WO2010112985A1 - Transístores de filme fino electrocrómicos de estrutura lateral ou vertical utilizando substratos funcionalizados ou não funcionalizados, e método de fabricação dos mesmos - Google Patents

Transístores de filme fino electrocrómicos de estrutura lateral ou vertical utilizando substratos funcionalizados ou não funcionalizados, e método de fabricação dos mesmos Download PDF

Info

Publication number
WO2010112985A1
WO2010112985A1 PCT/IB2009/054425 IB2009054425W WO2010112985A1 WO 2010112985 A1 WO2010112985 A1 WO 2010112985A1 IB 2009054425 W IB2009054425 W IB 2009054425W WO 2010112985 A1 WO2010112985 A1 WO 2010112985A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
tantalum
oxide
substrate
inorganic
Prior art date
Application number
PCT/IB2009/054425
Other languages
English (en)
French (fr)
Inventor
Rodrigo Ferrão DE PAIVA MARTINS
Elvira Maria Correia Fortunato
Original Assignee
Universidade Nova De Lisboa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Nova De Lisboa filed Critical Universidade Nova De Lisboa
Priority to EP09768419.5A priority Critical patent/EP2416390B1/en
Priority to CN200980159628.3A priority patent/CN102460757B/zh
Priority to BRPI0925039A priority patent/BRPI0925039B1/pt
Priority to US13/262,834 priority patent/US8503059B2/en
Publication of WO2010112985A1 publication Critical patent/WO2010112985A1/pt
Priority to ZA2011/06848A priority patent/ZA201106848B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • G02F2001/1635Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor the pixel comprises active switching elements, e.g. TFT
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F2001/164Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect the electrolyte is made of polymers

Definitions

  • the present invention is based on the creation and manufacture of a self-sustaining or non-self-sustaining electrochromic thin film transistor produced on glass-ceramic, polymeric, metal or natural paper, synthetic or mixed functional substrates, i.e. containing in its volume the electrolyte material of side of the door and the material
  • the functionalization of the electrolytic substrate consists of the integration in the substrate volume of the electrolytic and electrochromic materials whereas in the normal substrates the surface of the electrode and the electrode 4 is deposited; the deposition or not of an ultra thin membrane (7); the electrolyte material (3); the electrochromic material (2); and the drain and source electrodes 5, in lateral or vertical structure forms, including insulation or encapsulation islands 6.
  • electrochromic hereinafter simply referred to as electrolithochromic
  • the two faces of the substrate are used, one to deposit the gate electrode and the other to deposit the source and drain electrodes over the channel region as shown in figure 2.
  • the surface of the functionalized substrate can be passivated or encapsulated.
  • the inventive principle of operation is based on changing the oxidation state of an oxide such as tungsten oxide stoichiometric or not (W0 3) by the action of the induced ionic charges of the electrolyte through the presence or absence of a membrane ( 7) for the electrochromic material through the voltage applied to the door electrode which can be modulated and whose redox reaction is activated, laterally or vertically, by the electronic current that is established between the drain (5) and the source (5), which leads to a variation of the electronic conductivity of the electrochromic material (2) of several orders of magnitude, that is, of not passing current between the drain and the source and there is a current passing through which there is also an abrupt change of color which remains without the application of the electric field and the induced current which gave rise to it or returns to the original state by reversing the direction of the current or the applied voltage to the gate electrode. That is, in the present invention the channel region of the transistor 2 and the gate electrode 4 are ionically connected through the electrolyte 3 with or without
  • the substrate when flexible, of polymer or paper origin (1), its functionalization is made by soaking it with a solution of nanoparticles of an electrochromic oxide and a salt (see Figure 2). Contrary to known electrochromic devices, in which, in addition to the material
  • the drain and source regions 5 are constituted by a degenerate, inorganic or organic degenerate metal or oxide.
  • the electrode (4) which is organic or inorganic, but highly conductive. Under these conditions, the substrate integrates the device itself which is self sustaining.
  • the manufacture of the electrochromic transistor is made by depositing on the substrate the set of layers that constitute it according to the one indicated in figure 1 where are used insulation islands (6) constituted by electrically insulating materials and not which also serve to encapsulate the final device, and may have an ultra thin membrane (7) between the gate electrode (4) and the electrolyte (3).
  • the structure of the thin film transistor may be lateral or vertical, as shown in Figure 3.
  • the electrochromic materials, electrolyte materials, and electrode materials constituting the device may be organic or inorganic processed by physical, chemical and physicochemical deposition technologies of thin or reactive and non-reactive thin films carried out at temperatures from about room temperature to temperatures of 450 ° C, namely:
  • the present invention describes a process for the manufacture and creation of an electrochromic thin film transistor incorporating a thin or thick film as a substrate (1), of organic, inorganic or mixed origin, functionalized or not with an electrolyte material (3) on the (7) separating it from the electrode (4) which acts as a dielectric, the electrochromic material (2) as the active semiconductor of the channel region and wherein the electrodes source (5) and drain (5) are based on metallic materials such as titanium, gold, aluminum or degenerate semiconductor oxides such as indium oxide and zinc, zinc oxide doped with Gallium, characterized in that the process of controlling the operation of the device is made by electronic and ionic current and the switching from the switched-off to on or vice versa is accompanied by a color variation associated with the electrochromic material.
  • a preferred embodiment of the present invention has the feature that the thin film operating as a substrate (1) can be functionalized with solutions containing the electrochromic material and the electrolyte material,
  • the functionalized material functioning as a substrate (1) may be a glass ceramic, a polymer, sheet metal or paper, referred to as an electrolytic substrate having thicknesses between 5 and 500 micrometers.
  • a further preferred embodiment of the present invention has the feature of incorporating one or more additional components, of organic or inorganic origin, having electrical characteristics of a degenerate metal or semiconductor (4, 5), electrochromic material (2), electrolyte material or adaptive, in single, composite or multilayer structures in order to realize active devices of two, three or four individual or integrated hybrid terminals which serve simultaneously as a switch and electrochromic device with color change.
  • Yet another preferred embodiment of the present invention has the feature of applying to the substrate (1) a passivation or adaptation film (6) prior to depositing any other component element of the final device.
  • a yet still further preferred embodiment of the present invention has the feature that said passivation or adaptation layer to be applied comprises a dielectric material of high electrical resistivity, in particular with thicknesses up to 2000 micrometers, including amorphous multicomponent oxides of tantalum and silicon, or tantalum and aluminum or tantalum and hafnium or magnesium fluoride or zinc oxide or polyvinyl or a resin such as polymethylmethacrylate.
  • a further preferred embodiment of the present invention is to comprise the deposition of components by one or more of the following methods: by resistive thermal evaporation or electron cannon vacuum, cathodic sputtering of direct current or radio frequency or ultra high frequency assisted or not by magnetron, by chemical decomposition of vapors, whether or not radiofrequently or by ultra high frequency, by ink-jet printing, by chemical emulsion, by sol gel, by pyrolysis, by deep coating.
  • a further preferred embodiment of the present invention has the feature of depositing thin films according to specific drawings directly printed by protective resin before or after the production process, by the use of masks or by machine-mask or by direct writing on the materials deposited on the paper.
  • Yet another preferred embodiment of the present invention has the feature of depositing conductive component (s) (4, 5) comprising organic or inorganic, metallic or semiconductive oxide of high conductivity.
  • a yet still further preferred embodiment of the present invention has the feature of depositing electrochromic component (s) (2) comprising a single or compound ionic organic or inorganic material.
  • a yet still further preferred embodiment of the present invention has the feature of depositing electrolyte component (s) (3) comprising a single or compound organic or inorganic inorganic material or an inorganic ultrafine membrane (7) such as zinc oxide or tantalum and silicon or tantalum and aluminum or tantalum and hafnium or organic such as polyvinyl or polymethylmethacrylate.
  • electrolyte component (s) (3) comprising a single or compound organic or inorganic inorganic material or an inorganic ultrafine membrane (7) such as zinc oxide or tantalum and silicon or tantalum and aluminum or tantalum and hafnium or organic such as polyvinyl or polymethylmethacrylate.
  • a further preferred embodiment of the present invention has the feature of encapsulating the final device by an inorganic or organic dielectric or by lamination.
  • the present invention further describes an electrochromic active thin film transistor comprising a carrier, which may be of thin or thick film (1), either as carrier or as volume-functionalized carrier (1,2,3) of said device, designated of electrolyte substrate, making it self-sustaining.
  • a carrier which may be of thin or thick film (1), either as carrier or as volume-functionalized carrier (1,2,3) of said device, designated of electrolyte substrate, making it self-sustaining.
  • the substrate 1 may comprise natural, synthetic or mixed cellulosic material.
  • a further preferred embodiment of the present invention has the characteristic of com- additionally comprising one or more components of organic or inorganic origin with electrical characteristics of a metal (4,5), electrochromic (2), electrolyte (6), in single, composite or multilayer structures, in order to realize electrochromic devices active, in particular, electrochromic thin film transistors or electrochromic active matrices.
  • a further preferred embodiment of the present invention has the feature that the conductive component (s) (4, 5) comprises organic or inorganic, metallic or semiconductive oxide material of high conductivity.
  • Yet another preferred embodiment of the present invention has the feature that the device is in the form of an electrochromic thin film transistor capable of switching from the switched-on to color-switched off state.
  • Yet a still further preferred embodiment of the present invention has the feature of comprising deposited on the electrochromic material constituting the channel region of the device two materials of high conductivity which are perfectly alike in terms of conductivity and separated from each other by distances ranging from 1m to 1000 ⁇ , respectively designated drain region and source region (5).
  • a further preferred embodiment of the present invention has the feature that the drain and source regions (5) consist of an organic or inorganic material having conductivities of at least three orders of magnitude greater than the electrochromic material of the channel region (2) which have use as drain and source regions (5) of the electrochromic thin film transistor.
  • a further preferred embodiment of the present invention has the feature that the region under or above the channel region is composed of an organic or inorganic electrolyte material (3) with conductivities of at least two orders of magnitude greater than that of the electrochromic material in the oxidized state (2).
  • a further preferred embodiment of the present invention has the port electrode 4 being contiguous with the electrolyte or deposited on one of the faces of the substrate when it is functionalized.
  • an electrochromic device is understood to mean a system which includes a material whose optical characteristics (eg color) vary when placed under a potential difference.
  • optical characteristics eg color
  • electrochemical process activation of the electrochromic by the potential difference where the material undergoes an oxidation or reduction - loss or gain of electrons respectively
  • charge flow which must be compensated for by the presence of an electrolyte - negatively and positively charged particles
  • electrolyte - negatively and positively charged particles that have the ability to 'move' between the electrodes.
  • Electrochromic devices are usually used on glass or plastic substrates and applied to windows in particular in the building and automotive industry, with the functionalization of substrates and their integration into active devices an innovation.
  • US 2008/0297878 A1 relates to an electrochromic device which includes a fibrous organic substrate having nothing in common with the now proposed electrochromic transistor device.
  • PCT / PT2009 / 000008 relates to the processing of electrical and / or electronic and / or electrochromic elements on substrates of cellulosic material, different from the object of the different invention.
  • the present invention consists in the creation of a new active device which serves simultaneously as a switching key and an electrochromic device, using non-functionalized or functionalized substrates, i.e. wherein the substrate itself contains electrolyte and electrochromic materials in its volume, such as for example natural, synthetic or mixed polymer or cellulosic paper. It is not known, in the laboratory form tried or realized, the realization of this type of devices. These are the central object of the present invention in which a hybrid but still monolithic quality results in the integration of electronic components which produce novel effects and add a novel value in the application of the invention which is not present in the systems comprised in the state of the art.
  • Figure 1 Schematic view of an electrocromic thin film transistor deposited on an unfunctionalized substrate:
  • Electrochromic material of organic or inorganic origin
  • Door electrode made of material with high electrical conductivity, organic or inorganic
  • Figure 2 Schematic view of the basic structure of a film transistor
  • electrolithochromic using a functionalized substrate, referred to as electrolithochromic.
  • FIG. 3 Schematic view of electrochromic thin film transistors deposited on unfunctionalized, side or vertical structure substrates, as shown in the figure.
  • the arrow indicates the direction of rotation to be given to the electrolyte and port electrode assembly to provide a vertical structure device.
  • the present invention is based on a set of chemical, physical or physical chemical technologies conducive to the preparation and deposition of nanoparticle-containing solutions of an electrochromic oxide (2) having dimensions up to 200 nm, to which a salt (electrolyte (3) ) to functionalize them and also to produce and deposit the materials constituting the gate (4) and drain and source electrodes (5), in addition to the isolation islands (6).
  • the present invention consists in the use of substrates of different origins and compositions or functionalized substrates, simultaneously serving as physical carrier and electrochromic material, designated electolithochromes, leading to the creation of electrochromic thin film transistors, wherein the temperature of the deposition process is compatible with the selected substrate type.
  • the present invention is susceptible of different configurations depending on the specific application intended. That is, the present invention corresponds to the creation of a new device which presents a set of innovative functions of new active electrochromic devices which through the use of new innovative processes allow new products and systems involving materials such as mylar polymers or role in the dual function of physical support and component of active devices.
  • the present invention relates to the creation and manufacture of a novel electrochromic thin film transistor using functionalized, designated electolithochromic or non-functionalized substrates, generally referred to as substrates, of different origins and compositions, rigid or flexible, such as mylar, paper, glass-ceramic and others, processes to simultaneously serve as switching switches and also allow the rapid switching of color, in switching from the switched-off state to the switched-on state.
  • substrates functionalized, designated electolithochromic or non-functionalized substrates, generally referred to as substrates, of different origins and compositions, rigid or flexible, such as mylar, paper, glass-ceramic and others, processes to simultaneously serve as switching switches and also allow the rapid switching of color, in switching from the switched-off state to the switched-on state.
  • substrates of different origins and compositions, rigid or flexible, such as mylar, paper, glass-ceramic and others
  • the device consists of a substrate (rigid or flexible), not functionalized or functionalized.
  • each transistor that forms part of a possible active matrix is manufactured from the deposition of a degenerate or organic, inorganic or organic metal oxide (4), followed by the deposition of a material an organic or inorganic electrolyte (3), an organic or inorganic electrochromic material (2); the deposition of the insulation islands 6 and the deposition of the drain and source regions 5 using a degenerate semiconductor or an organic or inorganic metal using any of the deposition techniques referred to above.
  • a material as a protective agent (6) such as for example the lamination or deposition of a protective film such as magnesium fluoride or amorphous compounds of tantalum and silicon oxides or tantalum and aluminum or tantalum of hafnium.
  • Electrochromic materials can be divided into two classes: inorganic oxides and organic materials. Another classification relates to the potential at which the coloring process occurs.
  • electrochromic oxides inorganic materials
  • the redox reaction for an inorganic electrochromic is given by the following general equations:
  • a + H + , Li + , Na + , Ag + , (2)
  • A F, CN, OH; 0 ⁇ and ⁇ 0.3.
  • organic materials in particular materials that have been discovered in the last decade and which exhibit exceptional electrochromic properties such as vialogenes, which have a very attractive characteristic that consists in the possibility of acquiring different colors according to the introduction of different substituents on their molecules.
  • Polymeric electrochromic also belonging to this class, has some advantages when compared with other electrochromic materials.
  • the production and development costs of these polymers are generally lower with respect to inorganic electrochromic materials whose films are normally deposited by processes such as electron gun assisted thermal evaporation or cathodic spray assisted or not by a magnetron or by epitaxial molecular growth or by chemical decomposition of vapors assisted by a plasma radio frequency.
  • the possibility that the same material may have different colors depending on the activating or stabilizing elements added to the polymer, are also a great advantage over the other existing electrochromic ones.
  • An example of this type of material (multichannel electrochromic) is polyaniline which with the successive increase of the anodic potential, the transparent film changes to green, blue and purple.
  • Polymeric electrochromic as organic materials are, for the most part, chemically unstable and highly sensitive to UV radiation, which is the main reason for the short shelf life of a device in an external application (outside of doors).
  • the production process of the materials described above is based on chemical, physical or physicochemical techniques, such as chemical vapor deposition (CVD Chemical Vapor Deposition) [6,7]; chemical decomposition of vapors assisted by rf plasma (PECVD, see figure 4), pulsed laser [8]; sol-gel [9,10]; immersion techniques; atomized pyrolysis [11]; sputtering [12-14] in direct current or radio frequency, with or without the presence of a magnetron; thermal evaporation by heated filament or electron gun [6]; electrochemical growth [6,15]; ink jet printing [16], sol gel; deep coating; pyrolysis, among others.
  • CVD Chemical Vapor Deposition chemical vapor deposition
  • PECVD chemical decomposition of vapors assisted by rf plasma
  • sol-gel 9,10
  • immersion techniques atomized pyrolysis [11]
  • electrochromic thin film transistors subject of the present patent require, in addition to the electrochromic material, the incorporation of a material, termed a label (electrolyte or ionic conductor).
  • a label electrochromic material
  • This material through the movement of the ionic species that cross the electrochromic material, will modify the optical density (coloration) of the same. So we have to: yA + + ye- + MO x (colorless) ⁇ A and MO x (colorado) (5)
  • the electrochromic thin film transistor uses the ionic and electronic current variation properties that promote color variation when the device switches from the off state in which the current passing in the electrochromic material is too low for the on state wherein the current increases by more than one order of magnitude, causing a color change of the oxide (redox reaction) according to equation 5 a corresponding to a sudden change in the electronic conductivity of the electrochromic material.
  • the side-structure electrochromic thin film transistor as shown in Figure 3, is comprised of a narrow strip of an electrochromic material
  • stoichiometric or non-stoichiometric such as tungsten oxide (WO Xi with 0.5 ⁇ x ⁇ 3) defining the channel region of the transistor.
  • the gate electrode is connected to the channel region through a stoichiometric or non-stoichiometric electrolyte material, such as lithium perchlorate (LiCIO and , with 0.5 y y ⁇ 4) ionically but not electronically, i.e. the application of a port voltage causes a redox reaction to appear within the electrochromic material, which is activated from the drain region to the source region, through the electronic current being established, leading to color change of the entire channel region, designated matrix pixel.
  • the transparent port electrode is positioned above the electrolyte (see figure 3).
  • the flow of electric current enters the source and the drain (5) is modulated by the variation of the resistance of the channel region (electrochromic material) due to the redox reaction induced by the potential applied to the gate electrode that establishes an ionic current between the electrolyte and the electrochromic material, according to one of equations 1 to 4.
  • the flow of electric current enters the source and the drain (5) is modulated by the variation of the resistance of the channel region (electrochromic material) due to the redox reaction induced by the potential applied to the gate electrode that establishes an ionic current between the electrolyte and the electrochromic material, according to one of equations 1 to 4.
  • electrochromic is organic.
  • CE coloration efficiency
  • T 0 represents the initial transmittance and T c , the transmittance after staining, for a given wavelength 1.
  • the coloring efficiency is determined by the following equation:
  • an electrolyte material forms an integral part of the electrochromic thin film transistor.
  • Polymeric electrolytes are characterized by having as base or matrix one or more polymers.
  • the salts most used and studied in this type of electrolytes are LiC10 4 , Lil, LiBr, LiAsF 6 and LiCF 3 SO 3 , in stoichiometric form or not.
  • the great advantage of this type of electrolytes is the possibility of acting also as an encapsulating agent.
  • the device may be developed in different types of substrate such as glass, polymer and paper.
  • substrate such as glass, polymer and paper.
  • the materials used as carrier or substrate may or may not be transparent depending on the application of the device.
  • the device shall have two metallic or metallic conducting electrodes which allow the application or induction of the static electric field and the control of charges, if necessary, consisting of good conductive metal materials such as chromium, titanium, silver , aluminum, gold and other compounds based on the elements listed, as well as conductive conductive transparent conducting oxides such as indium and zinc oxide alloys; indium and tin; gallium doped zinc oxide or multicomponent oxides of zinc, gallium and indium.
  • conductive metal materials such as chromium, titanium, silver , aluminum, gold and other compounds based on the elements listed, as well as conductive conductive transparent conducting oxides such as indium and zinc oxide alloys; indium and tin; gallium doped zinc oxide or multicomponent oxides of zinc, gallium and indium.
  • the device may or may not be encapsulated, using glassy or polymeric materials, for example by gluing or laminating.
  • Materials used as carrier or substrate may or may not be transparent, depending on the application of the device.
  • the present invention provides a method in which the need to use an electrolyte for charge exchanges with the electrochromic material is avoided, in addition to requiring no electrode and allow self-sustainability. That is, the present invention consists of a single element which would hitherto be referred to five juxtaposed elements namely: the substrate, the electrolyte, the electrochromic material and the electrode, for the structure of electrochromic devices and a battery for feeding and storage of loads.
  • the creation of the functionalization method of paper fibers or polymer fibers or the volume of a polymeric material such as mylar, or in the volume of a very thin glass ceramic (less than 1 mm), gives it the capacities to which we only need to add the electrodes, respectively port, to one side of the functionalised substrate and drain and source, on the other side of the substrate.
  • the method of functionalizing the substrate on which the present invention is based is based on printing inks consisting of chemical solutions containing nanoparticles of electrochromic oxides and a salt such as lithium which impregnate the fibers of the paper or of the polymeric substrate or of the very low thickness or mylar glass ceramic with hydrophilic properties, allowing rapid and volume wetting, followed by hydrophobic coatings for protection of the functionalized substrate (6) and allowing the deposition of the connecting electrodes or other devices if desired to add to the system without damaging the functionalities of the electrochromic system whose connection can be made through the opening of so-called contact points.
  • a salt such as lithium
  • the present invention relates to the creation and manufacturing process of electrochromic devices based on thin film transistors wherein the color of the channel region changes as the transistor switches from the off state to the on state (see Figures 1 to 3).
  • the device is constituted by a non-functionalised substrate (1) (figure 1) or functionalized (figure 2), of structure lateral or vertical (figure 3).
  • an electrode (3) containing the marker element, which reacts with the electrochromic material (2), is deposited on the electrode deposited thereon, leading to the observed color change, juxtaposed or layered, accelerated by the current flowing between the drain and the source, function of the mode of operation of the device, transverse variation of the coloring or longitudinal variation of the coloring.
  • drain and source electrodes 5 are placed which, when connected to a battery, enable the acceleration, together with the door control voltage, of the diffusion of Li + ions from the electrolyte salt to the electrochromic material.
  • the diffusion of lithium ions depends on the structure, stoichiometry and morphology of the electrochromic material [5,6,15].
  • the colored front is initiated near the anode (terminal connected to a positive potential) and its progression is the faster the higher the applied voltage.
  • the rigid or flexible substrate When the rigid or flexible substrate is functionalized, it contains in its volume, on one side electrochromic material and on the other, electrolyte material (see Figure 2).
  • the functionalization can be done using nano-particle-containing chemical solutions which we will call functionalized electrochromic inks, to which is added a salt containing ions such as lithium from which, using technology such as inkjet or deep coating, or atomization or other sol gel, the characteristics of electrochromic material and electrolyte are imparted to the substrate at the same time without the use of a counter electrode for the manufacture of electrochromic devices.
  • the present invention relates to a method of manufacturing which allows the addition and addition of additive and electrochromic and electrolyte and charge storage functions to the substrate, providing the substrate with self-sustaining solid state electrochromic device or device functionalities , functions which were previously unknown to the present invention.
  • functionalization of the substrate with electrochromic material and electrolyte is effected by impregnating it with a chemical solution containing nano particles of an inorganic oxide and a salt, by a known technique, such as for example deep coating or the function of the hydrophilic or hydrophobic characteristics of the substrate used or to introduce them into the final manufacturing step of the substrate by conformation or the like.
  • the nano particles to be used in the paint solutions or to be introduced into the substrate manufacturing step as precursors may be inorganic or organic or mixed.
  • these will be of oxides of Ti, Nb, Mo, Ta and W, for cathodic staining or of oxides of Cr, Mn, Fe, Co, Ni Rh and Ir, for an anodic coloration.
  • the organic nano particles will be of vialogismeos and polymeric materials like the polyanilina.
  • electrolytic and charge storage functions are due to an inorganic salt containing Lithium, such as Li 3 N, LiALF 4 , LiNb 0 3 or polymeric of LiC 10 4 , Lil, LiBr, LiAsF 6 and LiCF 3 SO 3 , introduced into the substrate by immersion thereof in a chemical solution, as in the case of paper or the salt is introduced into the substrate volume, during the final step of the substrate manufacture.
  • an inorganic salt containing Lithium such as Li 3 N, LiALF 4 , LiNb 0 3 or polymeric of LiC 10 4 , Lil, LiBr, LiAsF 6 and LiCF 3 SO 3
  • the substrate such as paper in the different solutions
  • the two transparent electrodes TCO
  • the electrodes are connected to an external power source through which the potential difference is applied to the device.
  • the ions from the salt will migrate to the electrochromic material.
  • the staining appears alternately on one side or the other of the substrate depending on the direction of application of the potential difference and will always color the face where the negative terminal is.
  • the cellulosic substrate embedded with the previously described solution simultaneously exhibits 4 different functions according to the conventional electrochromic cells being: substrate (1), electrochromic (2), electrolyte (3) and counter-electrode.
  • the device may contain three transparent conducting electrodes (port, source and drain) that allow the application or induction of the electric field and electric charges respectively
  • Substrate preparation No pretreatment or cleaning is required on the substrate. It is only necessary to have a porous substrate of the desired size.
  • Solution preparation The W0 3 nanoparticle solution is prepared from hydrogen peroxide (H 2 O 2 ) and metal tungsten (W). The W is added to H 2 O 2 , the mixture is allowed to stand until a clear solution is obtained, then the solution is heated until a yellow powder is obtained. Acetic acid is added at this stage. The solution continues to be heated until complete evaporation of the solvent. The yellow powder obtained is dispersed in anhydrous ethanol. This dispersion is allowed to stand for several days. Lithium perchlorate is then added.
  • H 2 O 2 hydrogen peroxide
  • W metal tungsten
  • the drain port and source electrodes are deposited using a mechanical mask or by ink jet techniques or using known lithographic techniques and transparent materials in the region of the visible, such as for example IZO (zinc doped indium oxide); GZO (gallium doped zinc oxide); multicomponent zinc, gallium and indium oxide or gallium or tin zinc or the like having degenerate semiconductor electrical properties by one of the aforementioned techniques, for example the cathodic sputtering technique at room temperature.
  • IZO zinc doped indium oxide
  • GZO gallium doped zinc oxide
  • multicomponent zinc, gallium and indium oxide or gallium or tin zinc or the like having degenerate semiconductor electrical properties by one of the aforementioned techniques, for example the cathodic sputtering technique at room temperature.
  • Nonfunctionalized substrate The following is an example of manufacture using a glass ceramic substrate and some of the materials that may be used for the creation and manufacture of the thin film transistor.
  • isopropyl alcohol at temperatures ranging from 30 ° C to 50 ° C, for this example being chosen the temperature of 50 ° C in ultrasound for a period of 15 minutes.
  • the substrate is withdrawn from the alcohol and immersed in ultra-pure water at temperatures between 40 ⁇ C and 65 ⁇ C 50 for a period equal to the above. Subsequently, the substrate is dried with a jet of nitrogen.
  • the high conductivity degenerate semiconductor oxide is deposited, preferably with a amorphous structure according to a pattern that may involve a mechanical mask or lithographic processes such as lift-off. Thereafter, it is cleaned to prepare the surface thus coated for the second manufacturing step.
  • a pattern (mechanical or photo-resist) is deposited according to a pattern or by direct writing an insulating material as amorphous multicompounds of tantalum and silicon or tantalum and aluminum or tantalum and hafnium or polymeric such as for example polymethylmethacrylate PMMA. This ensures the electrical insulation of the door electrode of the following layers, namely electrolyte and electrochromic materials.
  • Deposition of the electrochromic material (WO x , 0x3) Tungsten trioxide is deposited on the structure using the same pattern used to deposit the electrolyte with corresponding tolerances associated with the recording method used by a physical deposition technique such as resistive thermal evaporation, electron cannulation, cathodic sputtering or by a chemical process, such as ink jet or sol-gel printing or pyrolysis or deep coating, at temperatures ranging from 20 ° C and 450 ° C.
  • a physical deposition technique such as resistive thermal evaporation, electron cannulation, cathodic sputtering or by a chemical process, such as ink jet or sol-gel printing or pyrolysis or deep coating, at temperatures ranging from 20 ° C and 450 ° C.
  • the film growth rates can be very high, above 3 nm / s, and low process costs, particularly in the case of thermal resistive evaporation, when compared to other deposition techniques, such as evaporation electron-assisted thermal or sputtering.
  • the main industries that can currently use the devices and circuits resulting from the use of this innovation are the entire electronics industry, the semiconductor industry, the flat di- rector industry and the like, the automotive industry, paper industry, advertising industry, glass industry, plastics industry, industry instrumentation and sensors, food industry, medical and biotechnology industry, optoelectronics industry, micro and nano electronics industry.
  • the present invention aims to replace the existing devices
  • electrochromic that allow to construct matrices of large areas in which the pixel is the same region of channel of the color-changing transistor, allowing to construct large areas in the form of display that switch between the transparent or translucent or opaque state, or color, in times of the order of the few seconds, in opposition to the several tens of minutes necessary to switch the transparency state of windows with more than 2 square meters of area.
  • changing the color state is associated with a variation of several orders of magnitude of the current flowing between the drain and the source, giving the matrix another active function that can be used to make ads appear or disappear and static or dynamic figures, with color, similar to what happens with the current liquid crystal displays (LCD) or with organic light emitting diodes (OLED).
  • LCD liquid crystal displays
  • OLED organic light emitting diodes
  • the required manufacturing technological processes are compatible with those already existing in the electronics industry, or electron or semiconductor optoelectronics, such as large-area cathode or thermal evaporation or sol-gel or ink, and therefore does not require high investments in terms of technology research and adaptation.
  • the technical advantages provided with the present invention enable the active use of dynamically or static functionalized substrates simultaneously serving as substrate and component of the electrochromic devices produced therein.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

Transístores de filme fino electrocrómicos, auto sustentáveis ou não, de estrutura lateral ou vertical, depositados em qualquer tipo de substrato (1) funcionalizado ou não e em que o material electrólito (3) e a presença ou não de uma membrana ultra fina (7) actuam como dieléctrico, o material electrocrómico (2) como semicondutor activo da região de canal e em que os electrodos porta (4), de fonte (5) e dreno (5) se baseiam em materiais metálicos como o titânio, o ouro, o alumínio ou óxidos semicondutores degenerados como o óxido de índio e zinco, o óxido de zinco dopado com gálio. O processo de controlo do funcionamento do dispositivo se faz por corrente electrónica e iónica e a comutação do estado desligado para ligado ou vice- versa ser acompanhado por uma mudança de cor do dispositivo. Também é divulgado um método de fabricação dos transístores electrocrómicos.

Description

Description
Title of Invention: Método de fabrico e criação de transístores de filme fino electrocromicos de estrutura lateral ou vertical utilizando substratos vitrocerâmicos, poliméricos, metálicos ou de papel celulósico natural, sintético ou misto funcionalizados ou não funcionalizados
Campo da Invenção
O presente invento tem por base a criação e fabrico de um transístor de filme fino electrocrómico, auto sustentável ou não, produzido em substratos vitrocerâmicos, poliméricos, metálicos ou de papel natural, sintético ou mistos funcionalizados isto é contendo no seu volume o material electrólito do lado da porta e o material
electrocrómico do lado do substrato onde se colocam os eléctrodos de dreno e fonte, daqui para diante designados de substratos electolitocrómicos ou não funcionalizados e designados simplesmente por substratos e controlado por corrente e em que a mudança de estado é acompanhada por mudança de cor, que é reversível.
A funcionalização do substrato electrolitocrómico consiste na integração no volume do substrato dos materiais electrólitos e electrocromicos enquanto nos substratos normais se procede à deposição da sua superfície do eléctrodo porta e contra eléctrodo (4); a deposição ou não de uma membrana ultra fina (7); o material electrólito (3); o material electrocrómico (2); e os eléctrodos de dreno e fonte (5), nas formas de estrutura lateral ou vertical, incluindo ilhas de isolamento ou encapsulamento (6).
No caso de o substrato estar funcionalizado com o electrólito e material
electrocrómico, daqui para diante simplesmente designado de electrolitocrómico, as duas faces do substrato são utilizadas, uma para se depositar o eléctrodo porta e a outra para se depositar sobre a região do canal os eléctrodos de fonte e dreno como se indica na figura 2. Neste caso a superfície do substrato funcionalizado pode ser passivada ou encapsulada.
O princípio de funcionamento do invento baseia-se na alteração do estado de oxidação de um óxido, como por exemplo o óxido de tungsténio estequiométrico ou não (W03) por acção das cargas iónicas induzidas do electrólito via a presença ou não de uma membrana (7) para o material electrocrómico através da tensão aplicada ao eléctrodo porta que pode ser modulada e cuja reacção redox é activada, lateral ou verticalmente, pela corrente electrónica que se estabelece entre o dreno (5) e a fonte (5), que leva a uma variação da condutividade electrónica do material electrocrómico (2) de várias ordens de grandeza isto é, de não passar corrente entre o dreno e a fonte e passar a haver passagem de corrente a que se associa também uma mudança brusca de cor, que se mantém, sem aplicação do campo eléctrico e da corrente induzida que lhe deram origem ou volta ao estado original, por inversão do sentido da corrente ou da tensão aplicada ao eléctrodo porta. Isto é, na presente invenção a região de canal do transístor (2) e o eléctrodo porta (4) encontram-se ligados ionicamente, através do electrólito (3), com ou sem presença de uma membrana ultra fina (7) mas não se encontram ligados electronicamente.
Na presente invenção quando o substrato é flexível, de origem polimérica ou de papel (1), a sua funcionalização faz-se embebendo o mesmo com uma solução de nanopartículas de um óxido electrocromico e um sal (ver figura 2). Contrariamente aos dispositivos electrocrómicos conhecidos, em que para além do material
electrocromico, é necessário ter-se um electrólito e um contra eléctrodo, nesta invenção tal não é necessário. Nesta mesma face funcionalizada coloca-se, por uma técnica de deposição física, química, químico-física, segundo um dado padrão, as regiões de dreno e fonte (5) constituídas por um metal ou óxido semicondutor degenerado, inorgânicos ou orgânicos. Na outra face do substrato deposita-se, por uma das técnicas acima mencionadas o eléctrodo porta (4), de natureza orgânica ou inorgânica, mas altamente condutor. Nestas condições, o substrato integra o próprio dispositivo que é auto sustentável.
No caso do substrato não ser funcionalizado o fabrico do transístor electrocromico faz-se depositando sobre o substrato o conjunto de camadas que o constituem de acordo com o indicado na figura 1 onde se utilizam ilhas de isolamento (6) constituídas por materiais isolantes electricamente e não electrocrómicos que também servem para encapsular o dispositivo final, podendo ter uma membrana ultra fina (7) entre o eléctrodo porta (4) e o electrólito (3). Na presente invenção a estrutura do transístor de filme fino pode ser lateral ou vertical, de acordo com o referido na figura 3.
Na presente invenção os materiais electrocrómicos, os materiais electrólitos, e os materiais dos eléctrodos que constituem o dispositivo poderão ser orgânicos ou inorgânicos processados por tecnologias de deposição física, química e físico-químicas de filmes finos ou espessos, reactivos e não reactivos, realizadas a temperaturas desde próximas da temperatura ambiente a temperaturas de 450 °C, nomeadamente:
a pulverização catódica de corrente contínua ou de radiofrequência;
deposição térmica resistiva ou por canhão de electrões em vácuo;
decomposição química de vapores assistida ou não por plasma de radiofrequência ou UHF;
aquecimento em vácuo;
crescimento atómico epitaxial;
deposição por jacto de tinta; sol gel
pirólise
emulsão química.
Estas técnicas permitem o crescimento controlado de filmes com espessuras entre os 1 nm e os 50 μιη, de materiais orgânicos e inorgânicos.
Sumário
A presente invenção descreve um processo de fabrico e criação de um transístor de filme fino electrocrómico que incorpora um filme fino ou espesso como substrato (1), de origem orgânica, inorgânica ou mista, funcionalizado ou não com um material electrólito (3) sobre o qual se deposita ou não uma membrana ultra fina (7) que o separa do eléctrodo porta (4) que actuam como dieléctrico, o material electrocrómico (2) como semicondutor activo da região de canal e em que os eléctrodos porta (4), de fonte (5) e dreno (5) se baseiam em materiais metálicos como o Titânio, o Ouro, o Alumínio ou óxidos semicondutores degenerados como o óxido de índio e Zinco, o óxido de Zinco dopado com Gálio, caracterizado por o processo de controlo do funcionamento do dispositivo se fazer por corrente electrónica e iónica e a comutação do estado desligado para ligado ou vice-versa ser acompanhada por uma variação de cor associada ao material electrocrómico.
Uma realização preferencial da presente invenção tem a característica de o filme fino que funciona como substrato (1) poder ser funcionalizado com soluções contendo o material electrocrómico e o material electrólito, passando a funcionar como
componente activo do transístor designado de electrolitocrómico.
Uma outra realização preferencial da presente invenção é de que o material funcionalizado que funciona como substrato (1) poder ser um vitrocerâmico, um polímero, folha metálica ou papel, que se designa de substrato electrolitocrómico com espessuras entre os 5 e os 500 micrómetros.
Uma outra realização preferencial da presente invenção tem a característica de incorporar um ou mais componentes adicionais, de origem orgânica ou inorgânica, com características eléctricas de um metal ou semicondutor degenerado (4, 5), material electrocrómico (2), material electrólito (3) ou de adaptação, em estruturas singulares, compostas ou de multicamada, de modo a realizar dispositivos activos, de dois, três ou quatro terminais híbridos, singulares ou integrados, que servem simultaneamente como chave de comutação e dispositivo electrocrómico, com mudança de cor.
Uma ainda outra realização preferencial da presente invenção tem a característica de aplicar ao substrato (1) uma película de passivação ou adaptação (6) antes de se depositar qualquer outro elemento componente do dispositivo final.
Uma ainda outra realização ainda mais preferencial da presente invenção tem a característica de a referida camada de passivação ou adaptação a aplicar compreender material dieléctrico de elevada resistividade eléctrica, em particular com espessuras até 2000 micrómetros, que incluem óxidos amorfos multicompostos de tântalo e silício, ou tântalo e alumínio ou tântalo e háfnio ou fluoreto de magnésio ou óxido de zinco ou de polivinil ou de uma resina como o polimetilmetacrilato.
Uma realização também preferencial da presente invenção tem a característica de compreender a deposição de componentes por um ou mais dos seguintes métodos: por evaporação térmica resistiva ou por canhão de electrões em vácuo, pulverização catódica de corrente contínua ou rádio frequência ou ultra alta frequência assistida ou não por magnetrão, por decomposição química de vapores assistida, ou não, por rádio frequência ou por ultra alta frequência, por impressão a jacto de tinta, por emulsão química, por sol gel, por pirólise, por deep coating.
Uma outra realização preferencial da presente invenção tem a característica de depositar filmes finos de acordo com desenhos específicos directamente impressos por resina protectora antes ou após o processo de produção, por utilização de máscaras ou por máscara mecânica ou por escrita directa sobre os materiais depositados sobre o papel.
Uma ainda outra realização preferencial da presente invenção tem a característica de depositar componente ou componentes condutores (4, 5) compreendendo material orgânico ou inorgânico, metálico ou óxido semicondutor de elevada condutividade.
Uma ainda outra realização ainda mais preferencial da presente invenção tem a característica de depositar componente ou componentes electrocrómicos (2) compreendendo um material inorgânico ou orgânico iónico singular ou composto.
Uma ainda outra realização ainda mais preferencial da presente invenção tem a característica de depositar componente ou componentes electrólitos (3) compreendendo um material inorgânico iónico singular ou composto ou orgânico ou uma membrana ultra fina (7) inorgânica como o óxido de zinco ou os óxidos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou orgânica como o polivinil ou polimetilmetacrilato.
Uma realização também preferencial da presente invenção tem a característica de encapsular o dispositivo final por um dieléctrico inorgânico ou orgânico ou por laminação.
A presente invenção descreve ainda um transístor de filme fino activo electrocrómico que compreende um suporte, que pode ser de filme fino ou espesso (1), tanto como suporte ou como suporte funcionalizado em volume (1,2,3) do referido dispositivo, designado de substrato electrolitocrómico, tornando-o auto-sustentável.
Uma ainda outra realização preferencial da presente invenção tem a característica de o substrato (1) poder compreender material celulósico natural, sintético ou misto.
Uma outra realização preferencial da presente invenção tem a característica de com- preender adicionalmente um ou mais componentes, de origem orgânica ou inorgânica, com características eléctricas de um metal (4,5), electrocromico (2), electrólito (6), em estruturas singulares, compostas ou de multicamada, de modo a realizar dispositivos electrocrómicos activos, particularmente, transístores de filme fino electrocrómicos ou matrizes activas electrocrómicas.
Uma realização também preferencial da presente invenção tem a característica de o componente ou componentes condutores (4, 5) compreenderem material orgânico ou inorgânico, metálico ou óxido semicondutor de elevada condutividade.
Uma ainda outra realização preferencial da presente invenção tem a característica de o dispositivo ter a forma de um transístor de filme fino electrocromico capazes de comutarem do estado ligado para desligado com mudança de cor.
Uma ainda outra realização ainda mais preferencial da presente invenção tem a característica de compreender depositados sobre a material electrocromico que constitui a região de canal do dispositivo dois materiais de elevada condutividade perfeitamente iguais em termos de condutividade e separados entre si de distâncias que podem ir dos lnm a 1000 μιη, designados respectivamente de região de dreno e região de fonte (5).
Uma realização também preferencial da presente invenção tem a característica de as regiões de dreno e fonte (5) serem constituídas por um material orgânico ou inorgânico com condutividades de pelo menos três ordens de grandeza superior à do material electrocromico da região de canal (2) que têm utilização como regiões de dreno e fonte (5) do transístor de filme fino electrocromico.
Uma outra realização preferencial da presente invenção tem a característica de a região sob ou acima da região do canal ser constituído por um material electrólito (3) orgânico ou inorgânico, com condutividades de pelo menos duas ordens de grandeza superior à do material electrocromico no estado oxidado (2).
Uma realização também preferencial da presente invenção tem a característica de eléctrodo porta (4) ser contíguo ao electrólito ou estar depositado numa das faces do substrato, quando este é funcionalizado.
Antecedentes da invenção
Convencionalmente entende- se por dispositivo electrocromico um sistema que inclui um material cujas características ópticas (e.g. a cor) variam quando colocado sob uma diferença de potencial. No decorrer do processo electroquímico (activação do electrocromico pela diferença de potencial onde o material sofre uma oxidação ou redução - perca ou ganho de electrões respectivamente) existe um fluxo de carga que é necessário compensar com a presença de um electrólito - mistura de substâncias químicas (iões - partículas carregadas negativa e positivamente) que têm a capacidade de se 'moverem' entre os eléctrodos. Por fim, e para completar o circuito é necessário uma substância de balanço de carga eléctrica. A função deste último elemento é acompanhar o processo electroquímico do electrocrómico em termos de electrões.
[1-4]
Os dispositivos electrocrómicos são normalmente usados em substratos de vidro ou plástico e aplicados a janelas nomeadamente na indústria de construção civil e automóvel, sendo a funcionalização dos substratos e sua integração em dispositivos activos uma inovação.
Para além disso, desconhece-se a existência de quaisquer dispositivos transis- torizados electrocrómicos como os que aqui se propõem.
De seguida, passamos a descrever o estado da técnica e patentes anteriores a esta invenção com a qual possam estar relacionadas.
Em termos de investigação e desenvolvimento ou de aplicação, desconhece-se qualquer actividade que esteja próxima ou corresponda ao objecto da presente invenção, nos seus aspectos de processo integrado, produto e utilizações resultantes.
Da busca efectuada encontrámos as seguintes patentes, que contemplam dispositivos electrocrómicos clássicos, dos quais damos alguns exemplos:
O documento US 2008/0297878 Al refere-se a um dispositivo electrocrómico que inclui um substrato orgânico fibroso, que nada tem em comum com o dispositivo tran- sistorizados electrocrómico agora proposto.
O documento PCT/PT2009/000008 refere-se ao processamento de elementos eléctricos e ou electrónicos e ou electrocrómicos em substratos de material celulósico, diferente do objecto da diferente invenção.
O pedido de patente nacional n.° 103951 de 2008 refere-se à utilização do papel de base celulósica ou bio-orgânica como suporte físico para o processamento de dispositivos e sistemas da electrónica e não à sua integração no próprio fabrico e sustentação dos dispositivos e sistemas electrónicos. Nada tem em comum com o actual invento.
O pedido de patente nacional 103671 refere-se à utilização de estruturas de dispositivos electrocrómicos como medidores de tempo de estado sólido, que nada têm a ver com a presente invenção.
Os pedidos de patente nacional 10998 e 10999 referem-se a transístores em que o papel é parte activa dos dispositivos. Contudo, neste caso o papel não está fun- cionalizado, nem os dispositivos mudam de cor ou são controlados pelas correntes iónicas e electrónica. Isto é, o objecto do invento é distinto do da presente invenção.
Do exposto, conclui-se que, em termos de criação de produto e processos mencionados na presente invenção não existe, que seja do nosso conhecimento, qualquer pedido de patente ou resultado publicado.
As patentes e referências referidas, correspondem ao estado da técnica da área em que a presente invenção se insere, com a qual existem alguns pontos periféricos de contacto, em termos de processos e materiais usados e o facto dos processos e técnicas de fabrico, em alguns casos, serem similares. No entanto, desconhece-se a existência de trabalho e patentes ou pedidos de patentes técnicas que foquem o objecto do presente invento: transístor electrocromico usando substratos funcionalizados ou não funcionalizados.
A presente invenção consiste na criação de um novo dispositivo activo que serve simultaneamente como chave de comutação e de dispositivo electrocromico, utilizando substratos não funcionalizados ou funcionalizados, isto é, em que o próprio substrato contém no seu volume os materiais electrólitos e os electrocrómicos, como por exemplo polímero ou papel celulósico natural, sintético ou misto. Desconhece-se, na forma laboratorial tentada ou realizada, a realização deste tipo de dispositivos. Estes são o objecto central da presente invenção, na qual resulta uma qualidade híbrida mas ainda assim monolítica, em termos da integração de componentes electrónicos que produzem efeitos novos e acrescentam um valor novo na aplicação da invenção, que não está presente nos sistemas compreendidos no estado da técnica.
Breve descrição dos desenhos
Figura 1. Vista esquemática de um transístor de filme fino electrocromico depositado em substrato não funcionalizado:
1) Substrato orgânico ou inorgânico de elevada resistividade eléctrica ou revestido ou passivado com um filme dieléctrico de levada resistividade eléctrica;
2) Material electrocromico, de origem orgânica ou inorgânica;
3) Electrólito de origem orgânica ou inorgânica;
4) Eléctrodo porta constituído por material de elevada condutividade eléctrica, orgânica ou inorgânica;
5) Material de elevada condutividade eléctrica, de origem orgânica ou inorgânica que constitui as chamadas regiões de dreno e fonte;
6) Ilhas de isolamento eléctrico constituídas por um material de muito elevada resistência eléctrica que também é usado para encapsular todo o dispositivo;
7) Membrana ultra fina de um material inorgânico ou orgânico através da qual se fazem as trocas iónicas que conduzem à migração de iões do material electrólito para o material electrocromico dando lugar á reacção redox reversível
Figura 2. Vista esquemática da estrutura básica de um transístor de filme
electrocromico, usando um substrato funcionalizado, designado de electrolitocrómico.
Figura 3. Vista esquemática de transis tores de filme fino electrocrómicos depositados sobre substratos não funcionalizados, de estrutura lateral ou vertical, como se mostra na figura. A seta indica o sentido de rotação a dar ao conjunto electrólito e eléctrodo porta, para se obter um dispositivo de estrutura vertical. Descrição detalhada da implementação preferencial da presente invenção
A presente invenção assenta num conjunto de tecnologias químicas, químico físicas ou físicas conducentes à preparação e deposição de soluções contendo nano partículas de um óxido electrocromico (2), com dimensões até 200 nm, á qual se pode adicionar um sal (electrólito (3)) para as funcionalizar e também para se produzir e depositar os materiais que constituem os eléctrodos porta (4) e de dreno e fonte (5), para além das ilhas de isolamento (6). Para além disso, recorre também a processos de deposição de eléctrodos transparentes, de origem orgânica ou inorgânica, realizadas a temperaturas próximas da ambiente ou à volta de 450 °C, por uma técnica conhecida, preferencialmente do tipo impressão a jacto de tinta, ou spin coating ou sol gel ou atomização ou pirólise ou pulverização catódica de corrente contínua ou de radiofrequência ou deposição térmica resistiva ou crescimento atómico epitaxial.
A presente invenção consiste na utilização de substratos de diferentes origens e composições ou de substratos funcionalizados, servindo simultaneamente como suporte físico e material electrocromico, designados de electolitocrómicos conduzindo à criação de transístores de filme fino electrocrómicos, em que a temperatura do processo de deposição é compatível com o tipo de substrato seleccionado.
A presente invenção é susceptível de configurações distintas consoante a aplicação específica pretendida. Isto é, a presente invenção corresponde á criação de um novo dispositivo que apresenta um conjunto de funções inovadoras de novos dispositivos electrocrómicos activos que através de utilização de novos processos inovadores, permitem novos produtos e sistemas que envolvem materiais como polímeros finos como o mylar ou o papel na dupla função de suporte físico e componente de dispositivos activos.
FUNDAMENTOS DA INVENÇÃO
O presente invento relaciona-se com a criação e fabrico de um novo transístor de filme fino electrocromico usando substratos funcionalizados, designados de electolitocrómicos ou não funcionalizados, genericamente designados de substratos, de diferentes origens e composições, rígidos ou flexíveis, tais como o mylar, papel, vitrocerâmicos e outros, processo para simultaneamente servirem como chaves de comutação e permitirem também a comutação rápida de cor, na passagem do estado desligado para o ligado. Deste modo será possível constituir matrizes electrocrómicas activas em que o pixel e a chave de comutação correspondem ao transístor de filme fino electrocromico. Deste modo é possível produzir matrizes activas de grande área e com tempos de comutação inferiores a segundos, o que não é possível com os dispositivos electrocrómicos conhecidos, em que para grandes áreas os tempos de comutação da cor, podem ser de vários minutos. Com este invento é possível fabricar-se mostradores activos, dinâmicos ou estáticos (passivos), em superfícies com controlo de transmitância inteligentes, como para brisas e janelas de automóveis ou viseiras, não possível, com os dispositivos actuais, que demoram muito tempo, uma vez que quanto maior a área maior a resistividade dos componentes associados e assim maior o tempo de comutação na passagem do dispositivo da forma transparente ao olho humano ao de translúcido de cor escura ou outra, função do tipo de material electrocrómico usado e da correspondente reacção redox que tem lugar. Neste sentido, o presente invento corresponde a um salto qualitativo enorme do estado da arte actual.
O dispositivo é constituído por um substrato (rígido ou flexível), não funcionalizado ou funcionalizado.
No caso do substrato não ser funcionalizado, cada transístor que faz parte de uma eventual matriz activa (ver figura 1) é fabricado a partir da deposição de um óxido semicondutor degenerado ou metal, orgânico ou inorgânico (4), seguido da deposição de um material electrólito orgânico ou inorgânico (3), um material electrocrómico (2) orgânico ou inorgânico; a deposição das ilhas de isolamento (6) e da deposição das regiões de dreno e fonte (5), usando um semicondutor degenerado ou um metal, orgânico ou inorgânico, usando quaisquer das técnicas de deposição anteriormente referenciadas.
No topo do dispositivo é opcional a colocação de um material como agente protector (6), como por exemplo a laminação ou a deposição de uma película protectora como fluoreto de magnésio ou compostos amorfos de de óxidos de tântalo e silício ou tântalo e alumio ou tântalo de háfnio.
O presente evento baseia-se no facto de um material electrocrómico sofrer alteração das suas propriedades ópticas quando sujeito a uma diferença de potencial determinada, estática, dinâmica ou instantânea. Os materiais electrocrómicos podem ser divididos em duas classes: óxidos inorgânicos e materiais orgânicos. Uma outra classificação relaciona-se com o potencial a que o processo de coloração ocorre. Assim sendo, os óxidos electrocrómicos (materiais inorgânicos) podem ter coloração catódica quando o estado de coloração é induzido por tensões negativas ocorrendo em óxidos de Ti, Nb, Mo, Ta e W ou coloração anódica quando o estado de coloração é induzido para tensões positivas ocorrendo em óxidos de Cr, Mn, Fe, Co, Ni Rh e Ir, todos eles óxidos de metais de transição. A reacção redox, para um electrocrómico inorgânico é dada pelas seguintes equações gerais:
Coloração catódica:
yA+ + ye- + MOx (incolor) U AyMOx(colorado), (1)
A+= H+, Li+, Na+, Ag+, (2)
Coloração anódica: yA- + yh+ + MOx (incolor) U AyMOx(colorado), (3)
A = F , CN , OH ; 0 < y < 0.3. (4)
onde a letra M se refere á espécie metálica presente, O ao oxigénio e y e x às respectivas percentagens molares presentes na reacção que leva à alteração de cor.
Para além dos materiais inorgânicos, temos de considerar também os materiais orgânicos, nomeadamente os materiais que na última década se descobriram e que exibem propriedades electrocrómicas excepcionais como os vialogéneos, que possuem uma característica bastante atractiva que consiste na possibilidade de adquirirem diferentes cores consoante a introdução de diferentes substituintes nas suas moléculas.
Os electrocrómicos poliméricos, também eles pertencentes a esta classe, possuem algumas vantagens quando comparados com outros materiais electrocrómicos. Os custos de produção e desenvolvimento destes polímeros são geralmente inferiores relativamente aos materiais electrocrómicos inorgânicos cujas películas são normalmente depositadas por processos como evaporação térmica assistida por canhão de electrões ou pulverização catódica assistida ou não por um magnetrão ou por crescimento molecular epitaxial ou por decomposição química de vapores assistido por um plasma de rádio frequência. A possibilidade do mesmo material poder apresentar diferentes cores consoante os elementos activadores ou estabilizadores adicionados ao polímero, constituem também uma grande vantagem face aos outros electrocrómicos existentes. Um exemplo deste tipo de material (electrocromico multicor) é a polianilina que com o aumento sucessivo do potencial anódico, a película transparente altera para verde, azul e púrpura. Os electrocrómicos poliméricos como materiais orgânicos que são, ap- resentam-se na sua grande maioria como quimicamente instáveis e com elevada sensibilidade à radiação UV, sendo esta a razão principal do diminuto tempo de vida útil de um dispositivo numa aplicação em ambiente externo (fora de portas).
O processo de produção dos materiais acima descritos baseia-se em técnicas químicas, físicas ou físico-químicas, tais como decomposição química de vapores (CVD Chemical Vapor Deposition) [6,7]; decomposição química de vapores assistida por plasma de rf (PECVD, ver figura 4), laser pulsado [8]; sol-gel [9,10]; técnicas de imersão; pirólise atomizada [11]; pulverização catódica [12-14] em corrente contínua ou rádio frequência, com ou sem a presença de um magnetrão; evaporação térmica por filamento aquecido ou canhão de electrões [6]; crescimento electroquímico [6,15]; impressão por jacto de tinta [16], sol gel; deep coating; pirólise, entre outras.
Os transístores de filme fino electrocrómicos objecto da presente patente necessitam, para além do material electrocromico, da incorporação de um material, designado de marcador (electrólito ou condutor iónico). Este material, através do movimento das espécies iónicas que atravessam o material electrocromico, irá modificar a densidade óptica (coloração) do mesmo. Assim temos que: yA+ + ye- + MOx (incolor) Ú AyMOx(colorado) (5)
em que A+= H+, Li+, Na+. (6)
Para a sua funcionalidade o transístor de filme fino electrocrómico utiliza as propriedades da variação da corrente iónica e electrónica que promovem uma variação de cor quando o dispositivo comuta do estado desligado em que a corrente que passa no material electrocrómico é muito baixa para o estado de ligado em que a corrente aumenta mais do que uma ordem de grandeza, provocando uma alteração de cor do óxido (reacção redox), de acordo com a equação 5 a que corresponde a uma alteração brusca da condutividade electrónica do material electrocrómico.
O transístor de filme fino electrocrómico de estrutura lateral, tal como se mostra na figura 3 é constituído de uma tira estreita de um material electrocrómico,
estequiométrico ou não, tal como o óxido de tungsténio (WOXi com 0,5<x<3) que define a região de canal do transístor. O eléctrodo porta encontra-se ligado á região do canal através de um material electrólito, estequiométrico ou não, tal como o perclorato de lítio (LiCIOy, com 0,5<y<4) ionicamente mas não electronicamente, isto é a aplicação de uma tensão porta faz com que apareça uma reacção redox no seio do material electrocrómico, que é activada, da região de dreno para a região da fonte, através da corrente electrónica que se estabelece, conduzindo à alteração de cor de toda a região do canal, designada de pixel da matriz. Para o transístor vertical (similarmente ou que acontece a uma janela electrocrómica), o eléctrodo porta transparente é posicionado acima do electrólito (ver figura 3).
Em qualquer dos casos, o fluxo de corrente eléctrica entra a fonte e o dreno (5) é modulado pela variação da resistência da região de canal (material electrocrómico) devido à reacção redox induzida pelo potencial aplicado ao eléctrodo porta que estabelece uma corrente iónica entre o electrólito e o material electrocrómico, de acordo com uma das equações de 1 a 4. Por exemplo, quando se usa um material
electrocrómico inorgânico como por exemplo o WOx quando o potencial aplicado ao eléctrodo porta é zero, a corrente de porta é também zero e o dispositivo está no chamado estado desligado. Quando o potencial aplicado ao eléctrodo porta é diferente de zero (dependente da polaridade do material electrocrómico) o material torna-se condutor e a sua cor altera-se. Situação inversa ocorre quando o material
electrocrómico é orgânico.
Em termos de funcionamento do transístor de filme fino electrocrómico, um parâmetro importante é a eficiência de coloração (CE), expressa em cm2C_1, que determina o comportamento óptico dos materiais electrocrómicos em função do estímulo, no caso presente, o campo eléctrico. Para a determinação deste parâmetro, o total de cargas injectadas/extraídas por unidade de área assim como a densidade óptica ( d0D ) devem ser conhecidas. A densidade óptica resultante do fluxo de cargas será dada por:
dOD = log (T0( l )/Tc( l )) (7)
em que T0, representa a transmitância inicial e Tc, a transmitância após a coloração, para um determinado comprimento de onda 1 .
A eficiência de coloração é determinada pela seguinte equação:
CE( 1 ) = d OD( 1 )/Q, (8)
em que Q traduz a carga transferida.
Para além do material electrocrómico e do marcador, constitui parte integrante do transístor de filme fino electrocrómico um material electrólito .
No caso dos electrólitos sólidos inorgânicos, existem vários, sendo os mais utilizados/convenientes ao presente evento são o Li3N, LiALF4, LiNb03, na forma estequiométrica ou não, face às excelentes características de penetração e mobilidade associadas ao lítio
Os electrólitos poliméricos caracterizam- se por possuir como base ou matriz um ou mais polímeros. De entre os sais mais utilizados e estudados neste tipo de electrólitos encontram-se o LiC104, Lil, LiBr, LiAsF6 e LiCF3S03, na forma estequiométrica ou não. A grande vantagem deste tipo de electrólitos é a possibilidade de actuarem também como agente encapsulador.
Em relação às condutividades para os diferentes tipos de electrólitos descritos anteriormente, podem verificar-se variações entre 0,33 S/cm a IO 8 S/cm (para electrólitos sólidos inorgânicos e orgânicos), propriedade que irá condicionar o tempo de resposta e portanto o processo de alteração progressiva de cor associado a um dado espaço físico, transversal ou lateral.
Em conformidade com o descrito anteriormente, o dispositivo poderá ser desenvolvido em diferentes tipos de substrato tais como o vidro, polímero e papel. Os materiais utilizados como suporte ou substrato podem ser ou não transparentes, dependendo da aplicação do dispositivo.
Em conformidade com o descrito anteriormente, o dispositivo terá dois eléctrodos metálicos ou de comportamento metálico, que permitem a aplicação ou indução do campo eléctrico estático e o controlo de cargas, se necessário, constituídos por materiais metálicos bons condutores tais como crómio, titânio, prata, alumínio, ouro e outros compostos com base nos elementos enumerados, bem como óxidos condutores transparentes de levada condutividade, como por exemplo, ligas de óxido de índio e zinco; índio e estanho; óxido de zinco dopado com gálio ou óxidos multicompostos de zinco, gálio e índio.
Em conformidade com o descrito anteriormente, o dispositivo poderá ou não ser encapsulado, usando materiais vítreos ou poliméricos, como por exemplo, por colagem ou laminação, Os materiais utilizados como suporte ou substrato podem ser ou não transparentes, dependendo da aplicação do dispositivo.
Em conformidade com o descrito anteriormente se o substrato for funcionalizado, designado de substrato electrolitocrómico, a presente invenção cria um método em que se evita a necessidade de utilização de um electrólito para trocas de carga com o material electrocrómico, para além de não necessitar de contra eléctrodo e permitir a sua auto sustentabilidade. Isto é, a presente invenção consubstancia num só elemento o que se recorreria até ao presente a cinco elementos justapostos a saber: o substrato, o electrólito, o material electrocrómico e o contra eléctrodo, para a estrutura de dispositivos electrocrómicos e uma bateria, para alimentação e armazenamento de cargas. No presente invento, a criação do método de funcionalização das fibras do papel ou fibras poliméricas ou o volume de um material polimérico como o mylar, ou no volume de um vitrocerâmico de muito reduzida espessura (inferior a 1 mm), confere- lhe as capacidades anteriormente mencionadas, às quais precisamos somente de adicionar os eléctrodos, respectivamente porta, numa das faces do substrato funcionalizado e dreno e fonte, na outra face do substrato.
Por outro lado, o desenvolvimento de técnicas de processamento não convencionais, como as de impressão por jacto de tinta veio possibilitar a escrita em papel, baseando- se para o efeito na utilização de tintas constituídas por soluções químicas em que os precursores e respectivos aditivos tenham as funcionalidade físico-químicas desejadas.
Neste contexto, o método de funcionalização do substrato em que assenta a presente invenção tem por base tintas de impressão que consistem em soluções químicas contendo nano partículas de óxidos electrocrómicos e um sal como por exemplo o Lítio que impregnam as fibras do papel ou do substrato polimérico ou do vitrocerâmico de muito reduzida espessura ou do mylar com propriedades hidrófilas, que permitam uma molhagem rápida e em volume, seguidas de revestimentos hidrofóbicos para protecção do substrato funcionalizado (6) e permitir a deposição dos eléctrodos de ligação ou de outros dispositivos que se queira adicionar ao sistema, sem danificar as funcionalidades do sistema electrocrómico cuja ligação se pode fazer por abertura de contactos, designados de vias-de-buracos.
Este desenvolvimento proporciona a obtenção de materiais e dispositivos
electrónicos autosustentáveis descartáveis de baixo custo e possibilita a introdução duma componente dinâmica no substrato funcionalizado.
Descrição Detalhada da Invenção
Como referido anteriormente o presente invento relaciona- se com a criação e processo de fabrico de dispositivos electrocrómicos baseados em transístores de filme fino em que a cor da região de canal se altera quando o transístor comuta do estado desligado para o estado ligado, (ver figuras 1 a 3). O dispositivo é constituído por um substrato (1) não funcionalizado (figura 1) ou funcionalizado (figura 2), de estrutura lateral ou vertical (figura 3).
No caso do substrato rígido ou flexível não ser funcionalizado, sobre este deposita-se um eléctrodo porta (4) a que se segue a deposição um electrólito (3) que contém o elemento marcador, que vai reagir com o material electrocrómico (2) se deposita sobre este, conduzindo à alteração de cor observada, na forma justaposta ou em camada, acelerada pela corrente que flui entre o dreno e a fonte, função do modo de operação do dispositivo, variação transversal da coloração ou variação longitudinal da coloração. Nos extremos do dispositivo (ver figura 3) são colocados eléctrodos dreno e fonte (5) que quando ligados a uma bateria, permitem a aceleração, conjuntamente com a tensão de controlo de porta, da difusão dos iões Li+ provenientes do sal do electrólito para o material electrocrómico. A difusão dos iões de lítio depende da estrutura, este- quiometria e morfologia do material electrocrómico [5,6,15]. A frente colorida é iniciada junto ao ânodo (terminal ligado a um potencial positivo) e a sua progressão é tanto mais rápida quanto maior a tensão aplicada.
Quando o substrato rígido ou flexível é funcionalizado, este contém no seu volume , de um lado material electrocrómico e do outro, material electrólito (ver figura 2). A funcionalização pode ser feita usando soluções químicas contendo nano partículas a que designaremos de tintas electrocrómicas funcionalizadas, a que se acrescenta um sal contendo iões, tais como o Lítio a partir das quais, usando uma tecnologia tal como a impressão a jacto de tinta ou deep coating, ou atomização ou sol gel outra, se confere ao substrato características de material electrocrómico e de electrólito, em simultâneo, sem necessidade de recurso a um contra eléctrodo, para o fabrico de dispositivos electrocrómicos .
Como referido anteriormente, o presente invento relaciona-se com um método de fabrico que permite criar no substrato funções aditivas e em simultâneo de material electrocrómico e electrólito e de armazenador de cargas, fornecendo ao substrato funcionalidades de dispositivo ou sistema electrocrómico auto sustentável de estado sólido, funções que se desconheciam anteriormente à presente invenção.
Em conformidade com o mencionado anteriormente, a funcionalização do substrato com material electrocrómico e electrólito é efectuada impregnando-o com uma uma solução química contendo nano partículas de um óxido inorgânico e um sal, por uma técnica conhecida, como por exemplo deep coating ou impressão a jacto de tinta, função das característica hidrófilas ou hidrófobas do substrato usado ou introduzi-las na etapa de fabrico final do substrato, por conformação ou outra técnica similar.
Em conformidade com a descrição dos produtos anteriores, as nano partículas a usar nas soluções de tintas, ou a introduzir na etapa de fabrico do substrato como precursores poderão ser inorgânicas ou orgânicas ou mistas. No caso de nano partículas inorgânicas, estas serão de óxidos de Ti, Nb, Mo, Ta e W, para uma coloração catódica ou de óxidos de Cr, Mn, Fe, Co, Ni Rh e Ir, para uma coloração anódica.
Em conformidade com o anteriormente descrito, as nano partículas orgânicas serão de vialógénios e materiais poliméricos como a polianilina.
Em conformidade com o descrito anteriormente as funções electrolíticas e de armazenamento de cargas são devidas a um sal inorgânico que contenha Lítio, como o Li 3N, LiALF4, LiNb03 ou polimérico de LiC104, Lil, LiBr, LiAsF6 e LiCF3S03, introduzido no substrato por imersão deste numa solução química, como no caso do papel ou o sal é introduzido no volume do substrato, durante a etapa final do fabrico do substrato.
Em conformidade com o descrito anteriormente quando as diferentes partículas que constituem os materiais electrólito e electrocrómico não são introduzidas durante o processo de fabrico do substrato, uma vez imerso o substrato, como por exemplo o papel nas diferentes soluções, deve-se de seguida proceder à sua secagem para remoção do solvente e finalmente são depositados os dois eléctrodos transparentes (TCO) de ambos os lados da folha de papel ou nos extremos da região da superfície do papel preparada para se ligarem os contactos eléctricos. Os eléctrodos são ligados a uma fonte de alimentação externa através da qual se aplica a diferença de potencial ao dispositivo. Ao aplicar esta diferença de potencial, os iões provenientes do sal vão migrar para o material electrocrómico. A coloração aparece alternadamente de um lado ou do outro do substrato dependendo do sentido da aplicação da diferença de potencial sendo que vai colorir sempre a face onde está o terminal negativo. Ao trocar a polarização da fonte, os iões vão migrar através da matriz celulósica para o outro lado do substrato fazendo com que, agora, esse lado fique colorido e o lado oposto fique transparente. Assim sendo, o substrato celulósico embebido com a solução anteriormente descrita apresenta em simultâneo 4 funções diferentes de acordo com as células electrocrómicas convencionais sendo elas: substrato (1), electrocrómico (2), electrólito (3) e contra-eléctrodo.
Em conformidade com o descrito anteriormente, o dispositivo poderá conter três eléctrodos condutores transparentes (porta, fonte e dreno) que permitem a aplicação ou indução do campo eléctrico e de cargas eléctricas, respectivamente
Não está de momento compreendido em nenhuma patente conhecida ou no estado da técnica o presente invento. A pesquisa efectuada em várias bases de dados de registos de patentes mostrou que nenhum dos processos, produtos e sistemas de funcionalidade do substrato que são objecto da presente invenção estão descritos no estado-da-técnica. Exemplo de desenvolvimento do dispositivo com substrato funcionalizado e «trato não funcionalizado
a) Substrato funcionalizado - Para o processamento de um dispositivo electrocrómico como descrito anteriormente é possível a utilização de diferentes materiais
electrocrómicos assim como sais, porém salienta-se como exemplo, o caso de um dispositivo desenvolvido a partir de um substrato de papel, com uma solução de nanopartículas de trióxido de tungsténio (W03) e perclorato de lítio (LiC104).
1. Preparação do substrato - Não é necessário fazer qualquer tipo de pré-tratamento nem de limpeza no substrato. Apenas é necessário ter um substrato poroso com o tamanho desejado.
2. Preparação da solução - A solução de nanopartículas de W03 é preparada a partir de peróxido de hidrogénio (H202) e de tungsténio metálico (W). O W é adicionado ao H202, a mistura é deixada a repousar até se obter uma solução límpida, em seguida, a solução é aquecida até se obter um pó amarelo. Nesta fase adiciona-se ácido acético. A solução continua a ser aquecida até total evaporação do solvente. O pó amarelo obtido é disperso em etanol anidro. Esta dispersão é deixada a repousar durante vários dias. Seguidamente é adicionado perclorato de lítio.
3. Deposição da solução no substrato - O substrato é totalmente mergulhado na solução anteriormente descrita durante 1 a 5 minutos. Seguidamente seca-se o substrato numa placa de aquecimento entre 50 a 100°C durante 45 a 75 segundos.
4. Deposição dos eléctrodos - De ambos os lados do substrato descrito anteriormente é depositado os eléctrodos porta de dreno e fonte, usando uma máscara mecânica ou escrevendo-os por técnicas de jacto de tinta ou utilizando as técnicas litográficas conhecidas e materiais transparentes na região do visível, como por exemplo IZO (óxido de índio dopado com zinco); GZO (óxido de zinco dopado com gálio); óxido multicomposto de zinco, gálio e índio ou zinco gálio ou estanho ou outro similar, com propriedades eléctricas de semicondutor degenerado, por uma das técnicas anteriormente mencionadas, como por exemplo a técnica de pulverização catódica á temperatura ambiente.
b) Substrato não funcionalizado - No que segue dá-se um exemplo de fabrico usando um substrato vitrocerâmico e alguns dos materiais que podem ser usados para a criação e fabrico do transístor de filme fino.
1. Preparação do substrato rígidos - Inicialmente é mergulhado em álcool
isopropílico a temperaturas que variam entre os 30°C e os 50 °C, sendo para este exemplo escolhida a temperatura de 50°C em ultra-sons por um período de 15 minutos. Após este tempo o substrato é retirado do álcool e mergulhado em água ultra-pura a temperaturas entre os 40°C e os 65 °C 50 por um período igual ao anterior. Posteriormente, o substrato é seco com jacto de azoto.
2. Deposição do Eléctrodo porta - Pela técnica de pulverização catódica assistida por magnetrão a temperaturas que variam entre a ambiente e os 450 °C deposita-se o óxido semicondutor degenerado de elevada condutividade, preferencialmente com uma estrutura amorfa, de acordo com um padrão, que pode envolver uma máscara mecânica ou processos litográficos como o lift-off. De seguida procede-se à sua limpeza, de modo a prepara a superfície assim revestida, para a segunda etapa de fabrico.
3. Deposição das ilhas de isolamento - Pela mesma técnica de pulverização catódica assistida por magnetrão ou por impressão por jacto de tinta, procede-se á deposição, de acordo com um padrão, associado a uma máscara (mecânica ou de foto-resiste) ou por escrita directa um material isolante como multicompostos amorfos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou polimérico como por exemplo o polimetil- metacrilato PMMA. Deste garante-se o isolamento eléctrico do eléctrodo porta das camadas que se seguem, nomeadamente os materiais electrólito e o electrocrómico.
4. Preparação do electrólito polimérico - No interior de uma câmara de luvas com atmosfera controlada, dissolve-se um material altamente sensível ao processo de acumulação de cargas, como por exemplo o perclorato de lítio (LiC104) previamente seco em propileno carbonato (PC), solução M. Paralelamente, é dissolvido o material orgânico que vai funcionar como material electrólito como por exemplo o polimetil- metacrilato (PMMA) em acetato de etilo numa proporção de 1:5 a 1: 10. Finalmente a solução anterior é misturada em LiC104+PC [1M] numa proporção de 2:5 a 2: 10, de forma a se incorporar o marcador no electrólito. Tudo isto é feito segundo um padrão de máscara previamente desenhado.
5. Deposição do material electrocrómico (WOx, 0<x £ 3) - O trióxido de tungsténio é depositado, sobre a estrutura, usando o mesmo padrão usado para depositar o electrólito, com as correspondentes tolerâncias associadas ao método de gravação usado, por uma técnica de deposição física como a evaporação térmica resistiva, por canhões de electrões, pulverização catódica ou por um processo químico, tal como impressão por jacto de tinta ou sol-gel ou pirólise ou deep coating, a temperaturas que variam entre os 20°C e os 450°C. No caso das técnicas físicas, as razões de crescimento dos filmes podem ser muito elevadas, superiores a 3 nm/s, e os custos de processo baixos, nomeadamente no caso da evaporação térmica resistiva, quando comparado com outras técnicas de deposição, como a evaporação térmica assistida por canhão de electrões ou a pulverização catódica.
6. Assemblagem do dispositivo - A colocação de um vidro ou outro material inorgânico ou orgânico transparente no topo do dispositivo, para encapsulamento, é opcional, mas corresponde ao processo de selagem e protecção do dispositivo, de forma a tornar o seu funcionamento independente das condições ambientais em que se encontra. Esta operação de encapsulamento poderá ser feita por uma técnica qualquer conhecida em processos de assemblagem de produtos, como por exemplo a laminação. Aplicações
As principais indústrias que actualmente podem vir a utilizar os dispositivos e circuitos resultantes da utilização desta inovação são toda a indústria electrónica, a indústria de semicondutores, a indústria de mostradores planos e afim, a indústria automóvel, a industria de papel, a industria publicitária, a industria do vidro, a industria dos plásticos, a indústria de instrumentação e sensores, a industria alimentar, a indústria médica e de biotecnologia, a indústria opto electrónica, a indústria da micro e nano electrónica.
O presente invento tem como objectivo substituir os actuais dispositivos
electrocrómicos tipo díodo electrocrómico por transístores de filme fino
electrocrómicos que permitem construir matrizes de grandes áreas em que o pixel é a própria região de canal do transístor que muda de cor, permitindo construir grandes áreas na forma de mostrador que comutam entre o estado transparente ou translúcido ou opaco, ou de cor, em tempos da ordem dos poucos segundos, contrapondo-se a de várias dezenas de minutos necessários para comutar o estado de transparência de janelas com mais de 2 metros quadrados de área. Para além disso, a alteração do estado de cor está associado a uma variação de várias ordens de grandeza da corrente que circula entre o dreno e a fonte, dando à matriz uma outra função activa que pode ser utilizado para fazer a aparecer ou desaparecer anúncios e figuras estáticas ou dinâmicas, com cor, similarmente ao que acontece com os actuais mostradores a cristal liquido (LCD) ou com díodos emissores de luz orgânicos (OLED).
Por outro lado, os processos tecnológicos de fabrico requeridos são compatíveis com os já existentes na indústria electrónica, ou opto electrónica ou de semicondutores, nomeadamente os processos de pulverização catódica para grandes áreas, ou de evaporação térmica ou de sol-gel ou de jacto de tinta, não necessitando por conseguinte, de investimentos elevados, em termos de pesquisa e adequação de tecnologia.
As vantagens técnicas proporcionadas com a presente invenção permitem a utilização activa de substratos funcionalizados de forma dinâmica ou estática servindo simultaneamente como substrato e componente dos dispositivos electrocrómicos que sobre este se produzem.
Embora a implementação preferencial tenha sido descrita em detalhe, deve ser entendido que diversas variações, substituições e alterações podem ser introduzidas, sem se afastarem do âmbito da presente invenção, mesmo que todas as vantagens acima identificadas não estejam presentes. As concretizações aqui apresentadas ilustram a presente invenção que pode ser implementada e incorporada numa variedade de formas diferentes, que se enquadram no âmbito da mesma. Também as técnicas, construções, elementos, e processos descritos e ilustrados na implementação preferencial como distintos ou separados, podem ser combinados ou integrados com outras técnicas, construções, elementos, ou processos, sem se afastarem do âmbito da invenção. Embora a presente invenção tenha sido descrita em diversas concretizações, estas podem ser ainda modificadas, de acordo com o âmbito de aplicação da presente invenção. Outros exemplos de variações, substituições, e alterações são facilmente determináveis por aqueles versados na técnica e poderiam ser introduzidos sem se afastar do espírito e âmbito da presente invenção.
Bibliografia
Zhang Xuping, Zhang Haokang, Li Qing, and Luo Hongli, 'An All-Solid- State Inorganic Electrochromic Display of W03and NiO Films with LiNbO 3Ion Conductor' IEEE ELECTRON DEVICE LETTERS, VOL. 21, NO. 5, MAY 2000.
CO. Avellaneda, D.F. Vieira, A. Al-Kahlout, E.R. Leite, A. Pawlicka, M.A.
Aegerter, 'Solid-state electrochromic devices with Nb 205 :Mo thinfilm and gelatin- based electrolyte', Electrochimica Acta (2007), doi: 10.1016/j.electacta.2007.05.065
S. Papaefthimiou, G. Leftheriotis, P. Yianoulis, 'Study of electrochromic cells incor- porating W03, Mo03, W03-Mo03 and V205 coatings', Thin Solid Films, vol. 343-344, 183-186, 1999
CG. Granqvist, A. Azens, A. Hjelm, L. Kullman, 'Recent advances in elec- trochromics for smart windows applications', Solar Energy vol. 63, n.°4, 199-216, 1998.
C. G. Granqvist, 'Hand book of inorganic electrocromic materiais', Elsevier,
Amsterdam, 2002.
R. Gordon, S. Barry, J. Barton, R. Broomhall-Dillard, 'Atmospheric pressure chemical vapor deposition of electrochromic tungsten oxide films', Thin Solid Films, 392, 231-235, 2001.
D. Gogova, A. Iossifova, T. Ivanova, Z. Dimitrova, K. Gesheva, 'Electrochromic behavior in CVD grow tungsten oxide films', Journal of Crystal Growth, 198/199, 1230-1234, 1999.
G. Fang, K. Yao, Z. Liu, 'Fabrication and electrochromic properties of double layer W03(V)/V205(Ti) thin films prepared by pulsed laser ablation technique', Thin Solid Films, 394, 64-71, 2001.
S. Badilescu, P. Ashirt, 'Study of sol-gel prepared nanostructured W03 thin films and composites for electrochromic applications, Solid State Ionics, 8830, 1-11, 2002.
M. Hashizume, T. Kunitake, 'Prepartion and functionalization of self-supporting (polymer/metal oxide) composite ultrathin films', RIKEN Review, n.° 38: Focused on Nanotechnology in RIKEN II, 2001.
M. Regragui et al, 'Electrochromic effect in W03 thin films prepared by spray pyrolysis', Solar Energy Materials & Solar Cells, 77, 341-350, 2003.
S. Lee, H. Cheong, J. Zhang, A. Mascarenhas, D. Benson, S. Deb, 'Electrochromic mechanism in a-W03.y thin films', Applied Physics Letters, vol. 74 n.°2, 242-244, 1999
J. Scarminio, 'Tensões mecânicas observadas nos efeitos electrocrômico e fotocrômico em filmes de óxido de tungsténio', Revista brasileira de aplicações de vácuo, 20, 52-57, 2001.
K. Bange, 'Colouration of tungsten oxide films: A model for optically active coatings', Solar Energy Materials & Solar Celis 58, 1-131, 1999
H. W. Heuer et al, 'Electrochromic window based on conducting PEDT/PSS', Advanced Functional Materials, n.°2, 92, 2002.
S. Papaefthimiou, G. Leftheriotis, P. Yianoulis, 'Study of W03 films with textured surfaces for improved electrochromic performance', Solid State Ionics, 139, 135-144, 2001.

Claims

Claims
[Claim 1] Transis tor de filme fino electrocrómico de estado sólido caracterizado por ser constituído por uma estrutura composta por um substrato rígido ou flexível funcionalizado ou não (1), como por exemplo vidro ou mylar ou cartão plastificado ou papel, seguida da inserção em camadas ou por justaposição topo a topo das seguintes películas: uma película de um óxido semicondutor degenerado preferencialmente com uma estrutura amorfa, altamente condutor como o IZO (óxido de índio dopado com zinco); GZO (óxido de zinco dopado com gálio); óxido multicomposto de zinco, gálio e índio ou zinco gálio ou estanho ou outro similar (4); ilhas de isolamento (6) de elevada resistividade eléctrica e superfícies altamente planam como multicompostos amorfos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou polimérico como por exemplo o polimetilmetacrilato PMMA ou polivinil; ter ou não uma membrana (7) inorgânica ultra fina com espessuras até 1000 nm à base de óxido de zinco, ou multicompostos amorfos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou orgânico como por exemplo o polimetilmetacrilato PMMA ou o polivinil; um electrólito (3) que pode ser um sólido polimérico com um marcador dissolvido como o lítio, como por exemplo o LiC10x 0<x £ 4, ou o Lil, ou o LiBr, ou o LiAsF6, ou o L1CF3SO3, nas formas estequiométricas e não estequiométricas ou um material inorgânico, como por exemplo o LixN (0<x £ 3), ou o L1ALF4, ou o LiNb03, nas formas estequiométricas e não estequiométrica ou uma solução líquida que já contenha lítio como a solução de L1CIO4 (perclorato de lítio) com PC (propilenocarbonato) em concentrações variáveis, de 0,01 mol/dm3 a 10 mol/dm3, todos eles com condutividades de pelo menos 10 8 S.cnr1 alterada por acumulação de cargas eléctricas; óxido transparente electrocrómico (2), inorgânico, como por exemplo o óxido de tungsténio na forma
estequiométrica ou não estequiométrica (WOx, com 0<x £ 3), ou orgânico como a polianilina e, seguido da colocação de dois eléctrodos metálicos ou óxido semicondutor degenerado, designados respectivamente com fonte e dreno (5), e é encapsulado usando um material inorgânico ou orgânico (6). Transístor de filme fino electrocrómico de estado sólido de acordo com a reivindicação 1 caracterizado por o óxido condutor transparente inorgânico que constitui o eléctrodo porta (4) o dreno e fonte (5) ser um óxido amorfo simples ou multi- composto como óxido de índio dopado com zinco ou o óxido de zinco dopado com gálio ou o óxido multicomposto de zinco, gálio e índio ou zinco gálio ou estanho ou outro similar.
Transístor de filme fino electrocrómico de estado sólido de acordo com a reivindicação 1 caracterizado por as ilhas de isolamento (6) serem de elevada resistividade eléctrica e superfícies altamente planas como multicompostos inorgânicos amorfos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou polimérico como o polimetilmetacrilato.
Transístor de filme fino electrocrómico de estado sólido de acordo com a reivindicação 1 caracterizado por quando existe a membrana ultra fina para trocas iónicas situada sob o eléctrodo porta (7) serem de elevada resistividade eléctrica por onde cargas iónicas podem ser induzidas com espessuras até 1000 nm à base de óxido de zinco, ou multicompostos amorfos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou orgânico como por exemplo o polimetilmetacrilato PMMA ou o polivinil.
Transístor de filme fino electrocrómico de estado sólido de acordo com a reivindicação 1 caracterizado por o electrólito ser um material inorgânico tal como o LixN (0<x £ 3) LiALFy 0<y £ 4), LiNbOz 0<z £ 4, com condutividades inferiores a IO 8 S/cm. Transístor de filme fino electrocrómico de estado sólido de acordo com a reivindicação 1 caracterizado por o electrólito ser um material orgânico tal como o LiC10x 0<x £ 4, Lil, LiBr, LiAsF6 e L1CF3SO3, na forma estequiométrica ou não, com condutividades inferiores a IO 8 S/cm.
Transístor de filme fino electrocrómico de estado sólido de acordo com a reivindicação 1 caracterizado por o óxido electrocrómico inorgânico poder ser constituído por um óxido qualquer contendo um metal de transição, tais como o Ti, Nb, Mo, Ta e W ou em alternativa o Cr, Mn, Fe, Co, Ni Rh e Ir. Transístor de filme fino electrocrómico de estado sólido de acordo com a reivindicação 1 caracterizado por o material electrocrómico ser um material orgânico, tal como os materiais vialogéneos, tal como a polianilina.
[Claim 9] Transístor de filme fino electrocrómico de estado sólido de
acordo com a reivindicação 1 caracterizado por ter uma camada de protecção de encapsulamento constituída por fluoreto de magnésio ou um óxido de elevada resistência química e mecânica como multicompostos inorgânicos amorfos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou polimérico como o polimetilmetacrilato.
[Claim 10] Transístor de filme fino electrocrómico de estado sólido de
acordo com a reivindicação 1 caracterizado por o substrato ser funcionalizado aquando do seu fabrico pela introdução de nanopartículas electrólitas e electrocrómicas como por exemplo de trióxido de tungsténio (W03) e perclorato de lítio (LiC104).
[Claim 11] Transístor de filme fino electrocrómico de estado sólido de
acordo com a reivindicação anterior caracterizado por o substrato ser um meio absorvente ou poroso capaz de absorver em volume os constituintes de uma solução química, como por exemplo o papel.
[Claim 12] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical caracterizado por a solução de nanopartículas de óxido de tungsténio ser preparada a partir de peróxido de hidrogénio (H202) e de tungsténio metálico (W) sendo a solução aquecida até se obter um pó amarelo ao qual se adiciona ácido acético, continuando a solução a ser aquecida até total evaporação do solvente, dissolvendo- se depois o precipitado em etanol ao qual é adicionado perclorato de lítio.
[Claim 13] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical de acordo com a reivindicação anterior caracterizado por o substrato poroso ou absorvente como o papel ser totalmente mergulhado na solução anteriormente descrita durante 1 a 5 minutos, seguindo-se a sua secagem numa placa de aquecimento em atmosfera controlada entre 50 a 100°C durante 45 a 75 segundos.
[Claim 14] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical, de acordo com a reivindicações 12 e 13, caracterizado por se utilizar um substrato funcionalizado e de um dos lados do substrato fun- cionalizado se depositar através de um padrão de uma máscara a membrana ultra fina e o eléctrodo porta do lado substrato que contém maior quantidade de electrólito em contacto com a superfície do substrato e se depositar na face oposta os materiais que definem as regiões de dreno e fonte, separadas de distancias que variam entre o lnm e os 1000 micrómetros, da face do papel que contém maioritariamente as nanopartículas electrocrómicas embebidas, usando uma máscara mecânica ou escrevendo-os por técnicas de jacto de tinta ou utilizando as técnicas litográficas padrão.
[Claim 15] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical de acordo com a reivindicação anterior caracterizado por o substrato fun- cionalizado poder ser passivado usando um material dieléctrico de elevada resistividade eléctrica, como fluoreto de magnésio ou um óxido de elevada resistência química e mecânica como multi- compostos inorgânicos amorfos de tântalo e silício ou tântalo e alumínio ou tântalo e háfnio ou polimérico como o polimetil- metacrilato.
[Claim 16] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical de acordo com a reivindicação 14 caracterizado por os eléctrodos porta e os materiais das regiões de dreno e fonte serem depositados por técnicas conhecidas, como por exemplo o jacto de tinta ou a pulverização catódica de rádio frequência usando materiais transparentes na região do visível e de elevada condutividade, como por exemplo IZO (óxido de índio dopado com zinco); GZO (óxido de zinco dopado com gálio); óxido multicomposto de zinco, gálio e índio ou zinco gálio ou estanho ou outro similar, com propriedades eléctricas de semicondutor degenerado, a temperaturas que podem variar da temperaturas de 150 °c ou 450 °C, função do tipo de substrato funcionalizado, como o seja o papel ou vitrocerâmico poroso.
[Claim 17] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical de acordo com as reivindicações 12 a 16 caracterizado por ao aplicar-se uma tensão predeterminada no eléctrodo porta (4) na presença ou não de uma membrana esta tensão promove a indução de cargas iónicas do electrólito (3) para o material electrocrómico (2)
dando-se uma reacção redox a partir do ânodo para a fonte (5) ou vice versa, função do tipo de material electrocrómico usado acelerada lateral ou verticalmente pela corrente electrónica que se estabelece entre as regiões de dreno e fonte que aumenta várias ordens de grandeza ao passar do estado desligado ao ligado e faz com a região do canal feita á base de um material electrocrómico mude de cor.
[Claim 18] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical de acordo com a reivindicação anterior caracterizado por a mudança de cor que se observa na região de canal se conservar após retirada da tensão de porta ou ser invertida ao seu valor original por alteração da polaridade no eléctrodo porta e ou entre as regiões de dreno e fonte.
[Claim 19] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical de acordo com a reivindicação anterior, caracterizado por o tempo de comutação de cor por cada pixel depender da geometria do pixel.
[Claim 20] Método de fabrico e criação de transístores de filme fino
electrocrómicos de estrutura lateral ou vertical de acordo com a reivindicação anterior caracterizado por o tempo de comutação de cor de uma matriz ser proporcional ao número de pixéis que a constituem podendo variar de 1 milissegundo a 10 segundos, para mostradores com áreas até 4 metros quadrados.
PCT/IB2009/054425 2009-04-01 2009-10-08 Transístores de filme fino electrocrómicos de estrutura lateral ou vertical utilizando substratos funcionalizados ou não funcionalizados, e método de fabricação dos mesmos WO2010112985A1 (pt)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09768419.5A EP2416390B1 (en) 2009-04-01 2009-10-08 Electrochromic thin film transistors using functionalized substrates and method of manufacturing same
CN200980159628.3A CN102460757B (zh) 2009-04-01 2009-10-08 使用功能化或非功能化的玻璃陶瓷的、聚合物的、金属的或者天然的、合成的或混合纤维质纸的衬底的具有横向或垂直结构的电致变色薄膜晶体管的形成与制造的方法
BRPI0925039A BRPI0925039B1 (pt) 2009-04-01 2009-10-08 transístor de filme fino eletrocrômico e método de fabricação do mesmo
US13/262,834 US8503059B2 (en) 2009-04-01 2009-10-08 Electrochromic thin film transistors with lateral or vertical structure using functionalized or non-functionalized substrates and method of manufacturing same
ZA2011/06848A ZA201106848B (en) 2009-04-01 2011-09-20 Method for the manufacture and creation of electrochromic thin film transistors with lateral or vertical structure using functionalized or non-functionalized vitroceramic,polymeric,metallic,or natural,synthetic or mixed cellulosic paper substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT104482 2009-04-01
PT104482A PT104482A (pt) 2009-04-01 2009-04-01 Método de fabrico e criação de transístores de filme fino electrocrómicos de estrutura lateral ou vertical utilizando substratos vitrocerâmicos, poliméricos, metálicos ou de papel celulósico natural, sintético ou misto funcionalizados ou não funciona

Publications (1)

Publication Number Publication Date
WO2010112985A1 true WO2010112985A1 (pt) 2010-10-07

Family

ID=41786216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/054425 WO2010112985A1 (pt) 2009-04-01 2009-10-08 Transístores de filme fino electrocrómicos de estrutura lateral ou vertical utilizando substratos funcionalizados ou não funcionalizados, e método de fabricação dos mesmos

Country Status (7)

Country Link
US (1) US8503059B2 (pt)
EP (1) EP2416390B1 (pt)
CN (1) CN102460757B (pt)
BR (1) BRPI0925039B1 (pt)
PT (1) PT104482A (pt)
WO (1) WO2010112985A1 (pt)
ZA (1) ZA201106848B (pt)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT104635A (pt) * 2009-06-16 2010-12-16 Univ Nova De Lisboa Dispositivo electrocrómico e método para a sua produção
CN102253558B (zh) * 2010-05-17 2014-02-19 财团法人金属工业研究发展中心 生色装置及其制造方法、电子产品及交通工具
CN102779855B (zh) * 2012-07-06 2015-08-12 哈尔滨理工大学 双肖特基结氧化锌半导体薄膜晶体管及制作方法
US9551758B2 (en) 2012-12-27 2017-01-24 Duracell U.S. Operations, Inc. Remote sensing of remaining battery capacity using on-battery circuitry
US9478850B2 (en) 2013-05-23 2016-10-25 Duracell U.S. Operations, Inc. Omni-directional antenna for a cylindrical body
WO2014191138A1 (en) * 2013-05-31 2014-12-04 Solarwell Large capacitance electronic components
US9726763B2 (en) 2013-06-21 2017-08-08 Duracell U.S. Operations, Inc. Systems and methods for remotely determining a battery characteristic
US9543623B2 (en) 2013-12-11 2017-01-10 Duracell U.S. Operations, Inc. Battery condition indicator
US10460804B2 (en) 2014-03-14 2019-10-29 Massachusetts Institute Of Technology Voltage-controlled resistive devices
WO2016040792A1 (en) * 2014-09-11 2016-03-17 Massachusetts Institute Of Technology Voltage-controlled resistive devices
US9799825B2 (en) 2014-03-14 2017-10-24 Massachusetts Institute Of Technology Voltage regulation of device functional properties
US9882250B2 (en) 2014-05-30 2018-01-30 Duracell U.S. Operations, Inc. Indicator circuit decoupled from a ground plane
US10297875B2 (en) 2015-09-01 2019-05-21 Duracell U.S. Operations, Inc. Battery including an on-cell indicator
JP6907512B2 (ja) * 2015-12-15 2021-07-21 株式会社リコー 電界効果型トランジスタの製造方法
CN105633282B (zh) * 2016-03-08 2018-04-17 中国计量学院 一种带有电致变色薄膜的光敏有机场效应晶体管
US10546940B2 (en) * 2016-09-07 2020-01-28 International Business Machines Corporation On-chip integrated temperature protection device based on gel electrolyte
US11024891B2 (en) 2016-11-01 2021-06-01 Duracell U.S. Operations, Inc. Reusable battery indicator with lock and key mechanism
US10151802B2 (en) 2016-11-01 2018-12-11 Duracell U.S. Operations, Inc. Reusable battery indicator with electrical lock and key
US10483634B2 (en) 2016-11-01 2019-11-19 Duracell U.S. Operations, Inc. Positive battery terminal antenna ground plane
US10818979B2 (en) 2016-11-01 2020-10-27 Duracell U.S. Operations, Inc. Single sided reusable battery indicator
US10608293B2 (en) 2016-11-01 2020-03-31 Duracell U.S. Operations, Inc. Dual sided reusable battery indicator
RU175418U1 (ru) * 2016-12-12 2017-12-04 Российская Федерация, от имени которой выступает федеральное государственное казенное учреждение "Войсковая часть 68240" (ФГКУ "В/ч" 68240) Полевой транзистор на углеродной пленке с вертикальным каналом проводимости
US11340510B1 (en) * 2017-05-03 2022-05-24 Halio, Inc. Electrochromic devices with nanostructure thin film cathodes
US10187107B1 (en) * 2018-04-23 2019-01-22 Nokia Solutions And Networks Oy Electrochromic switch
CN110501853B (zh) * 2018-05-18 2022-11-22 深圳华信嘉源科技有限公司 一种高对比度三电极电调光器件及其制备和控制方法
US10467524B1 (en) * 2018-06-06 2019-11-05 International Business Machines Corporation Three-terminal neuromorphic vertical sensing
CN112748620A (zh) * 2019-10-30 2021-05-04 传奇视界有限公司 电控变色玻璃
CN110759390B (zh) * 2019-11-19 2022-01-28 广西大学 一种增强和检测氧化镍电致变色薄膜循环稳定性的方法
CN112987433A (zh) * 2019-12-14 2021-06-18 传奇视界有限公司 调色玻璃及其制备方法
US20230094869A1 (en) * 2020-03-05 2023-03-30 Northwestern University Vertical organic electrochemical transistor pairs
EP3886243A1 (en) 2020-03-27 2021-09-29 Nokia Technologies Oy A radio-frequency switching apparatus
RU204091U1 (ru) * 2020-12-25 2021-05-06 Общество с ограниченной ответственностью "Сенсор Микрон" Полевой транзистор с вертикальным каналом для СВЧ - техники
US11837754B2 (en) 2020-12-30 2023-12-05 Duracell U.S. Operations, Inc. Magnetic battery cell connection mechanism
CN115196885B (zh) * 2022-08-15 2024-01-26 安徽理工大学 一种多色彩高循环稳定性的CeO2/PANI电致变色薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163982A (en) * 1977-04-29 1979-08-07 Bell Telephone Laboratories, Incorporated Solid state electrical switch employing electrochromic material
WO2002071140A1 (en) * 2001-03-07 2002-09-12 Acreo Ab Electrochromic device
US20080128687A1 (en) * 2001-03-07 2008-06-05 Acreo Ab Electrochemical device and methods for producing the same
WO2008090257A1 (en) * 2007-01-24 2008-07-31 ÖSTERBACKA, Ronald An organic field-effect transistor
US20090026443A1 (en) * 2005-03-15 2009-01-29 Pioneer Corporation Organic thin-film transistor and method of manufacture thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868726A (ja) * 1981-10-20 1983-04-23 Matsushita Electric Ind Co Ltd エレクトロクロミツク表示装置
DE602004001508T2 (de) * 2003-01-31 2007-02-15 Ntera Ltd. Elektrochromische anzeigeeinrichtung
US20080297878A1 (en) 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
PT103671B (pt) 2007-03-02 2009-04-08 Univ Nova De Lisboa Dispositivo medidor de estado sólido e respectivo sistema de controlo e processo de fabrico
GB2449927A (en) * 2007-06-08 2008-12-10 Seiko Epson Corp Electrolyte gated TFT
PT103951A (pt) 2008-01-31 2009-07-31 Univ Nova De Lisboa Processamento de elementos eléctricos e/ou electrónicos em substratos de material celulósico
PT103998B (pt) 2008-03-20 2011-03-10 Univ Nova De Lisboa Dispositivos electrónicos e optoelectrónicos de efeito de campo compreendendo camadas de fibras naturais, sintéticas ou mistas e respectivo processo de fabrico
PT103999B (pt) 2008-03-20 2012-11-16 Univ Nova De Lisboa Processo de utilização e criação de papel à base de fibras celulósicas naturais, fibras sintéticas ou mistas como suporte físico e meio armazenador de cargas elétricas em transístores de efeito de campo com memória autossustentáveis usando óxidos sem
KR101708373B1 (ko) * 2010-02-12 2017-02-21 삼성전자주식회사 능동형 전기변색소자 어레이 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163982A (en) * 1977-04-29 1979-08-07 Bell Telephone Laboratories, Incorporated Solid state electrical switch employing electrochromic material
WO2002071140A1 (en) * 2001-03-07 2002-09-12 Acreo Ab Electrochromic device
US20080128687A1 (en) * 2001-03-07 2008-06-05 Acreo Ab Electrochemical device and methods for producing the same
US20090026443A1 (en) * 2005-03-15 2009-01-29 Pioneer Corporation Organic thin-film transistor and method of manufacture thereof
WO2008090257A1 (en) * 2007-01-24 2008-07-31 ÖSTERBACKA, Ronald An organic field-effect transistor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NILSSON D ET AL: "The electrochemical transistor and circuit design considerations", PROCEEDINGS OF THE 2005 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, IRELAND 29TH AUGUST - 1ST SEPTEMBER 2005, PISCATAWAY, NJ, USA,IEEE, vol. 3, 29 August 2005 (2005-08-29), pages 349 - 352, XP010845333, ISBN: 978-0-7803-9066-9 *
YU-JU LIN ET AL: "Improvement of transparent organic thin film transistor performance by inserting a lithium fluoride buffer layer", APPLIED PHYSICS LETTERS AMERICAN INSTITUTE OF PHYSICS USA, vol. 93, no. 4, 28 July 2008 (2008-07-28), pages 043305 - 1, XP002573609, ISSN: 0003-6951 *

Also Published As

Publication number Publication date
PT104482A (pt) 2010-10-01
CN102460757B (zh) 2014-06-18
BRPI0925039B1 (pt) 2019-10-22
EP2416390B1 (en) 2015-07-15
ZA201106848B (en) 2012-12-27
US8503059B2 (en) 2013-08-06
US20120081774A1 (en) 2012-04-05
CN102460757A (zh) 2012-05-16
EP2416390A1 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2010112985A1 (pt) Transístores de filme fino electrocrómicos de estrutura lateral ou vertical utilizando substratos funcionalizados ou não funcionalizados, e método de fabricação dos mesmos
Faughnan et al. Electrochromic displays based on WO3
Patel et al. All-inorganic solid-state electrochromic devices: a review
Gillaspie et al. Metal-oxide films for electrochromic applications: present technology and future directions
US7301687B2 (en) Electrochemical device
KR950001666B1 (ko) 전기 크롬형 가변 투광판유리
Hong et al. Nano-Prussian blue analogue/PEDOT: PSS composites for electrochromic windows
US10545387B2 (en) Electrochromic device for applying voltage to electrodes
US20050210672A1 (en) Method to contact patterned electrodes on porous substrates and devices thereby
Kang et al. Electrochromic device of PEDOT–PANI hybrid system for fast response and high optical contrast
Cossari et al. Room temperature processing for solid-state electrochromic devices on single substrate: From glass to flexible plastic
KR101959450B1 (ko) 리간드-금속산화물층을 포함하는 자기구동 전기변색소자
He et al. High capacity and performance lithium based electrochromic device via amorphous tantalum oxide protective layer
Wei et al. Electrochemical investigation of electrochromic device based on WO3 and Ti doped V2O5 films by using electrolyte containing ferrocene
Kumar et al. Simulation and fabrication of tungsten oxide thin films for electrochromic applications
GRANOVIST Electrochromic Tungsten-Oxide–Based Thin Films: Physics, Chemistry, and Technology
KR100581966B1 (ko) 염료감응 태양전지 구동형 전기변색소자
Rice A comparison of the behaviors of tungsten trioxide and anodic iridium oxide film electrochromics in a nonaqueous acidic medium
KR101857051B1 (ko) 산화 그래핀 보호층 포함 전기변색용 전극필름, 이의 제조방법 및 산화 그래핀 보호층 포함 전극필름을 포함하는 전기변색 소자
WO2020137328A1 (ja) エレクトロクロミックトランジスタ、電子カーテン、情報表示記憶装置および防眩ミラー
Haritha et al. Sol–gel derived ZnO thin film as a transparent counter electrode for WO3 based electrochromic devices
Chen et al. Logotype-selective electrochromic glass display
CN103135305A (zh) 具有多孔结构的电致变色装置及其制程方法
Kaneko et al. Electro-deposited vanadium oxide as a counter-electrode for PProDOT-Me2 based electrochromic devices (ECDs)
Souza et al. Solid hybrid polyelectrolyte with high performance in electrochromic devices: Electrochemical stability and optical study

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159628.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7388/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009768419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13262834

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0925039

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0925039

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111003