WO2010109840A1 - き電システム用の電力調整装置 - Google Patents

き電システム用の電力調整装置 Download PDF

Info

Publication number
WO2010109840A1
WO2010109840A1 PCT/JP2010/002012 JP2010002012W WO2010109840A1 WO 2010109840 A1 WO2010109840 A1 WO 2010109840A1 JP 2010002012 W JP2010002012 W JP 2010002012W WO 2010109840 A1 WO2010109840 A1 WO 2010109840A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
transformer
feeder
voltage
Prior art date
Application number
PCT/JP2010/002012
Other languages
English (en)
French (fr)
Inventor
堤香津雄
松村▲隆▼廣
冨田千代春
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009072178A external-priority patent/JP2010221888A/ja
Priority claimed from JP2009160910A external-priority patent/JP5443078B2/ja
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to RU2011142749/07A priority Critical patent/RU2509400C2/ru
Priority to US13/258,413 priority patent/US9035485B2/en
Priority to CN201080009294.4A priority patent/CN102333670B/zh
Priority to EP10755643.3A priority patent/EP2412563A4/en
Publication of WO2010109840A1 publication Critical patent/WO2010109840A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/02Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a power adjustment device for a feeding system for an electric railway.
  • AC feeder circuits are suitable for long-distance and large-capacity power supply, and are used for power supply systems such as Shinkansen.
  • AC power substations since electric railways are single-phase loads, AC power substations generally use three-phase power received from an electric power company, etc., as a set of single-phase with a 90 ° phase difference using a three-phase two-phase conversion transformer. It converts into electric power (for example, refer nonpatent literature 1).
  • a Scott connection transformer (reception voltage 66 kV to 154 kV) or a modified Woodbridge connection transformer (reception voltage 187 kV to 275 kV) is used depending on the reception voltage, and the three-phase power supply is not used. Equilibrium is avoided.
  • a static reactive power compensator (SVC) is provided to cope with voltage fluctuations.
  • This SVC compensates reactive power using an inverter and also adjusts active power.
  • FIG. 11 (1) is a connection diagram including SVC installed on the feeder side in the Scott connection transformer of the conventional AC feeder substation.
  • This SVC is usually referred to as a “power compensation device (RPC: Railway static Power Conditioner)”.
  • the R phase, S phase, and T phase indicate the inputs on the three-phase side of the Scott connection transformer.
  • the M seat and the T seat indicate two phases formed by the Scott connection transformer.
  • the power compensator (RPC) 2a includes inverters 6m and 6t connected to the M-seat and T-seat feeders 4m and 4t, respectively, and a DC capacitor 20 connected between the two inverters 6m and 6t. .
  • the trains 8m and 8t travel using the electric power supplied to the feeders 4m and 4t of the M seat and T seat, respectively.
  • the power compensator (RPC) 2a compensates the reactive power by the inverters 6m and 6t connected to the M seat and the T seat, respectively, and halves the active power difference between the two seats between the two inverters. To make the active powers of the M seat and the T seat equal and balance the load on the three-phase side.
  • FIG. 11 (2) is a connection diagram including the SVC when installed on the three-phase side in the Scott connection transformer.
  • Fig. 11 (3) shows that the M and T seats of the Scott connection transformer are directly connected, and an inverter is installed on each of the M and T seats of the unequal-side Scott connection transformer, which feeds a single phase by the hypotenuse S seat.
  • FIG. 5 is a connection diagram including SVC coupled in a DC circuit.
  • the SVC shown in FIG. 11 (2) is called “three-phase SVC”, and the SVC shown in FIG. 11 (3) is called “unbalance-compensated single-phase feeder (SFC)”.
  • SFC single-phase feeder
  • Each of the three-phase SVC 202a and the unbalance-compensated single-phase feeder (SFC) 402a includes inverters 6, 6m, 6t and a DC capacitor 20 connected to the inverters 6, 6m, 6t, and the inverters 6, 6m, 6t To compensate the reactive power and adjust the active power.
  • An object of the present invention is to provide a power adjustment device that does not reduce the feeder voltage by adjusting the reactive power while performing interchange of the active power between the feeder circuits with a simple equipment configuration. . That is, an object of the present invention is to provide an inexpensive, compact, space-saving and highly reliable power adjustment device that does not require the installation of a capacitor.
  • the inventors of the present invention have discovered that nickel-metal hydride batteries have sufficient capacitance components after extensive research. That is, the inventors have found that nickel metal hydride batteries can be used not only as secondary batteries but also function sufficiently as capacitors. Therefore, the inventors of the power conditioning apparatus according to the present invention connect the nickel metal hydride battery between the high-voltage wiring and the low-voltage wiring of the AC / DC converter that converts AC power and DC power. In addition to accumulating surplus regenerative power in the battery feeder, the reactive power can be adjusted to prevent a drop in feeder voltage. That is, the present invention is a use invention of a nickel metal hydride battery.
  • the power adjustment device includes: A first AC / DC converter that performs power conversion between AC power and DC power; A feeder comprising a high voltage wiring on the DC side of the first AC / DC converter and a nickel metal hydride battery connected between the low voltage wiring on the DC side of the first AC / DC converter.
  • a power adjustment device for a system That is, a nickel-metal hydride battery is connected without connecting a capacitor between the high-voltage wiring and the low-voltage wiring of the AC / DC converter.
  • the power adjustment device further includes a first transformer that receives power from the AC power line and feeds the power to the feeder, and the AC side of the first AC / DC converter includes the first transformer. It may be connected to the power receiving side or the power feeding side of one transformer.
  • the power conditioner according to the present invention may be a transformer in which the first transformer converts the supplied three-phase AC voltage into two two-phase AC voltages whose phases are different by 90 ° and supplies power. .
  • the power adjustment device includes: And a second AC / DC converter that performs power conversion between AC power and DC power
  • the first transformer is a transformer for supplying power by converting the received three-phase AC voltage into a two-phase AC voltage;
  • the first AC / DC converter is connected to a feeder that receives one of the two-phase voltages fed by the first transformer;
  • the second AC / DC converter is connected to a feeder for receiving the other of the two-phase voltages fed by the first transformer;
  • the nickel metal hydride battery includes a common high-voltage wiring between a DC side of the first AC / DC converter and a DC side of the second AC / DC converter, and a DC side of the first AC / DC converter. And a low-voltage wiring between the second AC / DC converter and the DC side of the second AC / DC converter.
  • the power adjustment device includes: And a second transformer that receives power from the AC power line and feeds it to the feeder, and a second AC / DC converter that performs power conversion between AC power and DC power,
  • Each of the first transformer and the second transformer is a transformer that receives a single-phase AC voltage,
  • the first AC / DC converter is connected to a feeder for receiving the AC voltage fed by the first transformer;
  • the second AC / DC converter is connected to a feeder that receives the AC voltage fed by the second transformer;
  • the nickel metal hydride battery includes a high-voltage wiring between a direct current side of the first alternating current direct current converter and a direct current side of the second alternating current direct current converter, a direct current side of the first alternating current direct current converter, and the above It is good also as connecting between the low voltage
  • the nickel metal hydride battery is preferably a stacked type. Moreover, it is preferable that carbon is contained in the conductive agent of the nickel hydride battery.
  • the inventors of the present invention are based on the further discovery that the nickel-metal hydride battery can be made into a laminated type as described above, or the capacitance of the nickel-metal hydride battery can be increased particularly by using a conductive agent containing carbon. It is.
  • the nickel metal hydride battery is composed of one or more battery modules,
  • the battery module is A plate-like positive electrode current collector and a negative electrode current collector, which are provided to face each other, a separator disposed between the positive electrode current collector and the negative electrode current collector, and a positive electrode cell in contact with the positive electrode current collector
  • a plurality of unit cells having a negative electrode cell in contact with the negative electrode current collector are stacked so that the positive electrode current collector of one of the unit batteries adjacent to the negative electrode current collector of the other unit battery faces each other.
  • a flow path of a heat transfer medium made of a gas or liquid may be provided between the unit cells adjacent to each other.
  • a switch may be provided between the transformer and the AC / DC converter.
  • the power adjustment device of the present invention includes: And a second AC / DC converter that performs power conversion between AC power and DC power,
  • the AC side of the first AC / DC converter is connected to the end of the first feeding section
  • the AC side of the second AC / DC converter is connected to an end of a second feeding section electrically insulated from the first feeding section
  • the nickel metal hydride battery includes a common high-voltage wiring between a DC side of the first AC / DC converter and a DC side of the second AC / DC converter, and a DC side of the first AC / DC converter.
  • the power adjustment device of the present invention can adjust reactive power so as not to cause fluctuations in the feeder voltage, while allowing interchange of active power between feeder circuits. Furthermore, the power adjustment apparatus of the present invention does not require a capacitor for maintaining the feeder voltage.
  • the power adjustment device of the present invention can store regenerative power that is not consumed in a given power section in a nickel metal hydride battery for reuse.
  • the power adjustment device of the present invention can supply power to the feeder by discharging the nickel metal hydride battery, and can prevent a drop in the wire voltage. Thereby, the influence on the power receiving side due to a sudden change in the train load can be reduced.
  • the power conditioner of the present invention even if the power supply from the power system is stopped, the train that stops in the middle of a certain power section is brought to the nearest station by the power from the nickel metal hydride battery. It can be moved.
  • FIG. 1A is a connection diagram of the power adjustment apparatus according to the first embodiment of the present invention.
  • FIG. 1 (2) is a more detailed connection diagram of the power adjustment apparatus according to the first embodiment of the present invention. It is sectional drawing which shows the structure of the example of 1 structure of the unit battery which comprises a nickel hydride battery. It is a perspective view which shows the structure of the frame-shaped member of a unit battery shown in FIG. 2, a 1st cover member, and a 2nd cover member. (1) It is a cross-sectional view in one structural example of the battery module comprised by a unit battery, (2) The partial perspective view of the battery module of the same one structural example. In the perspective view of (2), the air flow direction in the heat transfer plate is shown.
  • FIG. 6A is a connection diagram of the power adjustment apparatus according to the first embodiment installed on the feeding side in an AC feeding circuit connected to two transformers that receive single-phase alternating current.
  • FIG. 6B is a conventional example of a feeder circuit connected to two transformers that receive single-phase alternating current. It is a connection diagram of the power adjustment device which concerns on the 2nd Embodiment of this invention. It is a connection diagram of the power adjustment device which concerns on the 3rd Embodiment of this invention. 1 shows an AC feeder circuit that includes an application example of a power conditioner to address the problem of speed limitation in the event of a substation failure.
  • FIG. 6A is a connection diagram of the power adjustment apparatus according to the first embodiment installed on the feeding side in an AC feeding circuit connected to two transformers that receive single-phase alternating current.
  • FIG. 6B is a conventional example of a feeder circuit connected to two transformers that receive single-phase alternating current.
  • FIG. 10 is a configuration diagram of an AC feeding circuit including an AC feeding device to which the power adjustment device of the present invention is applied.
  • FIG. 11 (1) is a connection diagram of a power compensator (RPC) installed on the feeder side in the Scott connection transformer of the AC feeder substation.
  • FIG. 11 (2) is a connection diagram of a three-phase SVC installed on the three-phase side in the Scott connection transformer.
  • Fig. 11 (3) shows an unequal-side Scott connection transformer in which the M and T seats of the Scott connection transformer are directly connected and single-phase electricity is supplied by the hypotenuse S seat.
  • FIG. 6 is a connection diagram of an unbalance-compensated single-phase feeder (SFC) that connects these two inverters.
  • SFC unbalance-compensated single-phase feeder
  • FIG. 12 (1) is a schematic diagram of an AC feeder circuit including an A substation, a B substation, a C substation, and two feeding divisions (SP).
  • FIG. 12 (2) is a schematic diagram of the AC feeding circuit shown in FIG. 12 (1) when a failure to stop power reception occurs at the B substation.
  • FIG. 12 (3) is a connection diagram of a conventional SVC provided in the substation of FIG. 12 (1).
  • FIG. 1 (1) is a connection diagram of a power adjustment apparatus 2 according to a first embodiment of the present invention
  • FIG. 1 (2) is a first embodiment of the present invention. It is a more detailed connection diagram of the power adjustment device 2 according to FIG.
  • the power conditioner 2 in the first embodiment is an SVC, and the power supply side (feeding side) of the Scott connection transformer 3 that receives power from the AC power line at the AC feeding substation and feeds it to the feeder line.
  • the power compensator (RPC) installed in is constructed.
  • the R phase, the S phase, and the T phase indicate inputs on the three-phase side of the Scott connection transformer 3.
  • the M seat and the T seat indicate two phases formed by the Scott connection transformer 3.
  • the AC side is connected to the feeders 4m and 4t of the M seat and the T seat, respectively, and an inverter (AC / DC converter) 6m that performs power conversion between AC power and DC power. , 6t and a nickel metal hydride battery 10 connected between the wirings on the DC side of the two inverters 6m, 6t.
  • the trains 8m and 8t travel using the power supplied to the feeders 4m and 4t of the M seat and T seat, respectively.
  • Inverters 6m and 6t provided in power adjustment device 2 of the present embodiment are based on the prior art, and include a rectifier circuit composed of a plurality of diodes, a switching circuit composed of a plurality of switching elements, and a capacitor. And so on. That is, the inverters 6m and 6t include an AC-DC converter and an AC-DC converter.
  • the nickel metal hydride battery 10 has a DC input / output terminal connected to the common high voltage wiring on the DC side of the two inverters 6m and 6t, and a DC input / output connected to the common low voltage wiring on the DC side of the two inverters 6m and 6t. Connected between the ends.
  • the inverter 6m is connected to the feeder 4m, converts AC power into DC power, and outputs it to the shared line 7.
  • the inverter 6m can also reversely convert the DC power on the shared line 7 side to AC power and output it to the electric wire 4m.
  • the nickel metal hydride battery 10 plays a role of temporarily storing DC power.
  • these functions are realized by a switch element built in the inverter.
  • the inverter 6t operates in the same manner, and AC / DC power conversion and orthogonal power conversion are possible.
  • the voltmeters 5m and 5t are provided on the feeders 4m and 4t connected to the inverters 6m and 6t, respectively. Furthermore, the control part 9 connected with the voltmeters 5m and 5t is provided with respect to the inverters 6m and 6t. If the nickel metal hydride battery 10 does not store enough charge and the voltage of the nickel metal hydride battery 10 is low, the AC power in the feeders 4m and 4t is converted to DC power by the rectifying action provided in the inverters 6m and 6t, and the nickel metal hydride battery 10 The battery 10 is charged.
  • the control unit 9 operates to control the switch element built in the inverter 6m to perform reverse conversion, thereby outputting AC power to the feeder 4m and suppressing the voltage drop of the feeder 4m.
  • the control part 9 controls the switch element built in the inverter 6t, converts the alternating current power from the electric wire 4t into direct current power, and supplements the direct current power reversely converted into alternating current power by the inverter 6m.
  • the control unit 9 converts the AC power from the feeder 4m into DC power by controlling the switching element built in the inverter 6m, thereby reducing the voltage rise of the feeder 4m. To work. At the same time, the control unit 9 controls the switch element built in the inverter 6t to reverse-convert the DC power forward-converted by the inverter 6m into AC power, and outputs it to the electric wire 4t. The same applies when the voltage drops or rises in the feeder 4t. In the voltage comparison between the voltmeter 5m and the voltmeter 5t, it is possible to provide appropriate hysteresis to prevent frequent switching. In this way, the power adjustment device 2 operates so as to eliminate the difference between the voltage of the feeder 4m and the voltage of the conductor 4t, and adjusts the active power.
  • inverters 6m and 6t adjust reactive power to suppress voltage fluctuation. That is, the control unit 9 controls the inverters 6m and 6t to adjust the reactive power generated in the electric wires 4m and 4t. Specifically, when the trains 8m and 8t are in power running and consume reactive power, the inverters 6m and 6t operate to supply reactive power. Thereby, the voltage of feeder 4m, 4t is maintained in an appropriate range.
  • the power adjustment device 2 compensates reactive power by inverters 6m and 6t connected to the M seat and the T seat, respectively, and the active power of the two seats.
  • One half of the difference is interchanged between the inverters via the nickel-metal hydride battery 10 so that the effective powers of the M seat and the T seat are equal and balanced on the three-phase side.
  • the power conditioner 2 has a nickel hydride battery 10 disposed between the wirings on the DC side of the inverters 6m and 6t, so that a DC capacitor such as that shown in Patent Document 1 is not separately provided.
  • the electric wire voltage can be maintained by coming to the feeder.
  • the nickel metal hydride battery according to the present embodiment uses carbon as the conductive agent.
  • the nickel metal hydride battery according to the present embodiment can also function as an electric double layer capacitor. For this reason, a large capacitance can be obtained.
  • the nickel metal hydride battery 10 according to the present embodiment is composed of a great number of unit batteries. For these reasons, the nickel metal hydride battery 10 according to the present embodiment has a very large capacitance and sufficiently functions as a capacitor.
  • the nickel metal hydride battery according to the present embodiment uses carbon as the conductive agent, specifically, uses carbon as the conductive agent of the positive electrode, and a very large number. Therefore, the equivalent capacitance is very large.
  • the capacitance C of the plate electrode is expressed by the following relational expression (formula 1).
  • C ⁇ ⁇ S / d
  • the dielectric constant
  • S the area of the plate electrodes
  • d the distance between the plate electrodes.
  • the S plate electrode area can be regarded as substantially the same as the area of the separator.
  • the nickel hydrogen battery according to the present embodiment has a larger capacitance than other batteries.
  • the electrode area (S) cannot be increased as in the case of the nickel metal hydride battery, and the distance (d) between the electrodes is also large. For this reason, it is estimated that the electrostatic capacity is 1/10 or less of the nickel-metal hydride battery, and can be said to be extremely small as compared with the nickel-metal hydride battery according to the present embodiment.
  • the electric double layer capacitor has a large capacitance, but its storage capacity is smaller than that of the battery. Therefore, even if the electric double layer capacitor is used in the power adjustment device, it is considered that the limit of adjustment of the active power is low.
  • the present inventors paid attention to the fact that nickel-metal hydride has a large capacitance, and applied this to an AC feeder system for electric railways. Such an application is not possible with other batteries.
  • the nickel metal hydride battery 10 is constituted by a battery module in which a plurality of unit batteries are connected in series, and may be constituted by a single battery module, or a series battery module in which a plurality of battery modules are connected in series. It may be configured. Alternatively, the single battery module or the series battery module may be connected in parallel. When connected in parallel, the battery capacity increases and the equivalent internal resistance decreases.
  • FIGS. 2 and 3 are diagrams for explaining a configuration example of the unit battery described above.
  • FIG. 2 is a cross-sectional view showing the structure of the unit battery C.
  • the unit battery C includes a separator 61, a positive electrode plate 62 that constitutes a positive electrode, and an electrode body 65 that includes a negative electrode plate 63 that constitutes a negative electrode, and a rectangular frame-shaped member 67 that forms a space for accommodating the electrode body 65 together with an electrolytic solution. And a first lid member 69 and a second lid member 71.
  • the unit battery C shown in FIG. 2 has nickel hydrogen as a main positive electrode active material, a hydrogen storage alloy as a main negative electrode active material, and an alkaline aqueous solution as an electrolyte. It is configured as a secondary battery.
  • the first lid member 69 has a flat plate-like main body 69a that covers one opening 67a of the frame-shaped member 67, and is integrally formed on each of the four sides of the main body 69a.
  • the edge portion is bent so as to substantially follow each of the four sides 67 b of the frame-shaped member 67, thereby forming a side portion 69 b that covers a part of the outer peripheral surface of the frame-shaped member 67.
  • the second lid member 71 also has a main body portion 71 a and a side portion 71 b and covers the other opening 67 c of the frame-shaped member 67.
  • the electrode body 65 has a laminated structure in which the positive electrode plate 62 and the negative electrode plate 63 are alternately laminated in a predetermined direction with the separator 61 interposed therebetween. More specifically, the positive electrode plates 62 and the negative electrode plates 63 are alternately stacked via a separator folded in a pleat shape to have a pleated structure facing each other.
  • the electrode body 65 is stacked in a direction Y from one of the pair of sides 67 b and 67 b of the frame-shaped member 67 facing in the left-right direction in FIG. 3. .
  • FIG. 4A is a cross-sectional view of a configuration example of a battery module including unit batteries.
  • FIG. 4 (2) is a partial perspective view of the battery module of FIG. 4 (1), showing the flow direction of air in the heat transfer plate in the battery module (however, shown in FIG. 4 (1)). The insulating plates 107 and 108 are omitted).
  • FIG. 5 is a perspective view of a heat transfer plate used in the battery module of FIGS.
  • the battery module 81 shown in FIG. 4 is obtained by stacking a plurality of the unit batteries.
  • the positive electrode current collector 99 and the negative electrode current collector 100 that are provided to face each other do not change in corrosion or the like in the alkaline electrolyte and transmit ions but transmit electrons.
  • the bellows-like separators 101 that are not allowed to be disposed are alternately arranged close to both current collectors.
  • a positive electrode sheet 103 containing a positive electrode active material together with the electrolyte solution 102 is disposed in a space defined by the bellows-shaped separator 101 and the positive electrode current collector 99, and the bellows-shaped separator 101 and the negative electrode current collector are disposed.
  • a negative electrode sheet 104 containing a negative electrode active material together with the electrolyte solution 102 is disposed in a space partitioned by the body 100, and the positive electrode sheet 103 and the negative electrode sheet 104 are alternately incorporated with the separator 101 interposed therebetween.
  • the separator 101 is formed in a bellows shape, whereby the positive electrode sheet 103 and the negative electrode sheet 104 can be stacked in the unit battery as a large number of cells. This facilitates an increase in the capacitance of the unit battery. This also increases the electrode area and allows adjacent cells to be connected with a very small resistance, eliminating the need for a cable for connecting the cells and making the battery compact as a whole.
  • the positive electrode sheet 103 is in contact with the positive electrode current collector 99, and the negative electrode sheet 104 is in contact with the negative electrode current collector 100.
  • the heat transfer plate 96 shown in FIG. 5 is inserted so as to be in contact with the positive electrode current collector 99 of one unit cell and the negative electrode current collector 100 of the other unit cell.
  • the direction of the air flow hole 97 of the heat transfer plate 96 coincides with the vertical direction of the positive electrode sheet 103 and the negative electrode sheet 104.
  • the separator 101 is divided into a positive electrode cell and a negative electrode cell, and is divided by the separator 101 and the positive electrode current collector 99 to form the positive electrode sheet 103.
  • the region in which the negative electrode sheet 104 is arranged is the positive electrode cell, and the region in which the negative electrode sheet 104 is divided by the separator 101 and the negative electrode current collector 100 is the negative electrode cell.
  • a positive electrode current collector 99 and a negative electrode current collector 100 made of a metal having excellent conductivity and good thermal conductivity are in direct contact with the positive electrode sheet 103 and the negative electrode sheet 104, respectively.
  • each current collector 99, 100 is in contact with a heat transfer plate 96 that serves to electrically connect the positive electrode current collector 99 and the negative electrode current collector 100.
  • the heat generated as a result of the battery reaction is efficiently transferred to the air flowing through the air flow holes 97 of the heat transfer plate 96 along the direction indicated by the arrow in FIG. Released to the outside. In this way, the temperature of the battery module 81 is maintained in an appropriate range in which the battery reaction can be performed smoothly.
  • an overall positive electrode current collector 105 is provided at the end of the positive electrode, and an overall negative electrode current collector 106 is provided at the end of the negative electrode.
  • Insulating plates 107 and 108 are provided on the sides of the battery module 81.
  • a connecting positive electrode terminal (not shown) is attached to the central portion of the overall positive electrode current collector 105, and a connecting negative electrode terminal (not shown) is attached to the central portion of the overall negative electrode current collector 106.
  • the positive electrode sheet 103 is obtained by, for example, applying a paste obtained by adding a solvent to a positive electrode active material, a conductive filler, and a resin, applying the paste on a substrate, forming a plate, and curing the negative electrode sheet 104.
  • a paste obtained by adding a solvent to a negative electrode active material, a conductive filler, and a resin is applied onto a substrate, formed into a plate shape, and cured.
  • the positive electrode active material and the negative electrode active material all known active material materials can be used.
  • As the conductive filler carbon fiber, carbon fiber nickel-plated, carbon particles, carbon particle nickel-plated, organic fiber nickel-plated, fibrous nickel, nickel particles, or nickel foil alone Or can be used in combination.
  • thermoplastic resin having a softening temperature up to 120 ° C., a resin having a curing temperature from room temperature to 120 ° C., a resin that dissolves in a solvent having an evaporation temperature of 120 ° C. or less, a resin that dissolves in a solvent soluble in water, or Resins that are soluble in alcohol-soluble solvents can be used.
  • substrate a metal plate having electrical conductivity such as a nickel plate can be used.
  • the heat transfer plate 96 is made of aluminum and nickel-plated, and is provided with a large number of flow holes 97 penetrating in the vertical direction as air flow paths.
  • the heat transfer plate 96 can be inserted between the positive electrode current collector 99 and the negative electrode current collector 100 so that air sucked by an intake fan (not shown) can be passed through the flow hole 97.
  • the heat transfer plate 96 is also a member for contacting the positive electrode current collector 99 and the negative electrode current collector 100 to electrically connect the positive electrode current collector 99 and the negative electrode current collector 100, and has electrical conductivity.
  • aluminum has a preferable property as the heat transfer plate 96 because it has a relatively low electrical resistance and a relatively high thermal conductivity, but has a drawback of being easily oxidized. Therefore, it is more preferable that the aluminum plate is nickel-plated as the heat transfer plate 96 because not only the oxidation is suppressed but also the contact resistance is lowered by the nickel plating.
  • the nickel metal hydride battery 10 used in the present embodiment preferably a stacked nickel metal hydride battery
  • the nickel metal hydride battery can be variously configured. For example, two series connected in series battery modules formed by connecting 19 battery modules including 30 unit batteries in series. Configured.
  • the standard performance of the unit battery includes numerical values such as an electromotive force of 1.25 V, a battery capacity of 150 Ah, and a capacitance per unit battery capacity of 130 F / Ah.
  • the nickel hydrogen battery 10 according to the present embodiment has an extremely large equivalent capacitance. Therefore, by applying such a nickel metal hydride battery 10 to an AC power feeding system, it is possible to omit installation of a DC capacitor that requires a large space for installation.
  • FIG. 1 is an SVC installed on the feeder side in a Scott connection transformer that receives three-phase alternating current, but in the first embodiment of the present invention, Such a power adjustment device can also be installed for a transformer that receives single-phase alternating current.
  • FIG. 6 (1) is a connection diagram of the power conditioner according to the first embodiment installed on the feeding side in an AC feeding circuit connected to two transformers 23a and 23b that receive single-phase alternating current. It is.
  • FIG. 6B is a connection diagram illustrating a comparative example of an AC feeding circuit connected to two transformers 23a and 23b that receive single-phase AC.
  • the feeders are provided with circuit breakers 22a and 22b capable of interrupting energization from the transformers 23a and 23b.
  • Switches 24a and 24b are provided between the transformers 23a and 23b and the inverters 6a and 6b, respectively. The operation of the switches 24a and 24b will be described later in “4. Application example of the present invention”.
  • the single-phase alternating current may be a two-wire system or a three-wire system.
  • the power adjustment apparatus according to the present embodiment can also be applied to a configuration in which three-phase alternating current is received by two single-layer transformers that are V-connected, and electricity is supplied for each direction.
  • FIG. 7 is a connection diagram of a power adjustment device 202 according to a second embodiment of the present invention.
  • the power conditioner 202 according to the second embodiment constitutes a three-phase SVC installed on the power receiving side (three-phase side) in the Scott connection transformer 3 of the AC feeding substation.
  • the R phase, the S phase, and the T phase indicate inputs on the three-phase side of the Scott connection transformer 3.
  • the M seat and the T seat indicate two phases formed on the feeding side of the Scott connection transformer 3.
  • the SVC 202 according to the second embodiment includes an inverter 6 whose AC side is connected to each of the three input phases, and a nickel metal hydride battery 10 connected to the DC side of the inverter 6.
  • the inverter 6 is the same as the above-described conventional inverter. Further, the nickel metal hydride battery 10 is connected between the DC input / output terminal connected to the high voltage wiring on the DC side of the inverter 6 and the DC input / output terminal connected to the low voltage wiring on the DC side of the inverter 6.
  • the nickel metal hydride battery 10 is connected to the inverter 6 installed on the three-phase side, thereby compensating for reactive power and adjusting active power. Thereby, installation of a DC capacitor can be omitted.
  • the power adjustment device 202 since the nickel metal hydride battery 10 has a large capacitance and sufficiently functions as a capacitor, the power adjustment device 202 according to the present embodiment has three DC capacitors without a separate DC capacitor as shown in Patent Document 1. A desired voltage can be maintained on the phase side.
  • FIG. 8 is a connection diagram of a power adjustment device 402 according to a third embodiment of the present invention.
  • the power adjustment device 402 according to the third embodiment constitutes an unbalance compensation single-phase feeding device (SFC).
  • the “unbalance-compensated single-phase power feeding device (SFC)” is an unequal-side Scott-connected transformer that performs single-phase power feeding by an oblique S-seat formed by directly connecting the M and T seats of the Scott-connected transformer 3.
  • Inverters 6m and 6t are installed in the M and T seats, respectively, and the two inverters 6m and 6t are connected.
  • the power adjustment device 402 includes inverters 6m and 6t connected to the M seat and the T seat, and a nickel metal hydride battery 10 connected to the inverters 6m and 6t.
  • the inverters 6m and 6t are the same as the above-described conventional inverters.
  • the nickel-metal hydride battery 10 is connected to the inverters 6m and 6t provided in the M seat and the T seat, thereby compensating for the reactive power and adjusting the active power. Do. Thereby, installation of a DC capacitor can be omitted.
  • the power adjustment device 402 since the nickel metal hydride battery 10 has a large capacitance and functions sufficiently as a capacitor, the power adjustment device 402 according to the present embodiment does not have to include a direct current capacitor as shown in Patent Document 1.
  • the electric wire voltage can be maintained by coming into the electric wire.
  • FIG. 12 (1) is a schematic diagram of an AC feeder circuit including an A substation, a B substation, a C substation, and two feeder divisions (SP) 51 and 52. Assume that each substation is equipped with a power compensator (RPC) 2a, which is a conventional SVC.
  • FIG. 12 (2) shows an A substation, a B substation, a C substation, and a B substation in the AC feeder circuit shown in FIG. It is a schematic diagram of the AC feeding circuit containing two feeding divisions (SP) 51 and 52.
  • FIG. 12 (3) is a connection diagram of a conventional power compensation device (RPC) 2a, and shows a situation when a failure of power reception has occurred at a substation.
  • RPC power compensator
  • the connection state of the AC feeder circuit is as shown in FIG. That is, as shown in FIG. 12 (2), the feeder section 51 between the A substation and the B substation is divided into the section from the A substation to the feeder section 51, and the feeder substation 51 to the B substation.
  • the train to the station is electrically connected, and the train continues to run from the A substation to the B substation as one rescue power section. In this case, power is supplied only from the A substation in the relief power section.
  • the feeder section 52 between the B substation and the C substation electrically separates the section from the B substation to the feeder section 52 and the section from the feeder substation 52 to the C substation. Connect and continue to run the train from B substation to C substation as one relief power section. In this case, power is supplied only from the C substation in the relief power section.
  • FIG. 9 shows an AC feeder circuit including an application example of the power adjustment device according to the present invention for coping with the problem of speed limitation at the time of a substation failure in a conventional AC feeder circuit.
  • FIG. 9 (1) shows a schematic diagram of an AC feeder circuit including an A substation, a B substation, a C substation, and two feeder divisions (SP) 51 and 52 at the top.
  • a connection diagram of the power adjustment apparatus according to the present invention provided in the place is shown in the lower part.
  • the power adjustment device is the same as the power compensation device (RPC) shown in FIG. 1, and is inserted between the wirings on the DC side of the inverters 6m and 6t connected to the M seat and the T seat in FIG. 12 (3).
  • a nickel metal hydride battery 10 is provided instead of the capacitor 20.
  • 9 includes not only the circuit breakers 22m and 22t but also the switches 24m and 24t.
  • FIG. 9 (2) shows the connection status of the feeding section when a failure of the power reception stop occurs at the B substation in the AC feeding circuit shown in FIG. 9 (1).
  • the feeder section 51 between the A substation and the B substation is divided into the section from the A substation to the feeder substation 51, and the feeder substation 51 to the B substation. Electrically connect the sections up to Furthermore, the feeder section 52 between the B substation and the C substation is electrically connected to the section from the B substation to the feeder section 52 and the section from the feeder section 52 to the C substation. To do.
  • the lower part of Fig. 9 (2) shows the status of the power conditioner when a fault occurs at the B substation.
  • the switches 24m and 24t are in an OFF state, but the circuit breakers 22m and 22t are not operating (that is, in an energized state).
  • the left and right feeding sections of the B substation are connected to each other with the power adjustment device interposed therebetween, and power can be supplied from the nickel metal hydride battery 10. Therefore, the section from the A substation to the B substation and the section from the B substation to the C substation become relief power sections by connecting the power distribution stations 51 and 52, respectively.
  • the trains traveling in these relief substations can continue normal operation.
  • FIG. 10 is a configuration diagram of an AC feeder circuit including an AC feeder 50 to which the power adjustment device of the present invention is applied.
  • the AC feeder circuit shown in FIG. 10 includes a down line 120 and an up line 140. Further, the AC feeder circuit shown in FIG. 10 includes feeder substations (SS) 40a and 40b and feeder section (SP) 200 for feeding section, which are actually electric railways. It is provided along the line. Further, a dead section 110 is provided between the left and right feeding circuits centering on the feeding substations (SS) 40a and 40b.
  • SS feeder substations
  • SP feeder section
  • a section between the feeding substations (SS) 40a and 40b and the feeding section (SP) 200 is referred to as a “feeding section”.
  • the configuration diagram of FIG. 10 is a part of an AC feeder circuit, and a larger number of feeder substations (SS) 40a and 40b and feeder feeder stations (SP) 200 may be provided.
  • Feeding substations (SS) 40a and 40b include a three-phase two-phase conversion transformer 300, and output each of two-phase power composed of M and T to left and right feeding circuits.
  • the circuit breaker 8 provided in each of the M seat and the T seat does not operate and the circuit is closed.
  • the circuit breaker 220 operates to open the circuit.
  • the feeder section (SP) 200 includes a circuit breaker 60.
  • the circuit breaker 60 is normally open. When a failure occurs in one of the left and right feeder substations (SS) 40a, 40b of the feeder substation (SP) 200 and the power supply from the feeder substation (SS) 40a, 40b stops, the circuit breaker 60 is in a closed state, and the power feeding from the faulty feeding substation (SS) 40a, 40b exceeds the feeding section (SP) 200, and the faulty feeding substation (SS) 40a , 40b to be handled.
  • the AC feeder 50 disposed in the feeder section (SP) 200 of the present embodiment converts the AC power of the feeder circuit into DC power and supplies the DC power.
  • a nickel metal hydride battery 10 connected to the wiring is provided.
  • the nickel metal hydride battery 10 includes a DC input / output terminal connected to a common high voltage (positive side) wiring on the DC side of the inverters 6a and 6b and a common low voltage (negative side) wiring on the DC side of the inverters 6a and 6b. Connected to the DC input / output terminal connected to.
  • the inverter 6a is connected to an AC electric wire 4a whose AC side is connected to a train line, converts AC power into DC power, and outputs it to a shared line (common high-voltage wiring and common low-voltage wiring) 7. Further, the inverter 6a can also reversely convert the DC power on the shared line 7 side, which is the DC side, into AC power and output it to the AC electric wire 4a.
  • the nickel metal hydride battery 10 acts as a secondary battery as described above, and at the same time, acts as a capacitor. As is well known, these functions are realized by a switch element built in the inverter.
  • the inverter 6b operates in the same manner, and AC / DC power conversion and orthogonal power conversion are possible.
  • Voltmeters 5a and 5b are provided on the AC electric wires 4a and 4b connected to the inverters 6a and 6b, respectively. Furthermore, the control part 9 connected with the voltmeters 5a and 5b is provided with respect to the inverters 6a and 6b. If the nickel metal hydride battery 10 does not store enough charge and the voltage of the nickel metal hydride battery 10 is low, the alternating current power in the AC wires 4a and 4b is converted into direct current power by the rectifying action provided in the inverters 6a and 6b. Battery 10 is charged.
  • the voltage of the AC electric wire 4a decreases, “Voltage of voltmeter 5a” ⁇ “Voltage of voltmeter 5b”
  • the control unit 9 operates to control the switch element built in the inverter 6a to perform reverse conversion, thereby outputting AC power to the AC wire 4a and suppressing the voltage drop of the AC wire 4a.
  • the control part 9 controls the switch element built in the inverter 6b, converts the alternating current power from the alternating current electric wire 4b into direct current power, and supplements the direct current power reversely converted into alternating current power by the inverter 6a.
  • the control unit 9 converts the AC power from the AC wire 4a to DC power by controlling the switch element built in the inverter 6a, thereby reducing the increase in the voltage of the AC wire 4a. To work. At the same time, the control unit 9 controls the switch element built in the inverter 6b, reversely converts the DC power forward-converted by the inverter 6a into AC power, and outputs the AC power to the AC electric wire 4b. The same applies when the voltage drops or rises in the AC electric wire 4b.
  • the AC feeder 50 operates so as to eliminate the difference between the voltage of the AC wire 4a and the voltage of the AC wire 4b.
  • the nickel metal hydride battery 10 As compared with a conventional AC power supply apparatus including a capacitor instead of the nickel metal hydride battery 10, the nickel metal hydride battery 10 according to the present embodiment is a secondary battery, so that a large amount of charge can be stored. Therefore, since more electric power can be stored in the nickel metal hydride battery 10 from the AC electric wire 4a, the ability to absorb regenerative power is high.
  • the AC feeder 50 In the AC feeder 50 according to the present embodiment, a large amount of power is instantaneously required (for example, due to train powering) in either of the left and right feeder sections of the feeder section (SP) 200. In this case, the voltage in the feeding section becomes lower than the voltage in the other feeding section. Then, as described above, the inverters 6a and 6b work so that power flows from the other feeding section to the feeding section having a low voltage. This prevents a drop in the train line voltage in the feeder section that requires power.
  • the inverters 6a and 6b work so that most of the electric power is stored in the nickel-metal hydride battery 10 from the high voltage feeding section and part of the power flows to the other feeding section. Become. This prevents an increase in the train line voltage in the feeder section where regenerative power is generated. Furthermore, since the generated regenerative power can be stored in the nickel metal hydride battery 10, the regenerative power is not wasted and can be used effectively. In addition, since the ability to absorb regenerative power is high, it is possible to prevent regeneration from becoming invalid.
  • the inverters 6a and 6b and the nickel metal hydride battery 10 can feed power from two feeding substations (SS) 40a and 40b having different phases in parallel to the feeding section. .
  • SS feeding substations
  • the train that is being accelerated is immediately to the left of the feeding section (SP) 200.
  • the accelerating train can receive power necessary for acceleration from both the left feeding substation 40a and the right feeding substation 40b. That is, in the present embodiment, the dependence on the power from the left feeding substation 40a is about 1 ⁇ 2. Accordingly, it is possible to aim at equalizing the load between the feeding substations, and as a result, the voltage drop in the feeding section where the acceleration vehicle is traveling is alleviated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

有効電力の負担を安定させるき電システム用の電力調整装置を提供する。 本発明の電力調整装置は、交流電力と直流電力との間で電力変換を行う第1の交流直流変換器と、上記第1の交流直流変換器の直流側における高圧配線と上記第1の交流直流変換器の直流側における低圧配線との間に接続されるニッケル水素電池とを含んでいる。

Description

き電システム用の電力調整装置
 本発明は、電気鉄道のためのき電システム用の電力調整装置に関する。
 交流き電回路は、長距離や大容量の電力供給に適しているため、新幹線等の電力供給方式に用いられている。また、電気鉄道は単相負荷であるため、交流き電用変電所では、一般に電力会社などから受電した三相電力を、三相二相変換変圧器で90°位相差の1組の単相電力に変換している(例えば、非特許文献1参照)。この三相二相変換変圧器として、受電電圧に応じてスコット結線変圧器(受電電圧66kV~154kV)や変形ウッドブリッジ結線変圧器(受電電圧187kV~275kV)が用いられて、三相電源の不平衡を回避している。
 更に、交流き電用変電所では、電圧変動に対処するために、静止形無効電力補償装置(SVC;Static Var Compensator)が設けられている。このSVCは、インバータを用いて無効電力を補償するとともに有効電力をも調整する。
 図11(1)は、従来の交流き電用変電所のスコット結線変圧器において、き電側に設置されるSVCを含む結線図である。このSVCは通常、「電力補償装置(RPC;Railway static Power Conditioner)」と呼ばれる。R相、S相及びT相は、スコット結線変圧器の三相側の入力を示す。M座とT座はスコット結線変圧器により形成される二相を示す。電力補償装置(RPC)2aは、M座とT座の夫々のき電線4m、4tに接続されたインバータ6m、6tと、2つのインバータ6m、6tの間に接続された直流キャパシタ20とを含む。M座とT座の夫々のき電線4m、4tに供給される電力を動力源として、電車8m、8tは走行する。
 スコット結線変圧器では、M座とT座の負荷が平衡すれば三相側でも平衡する。また、無効電力が小さければ電圧変動は小さくなる。そこで、電力補償装置(RPC)2aは、M座とT座とに夫々接続されるインバータ6m、6tにより無効電力を補償するとともに、二つの座の有効電力差の1/2を2つのインバータ間で融通して、M座とT座の有効電力を等しくし、三相側での負荷を平衡させる。
 図11(2)は、スコット結線変圧器において、三相側に設置される場合のSVCを含む結線図である。図11(3)は、スコット結線変圧器のM座とT座を直接接続し、斜辺S座により単相き電する、不等辺スコット結線変圧器のM座とT座に各々インバータを設置し、直流回路で結合するSVCを含む結線図である。図11(2)に示すSVCは、「三相SVC」と呼ばれ、図11(3)に示すSVCは、「不平衡補償単相き電装置(SFC;Single phase Feeding power Conditioner)」と呼ばれることもある。三相SVC202a及び不平衡補償単相き電装置(SFC)402aはいずれも、インバータ6、6m、6tと、インバータ6、6m、6tに接続する直流キャパシタ20とを含み、インバータ6、6m、6tにより無効電力を補償するとともに有効電力を調整する。
 また、交流き電において、交流き電用変電所からき電区分所に至る単相回路では、き電線の線路インピーダンスの抵抗分やリアクタンス分によって電車の走行による電圧降下が発生し、そのき電線の末端で所望のき電線電圧が得られないという現象(問題)が生じることがある。この現象(問題)の解消のために、特許文献1では、き電線末端で連系変圧器を介して接続された連系コンバータ(インバータ)により、き電線末端での電圧変動を補償するためにき電線末端でのき電線電圧の調整装置が開示されている。このき電電圧調整装置は、連系コンバータ(インバータ)の直流側に、有効電力の長期的変動分を補償するバッテリと、有効電力の短期的変動分を補償する直流コンデンサとを並列接続している。
電気鉄道ハンドブック編集委員会編「電気鉄道ハンドブック」コロナ社、2007年2月28日、p.585
特開2000-6693号公報
 上記特許文献1に示す、き電電圧調整装置を設備する構成においては、無効電力の補償の他、き電線の末端での無効電力による電圧降下を防ぐために直流コンデンサが接続され、長期的な有効電力の変動を補償するためにバッテリが接続されているところ、直流コンデンサは、設置のために広いスペースが必要とされること、信頼性が必ずしも充分でないこと、及び、高価であること等の問題点がある。
 本発明は、簡便な設備構成で、き電線回路間での有効電力の融通を行うとともに、無効電力の調整を行うことにより、き電線電圧を降下させない電力調整装置を提供することを目的とする。即ち、本発明はコンデンサの設置を必要とせず、廉価で、コンパクト・省スペースで、更に信頼性の高い電力調整装置を提供することを目的とする。
 本発明の発明者らは、鋭意研究の末、ニッケル水素電池に十分な静電容量成分が備わっていることを発見した。すなわち、発明者らは、ニッケル水素電池が、二次電池として用いられるだけではなく、キャパシタとしても十分に機能し得ることを発見した。そこで、発明者らは、本発明に係る電力調整装置において、ニッケル水素電池を交流電力と直流電力とを変換する交流直流変換器の高圧配線と低圧配線との間に接続することにより、ニッケル水素電池にき電線における余剰の回生電力を蓄電するとともに、き電線電圧の降下を防止するために無効電力を調整可能な構成とした。すなわち、本発明は、ニッケル水素電池の用途発明である。
 本発明に係る電力調整装置は、
 交流電力と直流電力との間の電力変換を行う第1の交流直流変換器と、
 上記第1の交流直流変換器の直流側における高圧配線と、上記第1の交流直流変換器の直流側における低圧配線との間に接続されるニッケル水素電池とを含むことを特徴とする
き電システム用の電力調整装置である。即ち、交流直流変換器の高圧配線と低圧配線の間にコンデンサを接続しないで、ニッケル水素電池を接続したことを特徴とする。
 また、本発明に係る電力調整装置は、更に、交流電力回線から受電してこれをき電線に給電する第1の変圧器を含み、上記第1の交流直流変換器の交流側は、上記第1の変圧器の受電側又は給電側に接続されていてもよい。
 また、本発明に係る電力調整装置は、上記第1の変圧器が、給電した三相交流電圧を位相が90°異なる2つの二相交流電圧に変換して給電する変圧器であってもよい。
 また、本発明に係る電力調整装置は、
 更に、交流電力と直流電力との間の電力変換を行う第2の交流直流変換器を含み、
 上記第1の変圧器が、受電した三相交流電圧を二相交流電圧に変換して給電する変圧器であり、
 上記第1の交流直流変換器が、上記第1の変圧器により給電される二相電圧のうちの一方を受電するき電線に接続され、
 上記第2の交流直流変換器が、上記第1の変圧器により給電される二相電圧のうちの他方を受電するき電線に接続され、
 上記ニッケル水素電池が、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における共通の高圧配線と、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における低圧配線との間に接続されることとしてもよい。
 また、本発明に係る電力調整装置は、
 更に、交流電力回線から受電してこれをき電線に給電する第2の変圧器と、交流電力と直流電力との間の電力変換を行う第2の交流直流変換器とを含み、
 上記第1の変圧器と上記第2の変圧器とが、夫々、単相交流電圧を受電する変圧器であり、
 上記第1の交流直流変換器が、上記第1の変圧器により給電される交流電圧を受電するき電線に接続され、
 上記第2の交流直流変換器が、上記第2の変圧器により給電される交流電圧を受電するき電線に接続され、
 上記ニッケル水素電池が、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における高圧配線と、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における低圧配線との間に接続されることとしてもよい。
 上記ニッケル水素電池は、積層型であることが好ましい。また、上記ニッケル水素電池の導電剤に炭素を含むことが好ましい。本発明の発明者らは、このようにニッケル水素電池を積層型としたり、炭素を含む導電剤を用いることにより特にニッケル水素電池における静電容量を大きくすることができるという更なる発見に基づくものである。
 上記ニッケル水素電池は、1つ以上の電池モジュールによって構成され、
 上記電池モジュールは、
 それぞれ、対向して設けられた板状の正極集電体と負極集電体と、上記正極集電体と上記負極集電体の間に配したセパレータと、上記正極集電体に接する正極セルと上記負極集電体に接する負極セルとを有する複数の単位電池が、互いに隣り合う一方の上記単位電池の正極集電体と他方の上記単位電池の負極集電体とが対向するように積層されてなり、かつ、互いに隣り合う前記単位電池の間に気体または液体からなる伝熱媒体の流通経路が設けられていてもよい。
 変圧器と交流直流変換器との間に、スイッチが設けられてもよい。
 また、本発明の電力調整装置は、
 更に、交流電力と直流電力との間の電力変換を行う第2の交流直流変換器を含み、
 上記第1の交流直流変換器の交流側は、第1のき電区間の端部に接続され、
 上記第2の交流直流変換器の交流側は、上記第1のき電区間とは電気的に絶縁された第2のき電区間の端部に接続され、
 上記ニッケル水素電池が、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における共通の高圧配線と、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における低圧配線との間に接続されることとしてもよい。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明を利用することにより、本発明の電力調整装置は、き電回路間で有効電力の融通を行うとともに、き電線電圧の変動を生じさせないように無効電力の調整を行うことができる。本発明の電力調整装置は更に、き電線電圧維持のためのコンデンサを設ける必要がない。
 また、本発明の電力調整装置は、あるき電区間内で消費されない回生電力をニッケル水素電池に蓄電し再利用に向けることができる。また、本発明の電力調整装置は、ニッケル水素電池の放電によりき電線に電力を供給できき電線電圧の降下を防ぐことができる。これにより、電車負荷の急激な変動による受電側への影響を緩和できる。更に、本発明の電力調整装置を利用することにより、電力系統からの給電が停止したような場合でも、あるき電区間の途中に停車している電車をニッケル水素電池からの動力により最寄りの駅まで移動させることが可能になる。
図1(1)は、本発明の第1の実施の形態に係る電力調整装置の結線図である。図1(2)は、本発明の第1の実施の形態に係る電力調整装置のより詳細な結線図である。 ニッケル水素電池を構成する単位電池の一構成例の構造を示す断面図である。 図2に示す単位電池の枠形部材、第1蓋部材及び第2蓋部材の構造を示す斜視図である。 (1)単位電池により構成される電池モジュールの一構成例における横断面図と、(2)同じ一構成例の電池モジュールの一部斜視図である。(2)の斜視図では、伝熱板内の空気の流れ方向を示している。 一構成例の電池モジュールに用いられる伝熱板の斜視図である。 図6(1)は、単相交流を受電する2つの変圧器に接続する交流き電回路において、き電側に設置される第1の実施の形態に係る電力調整装置の結線図である。図6(2)は、単相交流を受電する2つの変圧器に接続するき電回路の従来例である。 本発明の第2の実施の形態に係る電力調整装置の結線図である。 本発明の第3の実施の形態に係る電力調整装置の結線図である。 変電所障害時の速度制限という問題に対処するための、電力調整装置の応用例を含む、交流き電回路を示す。 図10は、本発明の電力調整装置が適用された交流き電装置を含む交流き電回路の構成図である。 図11(1)は、交流き電用変電所のスコット結線変圧器において、き電側に設置される電力補償装置(RPC)の結線図である。図11(2)は、スコット結線変圧器において、三相側に設置される三相SVCの結線図である。図11(3)は、スコット結線変圧器のM座とT座を直接接続し、斜辺S座により単相き電する、不等辺スコット結線変圧器において、M座とT座に各々インバータを設置し、それら2つのインバータを接続する不平衡補償単相き電装置(SFC)の結線図である。 図12(1)は、A変電所、B変電所、C変電所、及び、二つのき電区分所(SP)を含む交流き電回路の模式図である。図12(2)は、B変電所で受電停止の障害が生じたときの、図12(1)に示す交流き電回路の模式図である。図12(3)は、図12(1)の変電所に備わる従来のSVCの結線図である。
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
1.第1の実施の形態
 図1(1)は、本発明の第1の実施の形態に係る電力調整装置2の結線図であり、図1(2)は、本発明の第1の実施の形態に係る電力調整装置2のより詳細な結線図である。第1の実施の形態における電力調整装置2はSVCであり、交流き電用変電所において交流電力回線から受電してこれをき電線に給電するスコット結線変圧器3の給電側(き電側)に設置される電力補償装置(RPC)を構成する。R相、S相及びT相は、スコット結線変圧器3の三相側の入力を示す。M座とT座はスコット結線変圧器3により形成される二相を示す。第1の実施の形態におけるSVC2は、交流側がM座とT座の夫々のき電線4m、4tに接続され、交流電力と直流電力との間の電力変換を行うインバータ(交流直流変換器)6m、6tと、2つのインバータ6m、6tの直流側の配線間に接続されたニッケル水素電池10とを含む。M座とT座の夫々のき電線4m、4tに供給される電力を動力源として、電車8m、8tが走行する。
 本実施の形態の電力調整装置2に設けられるインバータ6m、6tは従来技術によるものであり、複数のダイオードにより構成される整流回路と、複数のスイッチング素子により構成されるスイッチング回路と、及び、キャパシタ等とから、構成される。すなわち、インバータ6m、6tは、交流-直流変換器及び交流-直流変換器を備えている。
 ニッケル水素電池10は、2つのインバータ6m,6tの直流側における共通の高圧配線に接続する直流入出力端と、同じく2つのインバータ6m,6tの直流側における共通の低圧配線に接続する直流入出力端との間に接続される。
 以上の構成を備える電力調整装置2の動作を次に説明する。インバータ6mは、き電線4mに接続されており、交流電力を直流電力に変換して共有線7に出力する。また、インバータ6mは、共有線7側の直流電力を交流電力に逆変換してき電線4mに出力することも可能である。この場合、ニッケル水素電池10は直流電力を一時的に貯蔵する役割を果たす。これらの作用はインバータに内蔵されるスイッチ素子により実現されることは周知の通りである。インバータ6tについても同様に作用し、交直電力変換及び直交電力変換が可能となっている。
 インバータ6m、6tに接続するき電線4m、4tの夫々には、電圧計5m、5tが設けられている。更に、インバータ6m、6tに対しては、電圧計5m、5tと接続する制御部9が設けられている。ニッケル水素電池10に充分な電荷の貯蔵が無くニッケル水素電池10の電圧が低ければ、き電線4m、4tにおける交流電力が、インバータ6m、6tの備える整流作用により、直流電力に変換されてニッケル水素電池10に充電される。
 本実施の形態の電力調整装置2においては、き電線4mの電圧が下がり、
「電圧計5mの電圧」<「電圧計5tの電圧」
となると、制御部9は、インバータ6m内蔵のスイッチ素子を制御して逆変換を行うことにより、交流電力をき電線4mに出力して、き電線4mの電圧の降下を抑制するように動作する。一方、制御部9は、インバータ6t内蔵のスイッチ素子を制御してき電線4tからの交流電力を直流電力に変換して、インバータ6mにより交流電力に逆変換された直流電力を補う。
 また、き電線4mの電圧が上がり、
「電圧計5mの電圧」>「電圧計5tの電圧」
となると、制御部9は、インバータ6m内蔵のスイッチ素子を制御して変換を行うことにより、き電線4mからの交流電力を直流電力に変換して、き電線4mの電圧の上昇を緩和するように動作する。同時に、制御部9は、インバータ6t内蔵のスイッチ素子を制御してインバータ6mにより順変換された直流電力を交流電力に逆変換してき電線4tに出力する。
 き電線4tにおいて電圧が下降又は上昇した場合も同様である。電圧計5mと電圧計5tの電圧比較において、適宜ヒステリシスを設けて頻繁な切替を防ぐこともできる。
 このように電力調整装置2は、き電線4mの電圧とき電線4tの電圧との差を無くすように動作して有効電力の調整を行う。
 また、インバータ6m、6tは無効電力を調整して電圧変動を抑制する。つまり、制御部9は、インバータ6m、6tを制御してき電線4m、4tに生じる無効電力を調整する。具体的には、電車8m、8tが力行運転して無効電力を消費しているときは、本インバータ6m、6tから無効電力を供給するように動作する。これにより、き電線4m、4tの電圧が適正範囲に維持される。
 以上のような構成を備える第1の実施の形態に係る電力調整装置2は、M座とT座とに夫々接続されるインバータ6m、6tにより無効電力を補償するとともに、二つの座の有効電力差の1/2を、ニッケル水素電池10を介してインバータ間で融通して、M座とT座の有効電力を等しくし、三相側で平衡させる。
 発明が解決しようとする課題で説明したように、インバータ(コンバータ)に直流コンデンサを接続して配置する場合、直流コンデンサの設置のために広いスペースを用意しなければならないという問題、信頼性が必ずしも充分ではないという問題、及び高価であるという問題がある。これに対し、本発明の発明者らは、鋭意研究の末、ニッケル水素電池が十分な静電容量を有するということを発見した。つまり、発明者らは、ニッケル水素電池が、二次電池として用いられるだけではなく、キャパシタとしても十分に機能し得ることを発見した。そこで、本実施の形態では、インバータ6m、6tの直流側の配線間に直流コンデンサを配置する代わりに、ニッケル水素電池10を配置することで、これらの問題を解決している。すなわち、本実施の形態の電力調整装置2は、インバータ6m,6tの直流側における配線間にニッケル水素電池10を配置することにより、特許文献1に示す構成のような直流コンデンサを別途備えなくとも、き電線にてき電線電圧を維持することができる。
 さらに、従来のニッケル水素電池は導電剤にオキシ水酸化コバルトを使用しているところ、本実施の形態に係るニッケル水素電池は導電剤として炭素を使用している。このように炭素が電極を構成する結果、本実施の形態に係るニッケル水素電池は電気二重層キャパシタとしても作用し得る。このため大きな静電容量が得られる。加えて、後述するように本実施の形態に係るニッケル水素電池10は非常に多くの単位電池で構成されている。これらのことから、本実施の形態に係るニッケル水素電池10は、静電容量が非常に大きく、且つキャパシタとして充分に作用する。
 以上のように、本実施の形態に係るニッケル水素電池は、導電剤に炭素を使用していること、具体的にはその正極の導電剤に炭素を使用していること、及び、非常に多数の単位電池により構成していること、具体的には積層タイプの構成としていることから、等価的な静電容量が非常に大きくなっている。
 平板電極の静電容量Cは、周知のように以下の関係式(式1)で表される。
(式1) C=ε×S/d
 なお、εは誘電率、Sは平板電極の面積、dは平板電極間の距離である。ここで、S平板電極面積)は、本実施の形態に係るニッケル水素電池においてはセパレータの面積と略同視できる。後述するニッケル水素電池を構成する多数の単位電池の各々は、プリーツ型セパレータを採用しており、積層タイプの電池となっている。このため、S(平板電極面積)は容易に大きくすることができて、その結果大きな静電容量を実現することが可能となった。
 また、本実施の形態に係るニッケル水素電池の静電容量は、他の電池と比較しても大きいことが分かった。まずリチウムイオン電池には、キャパシタを形成するために必要である電荷(イオン)が存在しない。つまり、C=Q/Vであるところ(Qは電荷、Vは電位)、電荷Qが極端に小さいのでリチウムイオン電池では静電容量Cは大きくなり得ず略ゼロとなる。従って、リチウムイオン電池は、本実施の形態に係るニッケル水素電池に比べて、静電容量が非常に小さい。
 また、鉛蓄電池はその構造上、電極面積(S)をニッケル水素電池のように大きくすることはできず、電極間の距離(d)も大きい。このため、その静電容量は、ニッケル水素電池の10分の1以下と推察され、本実施の形態に係るニッケル水素電池に比べて極端に小さいといえる。一方、電気二重層キャパシタは静電容量が確かに大きいが、蓄電容量は電池に比べて小さい。そのため、電気二重層キャパシタを電力調整装置で利用しても、有効電力の調整の限界が低いと考えられる。
 以上のことから、本発明者らは、ニッケル水素が大きな静電容量を有することに着目し、これを電気鉄道のための交流き電システムに適用した。このような適用は、他の電池では為し得ないものである。
1.1.ニッケル水素電池について
 以下、第1の実施の形態に係る電力調整装置2に使用されるニッケル水素電池10について詳細に説明する。
 ニッケル水素電池10は、複数の単位電池が直列接続されてなる電池モジュールによって構成されており、単数の電池モジュールで構成されていてもよいし、複数の電池モジュールが直列接続された直列電池モジュールで構成されていてもよい。あるいは、上記単数の電池モジュールまたは上記直列電池モジュールが並列接続されて構成されていてもよい。並列接続すれば電池容量が大きくなるとともに、等価的な内部抵抗は低下する。
〔単位電池の一構成例〕
 図2及び図3は、上述の単位電池の一構成例を説明するための図である。
 図2は、上記単位電池Cの構造を示す断面図である。単位電池Cは、セパレータ61、正極を構成する正極板62、及び負極を構成する負極板63を含む電極体65と、電極体65を電解液と共に収容する空間を形成する矩形の枠形部材67と、第1蓋部材69と、第2蓋部材71とを備えている。なお、図2に示す単位電池Cは、水酸化ニッケルを主要な正極活物質とし、水素吸蔵合金を主要な負極活物質とし、アルカリ系水溶液を電解液とする、繰り返し充放電が可能なニッケル水素2次電池として構成している。
 図3に示すように、第1蓋部材69は、枠形部材67の一方の開口67aを覆う平板状の本体部69aを有しており、本体部69aの4つの各辺において一体に形成された縁部が、枠形部材67の4つの各辺67bにほぼ沿うように折り曲げられて、枠形部材67の外周面の一部を覆う側部69bを形成している。第2蓋部材71も、第1蓋部材69と同様に、本体部71a及び側部71bを有しており、枠形部材67の他方の開口67cを覆っている。
 電極体65は、図2に示すように、正極板62と負極板63とが、セパレータ61を介して所定の方向に交互に積層されて対向する積層構造を有している。より具体的にはプリーツ状に折り曲げられたセパレータを介して、正極板62と負極板63とが交互に積層されて対向するプリーツ構造を有している。図2及び図3に示す単位電池Cにおいて、電極体65は、枠形部材67の、図3の左右方向に向かい合う一組の辺67b、67bの一方から他方に向かう方向Yに積層されている。
 このようなプリーツ型セパレータが単位電池に採用されることにより、多数の単位電池で構成されるニッケル水素電池においては、セパレータの面積Sは非常に大きいものとなり、その結果、ニッケル水素電池全体の静電容量も非常に大きいものとなる。
〔単位電池により構成される電池モジュールの一構成例〕
 図4(1)は、単位電池により構成される電池モジュールの一構成例における横断面図である。図4(2)は、図4(1)の電池モジュールの一部斜視図であって、電池モジュールにおける伝熱板内の空気の流れ方向を示している(但し、図4(1)に示される絶縁板107、108が省略されている)。図5は、図4(1)(2)の電池モジュールに用いられている伝熱板の斜視図である。
 図4に示す電池モジュール81は、複数の上記単位電池を積層したものである。上記構成例の単位電池の各々では、対向して設けられた正極集電体99と負極集電体100の間に、アルカリ電解液中で腐食など変質せず、イオンは透過するが電子を透過させない蛇腹状のセパレータ101が交互に両集電体に近接するように配置される。更に各単位電池では、蛇腹状のセパレータ101と正極集電体99とで区画される空間に電解質溶液102とともに正極活物質を含有する正極シート103が配置され、蛇腹状のセパレータ101と負極集電体100とで区画される空間に電解質溶液102とともに負極活物質を含有する負極シート104が配置され、正極シート103と負極シート104がセパレータ101を挟んで交互に組み込まれている。単位電池はセパレータ101を蛇腹状とすることにより、正極シート103、負極シート104を、多数セルとして単位電池の中に積層することができる。このことにより、単位電池の静電容量の大容量化が容易になる。また、このことにより電極面積が大きくなり、隣り合うセル間を非常に小さな抵抗で繋ぐことができるためセル間を繋ぐケーブルが不要となり、電池が全体としてコンパクトになる。
 また、正極シート103は正極集電体99に接し、負極シート104は負極集電体100に接している。そして、隣り合う2個の単位電池の間には、一方の単位電池の正極集電体99ともう一方の単位電池の負極集電体100に接するように図5に示す伝熱板96が挿入されている。この伝熱板96の空気通流孔97の向きは、正極シート103と負極シート104の上下方向に一致している。各単位電池の正極集電体99と負極集電体100との間は、セパレータ101によって正極セルと負極セルとに2分割され、セパレータ101と正極集電体99とで区画され正極シート103が配置される領域が正極セルとなり、セパレータ101と負極集電体100とで区画され負極シート104が配置される領域が負極セルとなる。
 図4(1)に示すように、導電性に優れるとともに熱伝導性のよい金属で構成された正極集電体99と負極集電体100が、それぞれ正極シート103及び負極シート104と直接接触し、その上、各集電体99、100が、電気的に正極集電体99と負極集電体100をつなぐ役割を果たす伝熱板96と接触している。このことにより、図4(2)の矢印で示す方向に沿って伝熱板96の空気通流孔97を流通する空気に対して、電池反応の結果発生した熱は、効率的に伝達されて外部に放出される。このようにして、電池モジュール81の温度は、電池反応をスムーズに実行することができる適正な範囲に維持される。
 図4(1)に示すように、正極の端部には統括正極集電体105が設けられ、負極の端部には統括負極集電体106が設けられている。電池モジュール81の側部には、絶縁板107、108が設けられている。統括正極集電体105の中央部に接続用の正極端子(図示せず)が取り付けられ、統括負極集電体106の中央部に接続用の負極端子(図示せず)が取り付けられる。
 正極シート103は、例えば、正極活物質と導電性フィラーと樹脂に溶剤を加えてペースト状にしたものを基板上に塗布して板状に成形し、硬化させたものであり、負極シート104は、例えば、負極活物質と導電性フィラーと樹脂に溶剤を加えてペースト状にしたものを基板上に塗布して板状に成形し、硬化させたものである。正極活物質および負極活物質としては、すべての公知の活物質材料を用いることができる。導電性フィラーとしては、炭素繊維、炭素繊維にニッケルメッキしたもの、炭素粒子、炭素粒子にニッケルメッキしたもの、有機繊維にニッケルメッキしたもの、繊維状ニッケル、ニッケル粒子、若しくはニッケル箔を、単独で、若しくは組み合わせて用いることができる。樹脂としては、軟化温度120℃までの熱可塑性樹脂、硬化温度が常温から120℃までの樹脂、蒸発温度120℃以下の溶剤に溶解する樹脂、水に可溶な溶剤に溶解する樹脂、若しくは、アルコールに可溶な溶剤に溶解する樹脂などを用いることができる。基板としては、ニッケル板などの電気伝導性のある金属板を用いることができる。
 伝熱板96は、アルミニウムを素材としてニッケルメッキを施したもので、空気の流通経路として上下方向に貫通した通流孔97が多数設けられている。この伝熱板96を正極集電体99と負極集電体100の間に挿入して、吸気ファン(図示せず)によって吸い込まれた空気を通流孔97に流通させることができる。伝熱板96は、正極集電体99と負極集電体100に接して正極集電体99と負極集電体100を電気的に接続するための部材でもあり、電気伝導性を有する。その点で、アルミニウムは電気抵抗が比較的低く、熱伝導率が比較的大きいので、伝熱板96として好ましい特性を有しているが、酸化しやすいという欠点を有している。そこで、アルミニウム板にニッケルメッキを施したものは、酸化を抑制するだけでなく、ニッケルメッキが施されることにより接触抵抗が低下するので、伝熱板96としてさらに好ましい。
[ニッケル水素電池の起電力及び静電容量]
 本実施の形態で使用されるニッケル水素電池10、好ましくは積層タイプのニッケル水素電池の、起電力及び静電容量の具体的数値について検討する。本実施の形態に係る電力調整装置ではニッケル水素電池は様々に構成され得るが、例えば、単位電池30セルを含む電池モジュールを19個直列接続して形成される直列電池モジュールを、2列並列接続して構成される。ここで、単位電池の有する標準的な性能として、起電力1.25V、電池容量150Ah、及び、単位電池容量当たりの静電容量130F/Ahなどの数値を挙げることができる。
 この場合、このニッケル水素電池の起電力は、1.25×30×19=712.5Vとなる。また、このニッケル水素電池の静電容量は、2×130×150/(30×19)=約68ファラッドとなる。このように本実施の形態に係る電力調整装置で利用されるニッケル水素電池は、非常に大きい静電容量を備えていることが分かる。
 以上に述べたように、本実施の形態に係るニッケル水素電池10は、等価的な静電容量が非常に大きいことが分かった。従って、このようなニッケル水素電池10を交流き電システムに適用することにより、設置のために広いスペースが必要とされる直流コンデンサの設置を省くことができる。
1.2.第1の実施の形態の変形例
 図1に示す電力調整装置は、三相交流受電するスコット結線変圧器においてき電側に設置されるSVCであるが、本発明の第1の実施の形態に係る電力調整装置は、単相交流を受電する変圧器に対しても設置することができる。図6(1)は、単相交流を受電する2つの変圧器23a、23bに接続する交流き電回路において、き電側に設置される第1の実施の形態に係る電力調整装置の結線図である。なお、図6(2)は、単相交流を受電する2つの変圧器23a、23bに接続する交流き電回路の比較例を示す結線図である。
 図6(1)に示す電力調整装置において、き電線には変圧器23a、23bからの通電を遮断し得る遮断器22a、22bが設けられている。また、変圧器23a、23bとインバータ6a、6bの間には、夫々スイッチ24a、24bが設けられる。スイッチ24a、24bの作用については、後述の「4.本発明の応用例について」で説明する。
 図6(1)に示すように、単相交流を受電する2つの変圧器23a、23bに第1の実施の形態に係る電力調整装置を接続することにより、直流コンデンサの設置が省かれ得る。なお、単相交流は、二線式であっても三線式であってもよい。また、本実施の形態に係る電力調整装置は、三相交流をV結線された単層変圧器2台で受電し、方面別にき電する構成においても適用可能である。
2.第2の実施の形態
 図7は、本発明の第2の実施の形態に係る電力調整装置202の結線図である。第2の実施の形態に係る電力調整装置202は、交流き電用変電所のスコット結線変圧器3において受電側(三相側)に設置される三相SVCを構成する。R相、S相及びT相は、スコット結線変圧器3の三相側の入力を示す。M座とT座はスコット結線変圧器3の給電側に形成される二相を示す。第2の実施の形態に係るSVC202は、入力の三相の夫々に交流側が接続されるインバータ6と、インバータ6の直流側に接続されるニッケル水素電池10とを含む。
 インバータ6は、上述の従来技術によるインバータと同様のものである。また、インバータ6の直流側における高圧配線に接続する直流入出力端と、同インバータ6の直流側における低圧配線に接続する直流入出力端との間に、ニッケル水素電池10が接続される。
 第2の実施の形態における電力調整装置202では、三相側に設置されるインバータ6にニッケル水素電池10を接続することにより、無効電力を補償するとともに、有効電力の調整を行う。これにより、直流コンデンサの設置を省くことができる。
 つまり、ニッケル水素電池10は、静電容量が大きくキャパシタとして充分に作用するので、本実施の形態の電力調整装置202は、特許文献1に示す構成のような直流コンデンサを別途備えなくとも、三相側にて所望の電圧を維持することができる。
3.第3の実施の形態
 図8は、本発明の第3の実施の形態に係る電力調整装置402の結線図である。第3の実施の形態に係る電力調整装置402は、不平衡補償単相き電装置(SFC)を構成する。「不平衡補償単相き電装置(SFC)」は、スコット結線変圧器3のM座とT座を直接接続して形成される斜辺S座により単相き電する、不等辺スコット結線変圧器のM座とT座に各々インバータ6m、6tを設置し、それら2つのインバータ6m、6tを接続することにより構成される。
 図8において、R相、S相及びT相は、スコット結線変圧器3の三相側の入力を示す。M座とT座はスコット結線変圧器3により形成される二相を示す。第3の実施の形態に係る電力調整装置402は、M座とT座の夫々に接続されるインバータ6m、6tと、インバータ6m、6tに接続されるニッケル水素電池10とを含む。なお、インバータ6m、6tは、上述の従来技術によるインバータと同様のものである。
 第3の実施の形態における電力調整装置402では、M座とT座の夫々に設けたインバータ6m、6tにニッケル水素電池10を接続することにより、無効電力を補償するとともに、有効電力の調整を行う。これにより、直流コンデンサの設置を省くことができる。
 つまり、ニッケル水素電池10は、静電容量が大きくキャパシタとして充分に作用するので、本実施の形態の電力調整装置402は、特許文献1に示す構成のような直流コンデンサを別途備えなくとも、き電線にてき電線電圧を維持することができる。
4.本発明の応用例について
 次に、本発明の応用例について説明する。図12(1)は、A変電所、B変電所、C変電所、及び、二つのき電区分所(SP)51、52を含む交流き電回路の模式図である。夫々の変電所には、従来のSVCである電力補償装置(RPC)2aが備わっているものとする。図12(2)は、図12(1)に示す交流き電回路内のB変電所にて、受電停止の障害が生じた場合の、A変電所、B変電所、C変電所、及び、二つのき電区分所(SP)51、52を含む交流き電回路の模式図である。図12(3)は、従来の電力補償装置(RPC)2aの結線図であり、変電所にて受電停止の障害が生じた場合の様子を示す。
 まず、図12(1)に示す交流き電回路内のB変電所において、仮に受電停止の障害が生じたものとする。そうすると、交流き電回路の接続状態は、図12(2)に示すようなものとなる。つまり、図12(2)に示すように、A変電所とB変電所の間のき電区分所51は、A変電所からき電区分所51までの区分と、き電区分所51からB変電所までの区分とを電気的に接続して、A変電所からB変電所までを一つの救済き電区間として、電車を走行させ続ける。この場合の救済き電区間はA変電所からのみ電力を供給される。
 同様に、B変電所とC変電所の間のき電区分所52は、B変電所からき電区分所52までの区分と、き電区分所52からC変電所までの区分とを電気的に接続して、B変電所からC変電所までを一つの救済き電区間として、電車を走行させ続ける。この場合の救済き電区間はC変電所からのみ電力を供給される。
 従来、B変電所の受電が停止するB変電所障害時の交流き電回路では、図12(3)に示すようにB変電所からき電線への間に設けられる遮断器22m、22tが動作し通電が遮断されていた。従って、A変電所からB変電所までの区間と、B変電所からC変電所までの区間では、電車が走行し得るものの、供給される電力が半分になるため電車の走行速度も大きく制限されていた。
 図9は、従来の交流き電回路における変電所障害時の速度制限という問題に対処するための、本発明に係る電力調整装置の応用例を含む、交流き電回路を示す。図9(1)は、A変電所、B変電所、C変電所、及び、二つのき電区分所(SP)51、52を含む交流き電回路の模式図を上部に示し、各々の変電所が備える本発明に係る電力調整装置の結線図を下部に示す。電力調整装置は、図1に示す電力補償装置(RPC)と同じものであり、図12(3)において、M座、T座に接続されたインバータ6m、6tの直流側における配線間に挿入されたキャパシタ20の代わりにニッケル水素電池10を備えたものである。更に図9に示す電力調整装置は、遮断器22m、22tだけでなく、スイッチ24m、24tを含む。
 更に、図9(2)の上部は、図9(1)に示す交流き電回路内のB変電所にて受電停止の障害が生じた場合のき電区間の接続の状況を示す。図9(2)の上部に示すように、A変電所とB変電所の間のき電区分所51は、A変電所からき電区分所51までの区分と、き電区分所51からB変電所までの区分とを電気的に接続する。更に、B変電所とC変電所の間のき電区分所52は、B変電所からき電区分所52までの区分と、き電区分所52からC変電所までの区分とを電気的に接続する。
 図9(2)の下部は、上記のB変電所での障害発生の際の、電力調整装置の状況を示す。図9(2)の下部に示される電力調整装置では、スイッチ24m、24tがオフの状態に成っているが、遮断器22m、22tは動作していない(即ち、通電状態である)。従って、B変電所の左右のき電区間は、電力調整装置を挟んで繋がっており、更にニッケル水素電池10により電力を供給され得る状態となっている。よって、A変電所からB変電所までの区間と、B変電所からC変電所までの区間は、夫々き電区分所51、52の接続により救済き電区間となる。さらに、A変電所とC変電所とが電気的に並列き電となるので、それら救済き電区間を走行する電車も通常運転を続行できる。
5.き電区分所への適用
 本発明の電力調整装置は、き電区分所においても適用可能である。図10は、本発明の電力調整装置が適用された交流き電装置50を含む交流き電回路の構成図である。図10に示す交流き電回路は、下り線120と上り線140とを含む。更に、図10に示す交流き電回路は、き電用変電所(SS)40a、40b、及び、き電区分するためのき電区分所(SP)200を含み、これらは実際には電気鉄道沿線に設けられる。また、き電用変電所(SS)40a、40bを中心にして左右のき電回路の間には、デッドセクション110が設けられている。き電用変電所(SS)40a、40b、及び、き電区分所(SP)200の間は「き電区間」と称される。なお、図10の構成図は交流き電回路の一部であり、より多数のき電用変電所(SS)40a、40bやき電区分所(SP)200が設けられてもよい。
 き電用変電所(SS)40a、40bは、三相二相変換変圧器300を含み、M座及びT座からなる二相の電力の夫々を左右のき電回路に出力する。通常運転時には、M座とT座の夫々に設けられる遮断器8は動作せず回路は閉じられている。き電用変電所(SS)40a、40bやき電系統などに障害が生じたときには遮断器220が動作して回路が開かれる。
 き電区分所(SP)200は、遮断器60を含む。遮断器60は通常開いた状態となっている。き電区分所(SP)200の左右のき電用変電所(SS)40a、40bのいずれかに障害が生じそのき電用変電所(SS)40a、40bからの給電が停止すると、遮断器60が閉じた状態となり、障害のないき電用変電所(SS)40a、40bからの給電が、き電区分所(SP)200を超えて、障害の生じたき電用変電所(SS)40a、40bの受け持つべきき電区間にまで及ぶことになる。
 更に図10に示すように、本実施の形態のき電区分所(SP)200に配置される交流き電装置50には、き電回路の交流電力を直流電力に変換し、直流電力をき電回路の交流電力に逆変換する2つのインバータ(交流直流変換器)6a、6bと、2つのインバータ(交流直流変換器)6a、6bの直流側における高圧(正側)配線と低圧(負側)配線との間に接続されるニッケル水素電池10が設けられている。すなわち、ニッケル水素電池10は、インバータ6a,6bの直流側における共通の高圧(正側)配線に接続された直流入出力端と、インバータ6a,6bの直流側における共通の低圧(負側)配線に接続された直流入出力端との間に接続される。
 インバータ6aは、交流側が電車線に接続された交流電線4aに接続されており、交流電力を直流電力に変換して共有線(共通の高圧配線及び共通の低圧配線)7に出力する。また、インバータ6aは、直流側である共有線7側の直流電力を交流電力に逆変換して交流電線4aに出力することも可能である。この場合、ニッケル水素電池10は、上述のとおり、2次電池としても作用し、同時に、キャパシタとしても作用する。これらの作用はインバータに内蔵されるスイッチ素子により実現されることは周知の通りである。インバータ6bについても同様に作用し、交直電力変換及び直交電力変換が可能となっている。
 インバータ6a、6bに接続する交流電線4a、4bの夫々には、電圧計5a、5bが設けられている。更に、インバータ6a、6bに対しては、電圧計5a、5bと接続する制御部9が設けられている。ニッケル水素電池10に充分な電荷の貯蔵が無くニッケル水素電池10の電圧が低ければ、交流電線4a、4bにおける交流電力が、インバータ6a、6bの備える整流作用により、直流電力に変換されてニッケル水素電池10が充電される。
 本実施の形態の交流き電装置50においては、交流電線4aの電圧が下がり、
「電圧計5aの電圧」<「電圧計5bの電圧」
となると、制御部9は、インバータ6a内蔵のスイッチ素子を制御して逆変換を行うことにより、交流電力を交流電線4aに出力して、交流電線4aの電圧の降下を抑制するように動作する。一方、制御部9は、インバータ6b内蔵のスイッチ素子を制御して交流電線4bからの交流電力を直流電力に変換して、インバータ6aにより交流電力に逆変換された直流電力を補う。
 また、交流電線4aの電圧が上がり、
「電圧計5aの電圧」>「電圧計5bの電圧」
となると、制御部9は、インバータ6a内蔵のスイッチ素子を制御して変換を行うことにより、交流電線4aからの交流電力を直流電力に変換して、交流電線4aの電圧の上昇を緩和するように動作する。同時に、制御部9は、インバータ6b内蔵のスイッチ素子を制御してインバータ6aにより順変換された直流電力を交流電力に逆変換して交流電線4bに出力する。
 交流電線4bにおいて電圧が下降又は上昇した場合も同様である。電圧計5aと電圧計5bの電圧比較において、適宜ヒステリシスを設けて頻繁な切替を防ぐこともできる。
 このように交流き電装置50は、交流電線4aの電圧と交流電線4bの電圧との差を無くすように動作する。
 ここで、ニッケル水素電池10の代わりにキャパシタを備えるような従来の交流き電装置と比べると、本実施の形態のニッケル水素電池10は2次電池であるので、大量の電荷量を貯蔵できる。従って、交流電線4aからより多くの電力がニッケル水素電池10に貯蔵され得るので、回生電力の吸収能力は高い。
 本実施の形態の交流き電装置50では、き電区分所(SP)200の左右のいずれかのき電区間内にて、瞬間的に大きな電力が(例えば、電車の力行により)必要とされる場合、そのき電区間の電圧がもう一方のき電区間の電圧よりも低くなる。すると、上述したように、電圧の低いき電区間へ、もう一方のき電区間から電力が流れるようにインバータ6a、6bが働くことになる。このことにより、電力を必要とするき電区間の電車線電圧の降下が防がれる。
 また、き電区分所(SP)200の左右のいずれかのき電区間内で回生電力が発生した場合、そのき電区間の電圧が高くなる。すると、上述したように、電圧の高いき電区間から、ニッケル水素電池10へ殆どの電力が貯蔵され、もう一方のき電区間へ一部の電力が流れるようにインバータ6a、6bが働くことになる。このことにより、回生電力が発生したき電区間の電車線電圧の上昇が防がれる。更には、発生した回生電力はニッケル水素電池10に貯蔵できるので、回生電力が無駄になることはなく、有効に利用することが可能となる。また、回生電力の吸収能力が高いため、回生失効が起こることも防ぐことができる。
 つまり、インバータ6a、6b及びニッケル水素電池10により、位相の異なる二つのき電用変電所(SS)40a、40bからの電力を、き電区間に対して並列にき電することが可能になる。
 例えば、図10において、左側のき電用変電所(SS)40aとき電区分所(SP)200との間のき電区間にて、加速中の電車がき電区分所(SP)200の直ぐ左を走行しているものとする。その加速中の電車は、加速に必要な電力を、左側のき電用変電所40aからと右側のき電用変電所40bからの双方から受けることができる。つまり、本実施の形態では、左側のき電用変電所40aからの電力への依存分は、約1/2になる。従って、き電用変電所間での負荷の均等化を目指すことができ、その結果、加速車両が走行しているき電区間の電圧降下が緩和される。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
2、202、402・・・電力調整装置
3・・・スコット結線変圧器
4m、4t・・・き電線
5m、5t・・・電圧計
6、6m、6t、6a、6b・・・インバータ
7・・・共有線
8、8m、8t・・・電車
9・・・制御部
10・・・ニッケル水素電池
22a、22b、22m、22t・・・遮断器
23a、23b・・・変圧器
24a、24b、24m、24t・・・スイッチ
51、52・・・き電区分所(SP)
65・・・電極体
67・・・枠形部材
69・・・第1蓋部材
71・・・第2蓋部材
 

Claims (11)

  1.  交流電力と直流電力との間の電力変換を行う第1の交流直流変換器と、
     上記第1の交流直流変換器の直流側における高圧配線と、上記第1の交流直流変換器の直流側における低圧配線との間に接続されるニッケル水素電池とを含むことを特徴とする
    き電システム用の電力調整装置。
  2.  更に、交流電力回線から受電してこれをき電線に給電する第1の変圧器を含み、
     上記第1の交流直流変換器の交流側は、上記第1の変圧器の受電側又は給電側に接続されていることを特徴とする請求項1に記載の電力調整装置。
  3.  上記第1の変圧器が、受電した三相交流電圧を位相が90°異なる2つの二相交流電圧に変換して給電する変圧器であることを特徴とする請求項2に記載の電力調整装置。
  4.  上記ニッケル水素電池が積層型であることを特徴とする請求項1に記載の電力調整装置。
  5.  上記ニッケル水素電池の導電剤に炭素を含むことを特徴とする請求項1に記載の電力調整装置。
  6.  更に、交流電力と直流電力との間の電力変換を行う第2の交流直流変換器を含み、
     上記第1の変圧器が、受電した三相交流電圧を二相交流電圧に変換して給電する変圧器であり、
     上記第1の交流直流変換器が、上記第1の変圧器により給電される二相電圧のうちの一方を受電するき電線に接続され、
     上記第2の交流直流変換器が、上記第1の変圧器により給電される二相電圧のうちの他方を受電するき電線に接続され、
     上記ニッケル水素電池が、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における共通の高圧配線と、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における低圧配線との間に接続されることを特徴とする
    請求項2に記載の電力調整装置。
  7.  上記第1の変圧器と上記第1の交流直流変換器との間に設けられた第1のスイッチと、
     上記第1の変圧器と上記第2の交流直流変換器との間に設けられた第2のスイッチと
    を更に含むことを特徴とする請求項6に記載の電力調整装置。
  8.  更に、交流電力回線から受電してこれをき電線に給電する第2の変圧器と、交流電力と直流電力との間の電力変換を行う第2の交流直流変換器とを含み、
     上記第1の変圧器と上記第2の変圧器とが、夫々、単相交流電圧を受電する変圧器であり、
     上記第1の交流直流変換器が、上記第1の変圧器により給電される交流電圧を受電するき電線に接続され、
     上記第2の交流直流変換器が、上記第2の変圧器により給電される交流電圧を受電するき電線に接続され、
     上記ニッケル水素電池が、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における高圧配線と、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における低圧配線との間に接続されることを特徴とする
    請求項2に記載の電力調整装置。
  9.  上記第1の変圧器と上記第1の交流直流変換器との間に設けられた第1のスイッチと、
     上記第2の変圧器と上記第2の交流直流変換器との間に設けられた第2のスイッチと
    を更に含むことを特徴とする請求項8に記載の電力調整装置。
  10.  上記ニッケル水素電池は、1つ以上の電池モジュールによって構成され、
     上記電池モジュールは、
     それぞれ、対向して設けられた板状の正極集電体と負極集電体と、上記正極集電体と上記負極集電体の間に配したセパレータと、上記正極集電体に接する正極セルと上記負極集電体に接する負極セルとを有する複数の単位電池が、互いに隣り合う一方の上記単位電池の正極集電体と他方の上記単位電池の負極集電体とが対向するように積層されてなり、かつ、互いに隣り合う前記単位電池の間に気体または液体からなる伝熱媒体の流通経路が設けられたことを特徴とする請求項1に記載の電力調整装置。
  11.  更に、交流電力と直流電力との間の電力変換を行う第2の交流直流変換器を含み、
     上記第1の交流直流変換器の交流側は、第1のき電区間の端部に接続され、
     上記第2の交流直流変換器の交流側は、上記第1のき電区間とは電気的に絶縁された第2のき電区間の端部に接続され、
     上記ニッケル水素電池が、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における共通の高圧配線と、上記第1の交流直流変換器の直流側と上記第2の交流直流変換器の直流側との間における低圧配線との間に接続されることを特徴とする請求項1に記載の電力調整装置。
     
PCT/JP2010/002012 2009-03-24 2010-03-19 き電システム用の電力調整装置 WO2010109840A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2011142749/07A RU2509400C2 (ru) 2009-03-24 2010-03-19 Стабилизатор напряжения для системы питания
US13/258,413 US9035485B2 (en) 2009-03-24 2010-03-19 Power conditioner for feeding system
CN201080009294.4A CN102333670B (zh) 2009-03-24 2010-03-19 馈电系统用的电力调整装置
EP10755643.3A EP2412563A4 (en) 2009-03-24 2010-03-19 CURRENT CONTROLLER FOR A POWER SUPPLY SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009072178A JP2010221888A (ja) 2009-03-24 2009-03-24 交流き電装置
JP2009-072178 2009-03-24
JP2009160910A JP5443078B2 (ja) 2009-07-07 2009-07-07 き電システム用の電力調整装置
JP2009-160910 2009-07-07

Publications (1)

Publication Number Publication Date
WO2010109840A1 true WO2010109840A1 (ja) 2010-09-30

Family

ID=42780538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002012 WO2010109840A1 (ja) 2009-03-24 2010-03-19 き電システム用の電力調整装置

Country Status (5)

Country Link
US (1) US9035485B2 (ja)
EP (1) EP2412563A4 (ja)
CN (1) CN102333670B (ja)
RU (1) RU2509400C2 (ja)
WO (1) WO2010109840A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213298A (ja) * 2011-03-31 2012-11-01 Toshiba Mitsubishi-Electric Industrial System Corp 変換装置
CN102904257A (zh) * 2011-07-25 2013-01-30 通用电气公司 配电系统
JP2014087086A (ja) * 2012-10-19 2014-05-12 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2020037321A (ja) * 2018-09-04 2020-03-12 株式会社日立製作所 電力供給システムおよび電力供給方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541451B2 (en) 2012-10-18 2020-01-21 Ambri Inc. Electrochemical energy storage devices
US11211641B2 (en) 2012-10-18 2021-12-28 Ambri Inc. Electrochemical energy storage devices
US11721841B2 (en) 2012-10-18 2023-08-08 Ambri Inc. Electrochemical energy storage devices
US11387497B2 (en) 2012-10-18 2022-07-12 Ambri Inc. Electrochemical energy storage devices
JP6081178B2 (ja) 2012-12-14 2017-02-15 株式会社日立製作所 電力変換器および電力変換器の制御方法
CN109935747B (zh) 2013-10-16 2022-06-07 安保瑞公司 用于高温反应性材料装置的密封件
JP6150004B2 (ja) 2014-02-25 2017-06-28 日産自動車株式会社 非接触給電システム及び送電装置
EP3113327B1 (en) 2014-02-25 2019-10-16 Nissan Motor Co., Ltd Non-contact power supply system and power transmission device
MY162439A (en) 2014-02-25 2017-06-15 Nissan Motor Wireless power supply system and power transmission device
KR101586853B1 (ko) 2014-08-28 2016-01-20 씨제이포디플렉스 주식회사 관객의 신체데이터에 기초한 모션의자 제어 시스템 및 제어 방법
US10181800B1 (en) * 2015-03-02 2019-01-15 Ambri Inc. Power conversion systems for energy storage devices
WO2016141354A2 (en) 2015-03-05 2016-09-09 Ambri Inc. Ceramic materials and seals for high temperature reactive material devices
KR101623812B1 (ko) 2015-11-18 2016-05-24 씨제이포디플렉스 주식회사 관객의 신체데이터에 기초한 모션의자 제어 시스템 및 제어 방법
KR101718137B1 (ko) 2016-03-14 2017-03-21 씨제이포디플렉스 주식회사 모션체어 및 모션체어 제어 시스템
US11929466B2 (en) 2016-09-07 2024-03-12 Ambri Inc. Electrochemical energy storage devices
CN106882084B (zh) * 2017-03-20 2023-09-22 中铁二院工程集团有限责任公司 基于三台单相牵引变压器的高铁变电站主接线构造
EP3607603A4 (en) 2017-04-07 2021-01-13 Ambri Inc. MOLTEN SALT BATTERY WITH SOLID METAL CATHODE
US11489356B2 (en) 2019-07-02 2022-11-01 Abb Schweiz Ag MVDC link-powered battery chargers and operation thereof
CN112436779B (zh) * 2020-10-21 2024-05-14 华为数字能源技术有限公司 一种电驱动系统、动力总成以及电动汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136560A (ja) * 1995-11-13 1997-05-27 Railway Technical Res Inst 鉄道の交流き電方式
JP2000006693A (ja) 1998-06-19 2000-01-11 Nissin Electric Co Ltd き電電圧の調整方法及び調整装置
JP2005073459A (ja) * 2003-08-27 2005-03-17 Tokyo Denki Univ 単相三線式配電系統の電力補償システム
JP2005206111A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 直流電圧給電装置
WO2008099609A1 (ja) * 2007-02-14 2008-08-21 Kawasaki Jukogyo Kabushiki Kaisha 電池及びその伝熱構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867524A (ja) * 1981-10-15 1983-04-22 Japanese National Railways<Jnr> 電気鉄道用き電電圧補償装置
US5280418A (en) * 1990-11-11 1994-01-18 Griffin Anthony J Voltage regulation in a railway power distribution system
CN1265476C (zh) 1993-04-05 2006-07-19 布莱克和戴克公司 无绳器具用的电池盒
CN100376047C (zh) 1993-04-05 2008-03-19 布莱克和戴克公司 无绳器具用的电池盒
WO2002066293A1 (de) * 2001-02-16 2002-08-29 Siemens Aktiengesellschaft Kraftfahrzeug-bordnetz
US7220501B2 (en) 2004-03-10 2007-05-22 General Motors Corporation Integrated hybrid electrochemical device
JP4166216B2 (ja) * 2004-12-22 2008-10-15 株式会社東芝 電気鉄道交流き電システム
JP2007083989A (ja) * 2005-09-26 2007-04-05 Toshiba Corp 電気鉄道交流き電システム
EP2255992A4 (en) * 2008-02-29 2014-09-24 Kawasaki Heavy Ind Ltd POWER SUPPLY SYSTEM FOR ELECTRIC RAILWAYS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09136560A (ja) * 1995-11-13 1997-05-27 Railway Technical Res Inst 鉄道の交流き電方式
JP2000006693A (ja) 1998-06-19 2000-01-11 Nissin Electric Co Ltd き電電圧の調整方法及び調整装置
JP2005073459A (ja) * 2003-08-27 2005-03-17 Tokyo Denki Univ 単相三線式配電系統の電力補償システム
JP2005206111A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 直流電圧給電装置
WO2008099609A1 (ja) * 2007-02-14 2008-08-21 Kawasaki Jukogyo Kabushiki Kaisha 電池及びその伝熱構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"electric railway hand book", 28 February 2007, CORONA PUBLISHING CO., LTD., pages: 585
See also references of EP2412563A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213298A (ja) * 2011-03-31 2012-11-01 Toshiba Mitsubishi-Electric Industrial System Corp 変換装置
CN102904257A (zh) * 2011-07-25 2013-01-30 通用电气公司 配电系统
JP2014087086A (ja) * 2012-10-19 2014-05-12 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2020037321A (ja) * 2018-09-04 2020-03-12 株式会社日立製作所 電力供給システムおよび電力供給方法
JP7120853B2 (ja) 2018-09-04 2022-08-17 株式会社日立製作所 電力供給システムおよび電力供給方法

Also Published As

Publication number Publication date
EP2412563A4 (en) 2015-04-01
CN102333670A (zh) 2012-01-25
RU2011142749A (ru) 2013-04-27
RU2509400C2 (ru) 2014-03-10
EP2412563A1 (en) 2012-02-01
CN102333670B (zh) 2014-04-02
US20120091806A1 (en) 2012-04-19
US9035485B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
WO2010109840A1 (ja) き電システム用の電力調整装置
JP5174146B2 (ja) 電気鉄道用電力供給システム
JP6178328B2 (ja) 電気化学セルを含むdc電圧源
TWI422093B (zh) Battery system, electric railway power supply system and battery module
US20090243536A1 (en) Method of fully charging an electrical energy storage device using a lower voltage fuel cell system
WO2021020029A1 (ja) 車載用電源システム
US11791628B2 (en) SST system with multiple LVDC outputs
JP5443078B2 (ja) き電システム用の電力調整装置
JP5421558B2 (ja) 蓄電装置駆動電車の給電システム
CN114362335A (zh) 应用于固态变压器的电源转换架构及相应的充电系统
CN116054577A (zh) 用于电动车辆的能量系统
JP2011126298A (ja) 電気鉄道用電力供給システム
JP2010221888A (ja) 交流き電装置
JP2023549133A (ja) マルチポート・エネルギー・ルーティング・システム
JP7182898B2 (ja) 電気車用電源システム
JP5077489B2 (ja) 蓄電装置及び鉄道車両
CN221652271U (zh) 一种小型纯电池动力船舶电力系统
KR102604977B1 (ko) Ac/dc 및 dc/dc 겸용 컨버터 및 이를 포함하는 충전 시스템
WO2020202810A1 (ja) 二次電池システム
Murugu et al. Performance Analysis of Supercapacitors in Renewable Energy System/Microgrid/Electric Vehicle, and Comparative Study of Various Converters With Their Applications
CN118842195A (zh) 储能阀子模块及储能阀、储能站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009294.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3606/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010755643

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011142749

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258413

Country of ref document: US