WO2010109915A1 - Vapor deposition apparatus and vapor deposition method - Google Patents

Vapor deposition apparatus and vapor deposition method Download PDF

Info

Publication number
WO2010109915A1
WO2010109915A1 PCT/JP2010/002208 JP2010002208W WO2010109915A1 WO 2010109915 A1 WO2010109915 A1 WO 2010109915A1 JP 2010002208 W JP2010002208 W JP 2010002208W WO 2010109915 A1 WO2010109915 A1 WO 2010109915A1
Authority
WO
WIPO (PCT)
Prior art keywords
shower
substrate
gas
plate
shower head
Prior art date
Application number
PCT/JP2010/002208
Other languages
French (fr)
Japanese (ja)
Inventor
岡田俊範
釆山和弘
坂上英和
坪井俊樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010109915A1 publication Critical patent/WO2010109915A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • the present invention relates to a vapor phase growth apparatus and a vapor phase growth method such as a vertical showerhead type MOCVD (Metal Organic Chemical Vapor Deposition).
  • MOCVD Metal Organic Chemical Vapor Deposition
  • organometallic gases such as trimethylgallium (TMG) or trimethylaluminum (TMA), and ammonia (NH 3 ) MOCVD (Metal Organic Chemical Vapor Deposition) method is used in which a compound semiconductor crystal is grown by introducing a hydrogen compound gas such as phosphine (PH 3 ) or arsine (AsH 3 ) into the growth chamber as a source gas contributing to film formation. It has been.
  • the MOCVD method is a method in which a compound semiconductor crystal is grown on a substrate by introducing the above-described source gas into a growth chamber together with a carrier gas and heating it to cause a gas phase reaction on a predetermined substrate.
  • MOCVD MOCVD
  • FIG. 9 shows a schematic configuration of an example of a conventional vertical shower head type MOCVD apparatus used in the MOCVD method.
  • a gas pipe 103 for introducing a reaction gas and an inert gas from a gas supply source 102 to a growth chamber 111 inside the reaction furnace 101 is connected to the growth chamber 111 inside the reaction furnace 101.
  • a shower plate 110 having a plurality of gas discharge holes for introducing a reaction gas and an inert gas into the growth chamber 111 is installed as a gas introduction part.
  • a rotating shaft 112 that can be rotated by an actuator (not shown) is installed in the center of the lower portion of the growth chamber 111 of the reaction furnace 101, and a susceptor 108 is attached to the tip of the rotating shaft 112 so as to face the shower plate 110. ing.
  • a heater 109 for heating the susceptor 108 is attached to the lower part of the susceptor 108.
  • a gas exhaust unit 104 for exhausting the gas in the growth chamber 111 inside the reaction furnace 101 to the outside is installed at the lower part of the reaction furnace 101.
  • This gas exhaust unit 104 is connected via a purge line 105 to an exhaust gas treatment device 106 for rendering the exhausted gas harmless.
  • the substrate 107 is set on the susceptor 108, the susceptor 108 is rotated by the rotation of the rotating shaft 112, and the heater 109 is heated.
  • the substrate 107 is heated to a predetermined temperature via the susceptor 108.
  • a reactive gas and an inert gas are introduced into the growth chamber 111 inside the reaction furnace 101 from a plurality of gas discharge holes formed in the shower plate 110.
  • the surface of the shower plate 110 is heated by the influence of heat from the substrate 107 and the susceptor 108, so that some chemical reaction proceeds on the surface of the shower plate 110.
  • a product is formed on the surface of the shower plate 110, and the problem that the gas discharge holes of the shower plate 110 are clogged with the product, and the deposits on the surface of the shower plate 110 are on the substrate 107. This causes a problem that the product falls and becomes defective.
  • the growth chamber 203 is separated in a state where a plurality of reaction gases are separated by individual shower head conduits 201 and 202.
  • a method is shown in which a cooling chamber 204 for cooling the shower head conduits 201 and 202 is provided on the growth chamber 203 side.
  • gas mixing is small in the vicinity of the shower surface, the shower surface can be cooled, and vapor phase growth in the vicinity of the shower surface hardly occurs. For this reason, product adhesion to the shower surface can be suppressed.
  • the product adhesion on the shower surface is suppressed. Not a little product will adhere to the surface, and clogging will occur if it is not cleaned regularly. Further, the attached product falls onto the substrate to be processed, and impurities are mixed into the thin film. Further, in the case of cleaning, since the shower head 205 itself is removed for cleaning, the growth chamber 203 must be opened to the atmosphere at the time of replacement, resulting in a decrease in operating rate.
  • a shower plate 301 having pores corresponding to the shower head is used, and the shower plate is fixed by screwing 302 and 302.
  • the method of covering the shower surface is shown. Deposits are deposited on the cover due to the presence of the shower plate 301, and by periodically replacing the shower plate 301, the occurrence of defects such as dropping of the deposits on the substrate is prevented.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 8-91989 (published on April 9, 1996)” Japanese Patent Publication “Japanese Patent Laid-Open No. 11-131239 (published May 18, 1999)”
  • the present invention has been made in view of the above-described conventional problems, and the object thereof is to install a shower plate on the surface of a shower head, suppress peeling of a product formed on the surface of the shower plate, and a substrate to be processed.
  • An object of the present invention is to provide a vapor phase growth apparatus and a vapor phase growth method capable of ensuring the above film uniformity and film reproducibility.
  • the vapor phase growth apparatus of the present invention includes a substrate holding member for placing a substrate to be processed, a substrate heater for heating the substrate to be processed, and a plurality of gas discharge holes in a reaction furnace. And a shower plate mounted on the shower head and provided with a plurality of plate holes. The shower head covers the gas discharge holes of the shower head and the plate holes of the shower plate.
  • the substrate holding member is disposed outside the region heated by the substrate heater.
  • a region having a low thermal conductivity is formed on the opposite surface, on the surface where the shower plate is disposed close to the shower head. It is.
  • the above-described configuration of the vapor phase growth apparatus of the present invention can be restated as follows. That is, the vapor phase growth apparatus of the present invention is placed on the substrate holding member by heating a part of the substrate holding member on which the substrate to be processed is placed and the substrate holding member in order to solve the above problems.
  • a shower plate having a plurality of plate holes communicating with the holes is provided in the growth chamber, and is supplied from the gas supply source to the growth chamber containing the substrate to be processed through the gas discharge holes.
  • the shower plate is disposed in a partial region between the shower head and the shower plate.
  • a low thermal conductivity region having lower thermal conductivity than the material constituting the substrate is provided, and the low thermal conductivity region is non-heated outside the region heated by the substrate heater in the substrate holding member. In other words, it is characterized by being provided in a region opposite to the region.
  • the temperature of the outermost surface of the shower head is controlled by the refrigerant in order to suppress the adhesion of the product on the surface of the shower head, and the area in which the refrigerant flows extends over the entire surface of the shower head. This is because when only a part of the temperature is controlled, a temperature distribution is generated on the shower head surface and the shower head is distorted due to thermal expansion.
  • the shower plate is installed on the shower head surface as described above, the temperature of the substrate to be processed is heated by the heat from the substrate heater, and the temperature rises. Since the amount of heating from the heater is small, the temperature rise is low, and the surface in contact with the shower head is cooled, so that the temperature in the outer peripheral region of the shower plate is lower than that in the central portion.
  • a product that firmly adheres to the surface of the shower plate is formed in the central high temperature region, and flakes are easily peeled off in the peripheral low temperature region. A product is formed.
  • the shower plate is arranged close to the shower head.
  • a region with low thermal conductivity is formed, so cooling from the shower head is eliminated, and the shower plate temperature rises due to heating from the substrate heater and heat conduction from the plate hole installation region.
  • a product that adheres firmly over the entire plate surface can be formed. Therefore, it is possible to provide a vapor phase growth apparatus and a vapor phase growth method capable of suppressing peeling of a product formed on the surface of a shower plate and ensuring film uniformity and film reproducibility on a substrate to be processed. .
  • the vapor phase growth apparatus of the present invention is a surface facing the substrate holding member outside the region heated by the substrate heater of the substrate holding member, and the shower plate is close to the shower head. Thus, a region having a low thermal conductivity is formed on the arranged surface.
  • the vapor phase growth method of the present invention is a surface facing the substrate holding member outside the region heated by the substrate heater of the substrate holding member, and the shower head includes a shower plate. Is a method of forming a film by supplying a gas through the gas discharge hole and the plate hole in a region where low thermal conductivity is formed on the surface where the two are arranged close to each other.
  • the surface facing the substrate holding member and the surface where the shower plate is disposed close to the shower head is low in thermal conductivity.
  • a vapor phase growth apparatus and a vapor phase growth method capable of ensuring uniformity and reproducibility of a film.
  • FIG. 1 shows an embodiment of a vapor phase growth apparatus according to the present invention, and is a schematic diagram showing an overall configuration of the vapor phase growth apparatus. It is a principal part enlarged view which shows the relationship of the space part of the shower head and shower plate in the said vapor phase growth apparatus, Comprising: The A section of FIG. 1 is expanded.
  • FIG. 1 shows an embodiment of a vapor phase growth apparatus according to the present invention, and is a schematic diagram showing an overall configuration of a vapor phase growth apparatus in which through holes are provided in a shower plate.
  • FIG. 4 is a main part enlarged view showing a relation of a space part between a shower head and a shower plate in the vapor phase growth apparatus, and showing an A portion of FIG. 3 in an enlarged manner. It is a principal part enlarged view which shows the relationship of the space part of the shower head and shower plate in the conventional vapor phase growth apparatus, and expands and shows the A section of FIG. (A) is a photograph which shows the product adhesion situation to the conventional shower plate surface as a comparative example, (b) is a photograph which shows the product adhesion situation to the shower plate surface of this Embodiment. . (C) is the photograph which shows the product adhesion state to the shower plate surface which provided the several through-hole of this Embodiment.
  • FIG. 5 is a main part enlarged view showing a further embodiment of the vapor phase growth apparatus according to the present invention and showing an enlarged portion A of FIG. 1 showing a case where a counterbore is installed in the shower head.
  • It is sectional drawing which shows the structure of the conventional vertical shower head type vapor phase growth apparatus. It is sectional drawing which shows the structure of the conventional vertical type shower head type vapor phase growth apparatus. It is sectional drawing which shows the structure of the other conventional vapor phase growth apparatus.
  • FIG. 1 shows an example of a schematic configuration of a vertical showerhead type MOCVD apparatus 10 which is an example of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus as a vapor phase growth apparatus of the present invention. .
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the MOCVD apparatus 10 of the present embodiment has a reaction furnace 2 having a reaction chamber 1 as a growth chamber that is isolated from the atmosphere side and maintains an airtight state, and the inside of the reaction chamber 1.
  • the reaction chamber 1 is separated into a reaction chamber 1 and an external reaction space 8 by a reaction chamber partition 7 provided inside the reaction furnace 2.
  • a purge gas (N 2 gas or H 2 gas) is separated into the reaction external space 8 by a purge gas supply pipe 25. ) Has been introduced.
  • the substrate holding member 4 is provided at one end of the rotation transmission member 5, and the rotation transmission member 5 can be rotated by a rotation mechanism (not shown).
  • a substrate heater 6 is provided below the substrate holding member 4.
  • a raw material gas (hereinafter simply referred to as gas) is passed from the shower head 20 through the gas discharge holes H 3 and H 5 and below the shower head 20. It is introduced into the reaction chamber 1 through the plate hole 31 of the shower plate 30 provided on the side.
  • the substrate heating heater 6 heats the substrate 3 to be processed through the substrate holding member 4, and the film forming chemical reaction on the substrate 3 to be processed is promoted. A thin film is formed.
  • the gas that has passed over the substrate 3 is discharged from the gas outlet 1a.
  • the shower head 20 includes a first gas distribution space 23 that is filled with a first gas, a second gas distribution space 24 that is filled with a second gas different from the first gas, and the first gas and the second gas.
  • the refrigerant space 22 is filled with a refrigerant to be cooled. These spaces are stacked in the order of the refrigerant space 22, the first gas distribution space 23, and the second gas distribution space 24 from the substrate 3 to be processed. ing.
  • the shower plate 30 is arrange
  • the second gas is introduced into the second gas distribution space 24 from the second gas introduction port 24a, and the second gas introduced into the second gas distribution space 24 includes the first gas distribution space 23 and the refrigerant space 22. And is discharged into the reaction chamber 1 through a plurality of second gas supply pipes 24b having gas discharge holes H5 communicating with the plate holes 31 of the shower plate 30.
  • the first gas is introduced into the first gas distribution space 23 from the first gas introduction port 23a, and the first gas introduced into the first gas distribution space 23 penetrates the refrigerant space 22 and is showered.
  • the gas is discharged into the reaction chamber 1 through a plurality of first gas supply pipes 23b having gas discharge holes H3 communicating with the plate holes 31 of the plate 30.
  • the first gas and the second gas are discharged into the reaction chamber 1 independently without being mixed by the shower head 20.
  • the shower head 20 is sealed by an O-ring 7a so as to maintain an airtight state with the reaction furnace 2, and the shower head 20 and the reaction furnace 2 are configured to be removable.
  • an O-ring 7b is provided between the first gas distribution space 23 and the second gas distribution space 24, and an O-ring 7c is also provided between the second gas distribution space 24 and its top plate.
  • shower plate 30 is fixed and installed in close contact with a shower head lower wall surface 20a of the shower head 20 by screws or the like (not shown).
  • the substrate heating heater 6 heats the substrate 3 to be processed through the substrate holding member 4, and the film forming chemical reaction on the substrate 3 is promoted, whereby a thin film is formed on the substrate 3 to be processed. Therefore, the temperature of the substrate holding member 4 itself is high, and the shower plate 30 on the opposite surface is outside the region heated by the substrate heater 6 of the substrate holding member 4, that is, in the heating region in FIG.
  • the shower plate 30 heated by the substrate holding member 4 and other than the opposing surface of the substrate holding member 4 is difficult to reach the heating from the substrate holding member 4 in the non-heated region.
  • the shower head 20 has a refrigerant space 22, and the shower head lower wall surface 20 a of the shower head 20 is cooled by the refrigerant space 22 so that the temperature is controlled to be uniform.
  • FIG. 5 is an enlarged view showing a region A in FIG. 1 when a conventional shower plate is installed. Since the temperature of the shower head lower wall surface 20a is kept uniform, the temperature of the shower plate wall surface 30a on the substrate 3 side of the shower plate 30 is determined by heating from the substrate holding member 4. Therefore, the temperature of the shower plate wall surface 30a is high in the heating region in FIG. 5 and low in the non-heating region.
  • FIG. 6A is a partially enlarged photograph of a shower plate wall surface 30a after film formation when a conventional shower plate is installed. As can be seen from FIG. 6 (a), in the heating region, no film peeling or the like is observed in the product 44, and a beautiful thin film is generated.
  • peeling product 45 miscellaneous crystals in which film peeling (hereinafter referred to as peeling product 45) is observed are generated in the product. That is, since the shower plate 30a wall surface temperature is low in the non-heated region, a peel product 45 as shown in FIG. 6A is generated.
  • the shower head lower wall surface 20a and the shower plate 30 of the shower head 20 are disposed on the opposing surfaces of the shower head lower wall surface 20a and the shower plate 30 outside the plate hole 31 installation region of the shower plate 30.
  • a space 41 is formed.
  • FIG. 2 is an enlarged view showing a portion A in FIG.
  • the shower plate 30 is provided with a counterbore 42 on the shower plate 30 outside the region where the plate hole 31 is installed and on the side facing the shower head lower wall surface 20a.
  • a space 41 is formed between the head lower wall surface 20 a and the shower plate 30.
  • FIG. 6B is a partially enlarged photograph of the shower plate wall surface 30a after film formation in the embodiment shown in FIG.
  • the shower plate 30 is provided with a space 41.
  • the effect is such that no film peeling or the like is observed in the product 44 regardless of the heating region and the non-heating region, and a beautiful thin film is generated. Therefore, peeling of the product formed on the surface of the shower plate 30 can be suppressed and film uniformity and film reproducibility on the substrate to be processed 3 can be ensured.
  • FIG. 3 is a schematic diagram showing the overall configuration of a vapor phase growth apparatus in which through holes are provided in a shower plate.
  • FIG. 4 is an enlarged view of a main part showing an enlarged portion A of FIG.
  • the shower plate 30 is provided with counterbore 42 on the shower plate 30 outside the region where the plate hole 31 is installed and on the side facing the shower head lower wall surface 20a.
  • a space 41 is formed between the shower head lower wall surface 20a and the shower plate 30, and a through hole 43 is formed on the counterbore 42 surface.
  • the reaction furnace 2 is separated into a reaction chamber 1 and a reaction external space 8 by a reaction chamber partition wall 7, and purge gas (N 2 gas or H 2 gas) is introduced into the reaction external space 8 by a purge gas supply pipe 25.
  • the purge gas flow rate is adjusted so that the pressure in the reaction chamber 1 and the reaction external space 8 becomes lower on the reaction chamber 1 side. With the above configuration, the purge gas in the reaction external space 8 can be introduced into the reaction chamber 1 through the through hole 43.
  • the purge gas can be easily introduced to the outside of the installation area of the plate hole 31 of the shower plate 30, and the gas reaching the outside of the installation area of the plate hole 31 of the shower plate 30 is discharged to the gas discharge port 1a.
  • the product 44 generated outside the installation area of the plate hole 31 of the shower plate 30 can be suppressed.
  • the product 44 generated on the surface of the shower plate 30 is thickened by repeating the film formation and eventually peels off.
  • the amount of the product 44 is reduced, so the number of film formations until the product is peeled off. Can be increased.
  • the gas stagnation shown in FIG. 5 can be prevented, and the peeling products 45 (miscellaneous crystals) generated by the gas stagnation can be reduced.
  • generated on the reaction chamber partition 7 wall surface can also be suppressed. Therefore, peeling of the product formed on the surface of the shower plate 30 can be suppressed and film uniformity and film reproducibility on the substrate to be processed 3 can be ensured.
  • the shape of the counterbore 42 on the shower plate 30 on the side facing the shower head lower wall surface 20a may be a shape as shown in FIGS. 7 (a) and 7 (b).
  • FIG. 8 is an enlarged view showing another embodiment of the area A in FIG.
  • the shower head 20 is provided with a counterbore 42 outside the region where the plate hole 31 of the shower plate 30 is installed, thereby forming a space 41 between the shower head lower wall surface 20 a and the shower plate 30.
  • the temperature of the shower head lower wall surface 20a is not transmitted to the shower plate. Since there is also heat transfer due to heat conduction from the heating region, the temperature of the shower plate wall surface 30a can be kept high even in the non-heating region. Further, purge gas can be introduced by providing a through hole 43 in the shower plate 30. Therefore, peeling of the product formed on the surface of the shower plate 30 can be suppressed and film uniformity and film reproducibility on the substrate to be processed 3 can be ensured.
  • the shapes of the reactor, shower plate and other members constituting the MOCVD apparatus are not limited to the shapes shown in FIG.
  • the shower plate 30 may be made of a material having corrosion resistance to the reaction gas and high temperature resistance.
  • quartz, graphite, graphite coated with SiC, SiC, molybdenum, tungsten and the like can be raised.
  • quartz has a small coefficient of thermal expansion, can prevent damage due to thermal expansion even when fixed to a shower head, and has excellent corrosion resistance, so that it has an acid corresponding to the attached product. It is the best material because it can perform wet cleaning with, dry cleaning with HCl, and the shower plate can be used repeatedly.
  • the shower plate of the present invention is integrally formed, it may be composed of a plurality of parts, and even when it is composed of a plurality of parts, the same effect can be achieved.
  • a reaction furnace 2 having a reaction chamber 1 as a growth chamber that isolates the inside from the atmosphere side and maintains an airtight state, and the reaction chamber 1 is provided.
  • the present invention can also be applied to an MOCVD apparatus 60 as a face-down type vapor phase growth apparatus for supplying a reaction gas from the above.
  • the low heat conduction region can be formed by providing a space.
  • the space can be configured by processing the shower head side. For example, by applying a counterbore process to the shower hole area other than the shower hole area of the shower head surface, the surface of the shower plate may be in contact with an area where the shower hole of the shower head is installed, and a space part may be provided in the area subjected to the counterbore process. it can. Therefore, it is possible to provide a vapor phase growth apparatus and a vapor phase growth method capable of suppressing peeling of a product formed on the surface of a shower plate and ensuring film uniformity and film reproducibility on a substrate to be processed. .
  • the space is configured on the shower plate side.
  • a flow path through which the coolant flows is formed on the outermost surface side of the shower head. Therefore, applying a counterbore process other than the shower hole area on the shower head surface complicates the coolant flow path. . Further, if the shower head side is processed, since the shower head needs to be remanufactured in order to change the space portion, it becomes very expensive and the trouble of replacement becomes a problem. However, by applying processing to the shower plate side, for example, by applying counterbore processing to the shower plate area other than the shower hole area, the shower plate is in contact with the shower head surface and outside the shower hole area. The space portion can be formed by the counterbore processing portion.
  • the vapor phase growth apparatus of the present invention is characterized in that a plurality of through holes are provided in a shower plate in a part of the low heat conduction region and communicated with the inside of the reactor through the space. That is, it is preferable that a plurality of through holes that communicate the space portion and the growth chamber are provided in the low thermal conductivity region of the shower plate.
  • the purge gas introduced outside the source gas flow path in the reaction chamber is passed through the plurality of through holes provided in the shower plate in the space portion region. It becomes possible to introduce into the source gas flow path. Since the source gas cannot be ejected outside the shower hole region of the shower plate, the amount of products formed on the shower plate surface is larger than that in the shower hole region.
  • the purge gas into the source gas flow path through the plurality of through holes it is possible to realize gas ejection from the entire surface of the shower plate and reduce the products formed on the surface of the shower plate. It becomes possible. Therefore, it is possible to provide a vapor phase growth apparatus and a vapor phase growth method capable of suppressing peeling of a product formed on the surface of a shower plate and ensuring film uniformity and film reproducibility on a substrate to be processed. .
  • a cooling unit is provided in a region adjacent to the plurality of gas discharge holes in the shower head.
  • the present invention also includes a shower plate. That is, the shower plate according to the present invention is a shower plate mounted on a gas supply unit in a growth chamber, which is a surface facing the gas supply unit in the shower plate, and is counterbored in a peripheral area of the shower plate on the counter surface. It is characterized in that a part is provided.
  • the present invention is a vapor phase growth method such as a vertical MOCVD apparatus using a shower plate that introduces a gas into the space above the shower plate from the periphery and supplies a reaction gas to the substrate surface from a plurality of gas discharge holes of the shower plate. It can be used for an apparatus and a vapor phase growth method.
  • Reaction chamber (growth chamber) 1a Gas outlet 2 Reaction furnace 3 Substrate 4 Substrate holding member 5 Rotation transmission member 6 Substrate holding member 5 Rotation transmission member 6 Substrate holding member 5 Rotation transmission member 6 Substrate holding member 5 Rotation transmission member 6 Substrate heater 7 Reaction chamber partition 8 Reaction external space 10 MOCVD apparatus (vapor phase growth apparatus) 20 shower head 20a shower head lower wall surface 22 Refrigerant space (cooling part) 23 first gas distribution space 23a first gas introduction port 23b first gas supply pipe 24 second gas distribution space 24a second gas introduction port 24b second gas supply pipe 25 purge gas supply pipe 30 shower plate 31, 32 plate hole 31a, 32a Head side surface hole 32b Substrate side surface hole 41 Space (low heat conduction region) 42 counterbore (low heat conduction area) 43 Through-hole 44 Product 45 Peeling product H3, H5 Gas discharge hole

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a vapor deposition apparatus, wherein a shower head, which is provided with a plurality of gas jetting holes, and a shower plate, which is disposed to face the shower head and is provided with a plurality of plate holes, are provided in a reacting furnace, and a gas is supplied from the shower head to the inside of a deposition chamber containing a substrate to be processed through the gas jetting holes of the shower head and the plate holes of the shower plate, and a film is formed on the substrate to be processed. A region having a low heat conductivity is formed on a surface, which is outside of a region heated by a substrate heater of a substrate holding member, faces the substrate holding member and has the shower plate disposed thereon close to the shower head. Thus, the vapor deposition apparatus and a vapor deposition method, wherein generation of the nonuniform flow of the supplied reaction gas is suppressed by preventing the gas jetting holes of the shower head from being covered and film uniformity and film repeatability on the substrate to be processed are ensured, are provided.

Description

気相成長装置及び気相成長方法Vapor growth apparatus and vapor growth method
 本発明は、例えば縦型シャワーヘッド型MOCVD(Metal Organic Chemical Vapor Deposition) 等の気相成長装置及び気相成長方法に関するものである。 The present invention relates to a vapor phase growth apparatus and a vapor phase growth method such as a vertical showerhead type MOCVD (Metal Organic Chemical Vapor Deposition).
 従来、化合物半導体材料を用いる発光ダイオード、半導体レーザ、宇宙用ソーラーパワーデバイス、及び高速デバイスの製造においては、トリメチルガリウム(TMG)又はトリメチルアルミニウム(TMA)等の有機金属ガスと、アンモニア(NH3 )、ホスフ
ィン(PH3 )又はアルシン(AsH3 )等の水素化合物ガスとを成膜に寄与する原料ガスとして成長室に導入して化合物半導体結晶を成長させるMOCVD(Metal Organic Chemical Vapor Deposition) 法が用いられている。
Conventionally, in the manufacture of light-emitting diodes, semiconductor lasers, space solar power devices, and high-speed devices using compound semiconductor materials, organometallic gases such as trimethylgallium (TMG) or trimethylaluminum (TMA), and ammonia (NH 3 ) MOCVD (Metal Organic Chemical Vapor Deposition) method is used in which a compound semiconductor crystal is grown by introducing a hydrogen compound gas such as phosphine (PH 3 ) or arsine (AsH 3 ) into the growth chamber as a source gas contributing to film formation. It has been.
 MOCVD法は、上記の原料ガスをキャリアガスと共に成長室内に導入して加熱し、所定の基板上で気相反応させることにより、その基板上に化合物半導体結晶を成長させる方法である。MOCVD法を用いた化合物半導体結晶の製造においては、成長する化合物半導体結晶の品質を向上させながら、コストを抑えて、歩留まりと生産能力とをどのように最大限確保するかということが常に高く要求されている。 The MOCVD method is a method in which a compound semiconductor crystal is grown on a substrate by introducing the above-described source gas into a growth chamber together with a carrier gas and heating it to cause a gas phase reaction on a predetermined substrate. In the production of compound semiconductor crystals using MOCVD, there is always a high demand for how to secure the maximum yield and production capacity while reducing costs while improving the quality of growing compound semiconductor crystals. Has been.
 図9に、MOCVD法に用いられる従来の縦型シャワーヘッド型MOCVD装置の一例の模式的な構成を示す。 FIG. 9 shows a schematic configuration of an example of a conventional vertical shower head type MOCVD apparatus used in the MOCVD method.
 このMOCVD装置においては、ガス供給源102から反応炉101の内部の成長室111に反応ガス及び不活性ガスを導入するためのガス配管103が接続されており、反応炉101における内部の成長室111の上部には該成長室111に反応ガス及び不活性ガスを導入するための複数のガス吐出孔を有するシャワープレート110がガス導入部として設置されている。 In this MOCVD apparatus, a gas pipe 103 for introducing a reaction gas and an inert gas from a gas supply source 102 to a growth chamber 111 inside the reaction furnace 101 is connected to the growth chamber 111 inside the reaction furnace 101. A shower plate 110 having a plurality of gas discharge holes for introducing a reaction gas and an inert gas into the growth chamber 111 is installed as a gas introduction part.
 また、反応炉101の成長室111の下部中央には図示しないアクチュエータによって回転自在の回転軸112が設置され、この回転軸112の先端にはシャワープレート110と対向するようにしてサセプタ108が取り付けられている。上記サセプタ108の下部には該サセプタ108を加熱するためのヒータ109が取り付けられている。 In addition, a rotating shaft 112 that can be rotated by an actuator (not shown) is installed in the center of the lower portion of the growth chamber 111 of the reaction furnace 101, and a susceptor 108 is attached to the tip of the rotating shaft 112 so as to face the shower plate 110. ing. A heater 109 for heating the susceptor 108 is attached to the lower part of the susceptor 108.
 さらに、反応炉101の下部には、該反応炉101における内部の成長室111内のガスを外部に排気するためのガス排気部104が設置されている。このガス排気部104は、パージライン105を介して、排気されたガスを無害化するための排ガス処理装置106に接続されている。 Furthermore, a gas exhaust unit 104 for exhausting the gas in the growth chamber 111 inside the reaction furnace 101 to the outside is installed at the lower part of the reaction furnace 101. This gas exhaust unit 104 is connected via a purge line 105 to an exhaust gas treatment device 106 for rendering the exhausted gas harmless.
 上記構成の縦型シャワーヘッド型MOCVD装置において、化合物半導体結晶を成長させる場合には、まず、サセプタ108に基板107を設置し、回転軸112の回転によりサセプタ108を回転させ、ヒータ109の加熱によりサセプタ108を介して基板107を所定の温度に加熱する。その後、シャワープレート110に形成されている複数のガス吐出孔から反応炉101の内部の成長室111に反応ガス及び不活性ガスを導入する。 When a compound semiconductor crystal is grown in the vertical showerhead type MOCVD apparatus having the above configuration, first, the substrate 107 is set on the susceptor 108, the susceptor 108 is rotated by the rotation of the rotating shaft 112, and the heater 109 is heated. The substrate 107 is heated to a predetermined temperature via the susceptor 108. Thereafter, a reactive gas and an inert gas are introduced into the growth chamber 111 inside the reaction furnace 101 from a plurality of gas discharge holes formed in the shower plate 110.
 複数の反応ガスを供給して基板107上で反応せしめ薄膜を形成する方法として、従来は、シャワーヘッドの中で複数のガスを混合し、シャワープレート110に多数設けられているガス吐出口から基板107に反応ガスを噴出させる方法が採られていた。 As a method of forming a thin film by supplying a plurality of reaction gases and reacting them on the substrate 107, conventionally, a plurality of gases are mixed in a shower head, and the substrate is discharged from a gas discharge port provided in a large number in the shower plate 110. A method of ejecting a reactive gas to 107 was adopted.
 しかし、この方法では、基板107及びサセプタ108からの熱の影響により、シャワープレート110の表面が加熱されてしまうため、シャワープレート110の表面で一部の化学反応が進行する。これにより、シャワープレート110の表面で生成物が形成されてしまい、シャワープレート110のガス吐出孔が生成物により詰まりを起こしてしまうという問題や、シャワープレート110の表面への付着物が基板107上に落下し、不良が発生する問題が生じる。 However, in this method, the surface of the shower plate 110 is heated by the influence of heat from the substrate 107 and the susceptor 108, so that some chemical reaction proceeds on the surface of the shower plate 110. As a result, a product is formed on the surface of the shower plate 110, and the problem that the gas discharge holes of the shower plate 110 are clogged with the product, and the deposits on the surface of the shower plate 110 are on the substrate 107. This causes a problem that the product falls and becomes defective.
 この問題を解決するため、例えば、特許文献1に開示された反応容器200では、図10に示すように、複数の反応ガスを個別のシャワーヘッド導管201・202によって分離した状態にて成長室203へ供給すると共に、それぞれのシャワーヘッド導管201・202を冷却する冷却チャンバー204が成長室203側に設けられた方法が示されている。この反応容器200では、複数の反応ガスを別々に導入するため、シャワー表面付近ではガスの混合が少なく、またシャワー表面を冷却することが可能となり、シャワー表面近傍での気相成長が起こり難くなるため、シャワー表面への生成物付着を抑止することができるようになっている。 In order to solve this problem, for example, in the reaction vessel 200 disclosed in Patent Document 1, as shown in FIG. 10, the growth chamber 203 is separated in a state where a plurality of reaction gases are separated by individual shower head conduits 201 and 202. A method is shown in which a cooling chamber 204 for cooling the shower head conduits 201 and 202 is provided on the growth chamber 203 side. In this reaction vessel 200, since a plurality of reaction gases are separately introduced, gas mixing is small in the vicinity of the shower surface, the shower surface can be cooled, and vapor phase growth in the vicinity of the shower surface hardly occurs. For this reason, product adhesion to the shower surface can be suppressed.
 ところで、基板上に均一な膜厚分布及び組成比分布の薄膜を、生産性及び再現性よく成長させるには、基板上において反応ガスを均等な温度分布で気相反応させることが必要である。 By the way, in order to grow a thin film having a uniform film thickness distribution and composition ratio distribution on a substrate with good productivity and reproducibility, it is necessary to carry out a gas phase reaction on the substrate with a uniform temperature distribution.
 また、原料ガス同士が基板到達前に反応して付加化合物が発生するのを防ぎ、薄膜へ不純物が混入するのを防止して、稼働率を向上させることが必要である。 Also, it is necessary to prevent the source gas from reacting with each other before reaching the substrate to generate an additional compound, to prevent impurities from being mixed into the thin film, and to improve the operating rate.
 この点、上記特許文献1に開示された図10に示す反応容器200では、シャワー表面での生成物付着を抑止しているものの、原料ガスの拡散によって混合されて気相反応が生ずるため、シャワー表面へ生成物は少なからず付着してしまい、定期的に洗浄しなければ目詰まりを起こしてしまう。また、付着した生成物が被処理基板上へ落下し、薄膜への不純物混入を発生させる。さらに、洗浄する場合にも、シャワーヘッド205自体を取り外して洗浄を行うため、交換時には成長室203を大気開放しなくてはならず、稼働率の低下を招く。 In this respect, in the reaction vessel 200 shown in FIG. 10 disclosed in the above-mentioned Patent Document 1, the product adhesion on the shower surface is suppressed. Not a little product will adhere to the surface, and clogging will occur if it is not cleaned regularly. Further, the attached product falls onto the substrate to be processed, and impurities are mixed into the thin film. Further, in the case of cleaning, since the shower head 205 itself is removed for cleaning, the growth chamber 203 must be opened to the atmosphere at the time of replacement, resulting in a decrease in operating rate.
 そこで、特許文献2に開示されたプラズマCVD成膜装置では、図11に示すように、シャワーヘッドに対応した細孔を有するシャワープレート301を用い、シャワープレートをねじ留め302・302して固定し、シャワー表面を覆う方法が示されている。シャワープレート301の存在により付着物はカバー上に成膜されることになり、定期的にシャワープレート301を交換することによって、付着物の基板上への落下といった不良の発生を防いでいる。 Therefore, in the plasma CVD film forming apparatus disclosed in Patent Document 2, as shown in FIG. 11, a shower plate 301 having pores corresponding to the shower head is used, and the shower plate is fixed by screwing 302 and 302. The method of covering the shower surface is shown. Deposits are deposited on the cover due to the presence of the shower plate 301, and by periodically replacing the shower plate 301, the occurrence of defects such as dropping of the deposits on the substrate is prevented.
 このように、特許文献2に開示されたプラズマCVD成膜装置では、シャワー表面に対してシャワープレート301を取り付けることにより、付着物が生成してもシャワープレート301を交換するだけで容易に対応でき、シャワーヘッド自体を洗浄する場合に比べて稼働率の低下も小さくなっている。 As described above, in the plasma CVD film forming apparatus disclosed in Patent Document 2, by attaching the shower plate 301 to the shower surface, even if deposits are generated, it can be easily handled by simply replacing the shower plate 301. As compared with the case where the shower head itself is washed, the decrease in the operation rate is also small.
日本国公開特許公報「特開平8-91989号公報(1996年4月9日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 8-91989 (published on April 9, 1996)” 日本国公開特許公報「特開平11-131239号公報(1999年5月18日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 11-131239 (published May 18, 1999)”
 しかしながら、上記従来の特許文献2に開示された方法を上記従来の特許文献1に開示された方法に用いると、基板加熱ヒータの加熱領域との関係で、シャワープレートの温度が高い領域と低い領域が発生し、温度の高い領域においては、シャワープレート表面に強固な生成物が形成されるが、温度の低い領域(最外周領域)においては、シャワープレート表面には、フレーク状の安易に剥がれる生成物が形成されてしまい、被処理基板にコンタミネーションとして付着して、膜質や均一性の劣化が発生するといった問題が発生していた。 However, when the method disclosed in Patent Document 2 is used in the method disclosed in Patent Document 1, the shower plate temperature is high and low in relation to the heating area of the substrate heater. In the region where the temperature is high, a strong product is formed on the surface of the shower plate. However, in the region where the temperature is low (outermost peripheral region), the flakes are easily peeled off on the surface of the shower plate. As a result, a problem arises in that an object is formed and adheres to the substrate to be processed as contamination, resulting in deterioration of film quality and uniformity.
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、シャワーヘッド表面にシャワープレートを設置し、シャワープレート表面に形成される生成物の剥離を抑制し、被処理基板上での膜均一性及び膜の再現性を確保し得る気相成長装置及び気相成長方法を提供することにある。 The present invention has been made in view of the above-described conventional problems, and the object thereof is to install a shower plate on the surface of a shower head, suppress peeling of a product formed on the surface of the shower plate, and a substrate to be processed. An object of the present invention is to provide a vapor phase growth apparatus and a vapor phase growth method capable of ensuring the above film uniformity and film reproducibility.
 本発明の気相成長装置は、上記課題を解決するために、反応炉内に、被処理基板を載置する基板保持部材と、被処理基板加熱する基板加熱ヒータと、複数のガス吐出孔を配設したシャワーヘッドと、上記シャワーヘッドに載置され、かつ複数のプレート孔を配設したシャワープレートとを備え、上記シャワーヘッドから、該シャワーヘッドのガス吐出孔及びシャワープレートのプレート孔を通して被処理基板を収容する成長室内にガスを供給して被処理基板に成膜する気相成長装置において、上記基板保持部材の基板加熱ヒータによって加熱される領域より外側においては、上記基板保持部材との対向面であって、上記シャワーヘッドにシャワープレートが近接して配置されている面において、低熱伝導の領域が形成されていることを特徴としている。 In order to solve the above problems, the vapor phase growth apparatus of the present invention includes a substrate holding member for placing a substrate to be processed, a substrate heater for heating the substrate to be processed, and a plurality of gas discharge holes in a reaction furnace. And a shower plate mounted on the shower head and provided with a plurality of plate holes. The shower head covers the gas discharge holes of the shower head and the plate holes of the shower plate. In a vapor phase growth apparatus for forming a film on a substrate to be processed by supplying a gas into a growth chamber that accommodates a processing substrate, the substrate holding member is disposed outside the region heated by the substrate heater. A region having a low thermal conductivity is formed on the opposite surface, on the surface where the shower plate is disposed close to the shower head. It is.
 また本発明の気相成長装置の上記構成は、次のように換言することができる。すなわち、本発明の気相成長装置は、上記課題を解決するために、被処理基板を載置する基板保持部材と、上記基板保持部材の一部分を加熱することによって基板保持部材上に載置した被処理基板を加熱する基板加熱ヒータと、複数のガス吐出孔を配設したシャワーヘッドと、上記シャワーヘッドにおける上記複数のガス吐出孔が形成されている側に配設され、かつ、当該ガス吐出孔に連通するプレート孔が複数配設されたシャワープレートとを成長室内に備え、ガス供給源から上記ガス吐出孔を通し、さらに上記プレート孔を通して被処理基板を収容した上記成長室内に供給されるガスによって、当該被処理基板上に成膜する気相成長装置において、上記シャワーヘッドと上記シャワープレートとの間の一部分の領域に、当該シャワープレートを構成する材料よりも低い熱伝導性を示す低熱伝導領域が設けられており、上記低熱伝導領域は、上記基板保持部材における、基板加熱ヒータによって加熱される領域よりも外側に在る非加熱領域に対向する領域に設けられていることを特徴としていると換言することができる。 In addition, the above-described configuration of the vapor phase growth apparatus of the present invention can be restated as follows. That is, the vapor phase growth apparatus of the present invention is placed on the substrate holding member by heating a part of the substrate holding member on which the substrate to be processed is placed and the substrate holding member in order to solve the above problems. A substrate heater for heating the substrate to be processed, a shower head having a plurality of gas discharge holes, and a side of the shower head on which the gas discharge holes are formed, and the gas discharge A shower plate having a plurality of plate holes communicating with the holes is provided in the growth chamber, and is supplied from the gas supply source to the growth chamber containing the substrate to be processed through the gas discharge holes. In the vapor phase growth apparatus for forming a film on the substrate to be processed with a gas, the shower plate is disposed in a partial region between the shower head and the shower plate. A low thermal conductivity region having lower thermal conductivity than the material constituting the substrate is provided, and the low thermal conductivity region is non-heated outside the region heated by the substrate heater in the substrate holding member. In other words, it is characterized by being provided in a region opposite to the region.
 シャワーヘッドにおいては、シャワーヘッド表面での生成物の付着を抑制するため、シャワーヘッドの最表面は、冷媒によって温度コントロールされており、冷媒の流れる領域は、シャワーヘッド全面に渡っている。これは、一部分のみを温度コントールした場合、シャワーヘッド面に温度分布が発生し、シャワーヘッドが熱膨張により歪が発生するためである。上述のようなシャワーヘッド面にシャワープレートを設置した場合、被処理基板側は、基板加熱ヒータからの熱により加熱され、温度が上昇するが、周辺部、特に側面排気流路においては、基板加熱ヒータからの加熱量が少なく、温度上昇は低く、シャワーヘッドと接する面からは、冷却されるため、シャワープレートの外周領域の温度は、中央部に比べ低くなってしまう。 In the shower head, the temperature of the outermost surface of the shower head is controlled by the refrigerant in order to suppress the adhesion of the product on the surface of the shower head, and the area in which the refrigerant flows extends over the entire surface of the shower head. This is because when only a part of the temperature is controlled, a temperature distribution is generated on the shower head surface and the shower head is distorted due to thermal expansion. When the shower plate is installed on the shower head surface as described above, the temperature of the substrate to be processed is heated by the heat from the substrate heater, and the temperature rises. Since the amount of heating from the heater is small, the temperature rise is low, and the surface in contact with the shower head is cooled, so that the temperature in the outer peripheral region of the shower plate is lower than that in the central portion.
 このような温度分布を有するシャワープレートには、中央の温度の高い領域には、シャワープレート表面に強固に固着する生成物が形成され、周辺の温度の低い領域には、フレーク状の安易に剥がれる生成物が形成される。 In the shower plate having such a temperature distribution, a product that firmly adheres to the surface of the shower plate is formed in the central high temperature region, and flakes are easily peeled off in the peripheral low temperature region. A product is formed.
 しかし、上記発明によれば、上記基板保持部材の基板加熱ヒータによって加熱される領域より外側においては、上記基板保持部材との対向面であって、上記シャワーヘッドにシャワープレートが近接して配置されている面において、低熱伝導の領域が形成されているため、シャワーヘッドからの冷却が無くなり、基板加熱ヒータからの加熱、ならびにプレート孔設置領域からの熱伝導により、シャワープレート温度が上昇し、シャワープレート全面に渡って、強固に固着する生成物を形成することができる。よって、シャワープレート表面に形成される生成物の剥離を抑制し、被処理基板上での膜均一性及び膜の再現性を確保し得る気相成長装置及び気相成長方法を提供することができる。 However, according to the invention, outside the region heated by the substrate heater of the substrate holding member, it is a surface facing the substrate holding member, and the shower plate is arranged close to the shower head. On the other hand, a region with low thermal conductivity is formed, so cooling from the shower head is eliminated, and the shower plate temperature rises due to heating from the substrate heater and heat conduction from the plate hole installation region. A product that adheres firmly over the entire plate surface can be formed. Therefore, it is possible to provide a vapor phase growth apparatus and a vapor phase growth method capable of suppressing peeling of a product formed on the surface of a shower plate and ensuring film uniformity and film reproducibility on a substrate to be processed. .
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 本発明の気相成長装置は、以上のように、基板保持部材の基板加熱ヒータによって加熱される領域より外側においては、基板保持部材との対向面であって、上記シャワーヘッドにシャワープレートが近接して配置されている面において、低熱伝導の領域が形成されているものである。 As described above, the vapor phase growth apparatus of the present invention is a surface facing the substrate holding member outside the region heated by the substrate heater of the substrate holding member, and the shower plate is close to the shower head. Thus, a region having a low thermal conductivity is formed on the arranged surface.
 また、本発明の気相成長方法は、以上のように、基板保持部材の基板加熱ヒータによって加熱される領域より外側においては、基板保持部材との対向面であって、上記シャワーヘッドにシャワープレートが近接して配置されている面において、低熱伝導の領域が形成され、当該ガス吐出孔及びプレート孔を通してガスを供給して成膜する方法である。 In addition, as described above, the vapor phase growth method of the present invention is a surface facing the substrate holding member outside the region heated by the substrate heater of the substrate holding member, and the shower head includes a shower plate. Is a method of forming a film by supplying a gas through the gas discharge hole and the plate hole in a region where low thermal conductivity is formed on the surface where the two are arranged close to each other.
 それゆえ、基板保持部材の基板加熱ヒータによって加熱される領域より外側においては、基板保持部材との対向面であって、上記シャワーヘッドにシャワープレートが近接して配置されている面において、低熱伝導の領域を形成することにより、シャワープレート全面に渡って、強固に固着する生成物を形成することができ、シャワープレート表面に形成される生成物の剥離を抑制し、被処理基板上での膜均一性及び膜の再現性を確保し得る気相成長装置及び気相成長方法を提供することができるという効果を奏する。 Therefore, outside the region of the substrate holding member heated by the substrate heater, the surface facing the substrate holding member and the surface where the shower plate is disposed close to the shower head is low in thermal conductivity. By forming this region, it is possible to form a product that firmly adheres to the entire surface of the shower plate, suppresses peeling of the product formed on the surface of the shower plate, and forms a film on the substrate to be processed. There is an effect that it is possible to provide a vapor phase growth apparatus and a vapor phase growth method capable of ensuring uniformity and reproducibility of a film.
本発明における気相成長装置の実施の一形態を示すものであって、気相成長装置の全体構成を示す概略図である。1 shows an embodiment of a vapor phase growth apparatus according to the present invention, and is a schematic diagram showing an overall configuration of the vapor phase growth apparatus. 上記気相成長装置におけるシャワーヘッドとシャワープレートとの空間部の関係を示すものであって、図1のA部分を拡大して示す要部拡大図である。It is a principal part enlarged view which shows the relationship of the space part of the shower head and shower plate in the said vapor phase growth apparatus, Comprising: The A section of FIG. 1 is expanded. 本発明における気相成長装置の実施の一形態を示すものであって、シャワープレートに貫通孔を設置した気相成長装置の全体構成を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of a vapor phase growth apparatus according to the present invention, and is a schematic diagram showing an overall configuration of a vapor phase growth apparatus in which through holes are provided in a shower plate. 上記気相成長装置におけるシャワーヘッドとシャワープレートとの空間部の関係を示すものであって、図3のA部分を拡大して示す要部拡大図である。FIG. 4 is a main part enlarged view showing a relation of a space part between a shower head and a shower plate in the vapor phase growth apparatus, and showing an A portion of FIG. 3 in an enlarged manner. 従来の気相成長装置におけるシャワーヘッドとシャワープレートとの空間部の関係を示すものであって、図1のA部分を拡大して示す要部拡大図である。It is a principal part enlarged view which shows the relationship of the space part of the shower head and shower plate in the conventional vapor phase growth apparatus, and expands and shows the A section of FIG. (a)は、比較例としての従来のシャワープレート表面への生成物付着状況を示す写真であり、(b)は、本実施の形態のシャワープレート表面への生成物付着状況を示す写真である。(c)は、本実施の形態の複数の貫通孔を設けたシャワープレート表面への生成物付着状況を示す写真である。(A) is a photograph which shows the product adhesion situation to the conventional shower plate surface as a comparative example, (b) is a photograph which shows the product adhesion situation to the shower plate surface of this Embodiment. . (C) is the photograph which shows the product adhesion state to the shower plate surface which provided the several through-hole of this Embodiment. (a),(b)は、上記シャワープレートのザグリの変形例を示すものであり、シャワープレートを示す要部拡大図である。(A), (b) shows the modification of the counterbore of the said shower plate, and is the principal part enlarged view which shows a shower plate. 本発明における気相成長装置のさらに他の実施の形態を示すものであって、シャワーヘッドへザグリを設置した場合を示す、図1のA部分を拡大して示す要部拡大図である。FIG. 5 is a main part enlarged view showing a further embodiment of the vapor phase growth apparatus according to the present invention and showing an enlarged portion A of FIG. 1 showing a case where a counterbore is installed in the shower head. 従来の縦型シャワーヘッド型の気相成長装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional vertical shower head type vapor phase growth apparatus. 従来の他の縦型シャワーヘッド型の気相成長装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional vertical type shower head type vapor phase growth apparatus. 従来のさらに他の気相成長装置の構成を示す断面図である。It is sectional drawing which shows the structure of the other conventional vapor phase growth apparatus.
 本発明の一実施形態について図1に基づいて説明すれば、以下の通りである。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表わすものとする。 An embodiment of the present invention will be described with reference to FIG. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.
 図1に、本発明の気相成長装置としてのMOCVD(Metal Organic Chemical Vapor Deposition :有機金属気相堆積)装置の一例である縦型シャワーヘッド型のMOCVD装置10の模式的な構成の一例を示す。 FIG. 1 shows an example of a schematic configuration of a vertical showerhead type MOCVD apparatus 10 which is an example of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus as a vapor phase growth apparatus of the present invention. .
 本実施の形態のMOCVD装置10は、図1に示すように、内部を大気側と隔離し、気密状態を保持する成長室としての反応室1を有する反応炉2と、上記反応室1の内部に設けられて被処理基板3を載置する基板保持部材4と、上記基板保持部材4と対向し、かつ底面にシャワープレート30を有するシャワーヘッド20とを備えている。また、反応炉2内部に設けられた反応室隔壁7によって、反応室1と反応外部空間8に分離されており、反応外部空間8には、パージガス供給管25によって、パージガス(N2ガスもしくはH2ガス)が導入されている。 As shown in FIG. 1, the MOCVD apparatus 10 of the present embodiment has a reaction furnace 2 having a reaction chamber 1 as a growth chamber that is isolated from the atmosphere side and maintains an airtight state, and the inside of the reaction chamber 1. A substrate holding member 4 for mounting the substrate 3 to be processed, and a shower head 20 facing the substrate holding member 4 and having a shower plate 30 on the bottom surface. The reaction chamber 1 is separated into a reaction chamber 1 and an external reaction space 8 by a reaction chamber partition 7 provided inside the reaction furnace 2. A purge gas (N 2 gas or H 2 gas) is separated into the reaction external space 8 by a purge gas supply pipe 25. ) Has been introduced.
 上記基板保持部材4は、回転伝達部材5の一端に備え付けられており、回転伝達部材5は、図示しない回転機構によって、自転可能となっている。また、基板保持部材4の下側には、基板加熱ヒータ6が設けられている。 The substrate holding member 4 is provided at one end of the rotation transmission member 5, and the rotation transmission member 5 can be rotated by a rotation mechanism (not shown). A substrate heater 6 is provided below the substrate holding member 4.
 上記MOCVD装置10にて被処理基板3の主表面に薄膜を形成するときは、原料ガス(以下単にガスと称する)を、シャワーヘッド20からガス吐出孔H3・H5を通し、シャワーヘッド20の下側に設けられたシャワープレート30のプレート孔31を通して、反応室1へ導入する。このとき、基板加熱ヒータ6にて、基板保持部材4を介して被処理基板3が加熱され、この被処理基板3上での成膜化学反応が促進されることにより、被処理基板3上に薄膜が形成される。被処理基板3上を通過したガスは、ガス排出口1aから排出される。 When a thin film is formed on the main surface of the substrate 3 to be processed by the MOCVD apparatus 10, a raw material gas (hereinafter simply referred to as gas) is passed from the shower head 20 through the gas discharge holes H 3 and H 5 and below the shower head 20. It is introduced into the reaction chamber 1 through the plate hole 31 of the shower plate 30 provided on the side. At this time, the substrate heating heater 6 heats the substrate 3 to be processed through the substrate holding member 4, and the film forming chemical reaction on the substrate 3 to be processed is promoted. A thin film is formed. The gas that has passed over the substrate 3 is discharged from the gas outlet 1a.
 次に、本実施の形態の特徴的な構造であるシャワーヘッド20及びシャワープレート30の詳細構造について説明する。 Next, a detailed structure of the shower head 20 and the shower plate 30 which are characteristic structures of the present embodiment will be described.
 上記シャワーヘッド20は、第一ガスを充満させる第一ガス分配空間23と、上記第一ガスとは異なる第二ガスを充満させる第二ガス分配空間24と、上記第一ガス及び第二ガスを冷却する冷媒を充満させる冷媒空間22とを有しており、これら各空間は、被処理基板3側から、冷媒空間22、第一ガス分配空間23、及び第二ガス分配空間24の順に積層されている。そして、シャワーヘッド20の下側つまり被処理基板3側にシャワープレート30が近接して配置されている。 The shower head 20 includes a first gas distribution space 23 that is filled with a first gas, a second gas distribution space 24 that is filled with a second gas different from the first gas, and the first gas and the second gas. The refrigerant space 22 is filled with a refrigerant to be cooled. These spaces are stacked in the order of the refrigerant space 22, the first gas distribution space 23, and the second gas distribution space 24 from the substrate 3 to be processed. ing. And the shower plate 30 is arrange | positioned adjacent to the lower side of the shower head 20, ie, the to-be-processed substrate 3, side.
 上記第二ガス分配空間24には第二ガスが第二ガス導入口24aから導入されると共に、第二ガス分配空間24に導入された第二ガスは、第一ガス分配空間23及び冷媒空間22を貫通し、かつシャワープレート30のプレート孔31に連通するガス吐出孔H5を有する複数の第二ガス供給管24bを通して、反応室1に吐出されるようになっている。 The second gas is introduced into the second gas distribution space 24 from the second gas introduction port 24a, and the second gas introduced into the second gas distribution space 24 includes the first gas distribution space 23 and the refrigerant space 22. And is discharged into the reaction chamber 1 through a plurality of second gas supply pipes 24b having gas discharge holes H5 communicating with the plate holes 31 of the shower plate 30.
 また、第一ガス分配空間23には第一ガスが第一ガス導入口23aから導入されると共に、第一ガス分配空間23に導入された第一ガスは、冷媒空間22を貫通し、かつシャワープレート30のプレート孔31に連通するガス吐出孔H3を有する複数の第一ガス供給管23bを通して、反応室1に吐出されるようになっている。 Further, the first gas is introduced into the first gas distribution space 23 from the first gas introduction port 23a, and the first gas introduced into the first gas distribution space 23 penetrates the refrigerant space 22 and is showered. The gas is discharged into the reaction chamber 1 through a plurality of first gas supply pipes 23b having gas discharge holes H3 communicating with the plate holes 31 of the plate 30.
 したがって、第一ガス及び第二ガスは、シャワーヘッド20では混合されることなく、独立して反応室1に吐出されるようになっている。 Therefore, the first gas and the second gas are discharged into the reaction chamber 1 independently without being mixed by the shower head 20.
 上記シャワーヘッド20は、図1に示すように、Oリング7aによって、反応炉2と気密状態を保持するよう封止されており、シャワーヘッド20と反応炉2とは取外し可能に構成されている。また、第一ガス分配空間23と第二ガス分配空間24との間には、Oリング7bが設けられ、第二ガス分配空間24とその天板との間にもOリング7cが設けられることによって、各空間が分離可能になっていると共に、各空間の気密状態が保持されている。 As shown in FIG. 1, the shower head 20 is sealed by an O-ring 7a so as to maintain an airtight state with the reaction furnace 2, and the shower head 20 and the reaction furnace 2 are configured to be removable. . Further, an O-ring 7b is provided between the first gas distribution space 23 and the second gas distribution space 24, and an O-ring 7c is also provided between the second gas distribution space 24 and its top plate. Thus, each space can be separated and the airtight state of each space is maintained.
 また、シャワープレート30は、シャワーヘッド20のシャワーヘッド下部壁面20aにて図示しないネジ等によって密着して固定、設置されている。 Further, the shower plate 30 is fixed and installed in close contact with a shower head lower wall surface 20a of the shower head 20 by screws or the like (not shown).
 基板加熱ヒータ6にて、基板保持部材4を介して被処理基板3が加熱され、この被処理基板3上での成膜化学反応が促進されることにより、被処理基板3上に薄膜が形成されるため、基板保持部材4自体の温度は高く、その対向面にあるシャワープレート30は、基板保持部材4の基板加熱ヒータ6によって加熱される領域より外側、つまり、図2中の加熱領域で基板保持部材4により加熱され、基板保持部材4の対向面以外のシャワープレート30は非加熱領域では、基板保持部材4からの加熱が到達し難くなっている。また、シャワーヘッド20は、冷媒空間22を有しており、シャワーヘッド20のシャワーヘッド下部壁面20aは、全面が冷媒空間22によって冷却されているため、温度が均一となるようコントロールされている。 The substrate heating heater 6 heats the substrate 3 to be processed through the substrate holding member 4, and the film forming chemical reaction on the substrate 3 is promoted, whereby a thin film is formed on the substrate 3 to be processed. Therefore, the temperature of the substrate holding member 4 itself is high, and the shower plate 30 on the opposite surface is outside the region heated by the substrate heater 6 of the substrate holding member 4, that is, in the heating region in FIG. The shower plate 30 heated by the substrate holding member 4 and other than the opposing surface of the substrate holding member 4 is difficult to reach the heating from the substrate holding member 4 in the non-heated region. The shower head 20 has a refrigerant space 22, and the shower head lower wall surface 20 a of the shower head 20 is cooled by the refrigerant space 22 so that the temperature is controlled to be uniform.
 図5は、従来のシャワープレートを設置した場合の、図1中のA部の領域を示す拡大図である。シャワーヘッド下部壁面20a温度は、均一に保たれているため、シャワープレート30の被処理基板3側のシャワープレート壁面30aの温度は、基板保持部材4からの加熱によって決定される。よって、シャワープレート壁面30a温度は、図5中の加熱領域では、温度が高く、非加熱領域では、温度が低くなってしまう。図6(a)に従来のシャワープレートを設置した場合の成膜後のシャワープレート壁面30aの部分拡大写真である。図6(a)からも分かるように、加熱領域では、生成物44には膜剥がれなどが見られず、綺麗な薄膜が生成している。しかし、非加熱領域では、生成物には、膜剥がれ(以後、剥離生成物45と呼ぶ)が見られる雑晶が生成していることが分かる。つまり、シャワープレート30a壁面温度が、非加熱領域では低くなっているため、図6(a)に示すような剥離生成物45が生成される。 FIG. 5 is an enlarged view showing a region A in FIG. 1 when a conventional shower plate is installed. Since the temperature of the shower head lower wall surface 20a is kept uniform, the temperature of the shower plate wall surface 30a on the substrate 3 side of the shower plate 30 is determined by heating from the substrate holding member 4. Therefore, the temperature of the shower plate wall surface 30a is high in the heating region in FIG. 5 and low in the non-heating region. FIG. 6A is a partially enlarged photograph of a shower plate wall surface 30a after film formation when a conventional shower plate is installed. As can be seen from FIG. 6 (a), in the heating region, no film peeling or the like is observed in the product 44, and a beautiful thin film is generated. However, it can be seen that in the non-heated region, miscellaneous crystals in which film peeling (hereinafter referred to as peeling product 45) is observed are generated in the product. That is, since the shower plate 30a wall surface temperature is low in the non-heated region, a peel product 45 as shown in FIG. 6A is generated.
 一方、本実施の形態では、シャワーヘッド20のシャワーヘッド下部壁面20aとシャワープレート30は、シャワープレート30のプレート孔31設置領域外において、上記シャワーヘッド下部壁面20aとシャワープレート30の対向面に、空間部41が形成されている。 On the other hand, in the present embodiment, the shower head lower wall surface 20a and the shower plate 30 of the shower head 20 are disposed on the opposing surfaces of the shower head lower wall surface 20a and the shower plate 30 outside the plate hole 31 installation region of the shower plate 30. A space 41 is formed.
 この構成について、図2に基づいて説明する。図2は、図1中のA部を示す拡大図である。 This configuration will be described with reference to FIG. FIG. 2 is an enlarged view showing a portion A in FIG.
 図2に示すように、シャワープレート30には、プレート孔31が設置されている領域より外側で、かつ、シャワーヘッド下部壁面20aと対向する側のシャワープレート30にザグリ42を設けることによって、シャワーヘッド下部壁面20aとシャワープレート30間に空間部41を形成している。 As shown in FIG. 2, the shower plate 30 is provided with a counterbore 42 on the shower plate 30 outside the region where the plate hole 31 is installed and on the side facing the shower head lower wall surface 20a. A space 41 is formed between the head lower wall surface 20 a and the shower plate 30.
 上記構成によれば、非加熱領域においては、シャワーヘッド下部壁面20aとシャワープレート30間に空間部41を有しているため、シャワーヘッド下部壁面20aの温度がシャワープレートに伝わることが無くなり、また、加熱領域からの熱伝導による熱移動もあるため、非加熱領域においても、シャワープレート壁面30a温度を高く保つことが可能となる。ここで、シャワーヘッド下部壁面20aとシャワープレート30間に空間部41を形成したが、この空間部41に低熱伝導材料を用いてもよい。 According to the above configuration, in the non-heating region, since the space 41 is provided between the shower head lower wall surface 20a and the shower plate 30, the temperature of the shower head lower wall surface 20a is not transmitted to the shower plate. Since there is also heat transfer from the heating region due to heat conduction, the temperature of the shower plate wall surface 30a can be kept high even in the non-heating region. Here, although the space part 41 was formed between the shower head lower wall surface 20a and the shower plate 30, you may use a low heat conductive material for this space part 41. FIG.
 図6(b)は、図2に示す実施の形態の場合の成膜後のシャワープレート壁面30aの部分拡大写真である。シャワープレート30には、空間部41が設けられている。その効果は、図6(b)からも分かるように、加熱領域、非加熱領域に関わらず、生成物44には膜剥がれなどが見られず、綺麗な薄膜が生成している。よって、シャワープレート30表面に形成される生成物の剥離を抑制し、被処理基板3上での膜均一性及び膜の再現性を確保し得ることができる。 FIG. 6B is a partially enlarged photograph of the shower plate wall surface 30a after film formation in the embodiment shown in FIG. The shower plate 30 is provided with a space 41. As can be seen from FIG. 6B, the effect is such that no film peeling or the like is observed in the product 44 regardless of the heating region and the non-heating region, and a beautiful thin film is generated. Therefore, peeling of the product formed on the surface of the shower plate 30 can be suppressed and film uniformity and film reproducibility on the substrate to be processed 3 can be ensured.
 また、図3および図4に示すように、シャワープレート30に設けられたザグリ42面に貫通孔43を構成することもできる。図3は、シャワープレートに貫通孔を設置した気相成長装置の全体構成を示す概略図である。図4は、図3のA部分を拡大して示す要部拡大図である。 Further, as shown in FIGS. 3 and 4, a through hole 43 can be formed on the face of the counterbore 42 provided in the shower plate 30. FIG. 3 is a schematic diagram showing the overall configuration of a vapor phase growth apparatus in which through holes are provided in a shower plate. FIG. 4 is an enlarged view of a main part showing an enlarged portion A of FIG.
 図3、4に示すように、シャワープレート30には、プレート孔31が設置されている領域より外側で、かつ、シャワーヘッド下部壁面20aと対向する側のシャワープレート30にザグリ42が設けられ、シャワーヘッド下部壁面20aとシャワープレート30間に空間部41を形成しており、さらに、ザグリ42面には、貫通孔43が形成されている。反応炉2内は、反応室隔壁7によって、反応室1と反応外部空間8に分離されており、反応外部空間8には、パージガス供給管25によって、パージガス(N2ガスもしくはH2ガス)が導入され、反応室1と反応外部空間8の圧力は、反応室1側が低くなるようパージガス流量が調整される。以上の構成により、反応外部空間8内のパージガスは、貫通孔43を通じて、反応室1内へ導入することができる。 As shown in FIGS. 3 and 4, the shower plate 30 is provided with counterbore 42 on the shower plate 30 outside the region where the plate hole 31 is installed and on the side facing the shower head lower wall surface 20a. A space 41 is formed between the shower head lower wall surface 20a and the shower plate 30, and a through hole 43 is formed on the counterbore 42 surface. The reaction furnace 2 is separated into a reaction chamber 1 and a reaction external space 8 by a reaction chamber partition wall 7, and purge gas (N 2 gas or H 2 gas) is introduced into the reaction external space 8 by a purge gas supply pipe 25. The purge gas flow rate is adjusted so that the pressure in the reaction chamber 1 and the reaction external space 8 becomes lower on the reaction chamber 1 side. With the above configuration, the purge gas in the reaction external space 8 can be introduced into the reaction chamber 1 through the through hole 43.
 上記構成によると、シャワープレート30のプレート孔31の設置領域外にも、簡易にパージガスを導入することが可能となり、シャワープレート30のプレート孔31の設置領域外に到達するガスをガス排出口1aへ向けて、飛ばすことができ、シャワープレート30のプレート孔31の設置領域外に生成する生成物44を抑制することができる。シャワープレート30表面に生成した生成物44は、成膜を繰り返すことによって、厚膜化し、いずれ剥離するが、上記構成によると、生成物44の量が減少するため、剥離するまでの成膜回数を増加させることができる。また、図5に示すガスの淀みを防止することができ、ガス淀みによって生成する剥離生成物45(雑晶)を低減することができる。また、反応室隔壁7壁面に生成する生成物も抑制することができる。よって、シャワープレート30表面に形成される生成物の剥離を抑制し、被処理基板3上での膜均一性及び膜の再現性を確保し得ることができる。 According to the above configuration, the purge gas can be easily introduced to the outside of the installation area of the plate hole 31 of the shower plate 30, and the gas reaching the outside of the installation area of the plate hole 31 of the shower plate 30 is discharged to the gas discharge port 1a. The product 44 generated outside the installation area of the plate hole 31 of the shower plate 30 can be suppressed. The product 44 generated on the surface of the shower plate 30 is thickened by repeating the film formation and eventually peels off. However, according to the above configuration, the amount of the product 44 is reduced, so the number of film formations until the product is peeled off. Can be increased. Moreover, the gas stagnation shown in FIG. 5 can be prevented, and the peeling products 45 (miscellaneous crystals) generated by the gas stagnation can be reduced. Moreover, the product produced | generated on the reaction chamber partition 7 wall surface can also be suppressed. Therefore, peeling of the product formed on the surface of the shower plate 30 can be suppressed and film uniformity and film reproducibility on the substrate to be processed 3 can be ensured.
 また、シャワーヘッド下部壁面20aと対向する側のシャワープレート30にザグリ42の形状は、図7(a)および(b)に示すような形状であってもよい。 Further, the shape of the counterbore 42 on the shower plate 30 on the side facing the shower head lower wall surface 20a may be a shape as shown in FIGS. 7 (a) and 7 (b).
 一方、図8は、図1中のA部領域の別の実施形態を示す拡大図である。 On the other hand, FIG. 8 is an enlarged view showing another embodiment of the area A in FIG.
 シャワーヘッド20には、シャワープレート30のプレート孔31が設置されている領域より外側にザグリ42を設けることによって、シャワーヘッド下部壁面20aとシャワープレート30間に空間部41を形成している。 The shower head 20 is provided with a counterbore 42 outside the region where the plate hole 31 of the shower plate 30 is installed, thereby forming a space 41 between the shower head lower wall surface 20 a and the shower plate 30.
 上記構成によっても、非加熱領域においては、シャワーヘッド下部壁面20aとシャワープレート30間に空間部41を有しているため、シャワーヘッド下部壁面20aの温度がシャワープレートに伝わることが無くなり、また、加熱領域からの熱伝導による熱移動もあるため、非加熱領域においても、シャワープレート壁面30a温度を高く保つことが可能となる。また、パージガスの導入も、シャワープレート30へ貫通孔43を設けておくことで可能となる。よって、シャワープレート30表面に形成される生成物の剥離を抑制し、被処理基板3上での膜均一性及び膜の再現性を確保し得ることができる。 Even in the above configuration, in the non-heated region, since the space 41 is provided between the shower head lower wall surface 20a and the shower plate 30, the temperature of the shower head lower wall surface 20a is not transmitted to the shower plate. Since there is also heat transfer due to heat conduction from the heating region, the temperature of the shower plate wall surface 30a can be kept high even in the non-heating region. Further, purge gas can be introduced by providing a through hole 43 in the shower plate 30. Therefore, peeling of the product formed on the surface of the shower plate 30 can be suppressed and film uniformity and film reproducibility on the substrate to be processed 3 can be ensured.
 尚、本発明においては、MOCVD装置を構成する反応炉、シャワープレート及びその他の部材の形状が図1に示す形状に限定されないことは言うまでもない。 In the present invention, it goes without saying that the shapes of the reactor, shower plate and other members constituting the MOCVD apparatus are not limited to the shapes shown in FIG.
 また、シャワープレート30の材料としては、反応ガスへの耐食性、高温耐性を有する材料であればよい。例えば、石英、グラファイト、SiCコートを施したグラファイト、SiC、モリブデン、タングステン等が上げられる。その中でも、石英は、熱膨張率が小さく、シャワーヘッドへ固定した場合でも、熱膨張による破損を防ぐことができ、また、優れた耐食性を有しているため、付着した生成物に対応した酸によるウェット洗浄、HClによるドライ洗浄を行うことができ、シャワープレートを繰り返し使用することができるため、最良の材料である。 Further, the shower plate 30 may be made of a material having corrosion resistance to the reaction gas and high temperature resistance. For example, quartz, graphite, graphite coated with SiC, SiC, molybdenum, tungsten and the like can be raised. Among them, quartz has a small coefficient of thermal expansion, can prevent damage due to thermal expansion even when fixed to a shower head, and has excellent corrosion resistance, so that it has an acid corresponding to the attached product. It is the best material because it can perform wet cleaning with, dry cleaning with HCl, and the shower plate can be used repeatedly.
 また、本発明のシャワープレートは、一体で構成されているが、複数の部品で構成してもよく、複数の部品で構成した場合でも、同様の効果を奏することができる。 Moreover, although the shower plate of the present invention is integrally formed, it may be composed of a plurality of parts, and even when it is composed of a plurality of parts, the same effect can be achieved.
 また、本発明においては、図13に示すように、内部を大気側と隔離し、気密状態を保持する成長室としての反応室1を有する反応炉2と、上記反応室1の内部に設けられて被処理基板3を載置する基板保持部材4と、上記基板保持部材4と対向し、かつ上面にシャワープレート30を有するシャワーヘッド20とを備えており、被処理基板3に対して、下方から反応ガスを供給するフェイスダウン型の気相成長装置としてのMOCVD装置60にも適用することができる。 Further, in the present invention, as shown in FIG. 13, a reaction furnace 2 having a reaction chamber 1 as a growth chamber that isolates the inside from the atmosphere side and maintains an airtight state, and the reaction chamber 1 is provided. A substrate holding member 4 for placing the substrate 3 to be processed, and a shower head 20 facing the substrate holding member 4 and having a shower plate 30 on the upper surface. The present invention can also be applied to an MOCVD apparatus 60 as a face-down type vapor phase growth apparatus for supplying a reaction gas from the above.
 本発明の気相成長装置では、前記低熱伝導領域は、空間部を設けることによって形成することができる。 In the vapor phase growth apparatus of the present invention, the low heat conduction region can be formed by providing a space.
 上記空間部は、前記シャワーヘッド側に加工を施し構成することもできる。例えば、シャワーヘッド面のシャワー孔領域以外にザグリ加工を施すことで、前記シャワープレート表面は、シャワーヘッドのシャワー孔が設置された領域で接触し、ザグリ加工を施した領域では空間部有することができる。よって、シャワープレート表面に形成される生成物の剥離を抑制し、被処理基板上での膜均一性及び膜の再現性を確保し得る気相成長装置及び気相成長方法を提供することができる。 The space can be configured by processing the shower head side. For example, by applying a counterbore process to the shower hole area other than the shower hole area of the shower head surface, the surface of the shower plate may be in contact with an area where the shower hole of the shower head is installed, and a space part may be provided in the area subjected to the counterbore process. it can. Therefore, it is possible to provide a vapor phase growth apparatus and a vapor phase growth method capable of suppressing peeling of a product formed on the surface of a shower plate and ensuring film uniformity and film reproducibility on a substrate to be processed. .
 さらに、上記空間部は、前記シャワープレート側に構成されることが好ましい。 Furthermore, it is preferable that the space is configured on the shower plate side.
 シャワーヘッド側には、冷媒が流れる流路がシャワーヘッド最表面側へ形成されているため、シャワーヘッド面のシャワー孔領域以外にザグリ加工を施すことは、冷媒流路を複雑化することを伴う。また、シャワーヘッド側に加工を施すと、空間部を変更するためには、シャワーヘッドの再製作が伴うため、非常に高価となり、また、交換の手間も問題となる。しかし、シャワープレート側へ加工を施すこと、例えば、シャワープレート面のシャワー孔領域以外にザグリ加工を施すことで、前記シャワープレートは、シャワーヘッド面とシャワー孔領域で接触し、シャワー孔領域外では、ザグリ加工部で空間部を形成することができる。シャワープレート面に加工を施すことで、空間部の形状、距離の変更も容易に実施することができ、シャワープレート交換も簡易に行うことができる。よって、シャワープレート表面に形成される生成物の剥離を抑制することができる最適な空間部形状、距離等の検討が行いやすく、被処理基板上での膜均一性及び膜の再現性を確保し得る気相成長装置及び気相成長方法を提供することができる。 On the shower head side, a flow path through which the coolant flows is formed on the outermost surface side of the shower head. Therefore, applying a counterbore process other than the shower hole area on the shower head surface complicates the coolant flow path. . Further, if the shower head side is processed, since the shower head needs to be remanufactured in order to change the space portion, it becomes very expensive and the trouble of replacement becomes a problem. However, by applying processing to the shower plate side, for example, by applying counterbore processing to the shower plate area other than the shower hole area, the shower plate is in contact with the shower head surface and outside the shower hole area. The space portion can be formed by the counterbore processing portion. By processing the surface of the shower plate, it is possible to easily change the shape and distance of the space portion, and it is also possible to easily replace the shower plate. Therefore, it is easy to study the optimal space shape and distance that can suppress the peeling of the product formed on the shower plate surface, ensuring film uniformity and reproducibility on the substrate to be processed. An obtained vapor phase growth apparatus and vapor phase growth method can be provided.
 本発明の気相成長装置では、前記低熱伝導領域の一部にシャワープレートに複数の貫通孔を設けると共に、前記空間部を通じて反応炉内と連通することを特徴とする。すなわち、上記シャワープレートの上記低熱伝導領域に、上記空間部と上記成長室内とを連通する複数の貫通孔が設けられていることが好ましい。 The vapor phase growth apparatus of the present invention is characterized in that a plurality of through holes are provided in a shower plate in a part of the low heat conduction region and communicated with the inside of the reactor through the space. That is, it is preferable that a plurality of through holes that communicate the space portion and the growth chamber are provided in the low thermal conductivity region of the shower plate.
 シャワープレートの空間部領域に、複数の貫通孔を設置することで、反応室内の原料ガス流路外に導入されているパージガスを、前記空間部領域のシャワープレートに設けられた複数の貫通孔を通じて、原料ガス流路内へ導入することが可能となる。シャワープレートのシャワー孔領域以外では、原料ガスの噴出しが不可能であるため、シャワープレート表面に形成される生成物が、シャワー孔領域と比較して多くなってしまう。しかし、上記複数の貫通孔を通じて、原料ガス流路内へパージガスを導入することによって、シャワープレート全面からガス噴出しを実現することができ、シャワープレート表面に形成される生成物を減少することが可能となる。よって、シャワープレート表面に形成される生成物の剥離を抑制し、被処理基板上での膜均一性及び膜の再現性を確保し得る気相成長装置及び気相成長方法を提供することができる。 By installing a plurality of through holes in the space portion region of the shower plate, the purge gas introduced outside the source gas flow path in the reaction chamber is passed through the plurality of through holes provided in the shower plate in the space portion region. It becomes possible to introduce into the source gas flow path. Since the source gas cannot be ejected outside the shower hole region of the shower plate, the amount of products formed on the shower plate surface is larger than that in the shower hole region. However, by introducing the purge gas into the source gas flow path through the plurality of through holes, it is possible to realize gas ejection from the entire surface of the shower plate and reduce the products formed on the surface of the shower plate. It becomes possible. Therefore, it is possible to provide a vapor phase growth apparatus and a vapor phase growth method capable of suppressing peeling of a product formed on the surface of a shower plate and ensuring film uniformity and film reproducibility on a substrate to be processed. .
 また、シャワーヘッドにおける、上記複数のガス吐出孔に隣接する領域に、冷却部が設けられていることが好ましい。 Further, it is preferable that a cooling unit is provided in a region adjacent to the plurality of gas discharge holes in the shower head.
 また、本発明にはシャワープレートも含まれる。すなわち、本発明に係るシャワープレートは、成長室内のガス供給部に搭載されるシャワープレートにおいて、上記シャワープレートにおける上記ガス供給部との対向面であって、当該対向面におけるシャワープレート外周領域にザグリ部が設けられていることを特徴としている。 The present invention also includes a shower plate. That is, the shower plate according to the present invention is a shower plate mounted on a gas supply unit in a growth chamber, which is a surface facing the gas supply unit in the shower plate, and is counterbored in a peripheral area of the shower plate on the counter surface. It is characterized in that a part is provided.
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 The specific embodiments or examples made in the detailed description section of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted in a narrow sense. It should be understood that various modifications may be made within the spirit of the invention and the scope of the following claims.
 本発明は、シャワープレート上部の空間に周辺部よりガスを導入し、シャワープレートの複数のガス吐出孔から基板表面に反応ガスを供給するシャワープレートを用いた縦型のMOCVD装置等の気相成長装置及び気相成長方法に利用することができる。 The present invention is a vapor phase growth method such as a vertical MOCVD apparatus using a shower plate that introduces a gas into the space above the shower plate from the periphery and supplies a reaction gas to the substrate surface from a plurality of gas discharge holes of the shower plate. It can be used for an apparatus and a vapor phase growth method.
1 反応室(成長室)
1a ガス排出口
2 反応炉
3 被処理基板
4 基板保持部材
5 回転伝達部材
6 基板加熱ヒータ
7 反応室隔壁
8 反応外部空間
10 MOCVD装置(気相成長装置)
20 シャワーヘッド
20a シャワーヘッド下部壁面
22 冷媒空間(冷却部)
23 第一ガス分配空間
23a 第一ガス導入口
23b 第一ガス供給管
24 第二ガス分配空間
24a 第二ガス導入口
24b 第二ガス供給管
25 パージガス供給管
30 シャワープレート
31、32 プレート孔
31a、32a ヘッド側表面孔
32b 基板側表面孔
41 空間部(低熱伝導領域)
42 ザグリ(低熱伝導領域)
43 貫通孔
44 生成物
45 剥離生成物
H3、H5 ガス吐出孔
1 Reaction chamber (growth chamber)
1a Gas outlet 2 Reaction furnace 3 Substrate 4 Substrate holding member 5 Rotation transmission member 6 Substrate heater 7 Reaction chamber partition 8 Reaction external space 10 MOCVD apparatus (vapor phase growth apparatus)
20 Shower head 20a Shower head lower wall surface 22 Refrigerant space (cooling part)
23 first gas distribution space 23a first gas introduction port 23b first gas supply pipe 24 second gas distribution space 24a second gas introduction port 24b second gas supply pipe 25 purge gas supply pipe 30 shower plate 31, 32 plate hole 31a, 32a Head side surface hole 32b Substrate side surface hole 41 Space (low heat conduction region)
42 counterbore (low heat conduction area)
43 Through-hole 44 Product 45 Peeling product H3, H5 Gas discharge hole

Claims (7)

  1.  成長室内に、被処理基板を載置する基板保持部材と、被処理基板加熱する基板加熱ヒータと、複数のガス吐出孔を配設したシャワーヘッドと、上記シャワーヘッドに載置され、かつ複数のプレート孔を配設したシャワープレートとを備え、上記シャワーヘッドから、該シャワーヘッドのガス吐出孔及びシャワープレートのプレート孔を通して被処理基板を収容する成長室内にガスを供給して被処理基板に成膜する気相成長装置において、
     上記基板保持部材の基板加熱ヒータによって加熱される領域より外側かつ、上記基板保持部材との対向面であって、上記シャワーヘッドにシャワープレートが近接して配置されている面において、低熱伝導の領域が形成されていることを特徴とする気相成長装置。
    In the growth chamber, a substrate holding member for mounting the substrate to be processed, a substrate heater for heating the substrate to be processed, a shower head provided with a plurality of gas discharge holes, and mounted on the shower head, and a plurality of A shower plate provided with a plate hole, and a gas is supplied from the shower head through the gas discharge hole of the shower head and the plate hole of the shower plate into a growth chamber that accommodates the substrate to be processed. In a vapor deposition apparatus for film formation,
    A region of low thermal conductivity on the surface of the substrate holding member that is outside of the region heated by the substrate heater and that faces the substrate holding member and is close to the shower head. A vapor phase growth apparatus characterized in that is formed.
  2.  前記低熱伝導領域は、空間部を設けることによって形成されることを特徴とする請求項1記載の気相成長装置。 2. The vapor phase growth apparatus according to claim 1, wherein the low heat conduction region is formed by providing a space portion.
  3.  前記低熱伝導領域は、シャワープレート側に空間部を設けることによって形成されることを特徴とする請求項1記載の気相成長装置。 2. The vapor phase growth apparatus according to claim 1, wherein the low thermal conductivity region is formed by providing a space on the shower plate side.
  4.  前記低熱伝導領域の一部にシャワープレートに複数の貫通孔を設けると共に、前記空間部を通じて成長室内と連通することを特徴とする請求項2または3記載の気相成長装置。 4. The vapor phase growth apparatus according to claim 2, wherein a plurality of through holes are provided in a shower plate in a part of the low heat conduction region and communicated with a growth chamber through the space.
  5.  シャワーヘッドにおける、上記複数のガス吐出孔に隣接する領域に、冷却部が設けられていることを特徴とする請求項1に記載の気相成長装置。 The vapor phase growth apparatus according to claim 1, wherein a cooling unit is provided in a region adjacent to the plurality of gas discharge holes in the shower head.
  6.  成長室内のガス供給部に搭載されるシャワープレートにおいて、
     前記シャワープレートへ流入するガスの上流側面でかつ、シャワープレート外周部にザグリ部を有することを特徴とするシャワープレート。
    In the shower plate mounted on the gas supply unit in the growth chamber,
    A shower plate having a counterbore portion on an upstream side surface of gas flowing into the shower plate and on an outer peripheral portion of the shower plate.
  7.  成長室内に、被処理基板を載置する基板保持部材と、被処理基板加熱する基板加熱ヒータと、複数のガス吐出孔を配設したシャワーヘッドと、上記シャワーヘッドに載置され、かつ複数のプレート孔を配設したシャワープレートとを備え、上記シャワーヘッドから、該シャワーヘッドのガス吐出孔及びシャワープレートのプレート孔を通して被処理基板を収容する成長室内にガスを供給して被処理基板に成膜する気相成長装置において、
     上記基板保持部材の基板加熱ヒータによって加熱される領域より外側かつ、上記基板保持部材との対向面であって、上記シャワーヘッドにシャワープレートが載置されている面において、低熱伝導の領域が形成し、当該ガス吐出孔及びプレート孔を通してガスを供給して成膜することを特徴とする気相成長方法。
    In the growth chamber, a substrate holding member for mounting the substrate to be processed, a substrate heater for heating the substrate to be processed, a shower head provided with a plurality of gas discharge holes, and mounted on the shower head, and a plurality of A shower plate provided with a plate hole, and a gas is supplied from the shower head through the gas discharge hole of the shower head and the plate hole of the shower plate into a growth chamber that accommodates the substrate to be processed. In a vapor deposition apparatus for film formation,
    A region of low thermal conductivity is formed on the surface of the substrate holding member that is outside of the region heated by the substrate heater and facing the substrate holding member, on the surface on which the shower plate is placed on the shower head. And forming a film by supplying a gas through the gas discharge hole and the plate hole.
PCT/JP2010/002208 2009-03-27 2010-03-26 Vapor deposition apparatus and vapor deposition method WO2010109915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009077944A JP4576466B2 (en) 2009-03-27 2009-03-27 Vapor growth apparatus and vapor growth method
JP2009-077944 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010109915A1 true WO2010109915A1 (en) 2010-09-30

Family

ID=42780612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002208 WO2010109915A1 (en) 2009-03-27 2010-03-26 Vapor deposition apparatus and vapor deposition method

Country Status (3)

Country Link
JP (1) JP4576466B2 (en)
TW (1) TWI385274B (en)
WO (1) WO2010109915A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014668A (en) * 2011-09-23 2013-04-03 理想能源设备(上海)有限公司 Chemical vapor deposition (CVD) device
JP2014512458A (en) * 2011-03-18 2014-05-22 アプライド マテリアルズ インコーポレイテッド Multi-level shower head design
CN110809335A (en) * 2019-11-14 2020-02-18 江苏实为半导体科技有限公司 MOCVD (metal organic chemical vapor deposition) heater source with protection function
CN112837985A (en) * 2019-11-22 2021-05-25 中微半导体设备(上海)股份有限公司 Upper electrode assembly and plasma processing apparatus
CN113166940A (en) * 2018-12-04 2021-07-23 艾克斯特朗欧洲公司 CVD reactor with gas inlet means covered by shield plate means
CN114214608A (en) * 2021-12-30 2022-03-22 东部超导科技(苏州)有限公司 Sprayer for producing superconducting strip
CN114672768A (en) * 2022-03-29 2022-06-28 江苏微导纳米科技股份有限公司 Thin film deposition apparatus
CN115110064A (en) * 2022-07-15 2022-09-27 长鑫存储技术有限公司 Gas input equipment and gas input method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352493A (en) * 2011-11-16 2012-02-15 上海卓锐材料科技有限公司 Device for realizing spray uniformity of MOCVD (Metal-Organic Chemical Vapor Deposition) and application of device
US10316409B2 (en) 2012-12-21 2019-06-11 Novellus Systems, Inc. Radical source design for remote plasma atomic layer deposition
JP6009348B2 (en) * 2012-12-27 2016-10-19 昭和電工株式会社 Deposition equipment
JP6118105B2 (en) * 2012-12-27 2017-04-19 昭和電工株式会社 Film forming apparatus and film manufacturing method
JP6103928B2 (en) * 2012-12-27 2017-03-29 昭和電工株式会社 Deposition equipment
JP6087620B2 (en) * 2012-12-27 2017-03-01 昭和電工株式会社 Deposition equipment
JP6009347B2 (en) * 2012-12-27 2016-10-19 昭和電工株式会社 Deposition equipment
JP6134522B2 (en) * 2013-01-30 2017-05-24 株式会社ニューフレアテクノロジー Vapor growth apparatus and vapor growth method
US9677176B2 (en) * 2013-07-03 2017-06-13 Novellus Systems, Inc. Multi-plenum, dual-temperature showerhead
JP6158025B2 (en) * 2013-10-02 2017-07-05 株式会社ニューフレアテクノロジー Film forming apparatus and film forming method
CN104498904B (en) * 2014-12-29 2017-04-26 华中科技大学 Spray header for MOCVD equipment
CN104789943A (en) * 2015-04-01 2015-07-22 沈阳拓荆科技有限公司 Temperature-controllable double-gas channel spraying plate with uniform gas spraying function
US10023959B2 (en) 2015-05-26 2018-07-17 Lam Research Corporation Anti-transient showerhead
JP6105114B1 (en) 2016-03-14 2017-03-29 株式会社東芝 Film forming apparatus, sputtering apparatus, and collimator
JP6718730B2 (en) 2016-04-19 2020-07-08 株式会社ニューフレアテクノロジー Shower plate, vapor phase growth apparatus and vapor phase growth method
US10604841B2 (en) 2016-12-14 2020-03-31 Lam Research Corporation Integrated showerhead with thermal control for delivering radical and precursor gas to a downstream chamber to enable remote plasma film deposition
DE102018126617A1 (en) 2018-10-25 2020-04-30 Aixtron Se Screen plate for a CVD reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132937U (en) * 1989-04-07 1990-11-05
JPH0891989A (en) * 1994-06-14 1996-04-09 Thomas Swan & Co Ltd Improvement related to chemical vapor deposition
JPH08291385A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Structure of shower head of treating device and method for supplying treating gas
JPH08339984A (en) * 1995-06-13 1996-12-24 Tokyo Electron Ltd Plasma processor
JPH09283498A (en) * 1996-04-10 1997-10-31 Tokyo Electron Ltd Vacuum treatment device
JPH11131239A (en) * 1997-10-31 1999-05-18 Japan Aviation Electron Ind Ltd Formation of plasma cvd coating film and device therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351864A (en) * 2000-06-09 2001-12-21 Toshiba Ceramics Co Ltd Thin film vapor growth method and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132937U (en) * 1989-04-07 1990-11-05
JPH0891989A (en) * 1994-06-14 1996-04-09 Thomas Swan & Co Ltd Improvement related to chemical vapor deposition
JPH08291385A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Structure of shower head of treating device and method for supplying treating gas
JPH08339984A (en) * 1995-06-13 1996-12-24 Tokyo Electron Ltd Plasma processor
JPH09283498A (en) * 1996-04-10 1997-10-31 Tokyo Electron Ltd Vacuum treatment device
JPH11131239A (en) * 1997-10-31 1999-05-18 Japan Aviation Electron Ind Ltd Formation of plasma cvd coating film and device therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512458A (en) * 2011-03-18 2014-05-22 アプライド マテリアルズ インコーポレイテッド Multi-level shower head design
CN103014668A (en) * 2011-09-23 2013-04-03 理想能源设备(上海)有限公司 Chemical vapor deposition (CVD) device
CN113166940A (en) * 2018-12-04 2021-07-23 艾克斯特朗欧洲公司 CVD reactor with gas inlet means covered by shield plate means
CN113166940B (en) * 2018-12-04 2024-06-04 艾克斯特朗欧洲公司 CVD reactor with gas inlet mechanism covered by shielding plate means
CN110809335A (en) * 2019-11-14 2020-02-18 江苏实为半导体科技有限公司 MOCVD (metal organic chemical vapor deposition) heater source with protection function
CN112837985A (en) * 2019-11-22 2021-05-25 中微半导体设备(上海)股份有限公司 Upper electrode assembly and plasma processing apparatus
CN112837985B (en) * 2019-11-22 2023-01-24 中微半导体设备(上海)股份有限公司 Upper electrode assembly and plasma processing apparatus
CN114214608A (en) * 2021-12-30 2022-03-22 东部超导科技(苏州)有限公司 Sprayer for producing superconducting strip
CN114214608B (en) * 2021-12-30 2024-02-23 东部超导科技(苏州)有限公司 Sprayer for producing superconducting tape
CN114672768A (en) * 2022-03-29 2022-06-28 江苏微导纳米科技股份有限公司 Thin film deposition apparatus
CN115110064A (en) * 2022-07-15 2022-09-27 长鑫存储技术有限公司 Gas input equipment and gas input method

Also Published As

Publication number Publication date
TW201109464A (en) 2011-03-16
JP2010232402A (en) 2010-10-14
TWI385274B (en) 2013-02-11
JP4576466B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4576466B2 (en) Vapor growth apparatus and vapor growth method
JP4699545B2 (en) Vapor growth apparatus and vapor growth method
KR101246491B1 (en) Apparatus of manufacturing thin film and method for manufacturing thin film
JP4945185B2 (en) Crystal growth method
JP4931082B2 (en) Gas head and thin film manufacturing apparatus
US9449859B2 (en) Multi-gas centrally cooled showerhead design
KR100688836B1 (en) Catalyst ehhanced chemical vapor depostion apparatus
JP5911491B2 (en) Gas distribution showerhead with high emissivity surface
JP2010059520A (en) Vapor deposition apparatus and vapor deposition method
WO2011011532A2 (en) Hollow cathode showerhead
KR101247918B1 (en) Shower head, apparatus of manufacturing thin film and method for manufacturing thin film
JP2011171450A (en) Film deposition apparatus and method
KR20090038606A (en) Susceptor and fabrication method of semiconductor using thereof
GB2282825A (en) Chemical vapour deposition apparatus
WO2012132575A1 (en) Shower plate, vapor-phase growth apparatus, and vapor-phase growth method
JP2010238831A (en) Vapor phase deposition device, and vapor phase deposition method
CN101466866A (en) Thin film production apparatus and inner block for thin film production apparatus
JP2013026358A (en) Shower plate and vapor phase growth apparatus
JP2009249651A (en) Vapor deposition apparatus and vapor deposition method
KR20140018148A (en) Method and apparatus of forming compound semiconductor film
JP7002731B2 (en) Vapor deposition equipment
TWI554637B (en) Metal organic chemical vapour deposition apparatus
JP2012084581A (en) Vapor phase epitaxial growth device
JP7002722B2 (en) Vapor deposition equipment
KR20180115044A (en) Reactor for chemical vapor deposition and chemical vapor deposition apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755717

Country of ref document: EP

Kind code of ref document: A1