WO2010108732A1 - Procédé pour faire fonctionner une sonde lambda - Google Patents

Procédé pour faire fonctionner une sonde lambda Download PDF

Info

Publication number
WO2010108732A1
WO2010108732A1 PCT/EP2010/052049 EP2010052049W WO2010108732A1 WO 2010108732 A1 WO2010108732 A1 WO 2010108732A1 EP 2010052049 W EP2010052049 W EP 2010052049W WO 2010108732 A1 WO2010108732 A1 WO 2010108732A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor element
exhaust gas
internal resistance
internal combustion
electrolyte
Prior art date
Application number
PCT/EP2010/052049
Other languages
German (de)
English (en)
Inventor
Peer Kruse
Jens Schneider
Lothar Diehl
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to RU2011142617/28A priority Critical patent/RU2011142617A/ru
Priority to EP10712717A priority patent/EP2411795A1/fr
Priority to CN2010800133643A priority patent/CN102362175A/zh
Publication of WO2010108732A1 publication Critical patent/WO2010108732A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte

Definitions

  • the invention relates to a method for operating a sensor element for determining the concentration of gas components in the exhaust gas of internal combustion engines and a sensor element for determining the concentration of gas components in the exhaust gas of internal combustion engines, which can be used in such a method.
  • the subject matter of the present invention is also a computer program and a computer program product which are suitable for carrying out the method.
  • Such sensors are also referred to as lambda probes and are described, for example, in the book publication "Bosch Kraftfahrtechnisches Taschenbuch” 25th edition, pages 133 ff.,
  • a sensor for determining gas components and / or the concentration of gas constituents in gas mixtures, in particular in exhaust gases of internal combustion engines With a reference electrode, which is acted upon via a reference gas channel with a reference gas, in particular air or an oxygen-containing gas, is also known from DE 100 43 089 C2.
  • Sensor elements for lambda probes which are usually constructed in a planar manner, have a reference gas channel in which a reference electrode is arranged. These sensors are used for example as jump probes.
  • these sensors are also pumped with a so-called
  • Reference electrode or in an adjacent reference gas volume unburned hydrocarbons occur, for example, come from contaminated and / or overheated components or a leaky package of the probe.
  • these unburned hydrocarbons By means of these unburned hydrocarbons, a non-negligible part of the oxygen supplied to the reference electrode is consumed, so that the oxygen concentration at the reference electrode is reduced and thus the probe function is disturbed. This phenomenon is known as CSD behavior ("characteristic shift-down")
  • the unburned hydrocarbons are preferably present on the hot, catalytically active surfaces, ie in particular on the reference electrode in the hot region the probe ("hot spot area") are oxidized.
  • the unburned hydrocarbons diffuse into the reference gas channel usually slower than oxygen, but a single hydrocarbon molecule usually converts more than a single oxygen molecule, so that the effective oxygen consumption rate by diffused unburned
  • Hydrocarbons is greater than the diffusion rate for oxygen. This leads to a relative enrichment of unburned hydrocarbons or to a relative lack of oxygen at the reference electrode, ie to CSD.
  • the CSD behavior can now be counteracted by applying an electrical voltage to the sensor element or an electron current through the sensor element, which thereby drives an oxygen ion current.
  • the oxygen ion current passes into an oxygen flow at the reference electrode and leads from the reference electrode via the reference channel into the outer region of the sensor element. In doing so, a sufficient The oxygen partial pressure is generated to oxidize or carry away fatty gas components, so that the CSD behavior is actively eliminated.
  • the internal resistance of such lambda probes is also temperature-dependent. If such probes are operated with a pumping current, a pumping current leads to a voltage drop at the internal resistance and thus to a displacement of the measuring signal. With a constant supply voltage and constant internal resistance (which is due to a constant temperature), the voltage drop is constant and can thus be taken into account in advance in the control unit. For unheated sensors, however, the internal resistance depends on the exhaust gas temperature. This can lead to a temperature-dependent voltage drop across the internal resistance, which corresponds to a signal delay. This is proportional to the pumping current.
  • Unheated lambda sensors known in the art are usually operated without pumping current. On the one hand, this leads to a disappearance of the temperature-dependent signal delay on the one hand due to the proportionality of the signal delay to the pumping current. On the other hand, in this way no pumping action for eliminating the CSD behavior by flushing the reference channel can be achieved.
  • the invention is therefore based on the object to provide a method for operating an unheated sensor element, in particular a lambda probe, and such a lambda probe in which the CSD behavior is eliminated.
  • the basic idea of the invention is to minimize the CSD behavior, ie a signal delay in the case of unheated lambda probes, in that the control point is dynamically Namely adapted to the respective internal resistance conditions.
  • the control point here describes the value of the probe voltage, above which the exhaust gas in the direction of lean gas and below which the exhaust gas is readjusted in the direction of rich gas. This allows operation of the sensor by means of a constant current provided by a constant current source.
  • Control point of the sensor element is adapted to the internal resistance of the sensor element, which in turn is determined.
  • the internal resistance of the sensor element is determined in an advantageous embodiment of the method by an RI-PuIs- internal resistance measurement.
  • the internal resistance is determined on the basis of exhaust gas quantity ratios or of the exhaust gas mass flow and the exhaust gas temperature by means of a characteristic map representing the relationship between internal resistance and exhaust gas quantity ratio or exhaust gas mass flow and exhaust gas temperature. This map is previously determined empirically.
  • Electrolyte layer is used as the electrolyte instead of yttria-stabilized zirconia scandium-stabilized zirconia.
  • local areas can be used, each with different, yttrium- or scandium-stabilized zirconium oxide, in order to separately optimize the resistance contributions of the incorporation reaction of the oxygen ions at the electrodes and the ionic conduction in the solid body.
  • lower internal resistance values can be achieved, especially in the low-temperature range with the same layer thickness.
  • it is intended to maximize the electrode areas and to position the reference electrode close to the outer surface facing the exhaust gas in order to couple the electrolyte therebetween as well as possible to the hot exhaust gas.
  • Such a lambda probe is also operated with a very low pumping current, which leads to the lowest possible voltage distortion and still ensures a CSD and shunt resistance.
  • the pump currents are in the range between 0 ⁇ A and 10 ⁇ A, preferably between 2 ⁇ A and ⁇ ⁇ A.
  • a sensor element according to the invention is shown schematically in section.
  • a sensor element is schematically shown, which is formed by an E lektrolyten 100 which is applied to a carrier 105.
  • the electrolyte has a thickness of about 500 to 600 microns.
  • a portion of the electrolyte 100 under the outer electrode in region 101 may be stabilized by yttria instead of yttria
  • Zirconia are formed by scandium stabilized zirconia.
  • a pressure layer is used according to the invention in order to achieve a small layer thickness in the region 101 and thereby to minimize the internal resistance component through the incorporation reaction.
  • a pressure layer is used according to the invention in order to achieve a small layer thickness in the region 101 and thereby to minimize the internal resistance component through the incorporation reaction.
  • the lambda probe has an outer electrode 110 which is exposed to the exhaust gas (not shown) and which is connected to a control unit SG via an in FIG. 1 only schematically illustrated electrical line 1 1 1 is connected and arranged in a reference gas volume 130 reference electrode 120, which is also connected via a line 140 to the control unit SG.
  • the electrode surface of the electrode 1 10 exposed to the exhaust gas is chosen to be as large as possible, ideally it is maximally selected, taking into account the structural conditions.
  • the reference electrode 120 is positioned as close as possible to the outer surface of the probe in order to couple the electrolyte arranged therebetween as well as possible to the hot exhaust gas.
  • the probe can be operated with a pump current that is chosen to be as small as possible in order to cause a small voltage delay and still ensure the CSD and shunt capability.
  • the pump currents are in the range between 0 ⁇ A and 10 ⁇ A, in particular and preferably in the range between 2 ⁇ A and 5 ⁇ A.
  • Temperature for example> 500 0 C, to switch on, which serves to bring about a "Abreak- tion" of the evaporating from the packing fatty gas.
  • An outlet 132 of the pumping gas is small-sized, in order to prevent a penetration of rich gas to the reference electrode 120 as possible He.
  • the reference channel can be formed by a simple pressure layer with a sacrificial layer of thickness 20
  • a not quite tightly printed electrode feed line as a reference channel (not shown) porous pressure layer 133 in the input region of the reference channel to suppress further penetration of fat gas components into the reference gas channel and at the same time to adjust the flow resistance and thus the pressure build-up in the reference range.
  • the Internal resistance of the sensor element determined. This can be done for example by an Rl-pulse internal resistance measurement. This method is known per se for heater control of broadband lambda probes.
  • the internal resistance can also be done by determining the exhaust gas ratios or the exhaust gas mass flow and the exhaust gas temperature, for example by means of other sensors or based on the knowledge of a stored in the control unit SG map with respect to speed and load. It should be noted that the knowledge of the exhaust gas temperature alone is not sufficient, since the volume flow is essential for the energy input into the sensor element. For this reason, the knowledge of the exhaust gas mass flow or the exhaust gas amount ratios is required.
  • the control point of the sensor element is now adapted to the internal resistance.
  • This has the advantage that the lambda probe can be operated with a constant current, that is, a constant current source can be used to operate the lambda probe.
  • the method described above can be implemented, for example, as a computer program in the control unit of the internal combustion engine and run there.
  • the program code may be stored on a machine-readable medium that the controller SG can read.

Abstract

L'invention concerne un procédé pour faire fonctionner un élément sensible permettant de déterminer la concentration de constituants gazeux dans les gaz d'échappement de moteurs à combustion interne, en particulier une sonde lambda, caractérisé par les étapes consistant à déterminer la résistance interne de l'élément sensible et à adapter le point de réglage de l'élément sensible à cette résistance interne.
PCT/EP2010/052049 2009-03-25 2010-02-18 Procédé pour faire fonctionner une sonde lambda WO2010108732A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2011142617/28A RU2011142617A (ru) 2009-03-25 2010-02-18 Способ управления работой кислородного датчика
EP10712717A EP2411795A1 (fr) 2009-03-25 2010-02-18 Procédé pour faire fonctionner une sonde lambda
CN2010800133643A CN102362175A (zh) 2009-03-25 2010-02-18 操作λ探针的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009001839.5 2009-03-25
DE200910001839 DE102009001839A1 (de) 2009-03-25 2009-03-25 Verfahren zum Betreiben eines Sensorelements und Sensorelement

Publications (1)

Publication Number Publication Date
WO2010108732A1 true WO2010108732A1 (fr) 2010-09-30

Family

ID=42115836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/052049 WO2010108732A1 (fr) 2009-03-25 2010-02-18 Procédé pour faire fonctionner une sonde lambda

Country Status (5)

Country Link
EP (1) EP2411795A1 (fr)
CN (1) CN102362175A (fr)
DE (1) DE102009001839A1 (fr)
RU (1) RU2011142617A (fr)
WO (1) WO2010108732A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045599A1 (fr) * 2010-10-06 2012-04-12 Robert Bosch Gmbh Procédé de réglage d'une température d'un élément capteur
WO2013079489A1 (fr) * 2011-11-29 2013-06-06 Continental Automotive Gmbh Procédé et dispositif pour faire fonctionner une sonde lambda binaire disposée dans un système d'échappement d'un moteur à combustion interne

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200063A1 (de) 2014-01-07 2015-07-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung der Fettgas-Messfähigkeit einer Abgas-Sonde

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843089A1 (de) * 1987-12-25 1989-07-13 Ngk Insulators Ltd Sauerstoffuehler
US6254749B1 (en) * 1996-12-27 2001-07-03 Ngk Insulators, Ltd. Carbon monoxide gas sensor and measuring device using the same sensor
DE10261269A1 (de) * 2001-12-27 2003-07-17 Denso Corp Gaskonzentrations-Messgerät mit minimalem Messfehler
DE102006041184A1 (de) * 2006-09-01 2008-03-06 Robert Bosch Gmbh Schaltungsanordnung zum Betreiben einer Führungssonde
DE102006060633A1 (de) * 2006-12-21 2008-06-26 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensorelements und Sensorelement zur Bestimmung der Konzentration von Gaskomponenten in einem Gasgemisch
DE102008023695A1 (de) * 2008-05-15 2009-11-19 Robert Bosch Gmbh Sensorelement mit verbesserten dynamischen Eigenschaften

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043089C2 (de) 2000-09-01 2003-02-27 Bosch Gmbh Robert Gassensor
US8029656B2 (en) * 2003-01-30 2011-10-04 Emisense Technologies Llc System, apparatus, and method for measuring an ion concentration of a measured fluid
DE102009001843A1 (de) * 2009-03-25 2010-09-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensorelements und Sensorelement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843089A1 (de) * 1987-12-25 1989-07-13 Ngk Insulators Ltd Sauerstoffuehler
US6254749B1 (en) * 1996-12-27 2001-07-03 Ngk Insulators, Ltd. Carbon monoxide gas sensor and measuring device using the same sensor
DE10261269A1 (de) * 2001-12-27 2003-07-17 Denso Corp Gaskonzentrations-Messgerät mit minimalem Messfehler
DE102006041184A1 (de) * 2006-09-01 2008-03-06 Robert Bosch Gmbh Schaltungsanordnung zum Betreiben einer Führungssonde
DE102006060633A1 (de) * 2006-12-21 2008-06-26 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensorelements und Sensorelement zur Bestimmung der Konzentration von Gaskomponenten in einem Gasgemisch
DE102008023695A1 (de) * 2008-05-15 2009-11-19 Robert Bosch Gmbh Sensorelement mit verbesserten dynamischen Eigenschaften

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045599A1 (fr) * 2010-10-06 2012-04-12 Robert Bosch Gmbh Procédé de réglage d'une température d'un élément capteur
US9625400B2 (en) 2010-10-06 2017-04-18 Robert Bosch Gmbh Method for setting a temperature of a sensor element
WO2013079489A1 (fr) * 2011-11-29 2013-06-06 Continental Automotive Gmbh Procédé et dispositif pour faire fonctionner une sonde lambda binaire disposée dans un système d'échappement d'un moteur à combustion interne
KR20140097522A (ko) * 2011-11-29 2014-08-06 콘티넨탈 오토모티브 게엠베하 내연기관의 배기 가스관 내에 배열되는 바이너리 람다 센서의 작동 방법 및 장치
CN104105860A (zh) * 2011-11-29 2014-10-15 大陆汽车有限公司 用于使得设置在内燃机排气道中的二元λ探测器工作的方法和装置
CN104105860B (zh) * 2011-11-29 2017-03-08 大陆汽车有限公司 用于使得设置在内燃机排气道中的二元λ探测器工作的方法和装置
US9903790B2 (en) 2011-11-29 2018-02-27 Continental Automotive Gmbh Method and device for the operation of a binary lambda sensor arranged in an exhaust gas tract of an internal combustion engine
KR101868104B1 (ko) * 2011-11-29 2018-06-18 콘티넨탈 오토모티브 게엠베하 내연기관의 배기 가스관 내에 배열되는 바이너리 람다 센서의 작동 방법 및 장치

Also Published As

Publication number Publication date
EP2411795A1 (fr) 2012-02-01
DE102009001839A1 (de) 2010-09-30
CN102362175A (zh) 2012-02-22
RU2011142617A (ru) 2013-04-27

Similar Documents

Publication Publication Date Title
DE102006011837B4 (de) Verfahren zur Ermittlung einer Gaskonzentration in einem Messgas mit einem Gassensor
DE102005056515A1 (de) Verfahren zur Erkennung der Diffusionsgaszusammensetzung in einer Breitband-Lambdasonde
DE10342270B4 (de) Gaskonzentrationsdetektor
DE3445755A1 (de) Luft/kraftstoffverhaeltnis-detektor
WO2012136715A1 (fr) Procédé servant à faire fonctionner une sonde lambda à large bande
DE102006061565A1 (de) Sondeneinrichtung mit Anpassungseinrichtung zur Anpassung an Auswerteeinrichtung zur Auswertung eines Sondengrenzstroms
WO1995015491A1 (fr) Detecteur de courant limite pour la determination de la valeur lambda dans des melanges gazeux
EP2583091B1 (fr) Procede pour faire fonctionner une sonde de gaz
WO2010108732A1 (fr) Procédé pour faire fonctionner une sonde lambda
DE112014003683T5 (de) Gassensor-Steuervorrichtung
DE102010031299A1 (de) Vorrichtung zur Bestimmung einer Eigenschaft eines Gases in einem Messgasraum
DE102008002493A1 (de) Verfahren und Vorrichtung zur Bestimmung der Zusammensetzung eines Kraftstoffgemischs
WO2010108735A1 (fr) Procédé pour faire fonctionner un élément sensible et élément sensible
DE19819204C1 (de) Verfahren zur Abgasreinigung mit Trimmregelung
EP2411794A2 (fr) Procédé permettant de faire fonctionner un élément capteur et élément capteur correspondant
DE102006060636A1 (de) Verfahren zum Kalibrieren eines Sensorelements
DE102010039392A1 (de) Vorrichtung zur Erfassung eines Sauerstoffanteils eines Gases
EP2106544B1 (fr) Élément détecteur avec courant de décalage par décomposition de h2o
EP2059797A1 (fr) Arrangement de circuit pour utiliser une sonde pilote
DE3313783C2 (fr)
WO2001011346A2 (fr) Element capteur et procede pour la determination de la concentration en oxygene dans des melanges gazeux
DE102006030437A1 (de) Vorrichtung zum Betreiben einer Grenzstromsonde
DE102009060172A1 (de) Verfahren zum Diagnostizieren einer Dynamik eines Abgassensors
DE102011002856A1 (de) Verfahren zur Erfassung mindestens eines Parameters eines Gases
DE102004062410A1 (de) Sauerstoffkonzentrations-Detektoreinrichtung und zugehöriges Verfahren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013364.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010712717

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6689/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011142617

Country of ref document: RU

Kind code of ref document: A