WO2010105400A1 - 一种数据传输方法、通讯系统以及相关设备 - Google Patents

一种数据传输方法、通讯系统以及相关设备 Download PDF

Info

Publication number
WO2010105400A1
WO2010105400A1 PCT/CN2009/070808 CN2009070808W WO2010105400A1 WO 2010105400 A1 WO2010105400 A1 WO 2010105400A1 CN 2009070808 W CN2009070808 W CN 2009070808W WO 2010105400 A1 WO2010105400 A1 WO 2010105400A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting end
receiving end
channel information
control vector
data
Prior art date
Application number
PCT/CN2009/070808
Other languages
English (en)
French (fr)
Inventor
李斌
罗毅
沈晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2011504300A priority Critical patent/JP5264990B2/ja
Priority to CN200980100823.9A priority patent/CN102439868B/zh
Priority to PCT/CN2009/070808 priority patent/WO2010105400A1/zh
Priority to EP09798999.0A priority patent/EP2315365B1/en
Priority to US12/692,202 priority patent/US8503564B2/en
Publication of WO2010105400A1 publication Critical patent/WO2010105400A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a data transmission method, a communication system, and related devices.
  • the channel capacity increases as the number of antennas increases.
  • a multi-input-multi-output transmission system improves the spectral efficiency and link reliability of a wireless link by placing multiple antennas at the transmitting end and the receiving end, respectively.
  • Sex A system employing multiple antennas whose channel is called a MIMO channel.
  • MIMO channel In order to effectively utilize MIMO channels, researchers have proposed various methods to obtain MIMO channel capacity, such as space-time coding, precoding, and so on.
  • MIMO technology often utilizes spatial multiplexing and diversity.
  • the MIMO spatial multiplexing technique performs precoding by fully utilizing channel state information to improve system performance.
  • the MIMO precoding technique uses channel state information to preprocess the transmitted information at the transmitting end.
  • Such technologies are closed-loop multi-antenna technologies, including space-time coding techniques using precoding, multiplexing techniques, and joint transceiver techniques. Among them, the MIMO downlink broadcast scenario that often occurs in actual situations has been extensively studied.
  • Dirty Paper Coding is an optimized solution to achieve maximum system and capacity.
  • dirty paper coding is only the result of information theory.
  • the optimal dirty paper coding is still an unsolved problem, and there is no practical system application. For this reason, most of the research focuses on the more easily implemented precoding method.
  • multi-user precoding techniques such as multi-user precoding, which can be classified into linear precoding and nonlinear precoding.
  • Linear precoding methods include interference cancellation methods (zero forcing, block diagonalization) and signal to interference and noise ratio balanced precoding.
  • the method of completely eliminating interference includes zero forcing, block diagonalization, and the like.
  • the so-called zero-forcing means that the pre-coding at the transmitting end eliminates interference of other undesired signals to the receiving end at each receiving end.
  • Gaussian channel capacity in wireless communication systems is also a hot topic of research.
  • the problem of Gaussian interference channel capacity means that signals of different users interfere with each other, data between users cannot be shared, and joint transmission cannot be performed, but each user All know the complete channel information.
  • the traditional solution is the main solution because it cannot solve the problem of mutual interference between users under the interference channel.
  • the interference alignment is performed by the transmitter pre-processing in the case of known complete channel information, and the useful signal of each receiving end is spatially separated from the interference signal, and the interference of the different transmitting end to the receiving end is aligned to a spatial dimension.
  • the purpose of increasing capacity is achieved.
  • the transmitting signal is distributed in the real part and the imaginary part, and then sent to the receiving end, and the useful signal of the receiving end receiving signal is distributed in the real part of the received signal.
  • the imaginary part that is, the entire space of the received signal, in order to eliminate the interference, the interference of the real part and the imaginary part needs to be zero, so that the control vector space of the useful signal is constrained, and the signal-to-noise ratio is difficult to optimize and improve, so Technical system performance is limited.
  • the embodiment of the invention provides a data transmission method, a communication system and related equipment, which can increase the number of users that the transmission system can support and improve system performance.
  • the data transmission method provided by the embodiment of the present invention includes: the transmitting end acquires channel information of the transmitting end to each receiving end; the transmitting end acquires a control vector corresponding to the receiving end according to the channel information; and the transmitting end uses one-dimensional modulation mode to send data. Modulating to obtain a modulation symbol; the transmitting end processes the modulation symbol and the control vector to obtain transmission data of each antenna; the transmitting end transmits the transmission data to the receiving end; and the receiving end receives a preset space of the symbol The transmission data is received in the direction.
  • the communication system includes: a transmitting end, acquiring channel information of the transmitting end to each receiving end, acquiring a control vector corresponding to the receiving end according to the channel information, and modulating the data to be transmitted by using one-dimensional modulation mode a symbol, the modulation symbol is processed with the control vector to obtain transmission data of each antenna, and the transmission data is sent to the receiving end; and the receiving end is configured to receive the transmission data in a preset spatial direction of the received symbol.
  • the data sending apparatus includes: a channel information acquiring unit, configured to acquire channel information of the local data transmitting apparatus to each receiving end; and a control vector acquiring unit, configured to acquire, according to the channel information, a corresponding control of the receiving end Vector; data processing unit for one-dimensional modulation Modulating the transmission data to obtain a modulation symbol, and processing the modulation symbol and the control vector to obtain transmission data of each antenna; and a data transmitting unit, configured to send the transmission data to the receiving end.
  • the data receiving apparatus includes: an acquiring unit, configured to acquire channel information between a transmitting end and the data receiving apparatus; and a channel information feedback unit, configured to feed back the channel information to the transmitting end; the data receiving unit And for receiving the transmission data sent by the transmitting end in a preset spatial direction of the received symbol.
  • the receiving end receives the transmission data in a preset spatial direction of the received symbol, and the transmitting end uses the one-dimensional modulation mode to modulate the transmission data to obtain a modulation symbol, and
  • the transmitted signal is only distributed in the real part or the imaginary part.
  • the receiving end does not need to perform zero-to-zero interference on the real part and the imaginary part, which increases the selection space of the useful signal, thereby improving system performance and increasing the transmission system. The number of users that can be supported.
  • FIG. 1 is a schematic diagram of a scenario of a data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a system of a transmitting end according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an embodiment of a data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another scenario of a data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of still another scenario of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a communication system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a data sending apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a data receiving apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a performance curve in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another performance curve in the embodiment of the present invention.
  • Embodiments of the present invention provide a data transmission method, a communication system, and related devices, which are used to increase the number of users that a transmission system can support and improve system performance.
  • the transmitting end acquires channel information of the transmitting end to each receiving end;
  • the channel information of the transmitting end to each receiving end is obtained, and the specific obtaining process may be that the transmitting end receives the channel information fed back by each receiving end, or is the transmitting end self- The channel information is detected, and the specific manner will be described in the following embodiments.
  • the transmitting end acquires a control vector corresponding to the receiving end according to the channel information
  • the transmitting end After the transmitting end obtains the channel information from the transmitting end to each receiving end, the transmitting end can obtain the control vector corresponding to the receiving end according to the channel information.
  • the transmitting end uses a one-dimensional modulation method to modulate the transmitted data to obtain a modulation symbol
  • the transmitting end processes the modulation symbol and the control vector to obtain transmission data of each antenna
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, except for multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • the transmitting end sends the transmission data to the receiving end
  • the receiving end receives the transmission data in a preset spatial direction of the received symbol.
  • the receiving end receives the transmission data in a preset spatial direction of the received symbol, and the transmitting end uses the one-dimensional modulation mode to modulate the transmission data to obtain a modulation symbol, and
  • the transmitted signal is only distributed in the real part or the imaginary part.
  • the receiving end does not need to perform zero-to-zero interference on the real part and the imaginary part, which increases the selection space of the useful signal, thereby improving system performance and increasing the transmission system. The number of users that can be supported.
  • a scenario of a data transmission method in an embodiment of the present invention is a beamforming system based on K users, that is, a centralized data transmission system, in which:
  • the base station side has a root receiving antenna, and K users' beamforming systems use different control vectors to simultaneously transmit K data streams to K users.
  • the present invention aligns the useful signal to the real part or the imaginary part of the receiving end, and aligns the interference signal to the imaginary part of the receiving end or the real part, and the receiving end receives the receiving. Discard the imaginary part or the real part directly after the signal, that is, eliminate the imaginary part or the interference contained in the real part;
  • the interference signal is aligned to the imaginary part, and if the useful signal is aligned to the imaginary part, the interference signal is aligned to the real part;
  • the receiving end receives a useful signal in the real part, it directly discards the interference of the imaginary part, if in the imaginary part.
  • the useful signal is received, the real interference is directly discarded.
  • the modulation signal is modulated to the real part, and the interference to other users is aligned to the imaginary part as an example.
  • the receiving end directly discards the imaginary part after receiving the received signal, that is, the virtual part is eliminated.
  • the interference contained in the ministry is understandable.
  • the transmitting end can also modulate the transmitted signal to the imaginary part, and the interference can be aligned to the real part.
  • the receiving end can also receive the useful signal from the imaginary part, and directly Discard the interference of the real part.
  • the specific process is similar and is not limited here.
  • the received signal of the mth user can be expressed as:
  • is the transmitted symbol of the /th data stream, assuming it is an independent and identically distributed zero-mean unit variance variable, which is a zero-mean additive complex Gaussian noise with a variance of 2 ⁇ impart 2 .
  • the received signals from one receiver can be co-written as
  • Each receiver only detects the real part, which can be expressed as
  • Re(r m ) Re[H m v m s + Re + Re(" m )
  • the first item is the useful signal item
  • the second item is the interference of other data streams
  • the last item is the noise.
  • the detection signal dry-noise ratio of the H receiver is SINR m
  • matrix H x ⁇ represents a matrix consisting of the real part of the matrix and the imaginary part of the matrix
  • the SLR is optimized to obtain the emission control vector of each stream, that is, the following formula is optimized:
  • the specific transmitter processing is as follows:
  • the transmitting end acquires channel information of the transmitting end to each receiving end, that is, includes data channel information // m // m ⁇ and interference channel information ;
  • the SVD on a matrix may obtain three matrices, respectively, a first matrix U, a second matrix Q, and a third matrix I 11, wherein the third matrix denotes the conjugate transpose of the first matrix .
  • the transmitting end modulates the data to be transmitted by using one-dimensional modulation to obtain a modulation symbol, and processes the modulation symbol and the control vector to obtain transmission data of each antenna;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • the transmitting end sends the transmission data to the receiving end
  • the receiving end receives the transmission data in a preset spatial direction of the received symbol.
  • a centralized data transmission scheme is adopted, that is, there is only one transmitting end, and there are several receiving ends.
  • the terminal only pre-codes the real data.
  • the specific precoding may include a zero-forcing criterion, or a linear precoding or other nonlinear precoding criterion such as Minimum Mean Squared Error (MMSE). Therefore, the transmission is performed.
  • MMSE Minimum Mean Squared Error
  • the terminal aligns the useful signal to the real part of the receiving end.
  • the receiving end receives the transmitted data in a preset spatial direction of the received symbol, and after receiving the transmitted data, directly discards the imaginary part thereof, thereby eliminating the The interference contained in the imaginary part.
  • the method of obtaining the control vector by maximizing the Signal Leak Rate (SLR) is adopted.
  • SLR Signal Leak Rate
  • other methods may be used to obtain the control.
  • Vector for example, using a zero-forcing algorithm to select a control vector, the specific process can be as follows:
  • the received signal of the entire system can be described as a matrix:
  • the specific data transmission process includes:
  • the transmitting end acquires channel information of the transmitting end to each receiving end, that is, extended channel information H sup , and the H sup is a column vector matrix;
  • the transmitting end queries the corresponding control vector in the control vector matrix according to the receiving end information.
  • the transmitting end uses a one-dimensional modulation method to modulate the transmission data to obtain a modulation symbol, and processes the modulation symbol and the control vector to obtain transmission data of each antenna, and transmits the transmission data to the receiving end;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, except for multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • the receiving end directly detects the real part of the transmitted data, that is, a pre-received symbol
  • the transmission data is received in the spatial direction.
  • the data transmission method embodiment in the embodiment of the present invention includes:
  • the transmitting end acquires channel information of each receiving end.
  • This embodiment is mainly directed to a distributed solution, that is, there are multiple transmitting ends and multiple receiving ends. It is assumed that the system has one transmitting end, each transmitting end antenna number is N and one receiving end, and each transmitting end corresponds to one receiving end. And each transmitting end sends a data stream to the corresponding receiving end, that is, the mth transmitting end sends a data stream to the mth receiving end, and the data stream is a useful signal for the mth receiving end, and For other K-1 receiving ends, it is an interference signal.
  • the mth transmitting end acquires data channel information from the transmitting end to the mth receiving end (that is, a channel for transmitting useful data). Information) and interference channel information from the transmitter to other K-1 receivers.
  • the specific acquisition process can be in the following ways:
  • Each receiving end can obtain channel information from the transmitting end to each receiving end by using the pilot channel information, and each receiving end feeds back the acquired channel information to the transmitting end, where the mth receiving end feeds back the data channel to the transmitting end.
  • Information, other receiving end feedback to the transmitting end is interference channel information; or
  • Each receiving end may also obtain channel information from the transmitting end to each receiving end by means of a blind estimation algorithm, and each receiving end feeds back the acquired channel information to the transmitting end, wherein the mth receiving end feeds back to the transmitting end Data channel information, the other receiving end feedback to the transmitting end is the interference channel information.
  • TDD Time Division Duplex
  • the transmitting end may also detect the channel information of the transmitting end to each receiving end by itself.
  • the control vector that maximizes the credit ratio can be calculated according to the channel information.
  • the channel fading vector of the first transmitting end to the first receiving end is HH, ⁇ ⁇ l, m N, where A is Zero-mean independent complex Gaussian variable with a variance of 1.
  • the received signal at the mth receiving end can be expressed as ⁇ H mm v m s m + 1 ⁇ i H lm v l s l + n m is a zero-mean additive complex Gaussian noise with a variance of 2 ⁇ rent 2 . Since the receiver only needs The real part is detected, so the detection signal after removing the imaginary part is:
  • Re(r m ) Re[H mm v m s m ] + + Re(" m )
  • the first item here is the useful signal
  • the second item is the interference generated by other transmitting ends
  • the term is noise.
  • the signal to interference and noise ratio at the receiving end is
  • the problem of maximizing the signal-to-noise ratio can be transformed into the problem of maximizing the signal-to-noise ratio, that is, the sum of the useful signal power at the receiving end and the sum of all the interference power and noise power at the receiving end.
  • the signal leakage ratio in this embodiment can be expressed as
  • the data channel information d ⁇ obtained by the transmitting end and the channel information are decomposed by SVD, and according to The maximum eigenvalue corresponds to the eigenvector v .
  • the specific calculation process can be implemented in software.
  • the data to be transmitted may be modulated by a one-dimensional modulation method to obtain a modulation symbol, and the modulation symbol is multiplied by the control vector to obtain transmission data of each antenna.
  • control vector and the data to be sent can also be entered. Other operations are performed to obtain transmission data, and the specific operation manner is not limited herein.
  • the transmission data can be sent to the receiving end.
  • each transmitter in order to enable the interference to be aligned in a spatial direction, each transmitter sends a real signal, and the receiving end The transmission data is received in a preset spatial direction of the received symbol.
  • the interference at the receiving end is aligned to the imaginary part of the signal space, and the useful signal is located at the real part of the transmitted data, thereby avoiding the influence of the interference signal on the useful signal;
  • the receiving end receives the transmission data in a preset spatial direction of the received symbol, and the transmitting end uses the one-dimensional modulation mode to modulate the transmission data to obtain a modulation symbol.
  • the transmitted signal is only distributed in the real part or the imaginary part, so that the receiving end does not need to perform zero-to-zero interference on the real part and the imaginary part, thereby increasing the selection space of the useful signal, thereby improving system performance and increasing transmission.
  • a control vector that maximizes the credit ratio is selected, and then the data to be transmitted is processed according to the control vector
  • the signal-to-leak ratio refers to the signal power of the corresponding receiving end of the transmitting end and the transmitting end.
  • the ratio of the interference power to the other receiving end so that the channel capacity can be increased by the maximum ratio of the signal leakage ratio, and in the embodiment of the present invention, the transmitting end only needs to obtain the channel fed back by each receiving end.
  • the information can increase the channel capacity, thus reducing the amount of data that the transmitter needs to acquire, thereby improving the efficiency of the data transmission process.
  • each transmitting end there are K transmitting ends and K receiving ends, and the number of antennas at each transmitting end is one antenna at the receiving end, and each transmitting end corresponds to one receiving end and each The transmitting end sends a data stream to the corresponding receiving end, that is, the wth transmitting end sends a data stream to the wth receiving end, and the power is P.
  • the signal-to-leak ratio derivation process in the embodiment is the same as the signal-to-derivation ratio derivation process in the embodiment shown in FIG. 3, and the data transmission method in this embodiment includes:
  • Each transmitting end acquires channel information from the transmitting end to each receiving end, that is, data channel information.
  • performing SVD decomposition on a matrix results in three matrices, namely a first matrix U, a second matrix Q, and a third matrix I 11 , wherein the third matrix represents the first The conjugate transpose of the matrix.
  • the transmitting end modulates the data to be transmitted by using one-dimensional modulation to obtain a modulation symbol; (6) transmitting The terminal processes the modulation symbol and the control vector to obtain transmission data of each antenna, and sends the transmission data to the receiving end;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • the receiving end directly detects the real part of the transmitted data, that is, receives the transmitted data in a pre-space direction of the received symbol.
  • the control vector that maximizes the credit ratio is selected, and then the control vector is processed for the data to be transmitted, and the signal-to-leak ratio refers to the signal power of the corresponding receiving end of the transmitting end and the transmitting end.
  • the ratio of the interference power of the other receiving end, so that the channel capacity can be increased by the maximum of the signal leakage ratio, and the concept of the signal leakage ratio is known.
  • the transmitting end only needs to obtain the channel information fed back by each receiving end. The channel capacity can be improved, thereby reducing the amount of data that the transmitter needs to acquire, thereby improving the efficiency of the data transmission process.
  • the data transmission scheme in this embodiment can also be applied to cellular communication.
  • FIG. 5 the cell edge users form an interference system, and then the control vector of each edge user is calculated according to the above scheme, and then The control vector available to the cell center user is determined according to the control vector of the edge user. Since the user in the cell does not cause interference to other cells, and the control vectors of the edge user of the cell and the central user are orthogonal to each other, the system capacity can be improved.
  • the cell 1 and the cell 2 base station have multiple transmit antennas, and the respective edge users are the first edge user and the second edge user, and the center users are the first center user and the second center user respectively.
  • the first edge user and the second edge user form a two-user interference system.
  • the first edge user and the second edge user independently perform control vector calculation according to the above technical solution, and then, according to the first edge user and the second edge user.
  • the control vector is the control vector selected by the cell center user.
  • the cell 1 and the cell 2 acquire the channel correlation matrix of each of the first edge user and the second edge user, and the m / ⁇ H ml ⁇
  • Cell 1 and cell 2 respectively obtain respective n ⁇ ( ⁇ uH ⁇ (the feature vector corresponding to the maximum eigenvalue of ⁇ u);
  • the transmitting end uses a one-dimensional modulation method to modulate the transmission data to obtain a modulation symbol; (7) processing the modulation symbol and the control vector to obtain transmission data of each antenna, and transmitting the transmission data to the receiving end;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • Each receiving end directly detects the real part of the received signal, that is, receives the transmitted data in a pre-space direction of the received symbol.
  • the control vector that maximizes the credit ratio is selected, and then the control vector is treated.
  • the transmission data is processed, and the signal leakage ratio refers to the ratio of the signal power of a corresponding transmitting end to the interference power of the transmitting end to the other receiving end of the transmitting end, so that the channel capacity can be improved by maximizing the signal leakage ratio.
  • the transmitting end only needs to obtain the channel information fed back by each receiving end to improve the channel capacity, thereby reducing the amount of data required to be acquired by the transmitting end, thereby improving the The efficiency of the data transmission process.
  • the communication system in the embodiment of the present invention includes a transmitting end 601 and a receiving end 602:
  • the transmitting end 601 obtains channel information of the transmitting end to each receiving end, acquires a control vector corresponding to the receiving end according to the channel information, and modulates the data to be transmitted by using one-dimensional modulation to obtain a modulation symbol, and uses the modulation symbol and the control vector. Processing is performed to obtain transmission data of each antenna, and transmitting the transmission data to the receiving end 602;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • the receiving end 602 is configured to receive the transmission data in a preset spatial direction of the received symbol.
  • the communication system in this embodiment is described below in a centralized scheme and a distributed scheme:
  • the communication system in the distributed solution includes:
  • a transmitting end configured to acquire data channel information of the transmitting end to the first receiving end, and interference channel information of the transmitting end to the other receiving end, where the first receiving end corresponds to the transmitting end, according to the data channel information and Obtaining, by the interference channel information, a control vector that maximizes a credit ratio, where the information ratio is a ratio of a signal power of the transmitting end to the first receiving end and an interference power of the transmitting end to the other receiving end,
  • the transmission data is modulated by a one-dimensional modulation method to obtain a modulation symbol, and the modulation symbol and the control vector are processed to obtain transmission data of each antenna, and the transmission data is sent to the receiving end;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • a receiving end configured to obtain the data channel information and the interference channel information, to The transmitting end transmits the data channel information and the interference channel information, and receives the transmission data in a preset spatial direction of the received symbol.
  • the transmitting end acquires channel information of the transmitting end to each receiving end, that is, data channel information and interference channel information
  • performing SVD decomposition on a matrix results in three matrices, namely a first matrix U, a second matrix Q, and a third matrix ⁇ ⁇ , wherein the third matrix represents the first The conjugate transpose of the matrix.
  • the transmitting end uses t/ and ⁇ to obtain [//flat ⁇ - 1 )]" The maximum eigenvalue.
  • the transmission data of each antenna is processed, and the transmission data is sent to the receiving end.
  • the modulation symbol and the control vector may be specifically processed by: multiplying the modulation symbol by the control vector. It can be understood that, in practical applications, in addition to the multiplication, it is also possible to use other calculation methods, and the specific operation manner is not limited herein.
  • the receiving end directly detects the real part of the transmitted data, i.e., receives the transmitted data in a preset spatial direction of the received symbol.
  • the communication system in the centralized solution includes:
  • a transmitting end configured to acquire channel information of the transmitting end to each receiving end, and obtain a control vector matrix according to the channel information, where each column of the control vector matrix corresponds to a control vector of the receiving end, and the receiving end information is in the control vector. Querying a corresponding control vector in the matrix, modulating the transmission data by using a one-dimensional modulation method to obtain a modulation symbol, processing the modulation symbol and the control vector to obtain transmission data of each antenna, and transmitting the transmission data to the receiving end;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • the receiving end is configured to receive the transmission data in a preset spatial direction of the received symbol.
  • the transmitting end aligns the useful signal to the real part of the receiving end, and the receiving end in this embodiment also receives the transmitted data in a preset spatial direction of the received symbol, and receives the transmission. After the data, its imaginary part is directly discarded, thereby eliminating the interference contained in the imaginary part.
  • the data sending apparatus in the embodiment of the present invention includes: a channel information acquiring unit
  • control vector obtaining unit 702 a control vector obtaining unit 702
  • data processing unit 703 a data transmitting unit 704.
  • the channel information acquiring unit 701 is configured to acquire channel information from the transmitting end to each receiving end, and the control vector acquiring unit 702 is configured to acquire, according to the channel information, a control vector corresponding to the receiving end;
  • a data processing unit 703 configured to perform modulation on a data to be transmitted by using a one-dimensional modulation method to obtain a modulation symbol, and process the modulation symbol and the control vector to obtain transmission data of each antenna;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • the data sending unit 704 is configured to send the transmission data to the receiving end.
  • the data transmitting apparatus in the scenario of the distributed solution includes:
  • a channel information acquiring unit configured to acquire data channel information of the transmitting end to the first receiving end, and interference channel information of the transmitting end to the other receiving end, where the first receiving end corresponds to the transmitting end;
  • the control vector acquiring unit And a control vector for obtaining a maximum credit ratio according to the data channel information acquired by the channel information acquiring unit and the interference channel information, where the signal-to-leak ratio is a value of the transmitting end; , ⁇ ; ⁇ , a data processing unit,
  • the modulation data is modulated by using a one-dimensional modulation method to obtain a modulation symbol, and the modulation symbol and the control vector obtained by the control vector acquiring unit are processed to obtain transmission data of each antenna;
  • the specific processing of the modulation symbol and the control vector may be: multiplying the modulation symbol by the control vector, it may be understood that, in practical applications, in addition to multiplication, It can also be used for other calculation methods.
  • the specific calculation method is not limited here.
  • a data sending unit configured to send, to the receiving end, the transmission data processed by the data processing unit.
  • the channel information acquiring unit in this embodiment may specifically acquire channel information in the following manner:
  • the data channel information fed back by the first receiving end and the interference channel signal fed back by the other receiving end are received, and the data channel information of the transmitting end to the first receiving end and the interference channel information of the transmitting end to the other receiving end are detected.
  • control vector obtaining unit selects a control vector that maximizes the credit ratio, and then the data processing unit processes the data to be sent according to the control vector
  • signal-to-leak ratio refers to a signal of a corresponding transmitting end of a certain transmitting end.
  • the ratio of the power to the interference power of the transmitting end to the other receiving end so that the channel capacity can be increased by maximizing the signal leakage ratio, and in the embodiment of the present invention, the transmitting end only needs to acquire each receiving.
  • the channel information fed back can achieve the channel capacity increase, thus reducing the amount of data that the transmitter needs to acquire, thereby improving the efficiency of the data transmission process.
  • the data receiving apparatus in the embodiment of the present invention includes:
  • the acquiring unit 801 is configured to acquire channel information between the transmitting end and the data receiving device, and the channel information feedback unit 802 is configured to feed back the channel information to the transmitting end.
  • the data receiving unit 803 is configured to receive the transmission data sent by the transmitting end in a preset spatial direction of the received symbol.
  • the data receiving unit 803 in this embodiment receives the transmitted data in a preset spatial direction of the received symbol, after receiving the transmitted data. , directly discarding its imaginary part, thus eliminating the interference contained in the imaginary part.
  • FIG. 9 is a performance comparison diagram of a centralized data transmission scheme and a prior art data transmission scheme in the embodiment, wherein the number of transmitting antennas is 4, and the prior art scheme uses two-phase phase shift keying (BPSK, Binary Phase Shift). Keying) modulation, in this embodiment, uses Pulse Amplitude Modulation (PAM) modulation.
  • BPSK Binary Phase Shift
  • Keying Pulse Amplitude Modulation
  • the curve 901 is a performance curve of 5 users in the prior art solution
  • the curve 902 is a performance curve of 4 users in the prior art solution
  • the curve 904 is a performance curve of 3 users in the prior art solution
  • the curve 903 is a performance curve of 6 users in the solution of the embodiment
  • the curve 905 is a performance curve of 5 users in the solution of the embodiment.
  • the curve 906 is a performance curve of 4 users in the solution of the embodiment
  • the curve 907 is the solution of the embodiment. 3 user performance curve.
  • the bit error rate of this embodiment is lower than that of the prior art, that is, when the bit error rate is the same, the solution of this embodiment can support more users.
  • FIG. 10 is a performance comparison diagram of a centralized data transmission scheme and a prior art data transmission scheme in the embodiment, wherein the number of transmitting antennas is 4, and the prior art scheme uses orthogonal phase shift keying (QPSK, Quadrature Phase Shift). Keying) modulation, 4 ⁇ modulation is used in this embodiment.
  • QPSK Quadrature Phase Shift
  • the curve 1001 is a performance curve of 5 users in the prior art solution
  • the curve 1002 is a performance curve of 4 users in the prior art solution
  • the curve 1005 is a performance curve of 3 users in the prior art solution
  • the curve 1003 is in the solution of the embodiment. 6 user performance curve
  • curve 1004 is the performance curve of 5 users in the solution of the embodiment
  • curve 1006 is the performance curve of 4 users in the solution of the embodiment
  • curve 1007 is the performance curve of 3 users in the solution of the embodiment.
  • the bit error rate of this embodiment is lower than that of the prior art, that is, when the bit error rate is the same, the solution of this embodiment can support more users.
  • the transmitting end acquires channel information of the transmitting end to each receiving end;
  • the transmitting end acquires a control vector corresponding to the receiving end according to the channel information
  • the transmitting end uses a one-dimensional modulation method to modulate the transmitted data to obtain a modulation symbol
  • the transmitting end processes the modulation symbol and the control vector to obtain transmission data of each antenna; the transmitting end sends the transmission data to the receiving end;
  • the receiving end receives the transmission data in a preset spatial direction of the received symbol.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Description

一种数据传输方法、 通讯系统以及相关设备
技术领域
本发明实施例涉及通讯领域, 尤其涉及一种数据传输方法、通讯系统以及 相关设备。
背景技术
无线通信系统中,信道容量随着天线数的增加而增大。 为了获得较单天线 系统更大的系统容量 , 多天线 MIMO ( multi-input-multi-output )传输系统通过 分别在发送端和接收端放置多根天线提高了无线链路的频谱效率及链路可靠 性。 采用多天线的系统,其信道称为 MIMO信道。 为了有效利用 MIMO信道, 研究人员提出了各种方法来获得 MIMO信道容量, 如空时编码、 预编码等。
MIMO技术常利用的是空间复用和分集。 MIMO的空间复用技术通过充 分利用信道状态信息来进行预编码,进而提高系统的性能。 MIMO预编码技术 是在发射端利用信道状态信息对发射信息进行预处理。这类技术为闭环多天线 技术, 包括利用预编码的空时编码技术, 复用技术和联合收发技术等。 其中, 在实际情况中经常出现的 MIMO下行广播场景, 更是得到了广泛的研究。
在 MIMO下行广播场景下( MIMO Broadcast Downlink ),脏纸编码( Dirty Paper Coding )是一种优化的解决方案, 可以获得系统的最大和容量。 但是脏 纸编码还仅仅是信息论的结果, 最优的脏纸编码目前仍是未解决的问题,还没 有实际系统的应用,为此,大部分的研究都集中于更加易于实现的预编码方法。
多用户预编码技术有多种实现方法,如多用户预编码还可以分类为线性预 编码和非线性预编码两大类。
线性预编码方法包括干扰完全消除方法(迫零、 块对角化)以及信干噪比 平衡预编码。 干扰完全消除方法又包括迫零、块对角化等。 所谓迫零即在发射 端通过预编码使得在每一个接收端消除了其他非期望信号对该接收端的干扰。
除了多用户预编码技术之外,无线通信系统中高斯信道容量也是研究的一 个热点。 然而, 高斯干扰信道容量的问题一直未能得到有效的解决, 所谓高斯 干扰信道容量的问题,是指不同用户的信号存在相互干扰, 用户间数据不能共 享, 无法进行联合的发送, 但每个用户均知道完整的信道信息。
由于无法解决干扰信道下用户间的相互干扰问题,因而传统的解决方案主 要有两种, 一种是在干扰较小时, 可将干扰当作噪声处理, 另一种方法是正交 化, 但容量较小, 仅为 l/ log SN +
Figure imgf000004_0001
近年来, 不断有学者对高斯干扰信道进行了研究,发现对称高斯干扰信道 中单用户的容量界为 112 log(SNi?) +。(log(SNi?))。 同时还发现 , 干扰对齐的方法可 以接近容量限。
干扰对齐是在已知完整信道信息的情况下,通过发射端预处理, 将每个接 收端的有用信号与干扰信号在空间上分离,而不同发射端对该接收端的干扰均 对齐到一个空间维度上, 从而避免干扰的影响, 达到提升容量的目的。
但是, 现有技术的方案中, 发射端在对信号进行预处理之后, 发射信号分 布在实部以及虚部,再发送给接收端,接收端接收信号的有用信号将分布在接 收信号的实部和虚部, 即接收信号的整个空间上, 为了消除干扰, 需要将实部 和虚部的干扰都对零, 因而使得有用信号的控制向量空间受到约束,其信噪比 难以优化提高, 因此现有技术的系统性能受到限制。
发明内容
本发明实施例提供了一种数据传输方法、通讯系统以及相关设备, 能够增 加传输系统所能支持的用户数目, 提高系统性能。
本发明实施例提供的数据传输方法, 包括:发射端获取本发射端到各接收 端的信道信息;发射端根据所述信道信息获取接收端对应的控制向量;发射端 采用一维调制方式对待发送数据进行调制得到调制符号;发射端将所述调制符 号与所述控制向量进行处理得到每根天线的传输数据;发射端向接收端发送所 述传输数据; 接收端在接收符号的一个预置的空间方向上接收该传输数据。
本发明实施例提供的通讯系统, 包括: 发射端, 获取本发射端到各接收端 的信道信息,根据所述信道信息获取接收端对应的控制向量, 采用一维调制方 式对待发送数据进行调制得到调制符号 ,将调制符号与所述控制向量进行处理 得到每根天线的传输数据, 向接收端发送所述传输数据; 接收端, 用于在接收 符号的一个预置的空间方向上接收该传输数据。
本发明实施例提供的数据发送装置, 包括: 信道信息获取单元, 用于获取 本发数据发送装置到各接收端的信道信息; 控制向量获取单元, 用于根据所述 信道信息获取接收端对应的控制向量; 数据处理单元, 用于采用一维调制方式 对待发送数据进行调制得到调制符号,将调制符号与所述控制向量进行处理得 到每根天线的传输数据; 数据发送单元, 用于向接收端发送所述传输数据。
本发明实施例提供的数据接收装置, 包括: 获取单元, 用于获取发射端与 本数据接收装置之间的信道信息;信道信息反馈单元, 用于向发射端反馈所述 信道信息; 数据接收单元, 用于在接收符号的一个预置的空间方向上接收发射 端发送的传输数据。
本发明实施例中,在发射端发送传输数据之后,接收端会在接收符号的一 个预置的空间方向上接收该传输数据 ,发射端采用一维调制方式对待发送数据 进行调制得到调制符号, 将发射信号仅分布在实部, 或者是虚部, 接收端无需 对实部和虚部的干扰都进行对零,增加了有用信号的选取空间, 因而能够提高 系统性能, 同时也能增加传输系统所能支持的用户数目。
附图说明
图 1为本发明实施例中数据传输方法一个场景示意图;
图 2为本发明实施例中发射端系统架构示意图;
图 3为本发明实施例中数据传输方法实施例示意图;
图 4为本发明实施例中数据传输方法另一场景示意图;
图 5为本发明实施例中数据传输方法再一场景示意图;
图 6为本发明实施例中通讯系统实施例示意图;
图 7为本发明实施例中数据发送装置实施例示意图;
图 8为本发明实施例中数据接收装置实施例示意图;
图 9为本发明实施例中一个性能曲线示意图;
图 10为本发明实施例中另一性能曲线示意图。
具体实施方式
本发明实施例提供了一种数据传输方法、通讯系统以及相关设备, 用于增 加传输系统所能够支持的用户数目, 提高系统性能。
本发明实施例中的数据传输方法具体可以包括:
( 1 )发射端获取本发射端到各接收端的信道信息;
本实施例中,发射端发送数据之前,获取本发射端到各接收端的信道信息, 具体的获取过程可以是发射端接收各接收端反馈的信道信息,或者是发射端自 身检测信道信息 , 具体方式将在后续实施例中进行说明。
( 2 )发射端根据所述信道信息获取接收端对应的控制向量;
发射端获取了本发射端到各接收端的信道信息之后 ,即可根据这些信道信 息获取接收端对应的控制向量。
( 3 )发射端采用一维调制方式对待发送数据进行调制得到调制符号;
( 4 )发射端将调制符号与所述控制向量进行处理得到每根天线的传输数 据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 外, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
( 5 )发射端向接收端发送所述传输数据;
( 6 )接收端在接收符号的一个预置的空间方向上接收该传输数据。
本发明实施例中,在发射端发送传输数据之后,接收端会在接收符号的一 个预置的空间方向上接收该传输数据 ,发射端采用一维调制方式对待发送数据 进行调制得到调制符号, 将发射信号仅分布在实部, 或者是虚部, 接收端无需 对实部和虚部的干扰都进行对零,增加了有用信号的选取空间, 因而能够提高 系统性能, 同时也能增加传输系统所能支持的用户数目。
为便于理解,下面将上述实施例中的数据传输方法分为集中式方案以及分 布式方案进行分别描述:
首先请参阅图 1 ,本发明实施例中数据传输方法一个场景是基于 K个用户 的波束成形系统, 即集中式的数据传输系统, 在该系统中:
基站侧有^根接收天线, K个用户的波束成形系统,使用不同的控制向量 同时向 K个用户发送 K个数据流。 为了避免发至 K个用户的数据流间的干扰, 本发明将有用信号对齐到接收端的实部或者是虚部,而将干扰信号对齐到接收 端的虚部或者是实部,接收端收到接收信号后直接丢弃其虚部或者是实部, 即 消除了虚部或者是实部中包含的干扰;
需要说明的是, 若将有用信号对齐到实部, 则将干扰信号对齐到虚部, 若 将有用信号对齐到虚部, 则将干扰信号对齐到实部;
同理, 接收端若在实部接收有用信号, 则直接丢弃虚部的干扰, 若在虚部 接收有用信号, 则直接丢弃实部的干扰。
在后续的各个实施例中, 均以将发射信号调制到实部,将其对其他用户的 干扰对齐到虚部为例进行说明,接收端收到接收信号后直接丢弃虚部, 即消除 了虚部中包含的干扰, 可以理解的是, 在实际应用中, 发射端同样可以将发射 信号调制到虚部, 而将干扰对齐到实部,接收端也同样可以从虚部接收有用信 号, 而直接丢弃实部的干扰, 具体过程类似, 此处不作限定。
假设基站 根天线到第 m个用户的信道状态信息为 Hm = [hml hm2 . · Ντ , l≤m≤K , 其中, 是独立零均值复高斯单位变量, 第 /个用户的控 J ^向量为 V, = [vn vl2 ...νΙΝτ τ , 这里 Λ:γ表示 Λ:的转置, ^口 [v„ v/2 ...vlN 表示 [v;i v/2… ]的转置。
第 m个用户的接收信号可表示为:
Figure imgf000007_0001
这里 ^是第 / 个数据流的发送符号,假设其为独立同分布的零均值单位方 差变量 , 是方差为 2σ„2的零均值加性复高斯噪声。
可将 Κ个接收端的接收信号合写为
Figure imgf000007_0002
其中, R ^r^… ] r, S = [s, s2 ...sKf , Ν = [η η2 ...nKf , R表示各接收端的接 收信号向量, S表示发射端的发射信号向量, N表示噪声, Ηκ表示发射端到各 接收端的信道衰落向量。
每个接收端仅检测实部, 可表示为
Re(rm) = Re[Hmvms + Re + Re("m)
Figure imgf000007_0003
其中第一项为有用信号项, 第二项为其他数据流的干扰, 最后一项为噪声
所有接收端的检测可表示为 ReCR) = /su,;y + Re(N)
H i∑ 其中 /, sup //;∑ = [Re(//;) lm(Ht )]
Figure imgf000008_0001
H 接收端的检测信干噪比为 SINRm
Figure imgf000008_0002
其中矩阵 Hx∑表示一个由矩阵 的实部以及矩阵 的虚部构成的矩阵,
Re(v')
即 H, = [Re(H Im(H;)] , vl∑ , 上式可写为
- Im(v,)
Figure imgf000008_0003
结合 SLR算法原理, 通过优化 SLR来获取每个流的发射控制向量, 即优化 下式:
Figure imgf000008_0004
^代表 C的共轭转置, 如矩阵 Hm 表示矩阵 Hm∑的共轭转置, Vm∑ H表示 Vm∑的共轭转置, H1∑ H表示 H1∑的共轭转置。
具体的发射端的处理过程如下:
( 1 )发射端获取本发射端到各接收端的信道信息, 即包括数据信道信息 //m //m∑以及干扰信道信息 ;
Figure imgf000008_0005
(2)对 f;H, H,进行奇异值( SVD, Singular Value Decomposition)分 l=\,l≠m 解, 得到 //,"//,=c¾c^中的 t/和 2;
l=\ ≠m
本实施例中, 对一个矩阵进行 SVD分解会得到 3个矩阵, 分别为第一矩 阵 U, 第二矩阵 Q, 以及第三矩阵 I11, 其中, 第三矩阵表示第一矩阵的共轭 转置。
(3) 利用 t/和 2求取
Figure imgf000009_0001
的最大特征值 对应的特 征向量 v0;
(4)求取使信泄比最大的 vm∑, 即 =
(5)发射端采用一维调制方式对待发送数据进行调制得到调制符号, 将 调制符号与所述控制向量进行处理得到每根天线的传输数据;
本实施例中 , 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
(6)发射端向接收端发送所述传输数据;
(7)接收端在接收符号的一个预置的空间方向上接收该传输数据。
需要说明的是,本实施例中采用的是集中式的数据传输方案, 即只有一个 发射端, 而有若干个接收端, 具体的发射端架构请参阅图 2, 如图 2所示, 在 发射端仅对实部数据进行预编码,具体的预编码可以包括迫零准则,或最小均 方误差 (MMSE, Minimum Mean Squared Error )一类的线性预编码或其他非 线性预编码准则, 因此, 发射端将有用的信号对齐到接收端的实部, 本实施例 中的接收端在接收符号的一个预置的空间方向上接收该传输数据,接收到传输 数据之后, 直接丢弃其虚部, 从而消除了虚部中包含的干扰。
上述实施例中描述的集中式的数据传输方案中,采用的是通过最大化信泄 比( SLR, Signal Leak Rate )来获取控制向量的方式, 在实际应用中, 还可以 采用其他的方式获取控制向量, 例如采用迫零算法来选取控制向量,具体的过 程可以如下:
集中式的数据传输方案中, 整个系统的接收信号可以描述为如下矩阵:
Figure imgf000010_0001
其中, R = [rir2.. ]r S = [s,s2...sKf ,Ν = [ηλη2...nKf , R表示各接收端的接 收信号向量, S表示发射端的发射信号向量, N表示噪声, Ηκ表示发射端到各 接收端的信道衰落向量, 所以
ReCR) = /sup ;y + Re(N)
H ι∑ 其中 A sup //;∑ = [Re(//;) Im(//;)]
Figure imgf000010_0002
H K∑ 具体的数据传输过程包括:
( 1 )发射端获取本发射端到各接收端的信道信息, 即扩展信道信息 Hsup , 该 Hsup为一个列向量矩阵;
( 2 ) 采用迫零算法计算控制向量矩阵, 其具体原理为: ReCR) = /sup S + Re(N), 即若要尽量消除其他调制符号干扰, 则可以使得 Re(R) 尽量等于 S+Re(N), 即接收信号等于发送信号与噪声的组合, 所以, 控制向量 矩阵 =Hsu (HsupHsu )- 1时, ReCff
Figure imgf000010_0003
+ Re 该矩阵的每一列为对 应接收机的控制向量;
( 3 )发射端按照接收端信息在所述控制向量矩阵中查询对应的控制向量
(4)发射端采用一维调制方式对待发送数据进行调制得到调制符号, 将 调制符号与所述控制向量进行处理得到每根天线的传输数据 ,向接收端发送该 传输数据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 外, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
( 5 )接收端直接对该传输数据的实部进行检测, 即在接收符号的一个预 置的空间方向上接收该传输数据。
需要说明的是, 上述计算控制向量矩阵的过程中 , 使得
Figure imgf000011_0001
但是, 在实际应用中, 为了有效控制噪声, 同样还可以 根据最小均方误差准则计算控制向量矩阵,即在迫零算法方法计算控制向量矩 阵的基础上增加一个参数, 即使得 = Hsu (HsupHsu + 其中, σ„2表示 的是噪声的方差, /„表示的是对角线元素为 1的单位矩阵, 这样即可有效的减 少噪声对有效数据的影响。
上面对本发明实施例中的集中式的数据传输方案进行了描述,下面对本发 明实施例中的分布式的数据传输方案进行描述, 请参阅图 3, 本发明实施例中 数据传输方法实施例包括:
301、 发射端获取各接收端的信道信息;
本实施例主要针对分布式的方案, 即存在多个发射端以及多个接收端,假 设系统有 个发射端, 每个发射端天线数为 N 同时有 个接收端, 每个发射 端对应一个接收端且每个发射端发送一个数据流到对应的接收端, 即第 m个 发射端向第 m个接收端发送数据流 , 则该数据流 对该第 m个接收端而言 是有用信号, 而对其他的 K-1个接收端而言, 则是干扰信号, 本实施例中, 第 m个发射端获取该发射端到第 m个接收端的数据信道信息(即用于传输有用 数据的信道的信息) 以及该发射端到其他的 K-1个接收端的干扰信道信息。
具体的获取过程可以采用以下几种方式:
A、 在频分双工 (FDD, Frequency Division Duplex )模式下:
各接收端可以通过导频信道信息获取到该发射端到各接收端的信道信息 , 各接收端向该发射端反馈获取到的信道信息, 其中, 第 m个接收端向发射端 反馈的是数据信道信息 , 其他的接收端向发射端反馈的是干扰信道信息; 或者,
各接收端还可以通过盲估计算法的方式获取到该发射端到各接收端的信 道信息, 各接收端向该发射端反馈获取到的信道信息, 其中, 第 m个接收端 向发射端反馈的是数据信道信息,其他的接收端向发射端反馈的是干扰信道信 息。
具体的各接收端获取信道信息的过程为现有技术, 此处不作限定。 B、 在时分双工 (TDD, Time Division Duplex )模式下:
若当前的各发射信道为对称信道, 即发射的资源相同, 频率相同, 则发射 端也可以自身检测到该发射端到各接收端的信道信息。
302、 根据信道信息获取使得信泄比最大的控制向量;
本实施例中, 当发射端获取到各接收端的信道信息之后,可以根据这些信 道信息计算使得信泄比最大化的控制向量。
为便于理解, 首先对本实施例中的信泄比的推导过程进行简要描述: 第 /个发射端的 ^根发射天线到第 个接收端的信道衰落向量为 H H , \ < l,m N,这里 A 是零均值独立复高斯变量, 方差为 1。 控制向量为 V, = [vn vl2 ... νΙΝτ f , xT表示 Λ:的转置。
第 m个接收端的接收信号可表示为 ~ Hmmvmsm + 1^iHlmvlsl + nm 是零均值加性复高斯噪声, 方差为 2σ„2。 由于接收机仅需检测实部, 因 此去除虚部后的检测信号为:
Re(rm ) = Re[Hmmvmsm ] + + Re("m)
Figure imgf000012_0001
这里第一项是有用信号, 第二项是其他发射端对其产生的干扰, 而 项是噪声。 接收端的信干噪比为
Figure imgf000012_0002
Re(v')
令 Hto∑ = [Re(Hto) hn(Hlm)] , , 则 SINR可表示为
_ Im(v,)
Figure imgf000012_0003
由上式可知, 获得最大 SINR需要知道完整的信道信息, 且求解非常复杂< 为了简化该问题的求解,可将最大化信干噪比的问题转化为最大化信泄比的问 题,即从原有优化接收端有用信号功率与该接收端所有干扰功率和噪声功率之 和变为优化发射端到该接收端有用信号功率与该发射端对其他所有用户干扰 和之比的问题, 本实施例中的信泄比可表示为
为 分解, 可获得
Figure imgf000013_0001
fj Hml∑ HHml∑ = UQUH , V。为 [// ∑( - 的最大特征值 所对应的 特征向量, 因此使信泄比最大的 Vm∑Vm∑ = UH) -、。 本实施例中, 对一个矩阵进行 SVD分解会得到 3个矩阵, 分别为第一矩 阵 U, 第二矩阵 Q, 以及第三矩阵 ί Η , 其中, 第三矩阵表示第一矩阵的共轭 转置。
由上述的推导过程可知 , 当发射端获取到的数据信道信息 d 以及 信道信息进行 SVD分解, 并根据
Figure imgf000013_0002
的最大特征值对应的特征向量 v。, 具体的计算过程可以采用软件实现。
例如利用软件首先计算矩阵
Figure imgf000013_0003
的所有特征值, 以及 每个特征值对应的特征向量,之后选取各特征值中数值最大的特征值作为最大 特征值, 之后再查询该最大特征值对应的特征向量。
之后再根据该特征向量计算该接收端对应的控制向量: ν>η Σ = φυΗ) - 送数据进行处理得到传输数据; 、。 303、 将控制向量与待发
得到控制向量之后,可以采用一维调制方式对待发送数据进行调制得到调 制符号 , 再将调制符号与所述控制向量相乘得到每根天线的传输数据。
可以理解的是,在实际应用中, 同样还可以将该控制向量与待发送数据进 行其他的运算得到传输数据, 具体的运算方式此处不作限定。
304、 向接收端发送传输数据。
当发射端形成传输数据之后, 则可以向接收端发送该传输数据, 需要说明 的是, 本实施例中, 为了能够使得干扰对齐到一个空间方向上, 每个发射机发 送一个实信号, 接收端在接收符号的一个预置的空间方向上接收该传输数据。
本实施例中, 由于采用了干扰对齐,接收端的干扰都对齐到信号空间的虚 部, 同时有用的信号位于传输数据的实部, 因此避免了干扰信号对有用信号的 影响;
其次, 本实施例中, 在发射端发送传输数据之后, 接收端会在接收符号的 一个预置的空间方向上接收该传输数据,发射端采用一维调制方式对待发送数 据进行调制得到调制符号, 将发射信号仅分布在实部, 或者是虚部, 使得接收 端无需对实部和虚部的干扰都进行对零,增加了有用信号的选取空间, 因而能 够提高系统性能, 同时也能增加传输系统所能支持的用户数目;
再次,本实施例中选取使得信泄比最大的控制向量, 然后^^据该控制向量 对待发送数据的进行处理,而信泄比是指某发射端对其对应的接收端的信号功 率与该发射端对其他接收端的干扰功率的比值,因此通过信泄比最大化同样能 够使得信道容量提升, 且从信泄比的概念可知, 本发明实施例中, 发射端仅需 要获取各接收端反馈的信道信息即可实现信道容量的提升,因此减少了发射端 所需获取的数据量, 从而提高了数据发送过程的效率。
请参阅图 4, 在该分布式的数据传输方案中, 有 K个发射端以及 K个接 收端, 每个发射端天线数为 , 接收端 1根天线, 每个发射端对应一个接收 端且每个发射端发送一个数据流到对应的接收端, 即第 w个发射端向第 w个接 收端发送数据流 , 功率为 P。
本实施例中的信泄比推导过程与图 3 所示的实施例中的信泄比推导过程 一致, 此处不再赘述, 本实施例中的数据传输方法包括:
( 1 )各发射端获取本发射端到各接收端的信道信息, 即数据信道信息
Hmm∑ HHmm∑和干扰信道信息 ImllL HHml
1=1
l≠m ( 2 )对 ; 进行 SVD分解, 得到! „^/^= c¾c ^中的 ί/和 2 ;
/=1 /=1 本实施例中, 对一个矩阵进行 SVD分解会得到 3个矩阵, 分别为第一矩 阵 U, 第二矩阵 Q, 以及第三矩阵 I 11 , 其中, 第三矩阵表示第一矩阵的共轭 转置。
( 3 )利用 t/和 2求取 [// ∑( - 的最大特征值 对应的特征 向量》¾ ;
( 4 )求取使信泄比最大的控制向量 vm∑ , 即 Vm∑ = (V^^)- ( 5 )发射端采用一维调制方式对待发送数据进行调制得到调制符号; ( 6 )发射端将调制符号与所述控制向量进行处理得到每根天线的传输数 据, 向接收端发送所述传输数据;
本实施例中 , 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
( 7 )接收端直接对该传输数据的实部进行检测 , 即在接收符号的一个预 置的空间方向上接收该传输数据。
本实施例中,选取使得信泄比最大的控制向量, 然后 ^居该控制向量对待 发送数据的进行处理,而信泄比是指某发射端对其对应的接收端的信号功率与 该发射端对其他接收端的干扰功率的比值,因此通过信泄比最大化同样能够使 得信道容量提升, 且从信泄比的概念可知, 本发明实施例中, 发射端仅需要获 取各接收端反馈的信道信息即可实现信道容量的提升,因此减少了发射端所需 获取的数据量, 从而提高了数据发送过程的效率。
本实施例中的数据传输方案还可应用于蜂窝通信中, 具体请参阅图 5, 如 图 5所示, 小区边缘用户组成干扰系统, 然后根据上述方案计算出每个边缘用 户的控制向量,再根据边缘用户的控制向量确定可供小区中心用户使用的控制 向量, 由于小区内用户不会对其他小区造成干扰, 而本小区边缘用户与中心用 户的控制向量彼此正交, 因而可以提高系统容量。
具体的, 小区 1和小区 2基站有多根发射天线,各自的边缘用户是第一边 缘用户和第二边缘用户,中心用户分别是第一中心用户和第二中心用户,此时, 第一边缘用户和第二边缘用户构成两用户干扰系统, 为了避免干扰, 第一边缘 用户和第二边缘用户按照上述技术方案独立进行控制向量计算, 而后,根据第 一边缘用户和第二边缘用户的控制向量为本小区中心用户选择控制向量,具体 步骤如下:
( 1 ) 小区 1和小区 2获取各自到第一边缘用户和第二边缘用户的信道相关 矩阵孖扁∑^孖扁∑和 m/∑ Hml∑
( 2 ) 得到 Hml∑ HHml
Figure imgf000016_0001
本实施例中,对一个矩阵进行 SVD分解会得到 3个矩阵,分别为第一矩阵 U, 第二矩阵 Q, 以及第三矩阵 ί 其中, 第三矩阵表示第一矩阵的共轭转置。
( 3 )小区 1和小区 2分别求取各自的 n∑(^u-H ∑(^u 的最大特征值 对应的特征向量。;
( 4 )求取使信泄比最大的控制向量 , 即 vm∑ = (V^^)― , 小区 1到第一 边缘用户的控制向量 为 , 小区 2到第二边缘用户的控制向量 v; ( 5 )小区 1和小区 2分别根据 和 v确定第一中心用户以及第二中心用户的 控制向量 和 v2 e , 且满足 和 正交, v和 v2 e正交, 即在 的 0空间选取 , 在 的 0空间选取 ;
( 6 )发射端采用一维调制方式对待发送数据进行调制得到调制符号; ( 7 )将调制符号与所述控制向量进行处理得到每根天线的传输数据, 向 接收端发送所述传输数据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
( 8 )各接收端直接对接收信号的实部进行检测 , 即在接收符号的一个预 置的空间方向上接收该传输数据。
本实施例中,选取使得信泄比最大的控制向量, 然后 ^居该控制向量对待 发送数据的进行处理,而信泄比是指某发射端对其对应的接收端的信号功率与 该发射端对其他接收端的干扰功率的比值,因此通过信泄比最大化同样能够使 得信道容量提升, 且从信泄比的概念可知, 本发明实施例中, 发射端仅需要获 取各接收端反馈的信道信息即可实现信道容量的提升,因此减少了发射端所需 获取的数据量, 从而提高了数据发送过程的效率。
下面介绍本发明实施例中的通讯系统, 请参阅图 6, 本发明实施例中的通 讯系统包括发射端 601和接收端 602:
发射端 601, 获取本发射端到各接收端的信道信息, 根据所述信道信息获 取接收端对应的控制向量,采用一维调制方式对待发送数据进行调制得到调制 符号,将调制符号与所述控制向量进行处理得到每根天线的传输数据, 向接收 端 602发送所述传输数据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
接收端 602, 用于在接收符号的一个预置的空间方向上接收该传输数据。 为便于理解,下面分别以集中式方案以及分布式方案对本实施例中的通讯 系统进行说明:
分布式方案中的通讯系统包括:
发射端, 用于获取本发射端到第一接收端的数据信道信息, 以及本发射端 到其他接收端的干扰信道信息, 所述第一接收端与所述发射端对应,根据所述 数据信道信息以及所述干扰信道信息获取使得信泄比最大的控制向量,所述信 泄比为所述发射端对所述第一接收端的信号功率与所述发射端对所述其他接 收端的干扰功率的比值 ,采用一维调制方式对待发送数据进行调制得到调制符 号,将调制符号与所述控制向量进行处理得到每根天线的传输数据, 向接收端 发送所述传输数据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
接收端, 用于通过获取所述数据信道信息以及所述干扰信道信息, 向所述 发射端发送所述数据信道信息以及所述干扰信道信息 ,在接收符号的一个预置 的空间方向上接收该传输数据。
下面以一具体应用场景对本实施例中的通讯系统进行描述:
发射端获取本发射端到各接收端的信道信息 , 即数据信道信息 和干扰信道信息 | , ¾Σ ;
/=1 发射端对|: 进行 SVD分解,得到 „^/^ = 中的 ί/和 s;
/=1 /=1 本实施例中, 对一个矩阵进行 SVD分解会得到 3个矩阵, 分别为第一矩 阵 U, 第二矩阵 Q, 以及第三矩阵 ί Η , 其中, 第三矩阵表示第一矩阵的共轭 转置。
发射端利用 t/和 β求取 [//扁^^-1)]"
Figure imgf000018_0001
的最大特征值 。对应的特 征向量 v。, 发射端求取使信泄比最大的控制向量 vm∑ , 即 =(^ )- , 发射 端采用一维调制方式对待发送数据进行调制得到调制符号,将调制符号与所述 控制向量进行处理得到每根天线的传输数据, 向接收端发送所述传输数据; 本实施例中 , 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
接收端直接对该传输数据的实部进行检测 ,即在接收符号的一个预置的空 间方向上接收该传输数据。
集中式方案中的通讯系统包括:
发射端 , 用于获取本发射端到各接收端的信道信息 ,根据所述信道信息获 取控制向量矩阵, 所述控制向量矩阵的每一列对应一个接收端的控制向量,按 照接收端信息在所述控制向量矩阵中查询对应的控制向量,采用一维调制方式 对待发送数据进行调制得到调制符号,将调制符号与所述控制向量进行处理得 到每根天线的传输数据, 向接收端发送所述传输数据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。 接收端, 用于在接收符号的一个预置的空间方向上接收该传输数据。
本实施例中的通讯系统中,发射端将有用的信号对齐到接收端的实部,本 实施例中的接收端也会在接收符号的一个预置的空间方向上接收该传输数据 , 接收到传输数据之后, 直接丢弃其虚部, 从而消除了虚部中包含的干扰。
请参阅图 7, 本发明实施例中的数据发送装置包括: 信道信息获取单元
701 , 控制向量获取单元 702, 数据处理单元 703以及数据发送单元 704。
信道信息获取单元 701, 用于获取本发射端到各接收端的信道信息; 控制向量获取单元 702, 用于根据所述信道信息获取接收端对应的控制向 量;
数据处理单元 703 , 用于采用一维调制方式对待发送数据进行调制得到调 制符号, 将调制符号与所述控制向量进行处理得到每根天线的传输数据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。
数据发送单元 704, 用于向接收端发送所述传输数据。
为便于理解,下面以分布式方案的场景对数据发送装置进行说明,具体的, 分布式方案中的数据发送装置包括:
信道信息获取单元, 用于获取本发射端到第一接收端的数据信道信息,及 本发射端到其他接收端的干扰信道信息 , 所述第一接收端与所述发射端对应; 控制向量获取单元,用于根据信道信息获取单元获取到的数据信道信息以 及干扰信道信息获取使得信泄比最大的控制向量,所述信泄比为所述发射端对 值; 、 ^ ; < 、 数据处理单元,用于采用一维调制方式对待发送数据进行调制得到调制符 号,将调制符号与控制向量获取单元获取到的控制向量进行处理得到每根天线 的传输数据;
本实施例中, 具体的将调制符号与所述控制向量进行处理的方式可以为: 将调制符号与所述控制向量相乘, 可以理解的是, 在实际应用中, 除了相乘之 夕卜, 同样还可以为其他的运算方式, 具体的运算方式此处不作限定。 数据发送单元, 用于向接收端发送数据处理单元处理得到的传输数据。 需要说明的是,本实施例中的信道信息获取单元具体可以采用如下的方式 获取信道信息:
接收第一接收端反馈的数据信道信息以及其他接收端反馈的干扰信道信 或,检测本发射端到第一接收端的数据信道信息, 以及本发射端到其他接 收端的干扰信道信息。
本实施例中,控制向量获取单元选取使得信泄比最大的控制向量, 然后数 据处理单元根据该控制向量对待发送数据的进行处理,而信泄比是指某发射端 对其对应的接收端的信号功率与该发射端对其他接收端的干扰功率的比值,因 此通过信泄比最大化同样能够使得信道容量提升,且从信泄比的概念可知,本 发明实施例中,发射端仅需要获取各接收端反馈的信道信息即可实现信道容量 的提升, 因此减少了发射端所需获取的数据量,从而提高了数据发送过程的效 率。
请参阅图 8, 本发明实施例中的数据接收装置包括:
获取单元 801, 用于获取发射端与本数据接收装置之间的信道信息; 信道信息反馈单元 802, 用于向发射端反馈所述信道信息;
数据接收单元 803 , 用于在接收符号的一个预置的空间方向上接收发射端 发送的传输数据。
本实施例中, 由于发射端会将有用的信号对齐到接收端的实部,本实施例 中的数据接收单元 803在接收符号的一个预置的空间方向上接收该传输数据, 接收到传输数据之后, 直接丢弃其虚部, 从而消除了虚部中包含的干扰。
为具体说明上述技术方案的效果, 请参阅图 9以及图 10:
图 9是本实施例中集中式的数据传输方案与现有技术的数据传输方案的 性能对比图, 其中发射天线数为 4, 现有技术方案采用二相移相键控(BPSK, Binary Phase Shift Keying )调制,本实施例中采用 2脉冲幅度调制( PAM, Pulse Amplitude Modulation )调制。
曲线 901为现有技术方案中 5用户的性能曲线,曲线 902为现有技术方案 中 4用户的性能曲线, 曲线 904为现有技术方案中 3用户的性能曲线; 曲线 903为本实施例方案中 6用户的性能曲线,曲线 905为本实施例方案 中 5用户的性能曲线, 曲线 906为本实施例方案中 4用户的性能曲线, 曲线 907为本实施例方案中 3用户的性能曲线。
由上图可见, 当用户数相同时,本实施例的误比特率低于现有技术的误比 特率, 即当误比特率相同时, 本实施例的方案能够支持更多的用户数目。
图 10是本实施例中集中式的数据传输方案与现有技术的数据传输方案的 性能对比图, 其中发射天线数为 4, 现有技术方案采用正交移相键控(QPSK, Quadrature Phase Shift Keying )调制, 本实施例中采用 4ΡΑΜ调制。
曲线 1001为现有技术方案中 5用户的性能曲线,曲线 1002为现有技术方 案中 4用户的性能曲线, 曲线 1005为现有技术方案中 3用户的性能曲线; 曲线 1003为本实施例方案中 6用户的性能曲线,曲线 1004为本实施例方 案中 5用户的性能曲线, 曲线 1006为本实施例方案中 4用户的性能曲线, 曲 线 1007为本实施例方案中 3用户的性能曲线。
由上图可见, 当用户数相同时,本实施例的误比特率低于现有技术的误比 特率, 即当误比特率相同时, 本实施例的方案能够支持更多的用户数目。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 该程序在执行时, 包括如下步骤:
发射端获取本发射端到各接收端的信道信息;
发射端根据所述信道信息获取接收端对应的控制向量;
发射端采用一维调制方式对待发送数据进行调制得到调制符号;
发射端将调制符号与控制向量进行处理得到每根天线的传输数据; 发射端向接收端发送所述传输数据;
接收端在接收符号的一个预置的空间方向上接收该传输数据。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明所提供的一种实现公共信道全面覆盖的方法及装置进行了 详细介绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实 施方式及应用范围上均会有改变之处, 综上所述,本说明书内容不应理解为对 本发明的限制。

Claims

权 利 要 求
1、 一种数据传输方法, 其特征在于, 包括:
发射端获取本发射端到各接收端的信道信息;
发射端根据所述信道信息获取接收端对应的控制向量;
发射端采用一维调制方式对待发送数据进行调制得到调制符号; 发射端将所述调制符号与所述控制向量进行处理得到每根天线的传输数 据;
发射端向接收端发送所述传输数据;
接收端在接收符号的一个预置的空间方向上接收该传输数据。
2、 根据权利要求 1所述的方法, 其特征在于, 所述发射端根据所述信道 信息获取接收端对应的控制向量包括:
发射端根据所述信道信息获取控制向量矩阵,所述控制向量矩阵的每一列 对应一个接收端的控制向量;
发射端按照接收端信息在所述控制向量矩阵中查询对应的控制向量。
3、 根据权利要求 2所述的方法, 其特征在于, 所述控制向量矩阵 通过 以下公式计算:
V∑ =
Figure imgf000022_0001
所述 Hsup为所述发射端到各接收端的扩展信道信息, Hsup H表示矩阵 Hsup的 共轭转置。
4、 根据权利要求 2所述的方法, 其特征在于, 所述控制向量矩阵 通过 以下公式计算: 所述 Hsup为所述发射端到各接收端的扩展信道信息, Hsup H表示矩阵 Hsup的 共轭转置, /„表示单位矩阵, σ„2表示噪声的方差。
5、 根据权利要求 1所述的方法, 其特征在于, 所述发射端获取本发射端 到各接收端的信道信息包括:
发射端获取本发射端到第一接收端的数据信道信息,以及本发射端到其他 接收端的干扰信道信息 , 所述第一接收端与所述发射端对应。
6、 根据权利要求 5所述的方法, 其特征在于, 所述发射端根据所述信道 信息获取接收端对应的控制向量包括:
发射端根据所述数据信道信息以及所述干扰信道信息获取使得信泄比最 大的控制向量,所述信泄比为所述发射端对所述第一接收端的信号功率与所述 发射端对所述其他接收端的干扰功率的比值。
7、 根据权利要求 6所述的方法, 其特征在于, 所述发射端根据所述数据 信道信息以及所述干扰信道信息获取使得信泄比最大的控制向量包括:
对所述干扰信道信息进行奇异值分解得到第一矩阵 U, 第二矩阵 Q, 以及 第三矩阵 ί Η , 所述第三矩阵为所述第一矩阵 U的共轭转置矩阵;
根据所述 U以及 Q获取矩阵 [//^(^-1)]"/^^^-1)的最大特征值对应 的特征向量 vQ
Figure imgf000023_0001
表示由矩阵 H^的实部以及矩阵 H^的虚部构成的矩阵, 所述 Hmm表示第 m个发射端到第 m个接收端的信道衰落向量;
按照如下方式计算所述控制向量 : νΜ∑=
Figure imgf000023_0002
8、 根据权利要求 5所述的方法, 其特征在于, 所述发射端获取本发射端 到第一接收端的数据信道信息,以及本发射端到其他接收端的干扰信道信息包 括:
各接收端通过导频信道信息或盲估计算法获取所述发射端到各接收端的 信道信息;
各接收端将获取到的信道信息发送至所述发射端。
9、 根据权利要求 5所述的方法, 其特征在于, 所述发射端获取本发射端 到第一接收端的数据信道信息 ,以及本发射端到其他接收端的干扰信道信息包 括:
若当前的上下行信道为对称信道,则所述发射端检测本发射端到第一接收 端的数据信道信息, 以及本发射端到其他接收端的干扰信道信息。
10、根据权利要求 5至 9中任一项所述的方法, 其特征在于, 所述方法还 包括:
发射端获取边缘用户的边缘控制向量;
才艮据所述边缘控制向量确定中心用户的中心控制向量,所述中心控制向量 与所述边缘控制向量正交。
11、 根据权利要求 7所述的方法, 其特征在于, 所述根据所述 U以及 Q
Figure imgf000024_0001
包括:
根据所述 U以及 Q获取矩阵 [//^(^-1)]"/^^^-1)的所有特征值以及 所有特征值对应的特征向量;
在所述所有特征值中选取数值最大的特征值为最大特征值;
获取所述最大特征值对应的特征向量作为 V。。
12、 一种通讯系统, 其特征在于, 包括:
发射端,获取本发射端到各接收端的信道信息,根据所述信道信息获取接 收端对应的控制向量, 采用一维调制方式对待发送数据进行调制得到调制符 号,将调制符号与所述控制向量进行处理得到每根天线的传输数据, 向接收端 发送所述传输数据;
接收端, 用于在接收符号的一个预置的空间方向上接收该传输数据。
13、 根据权利要求 12所述的通讯系统, 其特征在于,
所述发射端具体用于获取本发射端到第一接收端的数据信道信息,以及本 发射端到其他接收端的干扰信道信息, 所述第一接收端与所述发射端对应,根 据所述数据信道信息以及所述干扰信道信息获取使得信泄比最大的控制向量, 所述信泄比为所述发射端对所述第一接收端的信号功率与所述发射端对所述 其他接收端的干扰功率的比值 ,采用一维调制方式对待发送数据进行调制得到 调制符号,将调制符号与所述控制向量进行处理得到每根天线的传输数据, 向 接收端发送所述传输数据。
14、 根据权利要求 12所述的通讯系统, 其特征在于,
所述发射端具体用于获取本发射端到各接收端的信道信息,根据所述信道 信息获取控制向量矩阵 ,所述控制向量矩阵的每一列对应一个接收端的控制向 量,按照接收端信息在所述控制向量矩阵中查询对应的控制向量, 采用一维调 制方式对待发送数据进行调制得到调制符号 ,将调制符号与所述控制向量进行 处理得到每根天线的传输数据, 向接收端发送所述传输数据。
15、 一种数据发送装置, 其特征在于, 包括:
信道信息获取单元, 用于获取本发数据发送装置到各接收端的信道信息; 控制向量获取单元, 用于根据所述信道信息获取接收端对应的控制向量; 数据处理单元,用于采用一维调制方式对待发送数据进行调制得到调制符 号, 将调制符号与所述控制向量进行处理得到每根天线的传输数据;
数据发送单元, 用于向接收端发送所述传输数据。
16、 一种数据接收装置, 其特征在于, 包括:
获取单元, 用于获取发射端与本数据接收装置之间的信道信息; 信道信息反馈单元, 用于向发射端反馈所述信道信息;
数据接收单元,用于在接收符号的一个预置的空间方向上接收发射端发送 的传输数据。
PCT/CN2009/070808 2009-03-16 2009-03-16 一种数据传输方法、通讯系统以及相关设备 WO2010105400A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011504300A JP5264990B2 (ja) 2009-03-16 2009-03-16 データ伝送の方法及びシステム
CN200980100823.9A CN102439868B (zh) 2009-03-16 2009-03-16 一种数据传输方法、通讯系统以及相关设备
PCT/CN2009/070808 WO2010105400A1 (zh) 2009-03-16 2009-03-16 一种数据传输方法、通讯系统以及相关设备
EP09798999.0A EP2315365B1 (en) 2009-03-16 2009-03-16 Method, communication system and related equipments for data transmission
US12/692,202 US8503564B2 (en) 2009-03-16 2010-01-22 Method and system for data transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070808 WO2010105400A1 (zh) 2009-03-16 2009-03-16 一种数据传输方法、通讯系统以及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/692,202 Continuation US8503564B2 (en) 2009-03-16 2010-01-22 Method and system for data transmission

Publications (1)

Publication Number Publication Date
WO2010105400A1 true WO2010105400A1 (zh) 2010-09-23

Family

ID=42730698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070808 WO2010105400A1 (zh) 2009-03-16 2009-03-16 一种数据传输方法、通讯系统以及相关设备

Country Status (5)

Country Link
US (1) US8503564B2 (zh)
EP (1) EP2315365B1 (zh)
JP (1) JP5264990B2 (zh)
CN (1) CN102439868B (zh)
WO (1) WO2010105400A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060237A1 (ja) * 2010-11-01 2012-05-10 シャープ株式会社 無線送信装置、無線受信装置、無線通信システム、制御プログラムおよび集積回路
CN109155657A (zh) * 2016-05-14 2019-01-04 瑞典爱立信有限公司 通过选择信号发送维度来改进dl mu-mimo中的pam传输

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363612B2 (en) * 2010-03-11 2013-01-29 Alcatel Lucent Concurrent transmission of multiple signals in a wireless network
CN102196448A (zh) * 2010-03-12 2011-09-21 华为技术有限公司 一种网络系统中数据处理的方法、基站和网络系统
JP5756636B2 (ja) * 2011-01-11 2015-07-29 シャープ株式会社 無線通信システム、受信装置、送信装置
WO2012114148A1 (en) * 2011-02-01 2012-08-30 Research In Motion Limited Mixed rank downlink compound multi-user interference alignment scheme
WO2012104676A1 (en) 2011-02-01 2012-08-09 Research In Motion Limited Mixed rank downlink multi-user interference alignment scheme
US9001914B2 (en) * 2011-05-06 2015-04-07 Dynamic Invention Llc Dynamic interference alignment for partially connected quasi-static MIMO interference channel
WO2013017902A1 (en) * 2011-08-01 2013-02-07 Research In Motion Limited Joint transmission using interference alignment
CN102983935B (zh) * 2011-09-07 2017-10-27 株式会社Ntt都科摩 基于干扰对齐的预编码、预解码方法及发射机和移动终端
CN103096475B (zh) * 2011-10-31 2018-01-23 中兴通讯股份有限公司 一种联合发射中资源分配的方法及装置
US8731028B2 (en) * 2011-12-02 2014-05-20 Futurewei Technologies, Inc. Method and apparatus for modulation and coding scheme adaption in a MIMO system
US8964871B2 (en) 2012-05-14 2015-02-24 Blackberry Limited Codebook based downlink multi-user interference alignment scheme
US9445285B2 (en) * 2013-10-15 2016-09-13 Alcatel Lucent Interference alignment for transmitter/receiver pairs in wireless communication systems
CN106233220B (zh) * 2014-05-01 2020-06-30 Oppo 广东移动通信有限公司 灵活的频率合成
JP6541918B2 (ja) 2017-03-16 2019-07-10 三菱電機株式会社 信号整形装置、整形終端装置、信号整形方法および光伝送方法
CN110519291B (zh) * 2019-09-04 2020-04-03 电子科技大学 基于边缘计算和信道相关性的数据传输认证方法及系统
EP3926910B1 (en) 2020-06-19 2023-11-15 Mitsubishi Electric R&D Centre Europe BV Method for optimizing the capacity of communication channels
CN111988255B (zh) * 2020-07-15 2022-12-09 郑州轻工业大学 一种基于分解和分布式调制的物理层安全传输方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075453A1 (ja) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. マルチアンテナ送信装置及びマルチアンテナ送信装置の再送方法
WO2007127744A1 (en) * 2006-04-24 2007-11-08 Qualcomm Incorporated Reduced complexity beam-steered mimo ofdm system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841814A (en) * 1995-10-17 1998-11-24 Paradyne Corporation Sampling system for radio frequency receiver
US20020138390A1 (en) * 1997-10-14 2002-09-26 R. Raymond May Systems, methods and computer program products for subject-based addressing in an electronic trading system
SE517039C2 (sv) * 2000-05-31 2002-04-02 Bjoern Ottersten Anordning och metod för kanalinterferensdämpning
RU2340094C2 (ru) * 2003-05-15 2008-11-27 Телефонактиеболагет Лм Эрикссон (Пабл) Подавление помех в беспроводной ретрансляционной сети
US7702583B1 (en) * 2003-08-01 2010-04-20 Checkfree Corporation Payment processing with selection of an electronic debiting option
FR2882479B1 (fr) * 2005-02-22 2007-04-20 Thales Sa Procede et dispositif de synchronisation de liaisons rectilignes ou quasi-rectilignes en presence d'interferences
US8112038B2 (en) * 2006-09-15 2012-02-07 Futurewei Technologies, Inc. Beamforming with imperfect channel state information
EP2171879B1 (en) * 2007-07-18 2019-06-19 Marvell World Trade Ltd. Access point with simultaneous downlink transmission of independent data for multiple client stations
US20090046801A1 (en) * 2007-08-14 2009-02-19 Interdigital Technology Corporation Method and apparatus for creating a multi-user mimo codebook using a single user mimo codebook

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075453A1 (ja) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. マルチアンテナ送信装置及びマルチアンテナ送信装置の再送方法
WO2007127744A1 (en) * 2006-04-24 2007-11-08 Qualcomm Incorporated Reduced complexity beam-steered mimo ofdm system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2315365A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060237A1 (ja) * 2010-11-01 2012-05-10 シャープ株式会社 無線送信装置、無線受信装置、無線通信システム、制御プログラムおよび集積回路
US9209874B2 (en) 2010-11-01 2015-12-08 Sharp Kabushiki Kaisha Wireless transmission apparatus, wireless reception apparatus, wireless communication system, control program and integrated circuit
CN109155657A (zh) * 2016-05-14 2019-01-04 瑞典爱立信有限公司 通过选择信号发送维度来改进dl mu-mimo中的pam传输
CN109155657B (zh) * 2016-05-14 2021-11-09 瑞典爱立信有限公司 通过选择信号发送维度来改进dl mu-mimo中的pam传输

Also Published As

Publication number Publication date
EP2315365A4 (en) 2012-08-22
JP2011519519A (ja) 2011-07-07
EP2315365B1 (en) 2014-11-26
EP2315365A1 (en) 2011-04-27
CN102439868B (zh) 2014-09-17
US20100232528A1 (en) 2010-09-16
US8503564B2 (en) 2013-08-06
CN102439868A (zh) 2012-05-02
JP5264990B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
WO2010105400A1 (zh) 一种数据传输方法、通讯系统以及相关设备
Zhou et al. Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations
CN107483088B (zh) 大规模mimo鲁棒预编码传输方法
KR101143332B1 (ko) 채널 변동들을 보상하는 다중 안테나 모바일 통신시스템에서 신호들을 전송하는 방법 및 장치
KR101923200B1 (ko) 통신 네트워크에서 하향링크 다중 사용자 mimo 구성을 위한 대안적인 피드백 방법 및 시스템
EP2420005B1 (en) Method and device for data processing in a communication network
EP2404389B1 (en) Method and apparatus for eliminating multi-user interference in multi-antenna system
EP2002560B1 (en) Method for transmitting channel state information in multiple antenna system
US20140226744A1 (en) Communication channel optimization systems and methods in multi-user communication systems
EP2997705B1 (en) Large-scale fading coefficient estimation in wireless massive mimo systems
EP2932620A1 (en) Precoder weight selection for mimo communications when multiplicative noise limited
WO2011035698A1 (zh) 一种上行数据处理方法及系统
KR20100110965A (ko) 다중 셀 다중 안테나 시스템에서 간섭을 고려한 빔포밍 방법 및 장치
Kim et al. Spatial-correlation-based antenna grouping for MIMO systems
US8494459B2 (en) Wideband codebook construction and applications
Acheampong et al. A comprehensive study of optimal linear pre-coding schemes for a massive MU-MIMO downlink system: A survey
Moradi et al. Downlink beamforming for FDD systems with precoding and beam steering
Jiang et al. Channel Smoothing for 802.11 ax Beamformed MIMO-OFDM
Iqbal et al. Virtual spatial channel number and index modulation
Nagaradjane et al. Joint transmitter-receiver design for the uplink multi-user-MIMO transmission aided by polarization multiplexing
US20190305832A1 (en) Wireless telecommunications system and transmission protocol for use with same
Gesbert et al. Multiple antenna techniques
He Precoding and equalization for MIMO broadcast channels with applications in spread spectrum systems
KR100983797B1 (ko) 다중입력 단일출력 다중 사용자 시스템에서의 전송파워 조절 장치 및 그 방법
Halmi et al. Semi-blind channel covariance estimation for MIMO precoding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100823.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009798999

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011504300

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09798999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE