs or desorbs the gasoline vapor. These functions are appropriately switched to recover (adsorb) and reuse (desorb) gasoline vapor. In the sixth embodiment, differences from the first to fifth embodiments will be mainly described, and the same parts as those in the first to fifth embodiments are denoted by the same reference numerals.
  • the gasoline vapor recovery apparatus 100e is a second adsorption / desorption apparatus that adsorbs and removes low-boiling hydrocarbons in low-concentration gasoline vapor-containing air discharged from the adsorption / desorption tower 7 and the adsorption / desorption tower 8.
  • a low-boiling hydrocarbon adsorption / desorption tower 71 and a low-boiling hydrocarbon adsorption / desorption tower 72 as a second adsorption / desorption apparatus are provided.
  • the gasoline vapor-containing air discharged from the adsorption / desorption tower 7 operating as an adsorption tower is supplied to the low-boiling hydrocarbon adsorption / desorption tower 71 operating as an adsorption tower, where low-boiling hydrocarbons are removed. And released into the atmosphere.
  • the adsorbent filled in the low-boiling hydrocarbon adsorption / desorption tower 71 and the low-boiling hydrocarbon adsorption / desorption tower 72 silica gel having a pore size of 5 to 10 angstrom, synthetic zeolite alone, or a mixture thereof is effective. is there. Thereby, low boiling point hydrocarbons can be adsorbed efficiently.
  • the switching between the low-boiling hydrocarbon adsorption / desorption tower 71 and the low-boiling hydrocarbon adsorption / desorption tower 72 and the switching between the adsorption / desorption tower 7 and the adsorption / desorption tower 8 are performed by the gasoline vapor suction pump 2 and the suction pump 11.
  • the total operating time can be mentioned. That is, when these accumulated operating times reach a predetermined time, for example, there is a method of simultaneously switching between the adsorption / desorption tower 7 and the adsorption / desorption tower 8, the low-boiling hydrocarbon adsorption / desorption tower 71, and the low-boiling hydrocarbon adsorption / desorption tower 72. is there.
  • the adsorption / desorption tower 7, the adsorption / desorption tower 8, the adsorption / desorption tower 71 for low-boiling hydrocarbons, and the adsorption / desorption tower 72 for low-boiling hydrocarbons are desorbed in parallel in order to suppress re-adsorption as much as possible. Is more desirable than connecting and removing in series.
  • the low-boiling hydrocarbon adsorption / desorption tower 71 and the low-boiling point hydrocarbon adsorption / desorption tower 72 are used in combination.
  • the gasoline vapor-containing air discharged from the condenser 3 and the gas-liquid separator 9 contains several tens of types of hydrocarbons. Therefore, in the low-boiling hydrocarbon adsorbent, molecules having a relatively small molecular diameter can be adsorbed, but large molecules cannot be adsorbed. Therefore, when the adsorption / desorption tower 71 for low boiling point hydrocarbons and the adsorption / desorption tower 72 for low boiling point hydrocarbons adsorb, the leakage of hydrocarbons having a large molecular diameter is accelerated.
  • the adsorption / desorption tower 71 for low boiling point hydrocarbons and the adsorption / desorption tower 72 for low boiling point hydrocarbons are used in combination with the adsorption / desorption tower 7 and the adsorption / desorption tower 8, hydrocarbons having a large molecular diameter are adsorbed / desorbed. 7 or the adsorption / desorption tower 8 is adsorbed and removed, and the hydrocarbon having a small molecular diameter is adsorbed and removed by the low-boiling hydrocarbon adsorption / desorption tower 71 or the low-boiling hydrocarbon adsorption / desorption tower 72.
  • gasoline vapor recovery apparatus 100e can liquefy and remove low-boiling hydrocarbons with high efficiency by arranging adsorption / desorption towers with different adsorbents in series and performing two-stage adsorption, Gasoline vapor can be collected with high efficiency. It should be noted that any one or more of the characteristic items of the first embodiment to the fifth embodiment may be applied to the sixth embodiment.
  • FIG. FIG. 8 is a schematic configuration diagram showing an overall configuration of a gasoline vapor recovery device 100f according to Embodiment 7 of the present invention. Based on FIG. 8, the structure of the gasoline vapor collection apparatus 100f and the flow of the gasoline vapor will be described. Similarly to the gasoline vapor recovery apparatus 100 according to the first embodiment, the gasoline vapor recovery apparatus 100f also recovers the gasoline vapor by cooling it with the condensation pipe 3, and adsorbs or desorbs the gasoline vapor. These functions are appropriately switched to recover (adsorb) and reuse (desorb) gasoline vapor. In the seventh embodiment, differences from the first to sixth embodiments will be mainly described, and the same parts as those in the first to sixth embodiments are denoted by the same reference numerals.
  • switching between the low-boiling hydrocarbon adsorption / desorption tower 71 and the low-boiling hydrocarbon adsorption / desorption tower 72 and switching between the adsorption / desorption tower 7 and the adsorption / desorption tower 8 are performed by the gasoline vapor suction pump 2 or the suction. The case where it carries out simultaneously with the operation
  • Embodiment 7 a gas flow rate variable pump 41 that can change the gas flow rate of gasoline vapor-containing air is provided, and the adsorption / desorption tower 7, the adsorption / desorption tower 8, the low-boiling hydrocarbon adsorption / desorption tower 71, and the low-boiling point.
  • the hydrocarbon adsorption / desorption column 72 can be desorbed independently.
  • the gasoline components adsorbed in the adsorption / desorption tower 7, the adsorption / desorption tower 8, and the low-boiling hydrocarbon adsorption / desorption tower 71 and the low-boiling hydrocarbon adsorption / desorption tower 72 are independent. There is an effect that it can be detached and regenerated. Therefore, the gasoline vapor recovery device 100f can efficiently recover the low boiling point hydrocarbons contained in the desorbed concentrated gasoline vapor, and can be made compact. Note that any one or more of the feature items of the first to sixth embodiments may be applied to the seventh embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Treating Waste Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

 ガソリンベーパ中に含まれるガソリンを効率的に液化できる小型で安価なガス状炭化水素の回収装置及び方法を提供する。 ガソリンベーパ回収装置100は、ガソリンベーパを冷却する凝縮管3と、凝縮管3で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器9と、気液分離器9で分離されたガソリンベーパを吸脱着する吸脱着塔と、吸脱着塔で脱着されたガソリンベーパが供給され、このガソリンベーパを冷却する第2凝縮管20と、を有している。

Description

ガス状炭化水素の回収装置及び方法
 本発明は、大気放出ガス中に含まれるガス状炭化水素の回収装置及び方法に関し、特にガソリン給油時に漏れ出すガソリン蒸気(以下、ガソリンベーパと称する)を処理・回収するための装置及びその方法に関するものである。
 従来の吸脱着剤によるガス状炭化水素の回収装置及び方法に、排気ガス発生源から発生したガス(約40vol%のガソリンベーパを含む排気ガス)をブロアー又は自圧で、排気ガス送気管より凝縮機に送気し、凝縮機においてガソリンベーパを一部液化した後に、液化しなかったガソリンベーパを含んだ空気を吸着塔に送気し、吸着工程を終えた処理済み排気ガスを吸着塔(脱着工程に切り換えた後は脱着塔)の頂部から排出管を介して、1vol%以下のガソリンベーパを含む空気(クリーンなガス)として大気中に放出するようにしたものがある。
 そして、吸着工程を終えた後の吸着塔に、パージ用ガス送気管を介してパージ用ガスを送気し、真空ポンプで吸引することにより脱着する。パージ用ガスとして吸着運転時に吸着塔の頂部から排出されるクリーンなガスの一部を使用し、吸着塔内圧力が100~300Torrとなるように真空ポンプを運転する。脱着後のガソリンベーパ含有パージ排ガスは、排気ガス発生源から発生したガソリンベーパ含有空気と混合された後に、凝縮機に送気され、凝縮機において一部が液化され、液体(ガソリン液)としてパージ排ガス中のガソリンベーパを回収する。
 このような構成とすることにより、ガソリンベーパは、ほぼ全量液体ガソリンとして回収できることになる。したがって、このような構成のガス状炭化水素の回収装置及び方法では、吸着塔から排出するガソリンベーパの濃度が十分低いものとなり、大気汚染を引き起こさないレベルにすることができるとしている(たとえば、特許文献1参照)。特許文献1の技術では、第一の凝縮装置には空気中の水分が混入するため、冷却温度を氷点下に設定すると、第一の凝縮装置内で水分が凍り、第一の凝縮装置が閉塞してしまうことになる。そのため、第一の凝縮装置の冷却温度を氷点以上に設定する必要があった。
特開2006-198604号公報(第4~8頁、第2図、及び、第9~16頁、第10図)
 しかしながら、このような設定温度では、ガソリンベーパの主成分であるブタンやイソブタンなどの低沸点炭化水素が液化せず、そのまま吸着塔に流れ込んでしまうため、吸着塔からガソリンベーパが漏れ出すまでの時間が短くなり、吸着塔の切り換え時間が短くなってしまう。また、吸着塔の切り換え時間を短くしないようにするには、吸着塔を大きくする、すなわち吸着塔に充填する吸着剤の量を増やす必要があるため、装置が大型化してしまうことになる。
 また、特許文献1のような給油装置のノズルから吸い込んだガソリンベーパと吸着塔から脱着したガソリンベーパを混合して凝縮装置で凝縮する方法では、ノズルから吸い込まれた比較的濃度が低いガソリンベーパと吸着塔から脱着された濃縮されたガソリンベーパが混合されることになる。このため、飽和蒸気圧濃度が高いブタンやイソブタンなどの低沸点炭化水素もガス中の濃度が低くなり、凝縮塔で凝縮されずに、再び吸着塔に供給され、低沸点炭化水素の回収効率が悪くなるだけでなく、エネルギーも無駄に消費してしまう。
 本発明は、上記のような課題を解決するためになされたもので、ガソリンベーパ中に含まれるガソリンを効率的に液化できるガス状炭化水素の回収装置及び方法を提供することを目的としたものである。
 本発明に係るガス状炭化水素の回収装置は、ガソリンベーパを冷却する凝縮装置と、前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、前記気液分離器のガス下流側に設けられ、前記気液分離器で分離されたガソリンベーパを吸脱着する吸脱着装置と、前記吸脱着装置に接続され、前記吸脱着装置で脱着されたガソリンベーパが供給され、このガソリンベーパを冷却する第2凝縮装置と、を有していることを特徴とする。
 本発明に係るガス状炭化水素の回収装置は、吸引したガソリンベーパのガス流量を変更できる可変型ガス供給装置と、前記可変型ガス供給装置から供給されたガソリンベーパを冷却する凝縮装置と、前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、前記気液分離器のガス下流側に設けられ、前記気液分離器で分離されたガソリンベーパを吸脱着する吸脱着装置と、を有していることを特徴とする。
 本発明に係るガス状炭化水素の回収装置は、ガソリンベーパを冷却する凝縮装置と、前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、前記気液分離器のガス下流側に設けられ、前記気液分離器で分離され流出されたガソリンベーパを冷却する冷凍装置と、前記冷凍装置の下流側に設けられ、前記冷凍装置で冷却されたガソリンベーパを吸脱着する吸脱着装置と、を有していることを特徴とする。
 本発明に係るガス状炭化水素の回収装置は、ガソリンベーパを冷却する凝縮装置と、前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、前記気液分離器から流出されたガソリンベーパを加圧圧縮する圧縮ポンプと、前記気液分離器のガス下流側に設けられ、前記気液分離器で分離され、前記圧縮ポンプで加圧圧縮されたガソリンベーパを冷却する第2凝縮装置と、を有していることを特徴とする。
 本発明に係るガス状炭化水素の回収装置は、ガソリンベーパを冷却する凝縮装置と、前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、前記気液分離器のガス下流側に設けられ、前記気液分離器で分離されたガソリンベーパを吸脱着する吸脱着装置と、前記吸脱着装置から流出されたガソリンベーパを吸脱着する第2吸脱着装置と、を有していることを特徴とする。
 本発明に係るガス状炭化水素の回収方法は、上記のガス状炭化水素の回収装置を用いたガス状炭化水素の回収方法であって、給油が行なわれない時間帯に脱着した濃縮ガソリンベーパ含有空気を凝縮し、給油が行なわれる時間帯には吸引したガソリンベーパ含有空気と脱着した濃縮ガソリンベーパ含有空気を混合して処理することを特徴とする。
 本発明に係るガス状炭化水素の回収方法は、上記のガス状炭化水素の回収装置を用いたガス状炭化水素の回収方法であって、所定の時間毎に前記吸脱着装置の吸着装置と脱着装置の切り替えを行なうことを特徴とする。 
 本発明に係るガス状炭化水素の回収装置によれば、吸脱着装置から脱着したガソリンベーパを凝縮する第2凝縮装置を備えたので、吸脱着装置から脱着したガソリンベーパを個別に凝縮できる。したがって、ノズルから吸い込まれた比較的濃度が低いガソリンベーパと、吸脱着装置から脱着された濃縮されたガソリンベーパと、が混合されて、飽和蒸気圧濃度が高いブタンやイソブタンなどの低沸点炭化水素のガス中の濃度が低くなることを防止でき、高効率に低沸点炭化水素を凝縮回収することが可能になる。
 本発明に係るガス状炭化水素の回収装置によれば、可変型ガス供給装置を設けることでガソリンベーパ含有空気のガス流量を変えることができるので、吸脱着装置に低沸点炭化水素を効率的に吸着させることができ、吸脱着装置に充填されている吸着剤の使用量を少なくできる。したがって、安価、かつ、コンパクトなガス状炭化水素の回収装置を得ることが可能になる。
 本発明に係るガス状炭化水素の回収装置によれば、気液分離器のガス下流側に設けられ、気液分離器で分離され流出されたガソリンベーパを冷却する冷凍装置を設けたので、吸脱着装置においてガソリンベーパ含有空気の温度を更に低くすることができる。したがって、吸脱着装置での低沸点炭化水素の除去能力を大きくすることができる。
 本発明に係るガス状炭化水素の回収装置によれば、気液分離器から流出されたガソリンベーパを加圧圧縮する圧縮ポンプを設けたことでガソリンベーパを二段圧縮できるようになり、沸点が低く液化しにくいブタンやイソブタンなどの有機炭化水素の飽和蒸発濃度を下げることができ、第2凝縮装置で効率的に液化でき、ガソリンベーパ回収効率の向上を実現できる。
 本発明に係るガス状炭化水素の回収装置によれば、低沸点炭化水素用の第2吸脱着装置を設けたことで、吸脱着装置と第2吸脱着装置のそれぞれでガソリン成分を独立して脱着再生でき、脱着した濃縮ガソリンベーパ中に含まれる低沸点炭化水素を効率よく回収することができる。
 本発明に係るガス状炭化水素の回収方法によれば、吸脱着装置の吸着装置としての機能と、脱着装置としての機能とを適宜切り替えるようにしているので、ガソリンベーパの回収効率の向上を実現できる。
実施の形態1に係るガソリンベーパ回収装置の全体回路構成を示す概略構成図である。 ガソリンベーパ回収装置の別の構成を示す概略構成図である。 実施の形態2に係るガソリンベーパ回収装置の全体構成を示す概略構成図である。 実施の形態3に係るガソリンベーパ回収装置の全体構成を示す概略構成図である。 実施の形態4に係るガソリンベーパ回収装置の全体構成を示す概略構成図である。 実施の形態5に係るガソリンベーパ回収装置の全体構成を示す概略構成図である。 実施の形態6に係るガソリンベーパ回収装置の全体構成を示す概略構成図である。 実施の形態7に係るガソリンベーパ回収装置の全体構成を示す概略構成図である。 従来方式におけるガソリン成分と各機器毎の量との関係を示すグラフである。 従来方式における給油時間の長さに応じたガソリン成分と各機器毎の量との関係を示すグラフである。 ガソリン成分の0.3MPa時における飽和濃度を示す飽和濃度線図である。 ガソリン成分の5℃時における飽和濃度を示す飽和濃度線図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係るガソリンベーパ回収装置100の全体回路構成を示す概略構成図である。図2は、ガソリンベーパ回収装置100の別の構成を示す概略構成図である。図1及び図2に基づいて、ガス状炭化水素の回収装置であるガソリンベーパ回収装置100の回路構成及びガソリンベーパのフローについて説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 ガソリンベーパ回収装置100は、自動車等にガソリンを給油するための給油装置1とともに、ガソリンスタンド等に設置されるようになっている。このガソリンベーパ回収装置100は、給油部近傍から吸引したガソリンベーパを凝縮管3で冷却して回収するとともに、ガソリンベーパを吸着又は脱着する2つの吸脱着装置(吸脱着塔7、吸脱着塔8)を設け、この2つの吸脱着塔の機能を適宜切り替えてガソリンベーパを回収(吸着)及び再利用(脱着)するものである。
 このガソリンベーパ回収装置100は、ガソリンベーパ吸入ポンプ2と、凝縮管3と、熱媒体貯留槽4と、熱交換器5と、冷凍機6と、2つの吸脱着塔(吸脱着塔7、吸脱着塔8)と、気液分離器9と、液体循環ポンプ10と、吸引ポンプ11と、ガソリン槽12と、圧力コントローラー13と、ガソリンベーパ送気管14と、浄化空気排出管15と、パージガス流入管16と、パージガス排出管17と、気液混合ガソリン流出管18と、ガソリンベーパ圧縮ポンプ19と、第2凝縮管20と、第2気液分離器21と、第2熱媒体貯留槽22と、第2圧力コントローラー23と、を有している。
 ガソリンベーパ吸入ポンプ2は、給油装置1の給油部近傍で発生したガソリンベーパを図示省略のノズルを介してガソリンベーパ回収装置100内に吸入するためのものである。凝縮管3は、吸入したガソリンベーパを冷却して凝縮液化するものである。熱媒体貯留槽4は、凝縮管3が内部に収容されるとともに、凝縮管3を冷却するためのブラインなどの熱媒体を蓄えるものである。熱交換器5は、冷凍機6の一部を構成するとともに、熱媒体貯留槽4内に収容されており、熱媒体貯留槽4内の熱媒体を冷却するものである。冷凍機6は、冷凍サイクルを備え、その冷凍サイクルを構成している熱交換器5に冷媒を供給するものである。
 吸脱着塔7及び吸脱着塔8は、凝縮管3から排出されたガソリンベーパ含有空気中のガソリンベーパを吸着除去する吸着剤(たとえば、シリカゲルやゼオライト、活性炭など)が充填されており、ガソリンベーパを吸着する吸着塔としての機能と、ガソリンベーパを脱着する脱着塔としての機能と、を有している。この図1では、吸脱着塔7が吸着塔(以下、吸着塔7と称する場合があるものとする)として稼動し、吸脱着塔8が脱着塔(以下、脱着塔8と称する場合があるものとする)として稼動している状態を例に示している。
 気液分離器9は、凝縮管3の下流側に接続されており、凝縮管3で液化されたガソリン液とガソリンベーパとを気液分離するものである。液体循環ポンプ10は、熱媒体貯留槽4と2つの吸脱着塔とに接続されており、熱交換器5で冷却された熱媒体を吸脱着塔7、吸脱着塔8に供給するものである。吸引ポンプ11は、2つの吸脱着塔に接続されている配管に設けられており、吸脱着塔7、吸脱着塔8内の吸着剤に吸着したガソリンベーパを吸引脱着するものである。ガソリン槽12は、気液分離器9と給油装置1とに接続されており、気液分離器9で気液分離したガソリン液を一時的に蓄えるものである。
 圧力コントローラー13は、2つの吸脱着塔に接続されている浄化空気排出管15に設けられており、2つの吸脱着塔内の圧力を調整する機能を有している。ガソリンベーパ送気管14は、気液分離器9と2つの吸脱着塔とを接続し、気液分離器9で分離されたガソリンベーパを2つの吸脱着塔に導く配管である。浄化空気排出管15は、2つの吸脱着塔に接続されており、ガソリンベーパが吸着され、吸脱着塔から排出された空気を大気に送出する配管である。
 パージガス流入管16は、2つの吸脱着塔に接続されており、吸脱着塔7又は吸脱着塔8から大気に排出する清浄なガスの一部をパージガスとして使用するために吸脱着塔8又は吸脱着塔7に送るための配管である。パージガス排出管17は、吸引ポンプ11と2つの吸脱着塔とを接続し、吸脱着塔7又は吸脱着塔8の脱着後のパージガスを第2熱媒体貯留槽22まで導通させる配管である。気液混合ガソリン流出管18は、凝縮管3と気液分離器9と接続する配管である。ガソリンベーパ圧縮ポンプ19は、吸引ポンプ11と第2熱媒体貯留槽22との間に設けられており、吸引ポンプ11から排出された濃縮ガソリンベーパ含有空気を圧縮するものである。
 第2凝縮管20は、パージガス排出管17に接続されており、ガソリンベーパ圧縮ポンプ19で圧縮された濃縮ガソリンベーパ含有空気中のガソリン成分を凝縮するものである。第2気液分離器21は、第2凝縮管20の下流側に接続されており、第2凝縮管20で液化されたガソリン液とガソリンベーパとを気液分離するものである。第2熱媒体貯留槽22は、第2凝縮管20が内部に収容されるとともに、第2凝縮管20を冷却するためのブラインなどの熱媒体を蓄えるものである。第2圧力コントローラー23は、第2気液分離器21に接続されており、第2気液分離器21内の圧力を調整することで、第2凝縮管20の圧力を調整するものである。
 また、ガソリンベーパ回収装置100には、給油装置1とガソリンベーパ吸入ポンプ2との間に設けられているバルブB1、気液分離器9とガソリン槽12との間に設けられているバルブB2、2つの吸脱着塔と吸引ポンプ11との間に設けられている脱着用バルブB3、2つの吸脱着塔と圧力コントローラー13との間に設けられている吸着用排出バルブB4、2つの吸脱着塔に接続されているパージガス流入管16に設けられているマスフローコントローラーB5、2つの吸脱着塔に接続されているガソリンベーパ送気管14の途中に設けられている吸着用流入バルブB6、及び、第2気液分離器21とガソリン槽12との間に設けられているバルブB7を有している。なお、開放されているバルブを黒塗りで、閉鎖されているバルブを白抜き(符号には’を付記している)で、表している。
 バルブB1は、給油装置1の稼動と連動して開放されるようになっている。バルブB2は、気液分離器9で回収したガソリン液をガソリン槽12に供給する際に開放されるようになっている。脱着用バルブB3は、吸脱着塔7又は吸脱着塔8の脱着後のパージガスを導通する際に開放されるようになっている。吸着用排出バルブB4は、2つの吸脱着塔の圧力を調整するために開閉されるようになっている。マスフローコントローラーB5は、パージガス流入管16を流れるガスの量を調整するために開閉されるようになっている。吸着用流入バルブB6は、気液分離器9から供給されるガソリンベーパを導通する際に開放されるようになっている。バルブB7は、第2気液分離器21で回収したガソリン液をガソリン槽12に供給する際に開放されるようになっている。
 ガソリンベーパ回収装置100の動作について説明する。
 給油装置1が稼動すると、それに併せてバルブB1が開放されるとともにガソリンベーパ吸入ポンプ2が動作を開始する。そうすると、給油装置1の給油部近傍に発生するガソリンベーパ(常温で約40vol%)がガソリンベーパ回収装置100内に吸い込まれ、たとえば0.2~0.4MPa程度に加圧圧縮されて凝縮管3に送気される。凝縮管3は、熱媒体貯留槽4内に備えられており、熱媒体貯留槽4内に蓄えられた熱媒体により冷却されている。したがって、ガソリンベーパが凝縮管3を導通する際に冷却されることになる。
 通常、凝縮管3内部は、0℃から5℃程度に保たれており、ガソリン及びガス中に含まれた水分が一部凝縮する。その後、気液分離器9に流入し、この気液分離器9によって気体(ガソリンベーパ)と液体(ガソリン)に分離される。ところで、凝縮管3の運転条件を圧力0.3MPa、冷却温度5℃、ガス流量100L/minとし、この条件下でガソリンベーパ回収装置100を運転させると、凝縮管3に送気されたガソリンベーパの濃度は10vol%程度になる。
 なお、ガソリンベーパの飽和濃度線図(図示省略)からわかるように、圧力0.3MPa、温度5℃では飽和ガソリンベーパ濃度は約10vol%であり、この条件ではガソリンベーパ濃度が理論的に10vol%以下になることはない。また、温度を下げることにより、凝縮管3の出口でのガソリンベーパ濃度を低減することはできる。しかしながら、設定温度を氷点以下にすると、ガス中に含まれる水が凝縮管3で結氷し、配管詰まりの問題が発生するため、凝縮管3の設定温度は0℃から5℃程度にすることが望ましい。
 また、給油時間がある所定の時間に達すると、バルブB2が開放される。これにより、気液分離器9の下部に溜まったガソリン液はガソリン槽12を経由して給油装置1に戻される。その後、一定時間経過すると、バルブB2が閉じられ、気液分離器9の下部にガソリン液が再び溜められる。このように、ガソリン槽12を設けているため、ガソリンベーパが気液分離器9に流れ込むことが防止できる。このようにして、高濃度ガソリンベーパの吸脱着塔7又は吸脱着塔8への流れ込みによる吸脱着塔7又は吸脱着塔8の吸着破過時間の短縮化(切り換えタイミングの短縮化)を防止可能にしている。
 図1に示すように、ガソリン槽12では、下部に一定量のガソリン液が溜められるようになっており、気液分離器9で分離されたガソリン液は底部から流れ込み、ガソリン槽12内において下から上に向かって流れるようにしている。これによって、ガソリン槽12では、上部にガソリンベーパが存在する構造となっている。このため、バルブB2が開いた場合にも、ガソリンベーパがガソリン液の流れにさからって気液分離器9に流れ込むことはなく、吸脱着塔7又は吸脱着塔8に高濃度のガソリンベーパが送気されることがなくなる。
 凝縮管3で処理できなかった10vol%程度のガソリンベーパは、吸脱着塔7又は吸脱着塔8(図1では吸着塔として稼働している吸脱着塔7)に送気されて処理される。したがって、このとき、脱着用バルブB3が開放(黒塗り)、脱着用バルブB3’(白抜き)は閉鎖の状態であり、吸着用排出バルブB4が開放(黒塗り)、吸着用排出バルブB4’(白抜き)が閉鎖の状態であり、吸着用流入バルブB6が開放(黒塗り)、吸着用流入バルブB6’(白抜き)が閉鎖の状態に制御されている。
 吸着塔7で任意の時間吸着処理した後は脱着塔として使用する。この場合は、脱着用バルブB3、吸着用排出バルブB4、及び、吸着用流入バルブB6が閉鎖、脱着用バルブB3’、吸着用排出バルブB4’、及び、吸着用流入バルブB6’が開放の状態に制御されて使用される。また、脱着が終了した時点で、再び吸着塔として用い、この動作を時間的に繰り返して使用する。吸着・脱着の切り替えは、前述のように脱着用バルブB3と脱着用バルブB3’、吸着用排出バルブB4と吸着用排出バルブB4’、吸着用流入バルブB6と吸着用流入バルブB6’の切り替えでコントロールする。
 したがって、凝縮管3で処理できなかったガソリンベーパは、ガソリンベーパ送気管14を通って吸着塔7に送気される。吸脱着塔7及び吸脱着塔8には、上述したようにガソリンベーパを吸着する吸着剤が封入されている。ガソリンベーパを吸着する吸着剤としては、特に4~100オングストロームの孔径をもつシリカゲル、合成ゼオライトの単独、又は、これらの混合物が有効である。この吸着剤中をガソリンベーパが通過することにより、吸着剤によってガソリン成分は吸着除去され、1vol%以下のガソリン濃度の清浄空気となって浄化空気排出管15を介して大気に放出される。
 また、大気へ清浄空気を排出する浄化空気排出管15には、上述したように吸脱着塔7及び吸脱着塔8の圧力を規定値に制御する圧力コントローラー13が配設されている。したがって、圧力コントローラー13は、吸着塔7内の圧力を規定値に維持するようにしている。実施の形態1では、凝縮管3の高圧(0.3MPa程度)の排気ガスを用いて吸着するため、常圧で吸着するより吸着容量が大幅に改善される。
 吸脱着塔7及び吸脱着塔8は、ガソリンベーパの吸脱着の役割に関係なく、常に液体循環ポンプ10によって供給される熱媒体により一定温度に冷却されている。すなわち、凝縮管3及び2つの吸脱着塔の冷却系統は、所定の設定温度に維持されるように常に運転制御されている。これは、吸脱着塔7及び吸脱着塔8に充填されている吸着剤が吸脱着塔7及び吸脱着塔8内に備え付けられているフィンチューブ熱交換器からの伝熱によって冷却されるため、ある程度の冷却時間が必要不可欠であり、瞬時の運転に対応できないからである。また、短時間に冷却できるように冷却能力が大きい冷凍機6を備えることは、設備コストに悪い影響を与え、安価なガソリン回収装置を提供できなくなるからである。
 なお、吸着塔7内部の温度を低くすることにより、吸着剤の吸着容量を大きくでき、吸着剤の使用量を低減することができる。また、吸脱着塔7及び吸脱着塔8を所定の設定温度に維持しているため、ガソリンベーパ回収停止時に吸脱着塔7及び吸脱着塔8内の吸着剤の温度が上昇することにより、吸脱着塔7及び吸脱着塔8内の吸着剤からガソリンベーパが脱着し、吸脱着塔7及び吸脱着塔8内の圧力が上昇してしまうことを効果的に防止することができる。
 ガソリンベーパの脱着プロセスについて説明する。
 吸着剤に吸着したガソリンを脱着する場合には、吸引ポンプ11によりパージガス排出管17を介して脱着塔8からガスを吸引して吸着剤からガソリンを脱着する。このとき、脱着用バルブB3を開放、脱着用バルブB3’を閉鎖にしておく。吸着時には吸着塔(この例では吸着塔7)は0.3MPaの高圧状態で動作しているが、脱着時には吸引ポンプ11により大気圧以下に減圧されるため、この圧力差によって吸着剤に吸着したガソリンが脱着される。
 脱着されたガソリンベーパは、ガソリンベーパ圧縮ポンプ19及び第2圧力コントローラー23により圧縮され、第2凝縮管20に送られる。第2凝縮管20は、第2熱媒体貯留槽22内に備えられており、第2熱媒体貯留槽22内に蓄えられた熱媒体により冷却されている。したがって、ガソリンベーパが第2凝縮管20を導通する際に冷却されることになる。通常、第2凝縮管20内部は、0℃から5℃程度に保たれており、ガソリン及びガス中に含まれた水分が一部凝縮する。その後、第2気液分離器21に流入し、この第2気液分離器21によって気体と液体(ガソリン、水)に分離される。
 第2気液分離器21内のガソリンが所定量に達すると、バルブB7が開放される。これにより、第2気液分離器21の下部に溜まったガソリン液はガソリン槽12を経由して給油装置1に戻される。一方、第2凝縮管20で処理できなかった10vol%程度のガソリンベーパは、第2圧力コントローラー23、及び、ガソリンベーパ送気管14を経て吸着塔7に戻される。すなわち、脱着塔8から取り出された濃縮ガソリンベーパは、濃度が高い状態を維持したまま第2凝縮管20に供給されて効率的に液化され、液化されなかったガソリンベーパは吸着塔7において再度吸着除去される。
 脱着時に、吸引ポンプ11の吸引による圧力差を利用する方法だけでは、脱着効率があまり高くないため、パージガスを外部から導入することが有効である。そこで、実施の形態1では、このパージガスとして吸着塔7から大気に排出する清浄なガスの一部をパージガス流入管16’によって脱着塔8に送って使用するようにしている。マスフローコントローラーB5及びマスフローコントローラーB5’は、パージガス流入管16を通過するガス流量を制御するものであり、この場合、マスフローコントローラーB5が開放状態で、マスフローコントローラーB5’が閉鎖状態になっている。
 つまり、マスフローコントローラーB5は、開放状態で規定量のガスを流通できる状態であり、マスフローコントローラーB5’は、閉鎖状態になっていてガスは流れないようになっている。なお、実施の形態1では、前段の凝縮管3でガス中の水分量を十分低くしているため、パージガスに含まれる水分が脱着塔8内の吸着剤に悪影響を与えることは殆どない。
 吸脱着塔7と吸脱着塔8の切り替えについて説明する。
 前述したように、ガソリンベーパは、吸着塔7を通過することによってガソリン成分が吸着除去され、ガソリン濃度が1vol%以下の清浄空気となって浄化空気排出管15を介して大気に放出される。しかしながら、吸着塔7に供給されるガソリンベーパ量が増大するにつれて、吸着塔7の吸着能力が徐々に低下していくことになる。この状態が続き、吸着塔7出口でのガソリン濃度が1vol%に近づくと、吸脱着塔7と吸脱着塔8との切り替えが必要になる。
 ガソリンスタンドにおいて、給油は不定期に行われる。そのため、単純に時間で吸脱着塔7と吸脱着塔8の切り替えを行なう場合、給油タイミングによってはどちらか一方の吸脱着塔7又は吸脱着塔8のみで吸着動作が行なわれるといった事態が発生する可能性がある。そうすると、ガソリンベーパ回収装置100から1vol%以上のガソリンベーパが排出されるおそれがある。したがって、吸脱着塔7と吸脱着塔8の切り替えは、ガソリン回収装置100が動作している時間の積算値で行なうことが有効である。すなわち、ガソリン回収装置100が稼動している時間の積算値が所定時間に達した時に、吸脱着塔7と吸脱着塔8の切り替えを行なうとともに、その積算値をリセットし、再度、稼動時間の積算を最初から行なうようにする。
 なお、ガソリンベーパ回収装置100の稼動を表す指標としては、ガソリンベーパ吸入ポンプ2や吸引ポンプ11の稼動が挙げられる。ガソリンベーパ回収装置100では、ガソリンベーパ吸入ポンプ2と吸引ポンプ11は同期しているため、どちらの稼動時間を積算しても問題はない。また、実際の切り替えのタイミングとしては、積算時間が所定値に達成しても、すぐに切り替えることはせず、一定時間が経過した後に切り替えるようにしてもよい。
 第2凝縮管20の冷却制御方法について説明する。
 冷凍機6によって冷却された熱媒体貯留槽4内の熱媒体が、液体循環ポンプ10によって第2熱媒体貯留槽22に供給され、これによって第2凝縮管20が冷却されることになる。なお、図1には、脱着塔8に供給される熱媒体が流れる配管が分岐されて、第2熱媒体貯留槽22に熱媒体が供給される場合を図示しているが、これに限定するものではない。つまり、第2熱媒体貯留槽22、吸脱着塔7、吸脱着塔8への熱媒体の供給が並列になっていればよいのである。したがって、第2熱媒体貯留槽22への熱媒体の供給は、吸着塔7に供給される熱媒体が流れる配管から分岐されていてもよく、液体循環ポンプ10の出口が3方向に分岐されていてもよい。
 第2熱媒体貯留槽22、吸脱着塔7、吸脱着塔8への熱媒体の供給が並列に実行されるようにした理由は、第2熱媒体貯留槽22、吸脱着塔7、吸脱着塔8への熱媒体の供給が直列に行なわれると、最後に流れる機器(最下流に位置する機器)で熱媒体の温度が所定の温度よりも高くなっているため、その機器での性能が低下することになり、ひいてはガソリンベーパ回収装置100全体の性能が低下してしまうことになるからである。
 実施の形態1に係るガソリンベーパ回収装置100の特徴事項である脱着したガソリンベーパを単独で凝縮する方式について、従来方式と比較しながら説明する。脱着したガソリンベーパを単独で凝縮する方式とは、吸脱着塔で脱着したガソリンベーパを給油装置から取り込んだガソリンベーパと混合させずに、それぞれ独立して凝縮するようにしたものである(以下、本方式と称する)。また、比較する従来方式とは、脱着したガソリンベーパを給油装置から取り込んだガソリンベーパと混合してから凝縮するようにしたものである。
 図9は、従来方式におけるガソリン成分(横軸)と各機器毎の量(縦軸)との関係を示すグラフである。図10は、従来方式における給油時間の長さに応じたガソリン成分(横軸)と各機器毎の量(縦軸)との関係を示すグラフである。図11は、ガソリン成分の0.3MPa時における飽和濃度を示す飽和濃度線図(横軸に温度[℃]、縦軸に飽和濃度[vol%])である。図12は、ガソリン成分の5℃時における飽和濃度を示す飽和濃度線図(横軸に圧力[MPa]、縦軸に飽和濃度[vol%])である。図9~図11に基づいて、ガソリンの構成成分について説明するとともに、低沸点炭化水素の回収について説明する。
 図9には、ガソリンベーパ回収装置100の4つの要素(ガソリン槽12(a)、ガソリンベーパ圧縮ポンプ19(b)、気液分離器9出口(c)、吸脱着塔出口(d))のガソリン成分の量が表されている。この図9では、250L給油時におけるガソリン成分の量を示している。図9から、低沸点炭化水素(C4炭化水素及びC5炭化水素)の量が気液分離器9で低減されていないことがわかる。また、図9から、低沸点炭化水素の吸脱着塔出口の量も低減されていないことがわかる。
 図10では、50L給油時における吸脱着塔出口におけるガソリン成分の量(e)と、285L給油時における吸脱着塔出口におけるガソリン成分の量(f)と、を図示している。図10から、給油時間が増大するに伴って、低沸点炭化水素(中でも特にブタンやイソブタン等のC4炭化水素、及び、オルダムリング遠端やイソペンタンなどのC5炭化水素)の漏れ出し量も増大するということがわかる。図9及び図10から、低沸点炭化水素の回収効率を向上させることが、ガソリンベーパ全体の回収効率の向上になるということがわかる。
 図11から、低温利用によりガソリンベーパの回収効率を向上できることがわかる。この原理は、本方式においても、従来方式においても、冷凍機によって熱媒体貯留槽内の熱媒体を冷却すること、及び、吸脱着塔を所定温度に維持することによって利用している。図12から、ガソリンベーパの飽和濃度、特に低沸点炭化水素の飽和濃度は、圧力の影響によって左右されるということがわかる。図11及び図12から、低温を利用すること、及び、圧力を利用することが低沸点炭化水素の回収効率の向上になるということがわかる(実施の形態6で2段圧縮について説明する)。
 給油装置から取り込むガソリンベーパ含有空気中のイソブタン濃度を40vol%、そのガス流量を70L/min、脱着したガソリンベーパ含有空気中のイソブタン濃度を70vol%、そのガス流量を30L/minとした場合で従来方式と本方式とを比較する。なお、凝縮条件をガス圧力0.3MPa、冷却温度2℃としているものとする。この条件におけるイソブタンの飽和蒸気濃度は56vol%である。したがって、従来方式では、混合した場合のガソリンベーパ含有空気のイソブタン濃度は、49vol%となり、飽和蒸気濃度以下となる。このような条件では、イソブタンを全く回収することができない。
 一方、本方式では、給油装置1からのガソリンベーパ含有空気のイソブタンは回収できないが、脱着したガソリンベーパ含有空気のブタンは4.2L/min[30L/min×(70vol%-56vol%)]で回収することができる。このように、本方式により、ブタンやイソブタンなどの低沸点炭化水素が吸着塔に流れ込む量を低減することができ、吸着塔の負荷を小さくすることができ、吸着塔の小型化や吸脱着切り替えタイミングの長時間化を実現できることになる。したがって、ガソリンベーパ回収装置100に本方式を採用することにより、ブタンやイソブタンなどの低沸点炭化水素も回収することが可能になり、コンパクトで、かつ、効率的にガソリンベーパを液化凝縮できるガソリン回収装置100を得ることができる。
 以上のように、実施の形態1に係るガソリン回収装置100は、脱着した濃縮ガソリンベーパ含有空気を凝縮する凝縮装置(第2凝縮管20)と、給油装置1から取り込んだガソリンベーパ含有空気を凝縮する凝縮装置(凝縮管3)と、を別個に設けるようにしたので、従来方式では回収することのできなかったブタンやイソブタンなどの低沸点炭化水素も効率よく回収することができる。
 また、ガソリンベーパ回収装置100は、凝縮温度の低下や圧縮圧力の上昇を伴わないで低沸点炭化水素を効率よく回収できるので、冷凍機6を冷却効率が高い状態で運転できる。さらに、ガソリンベーパ回収装置100は、ガソリンベーパ圧縮ポンプ19の動力を低減できるため、無駄なエネルギーを消費することもなく、省エネルギーで高効率にガソリンを回収できる。加えて、ガソリンベーパ回収装置100は、低沸点炭化水素を効率よく液化できるので、吸着剤の使用量を低減することができ、吸着塔のコンパクト化を実現できる。
 なお、実施の形態1では、第2圧力コントローラー23により、ガソリンベーパ圧縮ポンプ19と第2圧力コントローラー23の間の配管の圧力が吸脱着塔7、吸脱着塔8の後段に設けられた圧力コントローラー13と同等の値に設定している場合について示したが、同等の値に設定することができれば第2圧力コントローラー23を設けなくても同等の効果が得られる。ただし、脱着ガス中のガソリン成分を凝縮する第2凝縮管20に給油装置1から流れ込んだガソリンベーパ含有空気が流れ込まないようにすることが必要である。また、第2圧力コントローラー23を備える場合には、第2圧力コントローラー23の設定圧力を圧力コントローラー13の設定圧力よりも高くしてもよい。これにより、濃縮ガソリンベーパ中に含まれる低沸点炭化水素をより効率よく回収することができる。
 さらに、実施の形態1では、第2熱媒体貯留槽22を設け、液体循環ポンプ10により第2熱媒体貯留槽22に熱媒体を供給して、第2凝縮管20を冷却する場合について示したが、図2に示すように、凝縮管3と第2凝縮管20とを同時に冷却できる熱媒体貯留槽31を設けて、熱媒体を循環供給するのを吸脱着塔7及び吸脱着塔8に絞るようにしてもよい。これにより、部品点数を減らすことができるとともに、液体循環ポンプ10の容量を小さくすることができる。したがって、ガソリンベーパ回収装置100は、液体循環ポンプ10の発熱量を小さくすることができ、安価、かつ、エネルギー消費量が少ないものとなる。
実施の形態2.
 図3は、本発明の実施の形態2に係るガソリンベーパ回収装置100aの全体構成を示す概略構成図である。図3に基づいて、ガソリンベーパ回収装置100aの構成及びガソリンベーパのフローについて説明する。このガソリンベーパ回収装置100aも、実施の形態1に係るガソリンベーパ回収装置100と同様に、ガソリンベーパを凝縮管3で冷却して回収するとともに、ガソリンベーパを吸着又は脱着する2つの吸脱着塔の機能を適宜切り替えてガソリンベーパを回収(吸着)及び再利用(脱着)するものである。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付している。
 実施の形態1では、熱交換器5及び冷凍機6によって熱媒体を冷却し、その熱媒体によって、凝縮管3と第2凝縮管20を同じ温度に冷却するようにした場合を例に示した。一方、実施の形態2では、第2熱媒体貯留槽(第2熱媒体貯留槽22aと称する)内に熱媒体を冷却する第2熱交換器32と第2冷凍機33を設け、第2凝縮管(以下、第2凝縮管20aと称する)を冷却するようにして、第2凝縮管20aを凝縮管3よりも低い温度で冷却するようした場合を例に示している。
 このような構成にすることにより、第2凝縮管20aにおいてブタンやペンタンなどの低沸点炭化水素を効率よく液化できる効果がある。なお、第2凝縮管20aを流れる濃縮ガソリンベーパ含有空気中には水分が含まれないため、第2凝縮管20a内部でガス中の水分が結氷し、第2凝縮管20aでガスの流れが滞ることはない。したがって、ガソリンベーパ回収装置100aは、脱着した濃縮ガソリンベーパ中に含まれる低沸点炭化水素を効率よく回収することができ、更にコンパクトなものにすることができる。
実施の形態3.
 図4は、本発明の実施の形態3に係るガソリンベーパ回収装置100bの全体構成を示す概略構成図である。図4に基づいて、ガソリンベーパ回収装置100bの構成及びガソリンベーパのフローについて説明する。このガソリンベーパ回収装置100bも、実施の形態1に係るガソリンベーパ回収装置100と同様に、ガソリンベーパを凝縮管3で冷却して回収するとともに、ガソリンベーパを吸着又は脱着する2つの吸脱着塔の機能を適宜切り替えてガソリンベーパを回収(吸着)及び再利用(脱着)するものである。なお、実施の形態3では実施の形態1及び実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付している。
 実施の形態1及び実施の形態2では、脱着した濃縮ガソリンベーパ含有空気を凝縮する凝縮装置(第2凝縮管)と、給油装置1から取り込んだガソリンベーパ含有空気を凝縮する凝縮装置(凝縮管3)と、を別個に設けたものを例に示した。一方、実施の形態3は、ガソリンベーパ含有空気のガス流量を変えることができる可変型ガス供給装置であるガス流量可変ポンプ41を設け、脱着塔8から脱着した濃縮ガソリンベーパと給油装置1から取り込んだガソリンベーパとを混合した後に凝縮管3において凝縮するようにしたものを例に示している。
 また、ガソリンベーパ回収装置100bには、ガソリンベーパ吸入ポンプ2、第2凝縮管、第2熱媒体貯留槽、第2熱交換器、第2冷凍機、ガソリンベーパ圧縮ポンプ、第2気液分離器、及び、第2圧力コントローラーを設けておらず、パージガス排出管17をバルブB1とガス流量可変ポンプ41との間に接続するようにしている。ガス流量可変ポンプ41は、給油装置1から取り込んだガソリンベーパ含有空気のガス流量を変えることができるものである。
 ガソリンベーパ回収装置100bの動作について説明する。
 ガソリンスタンドにおいて、給油は不定期に行われる。このため、給油時の限られた時間だけガス流量可変ポンプ41を大流量モードで駆動させ、給油装置1の図示省略のノズル近傍のガソリンベーパを回収するようにしている。一方、給油が行なわれない場合は、バルブB1を閉じ、ガス流量可変ポンプ41を小流量モードで駆動させるようにしている。これにより、吸引ポンプ11により脱着塔8から引き抜かれた濃縮ガソリンベーパ含有空気は、ガス流量可変ポンプ41を介して凝縮管3に供給されることになる。
 すなわち、ガソリンベーパ回収装置100bは、給油が行なわれない間、脱着した濃縮ガソリンベーパ含有空気のみを凝縮管3で凝縮していることになる。このようにすることにより、ガソリンベーパ回収装置100bでは、脱着した濃縮ガソリンベーパ含有空気中の低沸点炭化水素を効率よく回収することができる。したがって、脱着操作を長時間行なうことにより、吸脱着塔に蓄えられているガソリン成分を減らすことができ、次の回に吸着できるガソリン量を多くすることができる。
 しかしながら、吸引ポンプ11及びガス流量可変ポンプ41の運転時間が増加するために、エネルギー消費量が増大することになる。このため、吸引ポンプ11が所定時間稼働すると、吸引ポンプ11を停止し、その際に吸脱着塔7と吸脱着塔8が切り替わるようにするのがよい。このようにすることにより、給油装置1から連続的にガソリンベーパの供給される場合を除いて、いつもガソリン成分が吸着していない吸脱着塔に気液分離器9から排出されたガソリンベーパ含有空気を供給することができ、高効率にガソリンベーパを吸着除去することが可能になる。
 すなわち、給油装置1の停止時間が吸引ポンプ11の稼動時間よりも長くなると、ガソリン成分が残っていない吸脱着塔(たとえば、吸脱着塔7)に凝縮管3で凝縮しない低沸点炭化水素を供給することができる。そのため、吸脱着塔に低沸点炭化水素を効率的に吸着させることができ、吸脱着塔に充填されている吸着剤の使用量を少なくできるという効果がある。以上のことから、ガソリンベーパ回収装置100bは、安価で、かつ、コンパクトなものとなる。なお、実施の形態3に実施の形態1の特徴事項及び実施の形態2の特徴事項のいずれか又は双方を適用するようにしてもよい。
実施の形態4.
 図5は、本発明の実施の形態4に係るガソリンベーパ回収装置100cの全体構成を示す概略構成図である。図5に基づいて、ガソリンベーパ回収装置100cの構成及びガソリンベーパのフローについて説明する。このガソリンベーパ回収装置100cも、実施の形態1に係るガソリンベーパ回収装置100と同様に、ガソリンベーパを凝縮管3で冷却して回収するとともに、ガソリンベーパを吸着又は脱着する2つの吸脱着塔の機能を適宜切り替えてガソリンベーパを回収(吸着)及び再利用(脱着)するものである。なお、実施の形態4では実施の形態1~実施の形態3との相違点を中心に説明し、実施の形態1~実施の形態3と同一部分には、同一符号を付している。
 実施の形態3では、ガソリンベーパ含有空気のガス流量を変えることができるガス流量可変ポンプ41を設けた場合を例に示している。一方、実施の形態4では、気液分離器9のガス出口に第3冷凍機51の構成要素の1つである第3熱交換器52(冷凍装置)を備えて、その第3熱交換器52を介して気液分離器9から流出したガソリンベーパを冷却するようにした場合を例に示している。つまり、第2凝縮管、第2熱媒体貯留槽、第2熱交換器、第2冷凍機、ガソリンベーパ圧縮ポンプ、第2気液分離器、及び、第2圧力コントローラーを設けていない点で実施の形態2に係るガソリンベーパ回収装置100bと同様であるが、ガス流量可変ポンプ41ではなく、ガソリンベーパ吸入ポンプ2としている点で実施の形態3と相違している。
 このような構成とすることにより、気液分離器9から流出するガソリンベーパ含有空気を第3熱交換器52で冷却できるようにしたものである。これにより、吸脱着塔7及び吸脱着塔8においてガソリンベーパ含有空気の温度を更に低くすることができる。したがって、吸脱着塔7及び吸脱着塔8での低沸点炭化水素の除去能力を大きくすることができる。以上のことから、ガソリンベーパ回収装置100cは、高効率にガソリンベーパを液化できるものとなる。
 なお、吸脱着塔7及び吸脱着塔8に金属粒体を入れることにより(実施の形態1~実施の形態3、実施の形態5~実施の形態7でも同様)、吸着剤の冷却性能を高くすることができ、低沸点炭化水素の吸着除去性能を更に高めることができる。この金属粒体は熱伝導がよく、ガソリンベーパなどに腐食されないアルミニウムや銅などが適当である。また、実施の形態4に実施の形態1の特徴事項~実施の形態3の特徴事項のいずれか又は複数を適用するようにしてもよい。
実施の形態5.
 図6は、本発明の実施の形態5に係るガソリンベーパ回収装置100dの全体構成を示す概略構成図である。図6に基づいて、ガソリンベーパ回収装置100dの構成及びガソリンベーパのフローについて説明する。このガソリンベーパ回収装置100dも、実施の形態1に係るガソリンベーパ回収装置100と同様に、ガソリンベーパを凝縮管3で冷却して回収するとともに、ガソリンベーパを吸着又は脱着する2つの吸脱着塔の機能を適宜切り替えてガソリンベーパを回収(吸着)及び再利用(脱着)するものである。なお、実施の形態5では実施の形態1~実施の形態4との相違点を中心に説明し、実施の形態1~実施の形態4と同一部分には、同一符号を付している。
 図6に示すように、ガソリンベーパ回収装置100dは、気液分離器9のガス出口と第2凝縮管63を接続し、その間に圧縮ポンプである第2ガソリンベーパ圧縮ポンプ61を備えるようにしたものである。つまり、ガソリンベーパ回収装置100dは、凝縮管3と気液分離器9とを通過したガソリンベーパ含有空気を第2ガソリンベーパ圧縮ポンプ61で更に圧縮してから、第2凝縮管63に供給するようにしたものである。第2ガソリンベーパ圧縮ポンプ61で再圧縮されたガソリンベーパ含有空気は、第2熱媒体貯留槽64の中に備えられた第2凝縮管63に供給され、残留していた低沸点炭化水素が凝縮する。
 低沸点炭化水素が凝縮除去されたガソリンベーパ含有空気は、第2気液分離器62を介して吸脱着塔7又は吸脱着塔8に供給される。なお、一段で目標の圧力にする場合と二段で目標の圧力にする場合と比較すると、到達圧力は同じであるため、吸脱着塔7又は吸脱着塔8に供給されるガソリンベーパ量は変わらない。しかしながら、二段圧縮の場合、一段目で液化するガソリン成分があるため、二段目で圧縮しなければならないガソリンベーパ含有空気のガス量が少なくなり、ガソリンベーパ含有空気を圧縮する際に使用するエネルギーを少なくすることができる。
 また、このようにすることにより、低沸点炭化水素が凝縮除去されたガソリンベーパ含有空気が吸脱着塔7又は吸脱着塔8に供給されるため、吸脱着塔7及び吸脱着塔8で除去しなければならなかった低沸点炭化水素を低減することができる。したがって、吸脱着塔7及び吸脱着塔8に充填している吸着剤を低減することができる。
 以上のことから、ガソリンベーパ回収装置100dは、凝縮装置(凝縮管3で構成される凝縮装置と、第2凝縮管63で構成される凝縮装置)を複数設け、二段圧縮することにより、ガソリンベーパ含有空気の圧縮に必要なエネルギーを低減しながら、高効率に低沸点炭化水素を液化除去することができ、省エネルギーで高効率にガソリンベーパを回収することができるものとなる。なお、実施の形態5に実施の形態1の特徴事項~実施の形態4の特徴事項のいずれか又は複数を適用するようにしてもよい。
実施の形態6.
 図7は、本発明の実施の形態6に係るガソリンベーパ回収装置100eの全体構成を示す概略構成図である。図7に基づいて、ガソリンベーパ回収装置100eの構成及びガソリンベーパのフローについて説明する。このガソリンベーパ回収装置100eも、実施の形態1に係るガソリンベーパ回収装置100と同様に、ガソリンベーパを凝縮管3で冷却して回収するとともに、ガソリンベーパを吸着又は脱着する2組の吸脱着塔の機能を適宜切り替えてガソリンベーパを回収(吸着)及び再利用(脱着)するものである。なお、実施の形態6では実施の形態1~実施の形態5との相違点を中心に説明し、実施の形態1~実施の形態5と同一部分には、同一符号を付している。
 図7に示すように、ガソリンベーパ回収装置100eは、吸脱着塔7及び吸脱着塔8から排出された低濃度のガソリンベーパ含有空気中の低沸点炭化水素を吸着除去する第2吸脱着装置である低沸点炭化水素用吸脱着塔71及び第2吸脱着装置である低沸点炭化水素用吸脱着塔72を備えるようにしたものである。すなわち、吸着塔として稼働している吸脱着塔7から排出されたガソリンベーパ含有空気は、吸着塔として稼働している低沸点炭化水素用吸脱着塔71に供給され、そこで低沸点炭化水素を除去されて大気に放出される。低沸点炭化水素用吸脱着塔71及び低沸点炭化水素用吸脱着塔72に充填する吸着剤としては、5~10オングストロームの孔径をもつシリカゲル、合成ゼオライトの単独、又は、これらの混合物が有効である。これにより、低沸点炭化水素を効率よく吸着できる。
 なお、低沸点炭化水素用吸脱着塔71と低沸点炭化水素用吸脱着塔72の切り替え、及び、吸脱着塔7と吸脱着塔8の切り替えについては、ガソリンベーパ吸入ポンプ2や吸引ポンプ11の稼動積算時間が挙げられる。すなわち、これらの稼動積算時間が所定時間に達した場合、たとえば吸脱着塔7と吸脱着塔8、低沸点炭化水素用吸脱着塔71と低沸点炭化水素用吸脱着塔72を同時に切り替える方法がある。また、脱着については、再吸着をできるだけ抑えるために、吸脱着塔7、吸脱着塔8と、低沸点炭化水素用吸脱着塔71、低沸点炭化水素用吸脱着塔72から並列に脱着する方が直列につないで脱着するよりも望ましい。
 次に、低沸点炭化水素用吸脱着塔71、低沸点炭化水素用吸脱着塔72で吸着する場合(吸脱着塔7、吸脱着塔8に低沸点炭化水素用吸着材を充填する場合)と、吸脱着塔7、吸脱着塔8に加え、低沸点炭化水素用吸脱着塔71、低沸点炭化水素用吸脱着塔72を併用する場合と比較する。凝縮管3、気液分離器9から排出されるガソリンベーパ含有空気中には、数十種類の炭化水素が含まれている。そのために、低沸点炭化水素用吸着剤では、比較的分子径の小さな分子は吸着することはできるが、大きな分子は吸着することはできない。したがって、低沸点炭化水素用吸脱着塔71、低沸点炭化水素用吸脱着塔72で吸着する場合には、分子径が大きな炭化水素の漏れ出しが早くなることになる。
 一方、吸脱着塔7、吸脱着塔8に加え、低沸点炭化水素用吸脱着塔71、低沸点炭化水素用吸脱着塔72を併用する場合には、分子径の大きな炭化水素は吸脱着塔7又は吸脱着塔8で吸着除去され、分子径が小さな炭化水素は低沸点炭化水素用吸脱着塔71又は低沸点炭化水素用吸脱着塔72で吸着除去される。そのために、ガソリンベーパ含有空気中の炭化水素を効率よく吸着除去することができる。以上のことから、ガソリンベーパ回収装置100eは、充填する吸着剤が異なる吸脱着塔を直列に配置して、二段吸着することにより、高効率に低沸点炭化水素を液化除去することができ、高効率にガソリンベーパを回収できるようになっている。なお、実施の形態6に実施の形態1の特徴事項~実施の形態5の特徴事項のいずれか又は複数を適用するようにしてもよい。
実施の形態7.
 図8は、本発明の実施の形態7に係るガソリンベーパ回収装置100fの全体構成を示す概略構成図である。図8に基づいて、ガソリンベーパ回収装置100fの構成及びガソリンベーパのフローについて説明する。このガソリンベーパ回収装置100fも、実施の形態1に係るガソリンベーパ回収装置100と同様に、ガソリンベーパを凝縮管3で冷却して回収するとともに、ガソリンベーパを吸着又は脱着する2組の吸脱着塔の機能を適宜切り替えてガソリンベーパを回収(吸着)及び再利用(脱着)するものである。なお、実施の形態7では実施の形態1~実施の形態6との相違点を中心に説明し、実施の形態1~実施の形態6と同一部分には、同一符号を付している。
 実施の形態6では、低沸点炭化水素用吸脱着塔71と低沸点炭化水素用吸脱着塔72の切り替え、及び、吸脱着塔7と吸脱着塔8の切り替えを、ガソリンベーパ吸入ポンプ2や吸引ポンプ11の稼動積算時間で同時に行なう場合について示した。一方、実施の形態7では、ガソリンベーパ含有空気のガス流量を変えることができるガス流量可変ポンプ41を設け、吸脱着塔7と吸脱着塔8、低沸点炭化水素用吸脱着塔71と低沸点炭化水素用吸脱着塔72から独立して脱着できるようにしたものである。
 ガス流量可変ポンプ41を設けることにより、吸脱着塔7と吸脱着塔8、及び、低沸点炭化水素用吸脱着塔71と低沸点炭化水素用吸脱着塔72に吸着したガソリン成分が独立して脱着再生できるという効果がある。したがって、ガソリンベーパ回収装置100fは、脱着した濃縮ガソリンベーパ中に含まれる低沸点炭化水素を効率よく回収することができ、コンパクトなものとすることができる。なお、実施の形態7に実施の形態1の特徴事項~実施の形態6の特徴事項のいずれか又は複数を適用するようにしてもよい。
符号の説明
 1 給油装置、2 ガソリンベーパ吸入ポンプ、3 凝縮管、4 熱媒体貯留槽、5 熱交換器、6 冷凍機、7 吸脱着塔、8 吸脱着塔、9 気液分離器、10 液体循環ポンプ、11 吸引ポンプ、12 ガソリン槽、13 圧力コントローラー、14 ガソリンベーパ送気管、15 浄化空気排出管、16 パージガス流入管、17 パージガス排出管、18 気液混合ガソリン流出管、19 ガソリンベーパ圧縮ポンプ、20 第2凝縮管、20a 第2凝縮管、21 第2気液分離器、22 第2熱媒体貯留槽、22a 第2熱媒体貯留槽、23 第2圧力コントローラー、31 熱媒体貯留槽、32 第2熱交換器、33 第2冷凍機、41 ガス流量可変ポンプ、51 第3冷凍機、52 第3熱交換器、61 ガソリンベーパ圧縮ポンプ、62 第2気液分離器、63 第2凝縮管、64 第2熱媒体貯留槽、71 低沸点炭化水素用吸脱着塔、72 低沸点炭化水素用吸脱着塔、100 ガソリンベーパ回収装置、100a ガソリンベーパ回収装置、100b ガソリンベーパ回収装置、100c ガソリンベーパ回収装置、100d ガソリンベーパ回収装置、100e ガソリンベーパ回収装置、100f ガソリンベーパ回収装置、B1 バルブ、B2 バルブ、B3 脱着用バルブ、B4 吸着用排出バルブ、B5 マスフローコントローラー、B6 吸着用流入バルブ、B7 バルブ。

Claims (15)

  1.  ガソリンベーパを冷却する凝縮装置と、
     前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、
     前記気液分離器のガス下流側に設けられ、前記気液分離器で分離されたガソリンベーパを吸脱着する吸脱着装置と、
     前記吸脱着装置に接続され、前記吸脱着装置で脱着されたガソリンベーパが供給され、このガソリンベーパを冷却する第2凝縮装置と、を有している
     ことを特徴とするガス状炭化水素の回収装置。
  2.  前記凝縮装置及び前記第2凝縮装置を冷却する熱媒体を蓄える熱媒体貯留槽を設ける
     ことを特徴とする請求項1に記載のガス状炭化水素の回収装置。
  3.  前記凝縮装置及び前記第2凝縮装置を共通又は別個の前記熱媒体貯留槽内に設ける
     ことを特徴とする請求項2に記載のガス状炭化水素の回収装置。 
  4.  冷凍機を備え、
     前記冷凍機を構成する熱交換器で前記熱媒体貯留槽に蓄えられている前記熱媒体を冷却する
     ことを特徴とする請求項2又は3に記載のガス状炭化水素の回収装置。
  5.  前記吸脱着装置と前記第2凝縮装置との間に前記吸脱着装置から供給されるガソリンベーパを加圧する加圧ポンプを設け、
     前記第2凝縮装置の下流側に前記第2凝縮装置内の圧力を調整する圧力コントローラを設ける
     ことを特徴とする請求項1~4のいずれか一項に記載のガス状炭化水素の回収装置。
  6.  吸引したガソリンベーパのガス流量を変更できる可変型ガス供給装置と、
     前記可変型ガス供給装置から供給されたガソリンベーパを冷却する凝縮装置と、
     前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、
     前記気液分離器のガス下流側に設けられ、前記気液分離器で分離されたガソリンベーパを吸脱着する吸脱着装置と、を有している
     ことを特徴とするガス状炭化水素の回収装置。
  7.  ガソリンベーパを冷却する凝縮装置と、
     前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、
     前記気液分離器のガス下流側に設けられ、前記気液分離器で分離され流出されたガソリンベーパを冷却する冷凍装置と、
     前記冷凍装置の下流側に設けられ、前記冷凍装置で冷却されたガソリンベーパを吸脱着する吸脱着装置と、を有している
     ことを特徴とするガス状炭化水素の回収装置。
  8.  ガソリンベーパを冷却する凝縮装置と、
     前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、
     前記気液分離器から流出されたガソリンベーパを加圧圧縮する圧縮ポンプと、
     前記気液分離器のガス下流側に設けられ、前記気液分離器で分離され、前記圧縮ポンプで加圧圧縮されたガソリンベーパを冷却する第2凝縮装置と、を有している
     ことを特徴とするガス状炭化水素の回収装置。
  9.  前記第2凝縮装置の下流側に、前記第2凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する第2気液分離器を設け、
     前記第2気液分離器のガス下流側に、前記第2気液分離器で分離されたガソリンベーパを吸脱着する吸脱着装置を設ける
     ことを特徴とする請求項8に記載のガス状炭化水素の回収装置。
  10.  ガソリンベーパを冷却する凝縮装置と、
     前記凝縮装置の下流側に設けられ、前記凝縮装置で冷却され凝縮液化したガソリン液と液化されなかったガソリンベーパとを分離する気液分離器と、
     前記気液分離器のガス下流側に設けられ、前記気液分離器で分離されたガソリンベーパを吸脱着する吸脱着装置と、
     前記吸脱着装置から流出されたガソリンベーパを吸脱着する第2吸脱着装置と、を有している
     ことを特徴とするガス状炭化水素の回収装置。
  11.  前記第2吸脱着装置に細孔径が5~10オングストロームの吸着剤を充填する
     ことを特徴とする請求項10に記載のガス状炭化水素の回収装置。
  12.  前記凝縮装置の上流側に、吸引したガソリンベーパのガス流量を変更できる可変型ガス供給装置を備えた
     ことを特徴とする請求項10又は11に記載のガス状炭化水素の回収装置。
  13.  前記請求項1~7及び9~12のいずれか一項に記載のガス状炭化水素の回収装置を用いたガス状炭化水素の回収方法であって、
     給油が行なわれない時間帯に脱着した濃縮ガソリンベーパ含有空気を凝縮し、給油が行なわれる時間帯には吸引したガソリンベーパ含有空気と脱着した濃縮ガソリンベーパ含有空気を混合して処理する
     ことを特徴とするガス状炭化水素の回収方法。
  14.  前記請求項1~7及び9~12のいずれか一項に記載のガス状炭化水素の回収装置を用いたガス状炭化水素の回収方法であって、
     所定の時間毎に前記吸脱着装置の吸着装置と脱着装置の切り替えを行なう
     ことを特徴とするガス状炭化水素の回収方法。
  15.  前記所定の時間を前記ガス状炭化水素の回収装置の稼働時間の積算値に基づいて設定している
     ことを特徴とする請求項13又は14に記載のガス状炭化水素の回収方法。
     
PCT/JP2009/056661 2009-03-31 2009-03-31 ガス状炭化水素の回収装置及び方法 WO2010113258A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020117010138A KR101268694B1 (ko) 2009-03-31 2009-03-31 가스상 탄화수소의 회수 장치 및 방법
JP2011506883A JP5693448B2 (ja) 2009-03-31 2009-03-31 ガス状炭化水素の回収装置及び方法
PCT/JP2009/056661 WO2010113258A1 (ja) 2009-03-31 2009-03-31 ガス状炭化水素の回収装置及び方法
TW102112291A TW201332635A (zh) 2009-03-31 2009-07-02 氣體狀碳化氫的回收裝置及方法
TW102112289A TWI471167B (zh) 2009-03-31 2009-07-02 Recovery device and method for gas - like hydrocarbon
TW098122370A TWI403354B (zh) 2009-03-31 2009-07-02 Recovery device and method for gas - like hydrocarbon
TW102112286A TWI471166B (zh) 2009-03-31 2009-07-02 Recovery device and method for gas - like hydrocarbon
TW102112292A TW201334853A (zh) 2009-03-31 2009-07-02 氣體狀碳化氫的回收裝置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056661 WO2010113258A1 (ja) 2009-03-31 2009-03-31 ガス状炭化水素の回収装置及び方法

Publications (1)

Publication Number Publication Date
WO2010113258A1 true WO2010113258A1 (ja) 2010-10-07

Family

ID=42827591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056661 WO2010113258A1 (ja) 2009-03-31 2009-03-31 ガス状炭化水素の回収装置及び方法

Country Status (4)

Country Link
JP (1) JP5693448B2 (ja)
KR (1) KR101268694B1 (ja)
TW (5) TWI471166B (ja)
WO (1) WO2010113258A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450032B1 (ko) * 2022-05-03 2022-10-04 주식회사 에코블루 정전기 제거가 가능한 고효율 유증기 액화 회수장치
KR102502499B1 (ko) * 2022-05-03 2023-02-23 주식회사 에코블루 고효율 유증기 액화 회수장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198604A (ja) * 2004-12-22 2006-08-03 Mitsubishi Electric Corp ガス状炭化水素の処理・回収装置及び方法
JP2007289802A (ja) * 2006-04-21 2007-11-08 Mitsubishi Electric Corp ガス状炭化水素の処理・回収装置及びその方法
JP2008093571A (ja) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp ガス状炭化水素の処理・回収装置及びその方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5289427B2 (ja) * 2008-03-28 2013-09-11 三菱電機株式会社 ガス状炭化水素の処理・回収装置及び方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198604A (ja) * 2004-12-22 2006-08-03 Mitsubishi Electric Corp ガス状炭化水素の処理・回収装置及び方法
JP2007289802A (ja) * 2006-04-21 2007-11-08 Mitsubishi Electric Corp ガス状炭化水素の処理・回収装置及びその方法
JP2008093571A (ja) * 2006-10-12 2008-04-24 Mitsubishi Electric Corp ガス状炭化水素の処理・回収装置及びその方法

Also Published As

Publication number Publication date
TW201034741A (en) 2010-10-01
TWI562822B (ja) 2016-12-21
TWI403354B (zh) 2013-08-01
TWI562823B (ja) 2016-12-21
TW201334853A (zh) 2013-09-01
TW201334852A (zh) 2013-09-01
KR101268694B1 (ko) 2013-05-29
JPWO2010113258A1 (ja) 2012-10-04
TWI471166B (zh) 2015-02-01
KR20110081268A (ko) 2011-07-13
TWI471167B (zh) 2015-02-01
TW201332634A (zh) 2013-08-16
TW201332635A (zh) 2013-08-16
JP5693448B2 (ja) 2015-04-01

Similar Documents

Publication Publication Date Title
CN110420536B (zh) 罐顶VOCs回收及氮气再利用系统及方法
JP4671940B2 (ja) ガス状炭化水素の処理・回収装置及びその方法
KR100790696B1 (ko) 가스상태 탄화수소의 처리 및 회수 장치 및 그 방법
JP5289427B2 (ja) ガス状炭化水素の処理・回収装置及び方法
JP5044764B2 (ja) ガス状炭化水素回収装置及び方法
JP4357046B2 (ja) ガス回収装置
CA2858307C (en) Co2 separation unit
KR20140031241A (ko) 냉동 시스템을 사용하는 극저온 co₂ 분리
CN210728724U (zh) 罐顶VOCs回收及氮气再利用系统
CN113184850B (zh) 一种高纯度二氧化碳气体提纯方法及其装置
CN111578620A (zh) 车载移动式回收油田放空气中的混烃和液化天然气的系统及工艺方法
CN109957429A (zh) 带热回收利用结构的天然气分子筛吸附脱水的系统及方法
CN110523206B (zh) 一种基于压缩低温冷凝方式回收有机溶剂的装置
JP2009028723A (ja) ガス状炭化水素の処理・回収方法
JP5693448B2 (ja) ガス状炭化水素の回収装置及び方法
CN210814519U (zh) 一种基于压缩低温冷凝方式回收有机溶剂的装置
JP2008238171A (ja) ガス状炭化水素の処理・回収方法
CN220736979U (zh) 一种适用于天然气锅炉排放烟气的二氧化碳捕集吸收装置
KR20150101901A (ko) 작동 가스 순환형 엔진 시스템 및 그 운전 방법
JP2001143580A (ja) ガス分離回収装置
CN212481840U (zh) 一种车载移动式回收油田放空气中的混烃和液化天然气的系统
JP2000135412A (ja) ガス回収装置及びガス回収方法
CN116422105A (zh) 一种适用于天然气锅炉排放烟气的二氧化碳捕集吸收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011506883

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117010138

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842613

Country of ref document: EP

Kind code of ref document: A1