WO2010109118A1 - Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes - Google Patents

Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes Download PDF

Info

Publication number
WO2010109118A1
WO2010109118A1 PCT/FR2010/050499 FR2010050499W WO2010109118A1 WO 2010109118 A1 WO2010109118 A1 WO 2010109118A1 FR 2010050499 W FR2010050499 W FR 2010050499W WO 2010109118 A1 WO2010109118 A1 WO 2010109118A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
weight
nanotubes
copolymers
kneader
Prior art date
Application number
PCT/FR2010/050499
Other languages
English (en)
Inventor
Alexander Korzhenko
Amélie Merceron
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to CN201080013065XA priority Critical patent/CN102361929A/zh
Publication of WO2010109118A1 publication Critical patent/WO2010109118A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a method for preparing a composite material comprising a thermosetting elastomeric resin base and carbon nanotubes, as well as the composite material thus obtained and its use for the manufacture of composite products.
  • Elastomers are polymers with rubber-elastic properties that find application in various fields, including the manufacture of automotive parts such as tires, seals or tubes, pharmacy, electrical industry, transportation or building. , for example. In some of these applications, it may be advantageous to give them electrical conduction properties and / or to improve their mechanical properties. To do this, it is possible to incorporate conductive fillers such as carbon nanotubes (or CNTs).
  • NTC in a liquid or solid silicone resin base consisting of dispersing them in the resin base using conventional mixing devices, roll mills or ultrasound.
  • Example 7 of this document discloses more specifically a masterbatch to
  • CNT 25% by weight of CNT, prepared by dispersion of the CNTs in a silicone resin base using a mixer Waring (knife blender).
  • the masterbatch obtained is in the form of a wet free powder.
  • the technique proposed in this document also does not allow to disperse amounts greater than 25% by weight of charges of as low apparent density as the CNTs.
  • This poor dispersion of CNTs leads to embrittlement of the composites formed therefrom, which is reflected in particular by the appearance of nanofissures.
  • the masterbatch obtained according to the aforementioned document is in the form of powder, which is not easy to handle.
  • CNT-loaded elastomers Another solution for obtaining CNT-loaded elastomers is to mix the CNTs and thermoplastic elastomers in the presence of plasticizers. These plasticizers may in particular be mixed with the nanotubes in the form of pre-composite, which is then diluted in the elastomeric matrix (FR 2 916 364).
  • the pre-composites exemplified in this document are prepared in a compounding device such as a BUSS ® co-kneader. However, they contain at most only 5% by weight of CNT.
  • the aforementioned compounding device can allow to incorporate more than 5% by weight of CNT in an elastomeric base, especially in a thermosetting elastomeric resin base, even in the absence of plasticizer.
  • Other documents (WO 2006/079060, WO 2007/063253, WO 2005/081781, WO 2009/030358, WO 03/085681, WO 2006/072741, WO 2007/035442, WO 2008/025962, JP-2008 163 219 , US 2007/213450) disclose methods for mixing CNTs with a thermoplastic or thermosetting elastomeric resin base.
  • thermosetting elastomers based on thermosetting elastomers by introducing a liquid composition, containing a thermosetting elastomeric resin base, into a copolymer. mixer, where it is kneaded with the nanotubes.
  • the present invention thus relates to a process for preparing a composite material containing more than 5% by weight, and up to 70% by weight, of nanotubes, comprising: (a) the introduction, in a kneader: - a liquid polymeric composition containing at least one elastomeric resin base which comprises, or consists of, at least one thermosetting elastomer base, and - carbon nanotubes,
  • co-kneader in the present description, an apparatus conventionally used in the plastics industry for the melt blending of thermoplastic polymers and additives to produce composites.
  • this apparatus which usually comprises a rotor provided with vanes adapted to cooperate with teeth mounted on a stator, the polymeric composition and the additives are mixed under high shear.
  • the melt generally comes out of the apparatus in solid physical form agglomerated, for example in the form of granules, or in the form of rods, tape or film.
  • co-kneaders examples include the BUSS ® MDK 46 co-kneaders and those of the BUSS (R) MKS or MX series marketed by the company BUSS AG, all of which consist of a screw shaft. provided with fins, arranged in a heating sleeve possibly consisting of several parts and whose inner wall is provided with kneading teeth adapted to cooperate with the fins to produce shearing of the kneaded material.
  • the shaft is rotated and provided with oscillation movement in the axial direction by a motor.
  • These co-kneaders can be equipped with a pellet manufacturing system, adapted for example at their outlet, which may consist of an extrusion screw or a pump.
  • the co-kneaders that can be used according to the invention preferably have an L / D screw ratio ranging from 7 to 22, for example from 10 to 20.
  • the kneading step is generally carried out at a temperature which is higher than the glass transition temperature (Tg) for the amorphous polymers and the melting temperature for the semi-crystalline polymers.
  • Tg glass transition temperature
  • This temperature is a function of the polymer specifically used and generally mentioned by the supplier of the polymer.
  • the kneading temperature may be from room temperature to 260 0 C, for example 80 to 260 0 C, generally from 80 to 220 ° C, preferably from 100 to 220 0 C, in particular from 120 to 200 ° C., and more preferably from 150 to 200 ° C.
  • composite materials in particular masterbatches, which can be strongly dosed into nanotubes, such as CNTs, and which are easily manipulated, in the case where they come under solid form agglomerated, especially in the form of granules, in that they can be transported in bags or drums from the production center to the processing center.
  • These composite materials may also be shaped according to the methods conventionally used for shaping thermoplastic materials, such as extrusion, injection or compression.
  • elastomeric resin base is meant, in the present description, a composition containing an organic or silicone polymer which forms, after vulcanization, an elastomer capable of withstanding large deformations in a quasi-reversible manner, that is to say say capable of being subjected to uniaxial deformation, advantageously at least twice its original length at room temperature (23 ° C), for five minutes, then recovering, once the stress is released, its initial dimension, with a remanent deformation of less than 10% of its initial dimension.
  • elastomers are generally composed of polymer chains interconnected to form a three-dimensional network. More precisely, thermoplastic elastomers are sometimes distinguished in which the polymer chains are connected to each other by physical bonds, such as hydrogen or dipole-dipole bonds, thermosetting elastomers, in which these chains are connected by covalent bonds, which constitute points of chemical crosslinking. These crosslinking points are formed by vulcanization processes employing a vulcanizing agent which may for example be chosen, according to the nature of the elastomer, from sulfur-based vulcanization agents, in the presence of metal salts of dithiocarbamates.
  • a vulcanizing agent which may for example be chosen, according to the nature of the elastomer, from sulfur-based vulcanization agents, in the presence of metal salts of dithiocarbamates.
  • the present invention more particularly relates to elastomeric resin bases containing or constituted by at least one thermosetting elastomer optionally in admixture with at least one non-reactive elastomer, that is to say non-vulcanizable elastomer (such as hydrogenated rubbers).
  • the elastomeric resin bases that can be used according to the invention can in particular comprise, or even consist of, one or more polymers chosen from: fluorocarbon or fluorosilicone polymers; nitrile resins; homo- and copolymers of butadiene, optionally functionalized with unsaturated monomers such as maleic anhydride, (meth) acrylic acid, and / or styrene (SBR); neoprene (or polychloroprene); polyisoprene; copolymers of isoprene with styrene, butadiene, acrylonitrile and / or methyl methacrylate; copolymers based on propylene and / or ethylene and in particular terpolymers based on ethylene, propylene and dienes (EPDM), as well as copolymers of these olefins with an alkyl (meth) acrylate or vinyl acetate; halogenated butyl rubbers; silicone
  • At least one polymer chosen from: nitrile resins, in particular especially copolymers of acrylonitrile and butadiene (NBR); silicone resins, in particular poly (dimethylsiloxanes) bearing vinyl groups; fluorocarbon polymers, in particular copolymers of hexafluoropropylene (HFP) and vinylidene difluoride (VF2) or terpolymers of hexafluoropropylene (HFP), vinylidene difluoride
  • NBR nitrile resins
  • silicone resins in particular poly (dimethylsiloxanes) bearing vinyl groups
  • fluorocarbon polymers in particular copolymers of hexafluoropropylene (HFP) and vinylidene difluoride (VF2) or terpolymers of hexafluoropropylene (HFP), vinylidene difluoride
  • VF2 VF2
  • TFE tetrafluoroethylene
  • the polymeric composition containing the elastomeric resin base is in liquid form when it is injected into the co-kneader in a first zone of the co-kneader before introduction of the CNTs.
  • liquid is meant that the composition is capable of being pumped into the co-kneader, that is to say it advantageously has a dynamic viscosity ranging from 0.1 to 30 Pa ⁇ s, preferably from 0.1 to 15 Pa. s.
  • the dynamic viscosity measurement is based on a general method for determining the viscoelastic properties of polymers in the liquid state, in the molten state or in the solid state.
  • the samples are subjected to deformation (or stress), most often sinusoidal in tension, compression, flexion or torsion for solids and in shear for liquids.
  • the response of the samples to this stress is evaluated either by the force or the resulting torque, or by the deformation when working at imposed stress.
  • the viscoelastic properties are determined either in terms of modulus or viscosity, either in terms of creep function or relaxation.
  • the samples are subjected to a sweep of stresses and / or deformations in order to predict their behavior as a function of the shear gradient.
  • An enclosure or a thermal regulation system (optionally, the atmosphere during the test can be either nitrogen gas and / or liquid, or air)
  • a measuring head • A computer system for controlling the device and processing data
  • RDA2, RSA2, DSR200, ARES or RME apparatus from the manufacturer Rheometrics, or MCR301 from Anton Paar.
  • sample holder The dimensions of the sample are defined according to its viscosity and the geometric limits of the chosen "sample holder" system.
  • the steps described in the user manual of the viscoelastic meter used will be methodologically followed. In particular, it will be ensured that the relationship between deformation and stress is linear (linear viscoelasticity).
  • the resin base used may itself have this viscosity either at room temperature (23 ° C.) or after having been heated before injection into the co-kneader to give it the desired viscosity.
  • Those skilled in the art will be able to identify such bases of elastomeric resin, depending in particular on the molecular weight of their constituent polymers.
  • the elastomeric resin base may be solid, for example in the form of a rubber.
  • the polymeric composition may contain, in addition to this base, at least one treatment aid in liquid or waxy form, such as a fluoropolymer, in particular an optionally functionalized perfluoropolyether and / or a copolymer of vinylidene fluoride and hexafluoropropylene.
  • at least one treatment aid in liquid or waxy form such as a fluoropolymer, in particular an optionally functionalized perfluoropolyether and / or a copolymer of vinylidene fluoride and hexafluoropropylene.
  • the elastomeric resin may be introduced in the solid form, for example in the form of particles ground in the co-kneader and liquefied in the co-kneader by heating and shearing before the introduction of the co-kneaders. NTC.
  • This elastomeric resin base is mixed, in the process according to the invention, with carbon nanotubes (hereinafter, CNT).
  • CNT carbon nanotubes
  • These have particular crystalline structures, tubular, hollow and closed, composed of atoms arranged regularly in pentagons, hexagons and / or heptagons, obtained from carbon.
  • CNTs generally consist of one or more sheets of graphene rolled up. One thus distinguishes the single wall nanotubes (Single Wall Nanotubes or
  • SWNT SWNT
  • multiwall nanotubes Multi Wall Nanotubes or MWNT
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Corn. (2003), 1442.
  • the multi-walled nanotubes may themselves be prepared as described in WO 03/02456. It is preferred according to the invention to use multi-wall CNTs.
  • the nanotubes used according to the invention usually have a mean diameter ranging from 0.1 to 200 nm, preferably from 0.1 to 100 nm, more preferably from 0.4 to 50 nm and better still from 1 to 30 nm. and advantageously a length of more than 0.1 microns and advantageously from 0.1 to 20 microns, for example about 6 microns. Their length / diameter ratio is advantageously greater than 10 and most often greater than 100.
  • These nanotubes therefore include nanotubes called "VGCF" nanotubes.
  • the multi-walled carbon nanotubes may for example comprise from 5 to 15 sheets and more preferably from 7 to 10 sheets.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • the nanotubes may be purified and / or treated (in particular oxidized) and / or milled before being used in the process according to the invention. They can also be functionalized by solution chemistry methods such as amination or reaction with coupling agents.
  • the grinding of the nanotubes may in particular be carried out cold or hot and be carried out according to known techniques used in apparatus such as ball mills, hammers, grinders, knives, gas jet or any other grinding system. likely to reduce the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
  • the purification of the nanotubes may be carried out by washing with a sulfuric acid solution, or another acid, so as to rid them of any residual mineral and metal impurities from their preparation process.
  • the weight ratio of the nanotubes to the sulfuric acid may especially be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C., for example for a period of 5 to 10 hours. This operation may advantageously be followed by rinsing steps with water and drying the purified nanotubes.
  • Another way of purifying the nanotubes, intended in particular to remove the iron and / or magnesium they contain, is to subject them to a heat treatment at more than 1,000 0 C.
  • the oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl, for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0, 1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes.
  • nanotubes be used in the process according to the invention in the raw state.
  • nanotubes obtained from raw materials of renewable origin in particular of plant origin, as described in document FR 2 914 634.
  • the quantity of nanotubes used according to the invention represents more than 5% by weight, and up to 70% by weight, depending on whether the desired composite material is intended to be directly converted into a composite part or that it is present in the form of a masterbatch intended to be diluted in a polymer matrix.
  • the composite material according to the invention contains, for example, from 10 to 50% by weight, preferably from 20 to 50% by weight, and more preferably from 25 to 40% by weight, or even from 30 to 40% by weight. by weight, of nanotubes, relative to the total weight of the composite material.
  • the masterbatch according to the invention contains at least one polymer chosen from: nitrile resins, silicone resins, fluorocarbon polymers and mixtures thereof, it is preferred that it contain from 20 to 40% by weight of carbon nanotubes, relative to the total weight of the masterbatch. In particular, when the masterbatch according to the invention contains at least one silicone-type polymer, it is preferred that it contains 30 to 40% by weight of carbon nanotubes, relative to the total weight of the masterbatch.
  • the nanotubes may be introduced into the co-kneader either by a feed hopper separate from the injection zone of the elastomeric resin base, or in a mixture therewith.
  • the polymeric composition used according to the invention may contain, in addition to the processing aids mentioned above, blowing agents, in particular azodicarboxylic acid diamine-based preparations such as those marketed by the company LANXESS under the trade name Genitron® . These are compounds which decompose at 140-200 ° C. to form, during the kneading step, cavities in the composite material which facilitate its subsequent introduction into a polymer matrix.
  • blowing agents in particular azodicarboxylic acid diamine-based preparations such as those marketed by the company LANXESS under the trade name Genitron® .
  • the polymeric composition may contain compounds for decreasing the tackiness of the elastomeric resin base and / or enhancing the formation of the granules.
  • An example of such a compound is an acrylic block copolymer such as the poly (methyl methacrylate) / poly (acrylate) triblock copolymer. butyl) / poly (methyl methacrylate) available from Arkema under the trade name Nanostrength® M52N.
  • the polymeric composition according to the invention may thus contain from 40 to 80% by weight of nitrile resin and up to 20% by weight of acrylic copolymer.
  • additives include: graphene-based fillers other than nanotubes (especially fullerenes), silica or calcium carbonate; UV filters, especially based on titanium dioxide; flame retardants; and their mixtures.
  • the polymeric composition may alternatively or additionally contain at least one solvent of the elastomeric resin base.
  • a composite material is obtained which, after cooling, can be in a solid form that can be used directly.
  • the subject of the invention is also the composite material that can be obtained according to the process described above.
  • Examples of composite materials obtainable according to the invention include those marketed by the company ARKEMA under the trade names Graphistrength (R) C E3-35 (containing 35% by weight of multiwall NTC in a silicone resin ); Graphistrength ® C E2-40 (containing 40% by weight of multiwall CNT in a nitrile resin); and El Graphistrength ® C-20 (containing 20% by weight of multiwall CNT in a fluorocarbon polymer).
  • This composite material can be used as it is, that is to say, shaped by any appropriate technique, including injection, extrusion, compression or molding, followed by a vulcanization treatment.
  • a vulcanizing agent may have been added to the composite material during the kneading step (in the case where its activation temperature is higher than the kneading temperature). However, it is preferred that it be added to the composite material immediately before or during its shaping, so as to have more latitude to adjust the properties of the composite.
  • the composite material according to the invention can be used as a masterbatch and thus diluted in a thermoplastic polymer matrix to form a composite product after shaping.
  • the vulcanizing agent can be introduced either during the kneading step or (more preferably) in the polymer matrix, that is to say during the formulation of the latter or when it is put into operation. form.
  • the final composite product may contain from 0.01% to 35% by weight of nanotubes, preferably from 1.5 to 20% by weight of nanotubes, for example.
  • the invention also relates to the use of the composite material described above for the manufacturing a composite product and / or to confer at least one electrical, mechanical and / or thermal property on a polymer matrix.
  • the polymer matrix generally contains at least one polymer chosen from thermosetting, random, block, statistical or sequential homo- or copolymers. At least one polymer chosen from those listed above is preferably used according to the invention.
  • the polymer included in the polymer matrix belongs to the same chemical class
  • the polymer matrix may additionally contain at least one vulcanizing agent and optionally a vulcanization accelerator, as indicated above, as well as various adjuvants and additives such as lubricants, pigments, stabilizers, fillers or reinforcers, static, fungicides, flame retardants and solvents.
  • a vulcanization accelerator as indicated above, as well as various adjuvants and additives such as lubricants, pigments, stabilizers, fillers or reinforcers, static, fungicides, flame retardants and solvents.
  • the dilution of the composite material in the polymer matrix can be done by any means, in particular using roll mixers, internal or conical.
  • the composite material or masterbatch it is preferred according to the invention for the composite material or masterbatch to be first mixed with a part of the polymer matrix and with the vulcanizing agents, until to obtain a homogeneous mixture, before introducing the rest of the polymer matrix and then molding the composite product in the desired form.
  • the resulting composite product can be used in particular for the manufacture of body seals or sealing, tires, noise plates, static dissipators, internal conductive layer for high and medium voltage cables, or anti-vibration systems such as automobile shock absorbers, or in the manufacture of structural elements of bulletproof vests, without this list being exhaustive.
  • it can be shaped by any means, including extrusion, molding or injection molding.
  • Example 1 Manufacture of a Masterbatch Containing a Nitrile Resin Base
  • carbon nanotubes Graphistrength ® ClOO from ARKEMA
  • acrylic copolymer powder Nanostrength ® M52N from ARKEMA
  • a butadiene-acrylonitrile copolymer (Nipol 1312V HallStar ®) was preheated to 160 0 C and then injected in liquid form at 190 0 C in the first zone of the co-kneader.
  • the temperature setpoints and the flow rate within the co-kneader were set at 200 ° C. and 12 kg / h, respectively.
  • the rotational speed of the screw was 240 rpm.
  • a homogeneous rod was obtained which was cut under a water jet into granules consisting of a masterbatch containing 40% by weight of nanotubes, 55% by weight of nitrile resin and 5% by weight of acrylic copolymer weight. These granules were then dried at 50 ° C. before being packaged.
  • granules can then be diluted in a polymer matrix containing a vulcanizing agent, and shaped.
  • nitrile resin 5 to 10% by weight
  • a part of the nitrile resin can be introduced into the co-kneader in solid, granulated or milled form, for example in the first feed hopper.
  • a linear vinyl-terminated polydimethylsiloxane (Silopren ® Ulo Momentive) is introduced at a temperature of 40-60 0 C, partly in the first zone of the co-kneader and partly after 1 restrictor ring of the co- mixer. The kneading is carried out at 90-110 ° C.
  • a homogeneous ring was obtained which was cut under water jet into granules consisting of a masterbatch containing 35% by weight of nanotubes and 65% by weight of silicone resin. These granules were then dried at 50 ° C. before being packaged.
  • granules can then be diluted in a polymer matrix containing a vulcanizing agent, for example in a silicone matrix for the manufacture of gaskets or in a rubber matrix for the manufacture of tires.
  • a vulcanizing agent for example in a silicone matrix for the manufacture of gaskets or in a rubber matrix for the manufacture of tires.
  • Example 2 In the same co-kneader as that described in Example 1, there was prepared a formulation containing: 35% by weight of carbon nanotubes; 40% by weight of Viton ® AlOO fluoroelastomer from DU PONT, used in the form of crushed particles of 1-5 mm; and 25% by weight of a processing aid consisting of a functionalized perfluoropolyether sold by Solexis under the trade name TechnofIon ® FPAL. The constituents of this formulation were all introduced into the first feed hopper of the co-kneader. After kneading at 160-180 ° C., a rod of composite material was obtained, which was cut into granules.
  • This masterbatch can be diluted in a polymer matrix at room temperature to make a composite product.
  • Example 3 In the same co-kneader as that described in Example 3, a formulation was prepared containing: 40% by weight of carbon nanotubes; 20% by weight of the same fluoroelastomer as in Example 3; 20% by weight of fluoroelastomer of liquid resin (copolymer of vinylidene fluoride and hexafluoropropylene) sold by DAIKIN AMERICA under the tradename Daikin ® DAI-EL GlOl; and 20% by weight of the same processing aid as in Example 3.
  • liquid resin copolymer of vinylidene fluoride and hexafluoropropylene
  • This masterbatch may be diluted in a polymer matrix, especially based on PVDF, to manufacture a composite product. Alternatively, it can be used as such for the manufacture of gasoline transport pipes.
  • EXAMPLE 5 Manufacture of a Masterbatch Containing a Solid Fluorescent Elastomeric Resin Base
  • Carbon nanotubes (Graphistrength ® ClOO from Arkema) were introduced into the 2nd feed zone, after the resin has been liquefied in the first zone of co-kneader.
  • the temperature setpoints within the co-kneader were set at 150 ° C. in Zone 1 and 140 ° C. in Zone 2 and the flow rate was set at 12 kg / h.
  • the rotational speed of the screw was 200 rpm.
  • a homogeneous ring was obtained which was cut under water jet into granules consisting of a masterbatch containing 20% by weight of nanotubes. These granules were then dried at 50 ° C. before being packaged.
  • granules can then be diluted in a polymer matrix containing a vulcanizing agent, and shaped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un procédé de préparation, dans un co-malaxeur, d'un matériau composite renfermant une base de résine élastomérique thermodurcissable et des nanotubes de carbone. Elle concerne également le matériau composite ainsi obtenu et son utilisation pour la fabrication de produits composites.

Description

Procédé de préparation d'un matériau composite élastomérique à haute teneur en nanotubes
La présente invention concerne un procédé de préparation d'un matériau composite renfermant une base de résine élastomérique thermodurcissable et des nanotubes de carbone, ainsi que le matériau composite ainsi obtenu et son utilisation pour la fabrication de produits composites.
Les élastomères sont des polymères dotés de propriétés d'élasticité caoutchoutique qui trouvent une application dans divers domaines, dont la fabrication de pièces automobiles telles que des pneumatiques, des joints ou des tubes, la pharmacie, l'industrie électrique, les transports ou le bâtiment, par exemple. Dans certaines de ces applications, il peut être intéressant de leur conférer des propriétés de conduction électrique et/ou d'améliorer leurs propriétés mécaniques. Pour ce faire, il est possible de leur incorporer des charges conductrices telles que des nanotubes de carbone (ou NTC) .
Dans le même ordre d'idées, le document WO 2007/035442 décrit un procédé pour incorporer de 0,1 à
30% en poids, et de préférence de 0,1 à 1% en poids, de
NTC dans une base de résine siliconée liquide ou solide, consistant à disperser ceux-ci dans la base de résine à l'aide de dispositif de mélangeage classiques, de broyeurs à cylindres ou d'ultrasons. L'Exemple 7 de ce document divulgue plus précisément un mélange-maître à
25% en poids de NTC, préparé par dispersion des NTC dans une base de résine siliconée à l'aide d'un mélangeur Waring (mélangeur à couteaux) . Le mélange-maître obtenu se présente sous la forme d'une poudre libre mouillée.
La technique proposée dans ce document ne permet pas non plus de disperser des quantités supérieures à 25% en poids de charges d'aussi faible densité apparente que les NTC. En particulier, il n'est pas possible d'incorporer dans les résines ces taux de NTC sans former sensiblement d'agrégats de plus de 10 μm à partir de ceux-ci, compte tenu de leur structure naturellement très enchevêtrée. Cette mauvaise dispersion des NTC engendre une fragilisation des composites formés à partir de ceux-ci, qui se traduit notamment par l'apparition de nanofissures . En outre, le mélange-maître obtenu selon le document précité se présente sous forme de poudre, qui est peu aisée à manipuler.
Une autre solution pour obtenir des élastomères chargés en NTC consiste à mélanger les NTC et des élastomères thermoplastiques, en présence de plastifiants. Ces plastifiants peuvent notamment être mélangés aux nanotubes sous forme de pré-composite, qui est ensuite dilué dans la matrice élastomérique (FR 2 916 364). Les pré-composites exemplifiés dans ce document sont préparés dans un dispositif de compoundage tel qu'un co-malaxeur BUSS®. Ils ne renferment toutefois au mieux que 5% en poids de NTC. Ainsi, il n'est pas suggéré que le dispositif de compoundage précité puisse permettre d'incorporer plus de 5% en poids de NTC dans une base élastomérique, a fortiori dans une base de résine élastomérique thermodurcissable, même en l'absence de plastifiant . D'autres documents (WO 2006/079060, WO 2007/063253, WO 2005/081781, WO 2009/030358, WO 03/085681, WO 2006/072741, WO 2007/035442, WO 2008/025962, JP-2008 163 219, US 2007/213450) divulguent des procédés pour mélanger des NTC à une base de résine élastomère thermoplastique ou thermodurcissable .
Il subsiste toutefois le besoin de disposer d'un moyen permettant de disperser simplement et de façon homogène, à l'échelle industrielle, plus de 5% en poids de NTC dans une base de résine élastomérique thermodurcissable, pour fabriquer des mélanges-maîtres susceptibles d'être aisément manipulés puis dilués dans une matrice polymère afin de former des pièces composites.
Dans ce contexte, la Demanderesse a découvert qu'il était possible de formuler des composites, et en particulier des mélanges-maîtres, à base d' élastomères thermodurcissables en introduisant une composition liquide, contenant une base de résine élastomérique thermodurcissable, dans un co-malaxeur, où elle est malaxée avec les nanotubes.
La présente invention a ainsi pour objet un procédé de préparation d'un matériau composite renfermant de plus de 5% en poids, et jusqu'à 70% en poids, de nanotubes, comprenant : (a) l'introduction, dans un co-malaxeur : - d'une composition polymérique liquide renfermant au moins une base de résine élastomérique qui comprend, ou est constituée par, au moins une base d'élastomère thermodurcissable, et - de nanotubes de carbone,
(b) le malaxage de la composition polymérique et des nanotubes au sein dudit co-malaxeur, pour former un matériau composite, (c) la récupération du matériau composite, éventuellement après transformation en une forme physique solide agglomérée .
Par « co-malaxeur », on entend, dans la présente description, un appareillage classiquement utilisé dans l'industrie des matières plastiques pour le mélange à l'état fondu de polymères thermoplastiques et d'additifs en vue de produire des composites. Dans cet appareillage, qui comprend habituellement un rotor pourvu d'ailettes adaptées à coopérer avec des dents montées sur un stator, la composition polymérique et les additifs sont mélangés sous un fort cisaillement. La matière fondue sort généralement de l'appareillage sous une forme physique solide agglomérée, par exemple sous forme de granulés, ou sous forme de joncs, de bande ou de film.
Des exemples de co-malaxeurs utilisables selon l'invention sont les co-malaxeurs BUSS® MDK 46 et ceux de la série BUSS (R) MKS ou MX, commercialisés par la société BUSS AG, qui sont tous constitués d'un arbre à vis pourvu d'ailettes, disposé dans un fourreau chauffant éventuellement constitué de plusieurs parties et dont la paroi interne est pourvue de dents de malaxage adaptées à coopérer avec les ailettes pour produire un cisaillement de la matière malaxée. L'arbre est entraîné en rotation, et pourvu d'un mouvement d'oscillation dans la direction axiale, par un moteur. Ces co-malaxeurs peuvent être équipés d'un système de fabrication de granulés, adaptés par exemple à leur orifice de sortie, qui peut être constitué d'une vis d'extrusion ou d'une pompe.
Les co-malaxeurs utilisables selon l'invention ont de préférence un rapport de vis L/D allant de 7 à 22, par exemple de 10 à 20.
En outre, l'étape de malaxage est généralement mise en œuvre à une température qui est supérieure à la température de transition vitreuse (Tg) pour les polymères amorphes et à la température de fusion pour les polymères semi-cristallins. Cette température est fonction du polymère spécifiquement utilisé et généralement mentionnée par le fournisseur du polymère. A titre d'exemple, la température de malaxage peut aller de la température ambiante à 2600C, par exemple de 80 à 2600C, en général de 80 à 220°C, de préférence de 100 à 2200C, en particulier de 120 à 200°C, et plus préférentiellement de 150 à 2000C.
La Demanderesse a mis en évidence que ce procédé permettait d'obtenir des matériaux composites, notamment des mélanges-maîtres, qui peuvent être fortement dosés en nanotubes, tels que des NTC, et qui sont aisément manipulables, dans le cas où ils se présentent sous forme solide agglomérée, notamment sous la forme de granulés, en ce sens qu'ils peuvent être transportés en sacs ou en fûts du centre de production au centre de transformation. Ces matériaux composites peuvent en outre être mis en forme suivant les méthodes classiquement utilisées pour la mise en forme de matériaux thermoplastiques, telles que l'extrusion, l'injection ou la compression. Par « base de résine élastomérique », on entend, dans la présente description, une composition contenant un polymère organique ou siliconé qui forme, après vulcanisation, un élastomère capable de supporter de grandes déformations de façon quasi-réversible, c'est-à- dire susceptible d'être soumis à une déformation uniaxiale, avantageusement d'au moins deux fois sa longueur d'origine à température ambiante (23°C), pendant cinq minutes, puis de recouvrer, une fois la contrainte relâchée, sa dimension initiale, avec une déformation rémanente inférieure à 10% de sa dimension initiale.
Du point de vue structural, les élastomères sont généralement constitués de chaînes polymériques reliées entre elles, pour former un réseau tridimensionnel. Plus précisément, on distingue parfois les élastomères thermoplastiques, dans lesquels les chaînes polymériques sont reliées entre elles par des liaisons physiques, telles que des liaisons hydrogène ou dipôle-dipôle, des élastomères thermodurcissables, dans lesquels ces chaînes sont reliées par des liaisons covalentes, qui constituent des points de réticulation chimique. Ces points de réticulation sont formés par des procédés de vulcanisation mettant en oeuvre un agent de vulcanisation qui peut par exemple être choisi, selon la nature de 1 ' élastomère, parmi les agents de vulcanisation à base de soufre, en présence de sels métalliques de dithiocarbamates ; les oxydes de zinc combinés à de l'acide stéarique ; les résines phénol-formaldéhyde bifonctionnelles éventuellement halogénées, en présence de chlorure d'étain ou d'oxyde de zinc ; les peroxydes ; les aminés ; les hydrosilanes en présence de platine ; etc . La présente invention concerne plus particulièrement les bases de résine élastomérique renfermant, ou constituées par, au moins un élastomère thermodurcissable éventuellement en mélange avec au moins un élastomère non réactif, c'est-à-dire non vulcanisable (tel que les caoutchoucs hydrogénés) .
Les bases de résine élastomérique utilisables selon l'invention peuvent notamment comprendre, voire être constituées par, un ou plusieurs polymères choisis parmi : les polymères fluorocarbonés ou fluorosiliconés ; les résines nitriles ; les homo- et copolymères du butadiène, éventuellement fonctionnalisées par des monomères insaturés tels que l'anhydride maléique, l'acide (méth) acrylique, et/ou le styrène (SBR) ; le néoprène (ou polychloroprène) ; le polyisoprène ; les copolymère d'isoprène avec le styrène, le butadiène, 1 ' acrylonitrile et/ou le méthacrylate de méthyle ; les copolymères à base de propylène et/ou d'éthylène et notamment les terpolymères à base d'éthylène, de propylène et de diènes (EPDM) , ainsi que les copolymères de ces oléfines avec un (méth) acrylate d'alkyle ou l'acétate de vinyle ; les caoutchoucs butyle halogènes ; les résines de silicone ; les polyuréthanes ; les polyesters ; les polymères acryliques tels que le poly (acrylate de butyle) porteur de fonctions acide carboxylique ou époxy ; ainsi que leur dérivés modifiés ou fonctionnalisés et leurs mélanges, sans que cette liste ne soit limitative.
On préfère selon l'invention utiliser au moins un polymère choisi parmi : les résines nitriles, en particulier les copolymères d' acrylonitrile et de butadiène (NBR) ; les résines de silicone, en particulier les poly (diméthylsiloxanes) porteurs de groupes vinyliques ; les polymères fluorocarbonés, en particulier les copolymères d' hexafluoropropylène (HFP) et de difluorure de vinylidène (VF2) ou les terpolymères d' d' hexafluoropropylène (HFP), de difluorure de vinylidène
(VF2) et de tétrafluoroéthylène (TFE), chaque monomère pouvant représenter plus de 0% et jusqu'à 80% du terpolymère ; et leurs mélanges.
Une caractéristique importante de cette invention est que la composition polymérique contenant la base de résine élastomérique se présente sous forme liquide lors de son injection dans le co-malaxeur dans une première zone du co-malaxeur avant l'introduction des NTC. Par "liquide", on entend que la composition est susceptible d'être pompée dans le co-malaxeur, c'est-à-dire qu'elle présente avantageusement une viscosité dynamique allant de 0,1 à 30 Pa. s, de préférence de 0,1 à 15 Pa. s.
La mesure de la viscosité dynamique est basée sur une méthode générale de détermination des propriétés viscoélastiques de polymères à l'état liquide, à l'état fondu ou à l'état solide. Les échantillons sont soumis à une déformation (ou contrainte) , le plus souvent sinusoïdale en tension, compression, flexion ou torsion pour les solides et en cisaillement pour les liquides. La réponse des échantillons à cette sollicitation est évaluée soit par la force ou le couple résultant, soit par la déformation lorsqu'on travaille à contrainte imposée. On détermine ainsi les propriétés viscoélastiques soit en termes de module ou de viscosité, soit en termes de fonction de fluage ou de relaxation. En écoulement, les échantillons sont soumis à un balayage de contraintes et/ou déformations afin de prédire leur comportement en fonction du gradient de cisaillement.
Pour cette détermination, on utilise un viscoélasticimètre, composé des éléments suivants :
• Une enceinte ou un système de régulation thermique (au choix, l'atmosphère lors du test peut être soit de l'azote gaz et/ou liquide, soit de l'air)
• Une unité centrale de commande
• Un système pour la régulation du débit et le séchage de l'air et de l'azote
• Une tête de mesure • Un système informatique de pilotage de l'appareil et de traitement des données
• Des équipages "porte échantillon"
Comme appareillages utilisables, on peut citer par exemple les appareils RDA2, RSA2, DSR200, ARES ou RME du constructeur Rheometrics, ou MCR301 de Anton Paar.
Les dimensions de l'échantillon sont définies en fonction de sa viscosité et des limites géométriques du système "porte-échantillon" choisi.
Pour la réalisation d'un essai et la détermination de la viscosité dynamique d'une résine thermodurcissable, on suivra méthodologiquement les étapes décrites dans le manuel d'utilisation du viscoélasticimètre utilisé. En particulier, on s'assurera que la relation entre déformation et contrainte est linéaire (viscoélasticité linéaire) . La base de résine utilisée peut elle-même présenter cette viscosité soit à température ambiante (23°C), soit après avoir été chauffée avant injection dans le co- malaxeur pour lui conférer la viscosité voulue. L'homme du métier saura identifier de telles bases de résine élastomérique, en fonction notamment de la masse moléculaire de leurs polymères constitutifs. Dans une variante de l'invention, la base de résine élastomérique peut être solide, par exemple sous forme de gomme. Dans ce cas, la composition polymérique peut contenir, outre cette base, au moins un auxiliaire de traitement sous forme liquide ou cireuse, tel qu'un fluoropolymère, notamment un perfluoropolyéther éventuellement fonctionnalisé et/ou un copolymère de fluorure de vinylidène et d' hexafluoropropylène .
Dans une autre variante de l'invention, la résine élastomérique peut être introduite sous la forme solide, par exemple sous forme de particules broyées dans le co- malaxeur et liquéfiée dans le co-malaxeur par le chauffage et le cisaillement avant l'introduction des NTC.
Cette base de résine élastomérique est mélangée, dans le procédé selon l'invention, avec des nanotubes de carbone (ci-après, NTC) . Ceux-ci possèdent des structures cristallines particulières, de forme tubulaire, creuses et closes, composées d'atomes disposés régulièrement en pentagones, hexagones et/ou heptagones, obtenues à partir de carbone. Les NTC sont en général constitués d'un ou plusieurs feuillets de graphène enroulés. On distingue ainsi les nanotubes mono-parois (Single Wall Nanotubes ou
SWNT) et les nanotubes multi-parois (Multi Wall Nanotubes ou MWNT) . Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem. Corn. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456. On préfère selon l'invention utiliser des NTC à parois multiples.
Les nanotubes mis en œuvre selon l'invention ont habituellement un diamètre moyen allant de 0,1 à 200 nm, de préférence de 0,1 à 100 nm, plus préférentiellement de 0,4 à 50 nm et, mieux, de 1 à 30 nm et avantageusement une longueur de plus de 0,1 μm et avantageusement de 0,1 à 20 μm, par exemple d'environ 6 μm. Leur rapport longueur/diamètre est avantageusement supérieur à 10 et le plus souvent supérieur à 100. Ces nanotubes comprennent donc notamment les nanotubes dits "VGCF"
(fibres de carbone obtenues par dépôt chimique en phase vapeur, ou Vapor Grown Carbon Fibers) . Leur surface spécifique est par exemple comprise entre 100 et 300 m2 /g et leur densité apparente peut notamment être comprise entre 0,01 et 0,5 g/cm3 et plus préférentiellement entre 0,07 et 0,2 g/cm3. Les nanotubes de carbone multi-parois peuvent par exemple comprendre de 5 à 15 feuillets et plus préférentiellement de 7 à 10 feuillets.
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100.
Les nanotubes peuvent être purifiés et/ou traités (en particulier oxydés) et/ou broyés, avant leur mise en oeuvre dans le procédé selon l'invention. Ils peuvent également être fonctionnalisés par des méthodes de chimie en solution comme l'amination ou la réaction avec des agents de couplage.
Le broyage des nanotubes peut être notamment effectué à froid ou à chaud et être réalisé selon les techniques connues mises en oeuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes . On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air.
La purification des nanotubes peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, ou d'un autre acide, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, provenant de leur procédé de préparation. Le rapport pondéral des nanotubes à l'acide sulfurique peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 1200C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes purifiés. Une autre voie de purification des nanotubes, destinée en particulier à éliminer le fer et/ou le magnésium qu'ils renferment, consiste à les soumettre à un traitement thermique à plus de 1.0000C.
L'oxydation des nanotubes est avantageusement réalisée en mettant ceux-ci en contact avec une solution d' hypochlorite de sodium renfermant de 0,5 à 15% en poids de NaOCl et de préférence de 1 à 10% en poids de NaOCl, par exemple dans un rapport pondéral des nanotubes à 1' hypochlorite de sodium allant de 1:0,1 à 1:1. L'oxydation est avantageusement réalisée à une température inférieure à 600C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des nanotubes oxydés .
On préfère toutefois que les nanotubes soient utilisés dans le procédé selon l'invention à l'état brut.
Par ailleurs, on préfère selon l'invention utiliser des nanotubes obtenus à partir de matières premières d'origine renouvelable, en particulier d'origine végétale, comme décrit dans le document FR 2 914 634.
La quantité de nanotubes mise en oeuvre selon l'invention représente de plus de 5% en poids, et jusqu'à 70% en poids, suivant que le matériau composite recherché est destiné à être directement transformé en une pièce composite ou qu'il se présente sous la forme d'un mélange-maître destiné à être dilué dans une matrice polymère. Dans ce dernier cas, le matériau composite selon l'invention renferme par exemple de 10 à 50% en poids, de préférence de 20 à 50% en poids, et plus préférentiellement de 25 à 40% en poids, voire de 30 à 40% en poids, de nanotubes, par rapport au poids total du matériau composite. Lorsque le mélange-maître selon 1 ' invention renferme au moins un polymère choisi parmi : les résines nitriles, les résines siliconées, les polymères fluorocarbonés et leurs mélanges, on préfère qu'il contienne de 20 à 40% en poids de nanotubes de carbone, par rapport au poids total du mélange-maître. En particulier, lorsque le mélange- maître selon 1 ' invention renferme au moins un polymère de type résine siliconée, on préfère qu'il contienne de 30 à 40% en poids de nanotubes de carbone, par rapport au poids total du mélange-maître.
Les nanotubes peuvent être introduits dans le co- malaxeur soit par une trémie d'alimentation distincte de la zone d'injection de la base de résine élastomérique, soit en mélange avec celle-ci.
La composition polymérique utilisée selon l'invention peut renfermer, outre les auxiliaires de traitement mentionnés précédemment, des agents d'expansion, notamment les préparations à base de diamine d'acide azodicarbonique telles que celles commercialisées par la société LANXESS sous la dénomination commerciale Genitron®. Il s'agit de composés qui se décomposent à 140-2000C pour former, lors de l'étape de malaxage, des cavités dans le matériau composite qui facilitent son introduction ultérieure dans une matrice polymère.
En variante ou en plus, la composition polymérique peut contenir des composés destinés à diminuer le collant de la base de résine élastomérique et/ou d'améliorer la formation des granulés. Un exemple d'un tel composé est un copolymère acrylique à blocs tel que le copolymère tribloc poly (méthacrylate de méthyle) / poly (acrylate de butyle) / poly (méthacrylate de méthyle) disponible auprès de la société ARKEMA sous la dénomination commerciale Nanostrength® M52N. En variante, il est possible d'utiliser un copolymère polystyrène / 1,4- polybutadiène / poly (méthacrylate de méthyle) également commercialisé par la société ARKEMA, sous la référence Nanostrength® .
La composition polymérique selon l'invention peut ainsi renfermer de 40 à 80% en poids de résine nitrile et jusqu'à 20% en poids de copolymère acrylique.
D'autres additifs utilisables sont notamment : des charges à base de graphène autres que des nanotubes (notamment des fullerènes) , de la silice ou du carbonate de calcium ; des filtres UV, notamment à base de dioxyde de titane ; des retardateurs de flamme ; et leurs mélanges. La composition polymérique peut en variante ou en plus contenir au moins un solvant de la base de résine élastomérique .
Au terme du procédé selon l'invention, on obtient un matériau composite qui peut, après refroidissement, se trouver sous une forme solide directement utilisable. L'invention a également pour objet le matériau composite susceptible d'être obtenu suivant le procédé ci-dessus.
Des exemples de matériaux composites susceptibles d'être obtenus selon l'invention comprennent notamment ceux commercialisés par la société ARKEMA sous les dénominations commerciales Graphistrength (R) C E3-35 (renfermant 35% en poids de NTC multi-parois dans une résine de silicone) ; Graphistrength® C E2-40 (renfermant 40% en poids de NTC multi-parois dans une résine nitrile) ; et Graphistrength® C El-20 (renfermant 20% en poids de NTC multi-parois dans un polymère fluorocarboné) .
Ce matériau composite peut être utilisé tel quel, c'est-à-dire mis en forme selon toute technique appropriée, notamment par injection, extrusion, compression ou moulage, suivie d'un traitement de vulcanisation. Un agent de vulcanisation peut avoir été ajouté au matériau composite pendant l'étape de malaxage (dans le cas où sa température d' activation est supérieure à la température de malaxage) . On préfère toutefois qu'il soit ajouté au matériau composite immédiatement avant ou pendant sa mise en forme, de façon à disposer de plus de latitude pour ajuster les propriétés du composite.
En variante, le matériau composite selon l'invention peut être utilisé comme mélange-maître et donc dilué dans une matrice polymère thermoplastique pour former un produit composite après mise en forme. Là encore, l'agent de vulcanisation peut être introduit soit pendant l'étape de malaxage, soit (plus préférentiellement) dans la matrice polymère, c'est-à-dire au cours de la formulation de cette dernière ou lors de sa mise en forme. Dans cette forme d'exécution de l'invention, le produit composite final peut contenir de 0,01% à 35% en poids de nanotubes, de préférence de 1,5 à 20% en poids de nanotubes, par exemple.
L'invention a également pour objet l'utilisation du matériau composite décrit précédemment pour la fabrication d'un produit composite et/ou en vue de conférer au moins une propriété électrique, mécanique et/ou thermique à une matrice polymère.
Elle a encore pour objet un procédé de fabrication d'un produit composite comprenant :
- la fabrication d'un matériau composite suivant le procédé décrit précédemment, et
- l'introduction du matériau composite dans une matrice polymère.
La matrice polymère contient généralement au moins un polymère choisi parmi les homo- ou copolymères à gradients, à blocs, statistiques ou séquences, thermodurcissables . On utilise de préférence selon l'invention au moins un polymère choisi parmi ceux listés précédemment. Avantageusement, le polymère inclus dans la matrice polymère appartient à la même classe chimique
(résine nitrile, résine siliconée ou polymère fluorocarboné, par exemple) que l'un au moins des polymères de la base de résine élastomérique .
La matrice polymère peut en outre renfermer au moins un agent de vulcanisation et éventuellement un accélérateur de vulcanisation, comme indiqué précédemment, ainsi que divers adjuvants et additifs tels que des lubrifiants, des pigments, des stabilisants, des charges ou renforts, des agents anti-statiques, des fongicides, des agents ignifugeants et des solvants.
La dilution du matériau composite dans la matrice polymère peut se faire par tout moyen, notamment à l'aide de mélangeurs à cylindres, internes ou coniques. Pour améliorer les propriétés électriques des produits composites à base de résine de silicone, on préfère selon l'invention que le matériau composite ou mélange-maître soit d'abord mélangé avec une partie de la matrice polymère et avec les agents de vulcanisation, jusqu'à l'obtention d'un mélange homogène, avant d'introduire le reste de la matrice polymère puis de procéder à un moulage du produit composite en la forme souhaitée.
Le produit composite ainsi obtenu peut notamment être utilisé pour la fabrication de joints de carrosserie ou d' étanchéité, de pneus, de plaques anti-bruit, de dissipateurs de charges statiques, de couche conductrice interne pour des câbles à haute et moyenne tension, ou de systèmes anti-vibratoires tels que des amortisseurs automobiles, ou encore dans la fabrication d'éléments de structure de gilets pare-balles, sans que cette liste ne soit limitative.
En vue de ces applications, il peut être mis en forme par tout moyen, notamment par extrusion, moulage ou moulage par injection.
L' invention sera mieux comprise à la lumière des exemples non limitatifs et purement illustratifs suivants .
EXEMPLES
Exemple 1 : Fabrication d'un mélange-maitre renfermant une base de résine nitrile On a introduit, dans la première trémie d'alimentation d'un co-malaxeur BUSS® MDK 46 (L/D = 11), équipé d'une vis d'extrusion et d'un dispositif de granulation, des nanotubes de carbone (Graphistrength® ClOO d 'ARKEMA) et une poudre de copolymère acrylique (Nanostrength® M52N D 'ARKEMA) . Un copolymère butadiène-acrylonitrile (NIPOL® 1312V de HALLSTAR) a été préchauffé à 1600C puis injecté sous forme liquide à 1900C dans la lere zone du co-malaxeur. Les consignes de température et le débit au sein du co-malaxeur étaient réglés à 2000C et 12 kg/h, respectivement. La vitesse de rotation de la vis était de 240 tours/min.
En sortie d'appareil, on a obtenu un jonc homogène qui a été découpé sous jet d'eau en des granulés constitués d'un mélange-maître renfermant 40% en poids de nanotubes, 55% en poids de résine nitrile et 5% en poids de copolymère acrylique. Ces granulés ont ensuite été séchés à 500C environ avant d'être conditionnés.
Ces granulés peuvent être ensuite dilués dans une matrice polymère contenant un agent de vulcanisation, et mis en forme .
En variante, une partie de la résine nitrile (de 5 à 10% en poids) peut être introduite dans le co-malaxeur sous forme solide, granulée ou broyée, par exemple dans la première trémie d'alimentation.
Exemple 2 : Fabrication d'un mélange-maitre renfermant une base de résine élastomérique siliconée On introduit des nanotubes de carbone (Graphistrength® ClOO d' ARKEMA) dans la première trémie d'alimentation d'un co-malaxeur BUSS® MDK 46 (L/D = 11) équipé d'une vis d'extrusion et d'un dispositif de granulation. Un polydiméthylsiloxane linéaire à extrémités vinyliques (Silopren® UlO de MOMENTIVE) est introduit à une température de 40-600C environ, pour partie dans la lere zone du co- malaxeur et pour partie après le 1er anneau de restriction du co-malaxeur. Le malaxage est réalisé à 90-1100C. En sortie d'appareil, on a obtenu un jonc homogène qui a été découpé sous jet d'eau en des granulés constitués d'un mélange-maître renfermant 35% en poids de nanotubes et 65% en poids de résine siliconée. Ces granulés ont ensuite été séchés à 500C environ avant d'être conditionnés.
Ces granulés peuvent être ensuite dilués dans une matrice polymère contenant un agent de vulcanisation, par exemple dans une matrice siliconée pour la fabrication de joints d'étanchéité ou dans une matrice caoutchouc pour la fabrication de pneus.
Exemple 3 : Fabrication d'un mélange-maitre renfermant une base de résine élastomérique fluorée
On a préparé, dans le même co-malaxeur que celui décrit à l'Exemple 1, une formulation renfermant : 35% en poids de nanotubes de carbone ; 40% en poids de fluoroélastomère Viton® AlOO de DU PONT, utilisé sous forme de broyât de particules de 1-5 mm ; et 25% en poids d'un auxiliaire de traitement constitué d'un perfluoropolyéther fonctionnalisé commercialisé par la société SOLEXIS sous la dénomination commerciale TechnofIon® FPAl . Les constituants de cette formulation ont tous été introduits dans la première trémie d'alimentation du co- malaxeur. Après malaxage à 160-1800C, on a obtenu un jonc de matériau composite, qui a été découpé en granulés.
Ce mélange-maître peut être dilué dans une matrice polymère à température ambiante pour fabriquer un produit composite .
Exemple 4 : Fabrication d'un mélange-maitre renfermant une base de résine élastomérique fluorée
On a préparé, dans le même co-malaxeur que celui décrit à l'Exemple 3, une formulation renfermant : 40% en poids de nanotubes de carbone ; 20% en poids du même fluoroélastomère qu'à l'Exemple 3 ; 20% en poids de résine liquide de fluoroélastomère (copolymère de fluorure de vinylidène et d ' hexafluoropropylène) commercialisée par la société DAIKIN AMERICA sous la dénomination commerciale Daikin® DAI-EL GlOl ; et 20% en poids du même auxiliaire de traitement qu'à 1 ' Exemple 3.
Les constituants de cette formulation ont tous été introduits dans la première trémie d'alimentation du co- malaxeur, excepté la résine qui a été injectée à 1600C.
Après malaxage à 160-1800C, on a obtenu un jonc de matériau composite, qui a été découpé en granulés.
Ce mélange-maître peut être dilué dans une matrice polymère, notamment à base de PVDF, pour fabriquer un produit composite. En variante, il peut être utilisé tel quel pour la fabrication de conduites de transport d' essence . Exemple 5 : Fabrication d'un mélange-maitre renfermant une base de résine élastomérique fluorée solide
On a introduit, dans la première trémie d'alimentation d'un co-malaxeur BUSS® MDK 46 (L/D = 11), équipé d'une vis d'extrusion et d'un dispositif de granulation, la résine VITON® AlOO sous forme de particules solides, dosées par le doseur gravimétrique, en utilisant un dispositif d'alimentation de bandes.
Des nanotubes de carbone (Graphistrength® ClOO d 'ARKEMA) ont été introduits dans la 2eme zone d'alimentation, après que la résine ait été liquéfiée dans lere zone du co-malaxeur. Les consignes de température au sein du co-malaxeur étaient réglées à 1500C dans la Zone 1 et 1400C dans la Zone 2 et le débit était réglé à 12 kg/h. La vitesse de rotation de la vis était de 200 tours/min.
En sortie de la filière 4x4 mm, on a obtenu un jonc homogène qui a été découpé sous jet d'eau en des granulés constitués d'un mélange-maitre renfermant 20% en poids de nanotubes. Ces granulés ont ensuite été séchés à 500C environ avant d'être conditionnés.
Ces granulés peuvent être ensuite dilués dans une matrice polymère contenant un agent de vulcanisation, et mis en forme .

Claims

REVENDICATIONS
1. Procédé de préparation d'un matériau composite renfermant plus de 5% en poids, et jusqu'à 70% en poids de nanotubes, comprenant :
(a) l'introduction, dans un co-malaxeur, d'une composition polymérique liquide renfermant :
- au moins une base de résine élastomérique qui comprend, ou est constituée par, au moins une base d'élastomère thermodurcissable, et
- des nanotubes de carbone,
(b) le malaxage de la composition polymérique et des nanotubes au sein dudit co-malaxeur, pour former un matériau composite, (c) la récupération du matériau composite, éventuellement après transformation en une forme physique solide agglomérée .
2. Procédé selon la revendication 1, caractérisé en ce que le co-malaxeur a un rapport de vis L/D allant de 7 à 22, plus préférentiellement de 10 à 20.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que la base de résine élastomérique comprend, voire est constituée par, un ou plusieurs polymères choisis parmi : les polymères fluorocarbonés ou fluorosiliconés ; les résines nitriles ; les homo- et copolymères du butadiène, éventuellement fonctionnalisées par des monomères insaturés tels que l'anhydride maléique, l'acide
(méth) acrylique, et/ou le styrène (SBR) ; le néoprène (ou polychloroprène) ; le polyisoprène ; les copolymère d'isoprène avec le styrène, le butadiène, 1 ' acrylonitrile et/ou le méthacrylate de méthyle ; les copolymères à base de propylène et/ou d'éthylène et notamment les terpolymères à base d'éthylène, de propylène et de diènes (EPDM) , ainsi que les copolymères de ces oléfines avec un (méth) acrylate d'alkyle ou l'acétate de vinyle ; les caoutchoucs butyle halogènes ; les résines de silicone ; les polyuréthanes ; les polyesters ; les polymères acryliques tels que le poly (acrylate de butyle) porteur de fonctions acide carboxylique ou époxy ; ainsi que leur dérivés modifiés ou fonctionnalisés et leurs mélanges.
4. Procédé selon la revendication 3, caractérisé en ce que la base de résine élastomérique comprend, voire est constituée par, un ou plusieurs polymères choisis parmi : les résines nitriles, en particulier les copolymères d' acrylonitrile et de butadiène (NBR) ; les résines de silicone, en particulier les poly (diméthylsiloxanes) porteurs de groupes vinyliques ; les polymères fluorocarbonés, en particulier les copolymères d' hexafluoropropylène (HFP) et de difluorure de vinylidène (VF2) et les terpolymères d' d ' hexafluoropropylène (HFP), de difluorure de vinylidène
(VF2) et de tétrafluoroéthylène (TFE), chaque monomère pouvant représenter plus de 0% et jusqu'à 80% du terpolymère ; et leurs mélanges.
5. Procédé l'une quelconque des revendications 1 à 4, caractérisé en ce que le matériau composite renferme de 10 à 50% en poids, de préférence de 20 à 50% en poids, et plus préférentiellement de 25 à 40% en poids, de nanotubes, par rapport au poids total du matériau composite .
6. Matériau composite susceptible d'être obtenu suivant le procédé selon l'une quelconque des revendications 1 à 5.
7. Utilisation du matériau composite selon la revendication 6 pour la fabrication d'un produit composite et/ou en vue de conférer au moins une propriété électrique, mécanique et/ou thermique à une matrice polymère .
8. Procédé de fabrication d'un produit composite comprenant :
- la fabrication d'un matériau composite suivant le procédé selon l'une quelconque des revendications 1 à 5, et
- l'introduction du matériau composite dans une matrice polymère .
PCT/FR2010/050499 2009-03-23 2010-03-19 Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes WO2010109118A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080013065XA CN102361929A (zh) 2009-03-23 2010-03-19 制备具有高纳米管含量的弹性体复合材料的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0951840 2009-03-23
FR0951840A FR2943349B1 (fr) 2009-03-23 2009-03-23 Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes
US23546309P 2009-08-20 2009-08-20
US61/235,463 2009-08-20

Publications (1)

Publication Number Publication Date
WO2010109118A1 true WO2010109118A1 (fr) 2010-09-30

Family

ID=41328448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050499 WO2010109118A1 (fr) 2009-03-23 2010-03-19 Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes

Country Status (7)

Country Link
US (1) US20100264376A1 (fr)
EP (1) EP2236556A1 (fr)
JP (1) JP2010222582A (fr)
KR (1) KR20110118831A (fr)
CN (1) CN102361929A (fr)
FR (1) FR2943349B1 (fr)
WO (1) WO2010109118A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182793A1 (fr) 2012-06-04 2013-12-12 Arkema France Utilisation de nanocharges carbonées a très faible taux pour le renfort mécanique de matériaux composites charges a l'aide d'une charge conventionnelle
WO2013182794A1 (fr) 2012-06-04 2013-12-12 Arkema France Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
WO2013182792A1 (fr) 2012-06-04 2013-12-12 Arkema France Matériau composite a très faible taux de nanocharges carbonées, son procédé de préparation et ses utilisations
WO2014029545A1 (fr) * 2012-08-24 2014-02-27 Tesa Se Matière adhésive de contact, en particulier pour encapsuler un système électronique
WO2016097544A1 (fr) 2014-12-16 2016-06-23 Arkema France Dispositif de mélange pour la fabrication d'un matériau composite à partir d'une poudre comprenant des nanocharges carbonées et d'une résine élastomère
CN106833207A (zh) * 2017-02-28 2017-06-13 广州市聚吉科绿色化学共性技术研究院有限公司 一种水性双组份防腐涂料及其制备方法
US10350030B2 (en) 2006-10-16 2019-07-16 Natural Dental Implants Ag Methods of designing and manufacturing customized dental prosthesis for periodontal or osseointegration and related systems
WO2019138193A1 (fr) 2018-01-12 2019-07-18 Arkema France Matiere solide agglomeree de nanotubes de carbone desagreges

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943350B1 (fr) * 2009-03-23 2012-10-19 Arkema France Procede de preparation d'un materiau composite thermodurcissable a haute teneur en nanotubes
JP5204925B2 (ja) * 2009-04-08 2013-06-05 ザ プロクター アンド ギャンブル カンパニー 不織布ウェブ(類)及び弾性フィルムの伸縮性ラミネート
CA2757892C (fr) * 2009-04-08 2014-06-03 The Procter & Gamble Company Stratifies etirables de bande(s) non tissee(s) et de film elastique
EP2416956B1 (fr) * 2009-04-08 2016-01-06 The Procter and Gamble Company Stratifiés étirables de bande(s) non tissée(s) et de film élastique
MX2011010662A (es) * 2009-04-08 2011-10-21 Procter & Gamble Laminares estirables de trama (s) de tela no tejida y pelicula elastica.
EP2452978A1 (fr) * 2010-11-16 2012-05-16 Basf Se Procédé de fabrication de masses de formage de résine époxy remplies de matières de remplissage au carbone
FR2973382B1 (fr) * 2011-03-31 2014-06-20 Arkema France Materiau composite renfermant des nanotubes de carbone et des particules de structure coeur-ecorce
EP2607407B1 (fr) 2011-12-21 2014-08-20 Rhein Chemie Rheinau GmbH Procédé de fabrication de mélanges maîtres avec CNT dans du caoutchouc liquide à l'aide d'un appareil à trois cylindres
EP2650325A1 (fr) * 2012-04-10 2013-10-16 ContiTech AG Mélange de polymères, mélange de caoutchouc comprenant le mélange de polymères et procédé de préparation du mélange de caoutchouc
CN103509298B (zh) * 2012-06-20 2015-11-25 中国科学院合肥物质科学研究院 氟塑料基微纳复合吸波材料及其制备方法
WO2014171440A1 (fr) * 2013-04-16 2014-10-23 独立行政法人産業技術総合研究所 Structure élastomère contenant des nanotubes de carbone, et son procédé de production
EP2810977A1 (fr) * 2013-06-07 2014-12-10 Bayer MaterialScience AG Composition et procédé pour la préparation de composites polymer-CNT
EP2842992B1 (fr) 2013-08-27 2017-02-08 ContiTech Elastomer-Beschichtungen GmbH Matériau d'isolation
JP6473588B2 (ja) * 2013-09-12 2019-02-20 日信工業株式会社 炭素繊維複合材料及び炭素繊維複合材料の製造方法
JP6384437B2 (ja) * 2015-09-17 2018-09-05 信越化学工業株式会社 シリコーンゴム組成物及び電力ケーブル
CN106257275B (zh) * 2016-06-21 2019-08-20 杭州师范大学 一种开孔高分子气敏材料及其制备方法与应用
EP3625042A4 (fr) * 2017-05-15 2021-01-27 National Research Council of Canada Matériau de revêtement nanocomposite étirable et structures associées
JP6711335B2 (ja) * 2017-08-24 2020-06-17 株式会社デンソー シリコーンゴム複合材料および防振部材
CN107746583A (zh) * 2017-10-30 2018-03-02 天长市平康电子科技有限公司 一种充电器插头用橡胶材料的制备方法
CN110317373A (zh) * 2019-07-22 2019-10-11 江苏银辉生态科技有限公司 一种建筑建材用ehs隔声板及其制备方法
JP7468062B2 (ja) * 2020-03-27 2024-04-16 日本ゼオン株式会社 エラストマー組成物の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085681A1 (fr) * 2002-04-01 2003-10-16 World Properties, Inc. Mousses polymeres et elastomeres electroconducteurs et leurs procedes de fabrication
WO2005081781A2 (fr) * 2004-02-23 2005-09-09 Entegris, Inc. Compositions comportant des nanotubes de carbone et articles formes a partir de celles-ci
WO2006026691A2 (fr) * 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Thermodurcis conducteurs par extrusion
WO2006072741A1 (fr) * 2005-01-05 2006-07-13 Arkema France Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice et applications d'une telle composition.
WO2006079060A1 (fr) * 2005-01-24 2006-07-27 Glycon Technologies, L.L.C. Materiau intelligent
FR2887554A1 (fr) * 2005-06-24 2006-12-29 Arkema Sa Materiaux polymeres contenant des nanotubes de carbone, leur procede de preparation a partir de pre-melange avec un agent de dispersion
WO2007035442A2 (fr) * 2005-09-16 2007-03-29 Hyperion Catalysis International, Inc. Silicones conducteurs et leur procédé de préparation
WO2007063253A1 (fr) * 2005-11-30 2007-06-07 Arkema France Composition pulvérulente à base de nanotubes de carbone, ses procédés d'obtention et ses utilisations, notamment dans des matériaux polymères.
US20070213450A1 (en) * 2003-03-20 2007-09-13 Winey Karen I Polymer-nanotube composites, fibers, and processes
WO2008025962A1 (fr) * 2006-08-31 2008-03-06 Cambridge Enterprise Limited Compositions polymères de nanomatériaux et utilisations de ces compositions
JP2008163219A (ja) * 2006-12-28 2008-07-17 Nitta Ind Corp カーボンナノチューブ配合ポリイミド成形体およびカーボンナノチューブ配合ベルト
WO2009030358A1 (fr) * 2007-08-30 2009-03-12 Bayer Materialscience Ag Procédé de production de compositions de polycarbonate chargées, modifiées choc

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299812B1 (en) * 1999-08-16 2001-10-09 The Board Of Regents Of The University Of Oklahoma Method for forming a fibers/composite material having an anisotropic structure
FR2826646B1 (fr) 2001-06-28 2004-05-21 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
FR2883879B1 (fr) * 2005-04-04 2007-05-25 Arkema Sa Materiaux polymeres contenant des nanotubes de carbone a dispersion amelioree leur procede de preparation
JP4810382B2 (ja) * 2005-11-11 2011-11-09 日信工業株式会社 熱可塑性樹脂組成物及びその製造方法
FR2893946A1 (fr) * 2005-11-30 2007-06-01 Arkema Sa Composition pulverulente a base de nanotubes de carbone, ses procedes d'obtention et ses utilisations, notamment dans des materiaux polymeres
CN100420714C (zh) * 2006-06-09 2008-09-24 中国科学院广州化学研究所 一种碳纳米管/环氧树脂复合材料的制备方法
CN100591613C (zh) * 2006-08-11 2010-02-24 清华大学 碳纳米管复合材料及其制造方法
JP2008143963A (ja) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd 炭素繊維複合材料
JP5207351B2 (ja) * 2007-03-23 2013-06-12 独立行政法人産業技術総合研究所 溶融混練物、樹脂成形物及びその製造方法
FR2914634B1 (fr) 2007-04-06 2011-08-05 Arkema France Procede de fabrication de nanotubes de carbone a partir de matieres premieres renouvelables
FR2916364B1 (fr) 2007-05-22 2009-10-23 Arkema France Procede de preparation de pre-composites a base de nanotubes notamment de carbone
DE102007029008A1 (de) * 2007-06-23 2008-12-24 Bayer Materialscience Ag Verfahren zur Herstellung eines leitfähigen Polymerverbundwerkstoffs
JP5072644B2 (ja) * 2008-02-25 2012-11-14 日信工業株式会社 炭素繊維複合材料及び炭素繊維複合材料の製造方法
FR2943350B1 (fr) * 2009-03-23 2012-10-19 Arkema France Procede de preparation d'un materiau composite thermodurcissable a haute teneur en nanotubes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085681A1 (fr) * 2002-04-01 2003-10-16 World Properties, Inc. Mousses polymeres et elastomeres electroconducteurs et leurs procedes de fabrication
US20070213450A1 (en) * 2003-03-20 2007-09-13 Winey Karen I Polymer-nanotube composites, fibers, and processes
WO2005081781A2 (fr) * 2004-02-23 2005-09-09 Entegris, Inc. Compositions comportant des nanotubes de carbone et articles formes a partir de celles-ci
WO2006026691A2 (fr) * 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Thermodurcis conducteurs par extrusion
WO2006072741A1 (fr) * 2005-01-05 2006-07-13 Arkema France Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice et applications d'une telle composition.
WO2006079060A1 (fr) * 2005-01-24 2006-07-27 Glycon Technologies, L.L.C. Materiau intelligent
FR2887554A1 (fr) * 2005-06-24 2006-12-29 Arkema Sa Materiaux polymeres contenant des nanotubes de carbone, leur procede de preparation a partir de pre-melange avec un agent de dispersion
WO2007035442A2 (fr) * 2005-09-16 2007-03-29 Hyperion Catalysis International, Inc. Silicones conducteurs et leur procédé de préparation
WO2007063253A1 (fr) * 2005-11-30 2007-06-07 Arkema France Composition pulvérulente à base de nanotubes de carbone, ses procédés d'obtention et ses utilisations, notamment dans des matériaux polymères.
WO2008025962A1 (fr) * 2006-08-31 2008-03-06 Cambridge Enterprise Limited Compositions polymères de nanomatériaux et utilisations de ces compositions
JP2008163219A (ja) * 2006-12-28 2008-07-17 Nitta Ind Corp カーボンナノチューブ配合ポリイミド成形体およびカーボンナノチューブ配合ベルト
WO2009030358A1 (fr) * 2007-08-30 2009-03-12 Bayer Materialscience Ag Procédé de production de compositions de polycarbonate chargées, modifiées choc

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350030B2 (en) 2006-10-16 2019-07-16 Natural Dental Implants Ag Methods of designing and manufacturing customized dental prosthesis for periodontal or osseointegration and related systems
WO2013182793A1 (fr) 2012-06-04 2013-12-12 Arkema France Utilisation de nanocharges carbonées a très faible taux pour le renfort mécanique de matériaux composites charges a l'aide d'une charge conventionnelle
WO2013182794A1 (fr) 2012-06-04 2013-12-12 Arkema France Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
WO2013182792A1 (fr) 2012-06-04 2013-12-12 Arkema France Matériau composite a très faible taux de nanocharges carbonées, son procédé de préparation et ses utilisations
US9896564B2 (en) 2012-06-04 2018-02-20 Arkema France Use of carbon-based nanofillers at a very low content for the UV stabilization of composite materials
US10125243B2 (en) 2012-06-04 2018-11-13 Arkema France Composite material having a very low content of carbon-based nanofillers, process for the preparation thereof and uses thereof
WO2014029545A1 (fr) * 2012-08-24 2014-02-27 Tesa Se Matière adhésive de contact, en particulier pour encapsuler un système électronique
US9631127B2 (en) 2012-08-24 2017-04-25 Tesa Se Pressure-sensitive adhesive material particularly for encasing an electronic arrangement
WO2016097544A1 (fr) 2014-12-16 2016-06-23 Arkema France Dispositif de mélange pour la fabrication d'un matériau composite à partir d'une poudre comprenant des nanocharges carbonées et d'une résine élastomère
CN106833207A (zh) * 2017-02-28 2017-06-13 广州市聚吉科绿色化学共性技术研究院有限公司 一种水性双组份防腐涂料及其制备方法
WO2019138193A1 (fr) 2018-01-12 2019-07-18 Arkema France Matiere solide agglomeree de nanotubes de carbone desagreges

Also Published As

Publication number Publication date
US20100264376A1 (en) 2010-10-21
CN102361929A (zh) 2012-02-22
FR2943349A1 (fr) 2010-09-24
JP2010222582A (ja) 2010-10-07
EP2236556A1 (fr) 2010-10-06
FR2943349B1 (fr) 2012-10-26
KR20110118831A (ko) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2010109118A1 (fr) Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes
EP2561011B1 (fr) Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
EP2855564B1 (fr) Matériau composite a très faible taux de nanocharges carbonées, son procédé de préparation et ses utilisations
FR2921391A1 (fr) Procede de preparation de materiaux composites
EP2550317A1 (fr) Procédé de préparation d'un matériau composite élastomérique
EP1995274A1 (fr) Procédé de préparation de pré-composites à base de nanotubes, notamment de carbone
EP2855569B1 (fr) Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
JP4884770B2 (ja) フッ素樹脂複合体組成物
EP2233518A1 (fr) Procédé de préparation d'un matériau composite thermodurcissable à haute teneur en nanotubes
FR2937324A1 (fr) Procede de preparation d'un materiau composite a base de nanotubes, notamment de carbone
JP2010531911A (ja) ポリマーマトリクスの高温での機械特性を改善するためのナノチューブ、特にカーボンナノチューブの使用
WO2013182793A1 (fr) Utilisation de nanocharges carbonées a très faible taux pour le renfort mécanique de matériaux composites charges a l'aide d'une charge conventionnelle
WO2012131265A1 (fr) Matériau composite renfermant des nanotubes de carbone et des particules de structure coeur-écorce
FR3010089A1 (fr) Composition de polymeres fluores thermoplastiques pour les tubes off-shore
WO2014060685A1 (fr) Procédé de préparation d'un matériau composite thermodurcissable a base de graphène

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013065.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10716558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6863/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117022302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10716558

Country of ref document: EP

Kind code of ref document: A1