WO2010104152A1 - アモルファスハイドロカーボンナイトライド(a-CN:Hx)膜の成膜方法、有機ELデバイスおよびその製造方法 - Google Patents

アモルファスハイドロカーボンナイトライド(a-CN:Hx)膜の成膜方法、有機ELデバイスおよびその製造方法 Download PDF

Info

Publication number
WO2010104152A1
WO2010104152A1 PCT/JP2010/054120 JP2010054120W WO2010104152A1 WO 2010104152 A1 WO2010104152 A1 WO 2010104152A1 JP 2010054120 W JP2010054120 W JP 2010054120W WO 2010104152 A1 WO2010104152 A1 WO 2010104152A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plasma
nitride
organic device
layer
Prior art date
Application number
PCT/JP2010/054120
Other languages
English (en)
French (fr)
Inventor
拓 石川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN2010800118272A priority Critical patent/CN102348777A/zh
Priority to KR1020117023946A priority patent/KR101284671B1/ko
Publication of WO2010104152A1 publication Critical patent/WO2010104152A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention is, for example, an amorphous hydrocarbon nitride used as the light emitting layer of an organic EL device (a-CN: H x) method of forming a film, said amorphous hydrocarbon nitride: use the (a-CN H x) film
  • a-CN organic EL device
  • the present invention relates to an organic EL device and a manufacturing method thereof.
  • Organic EL elements have features such as self-emission, fast reaction speed, and low power consumption, so they do not require a backlight, and are expected to be applied to, for example, display units of portable devices. ing.
  • a-CN amorphous hydrocarbon nitride film
  • a-CN thin film light emitting devices
  • Non-Patent Document 1 an a-CN: H x film is formed using methane (CH 4 ) gas and nitrogen (N 2 ) as material gases by a parallel plate type RF magnetron discharge type plasma CVD apparatus. If so. "Deposition of functional nitride thin films by high-frequency plasma process and their applications” Yoshiaki Tsuji, Tokyo Denki University, 2005 "Study of Amorphous Carbon Nitride Films Aiming at White Light Emitting Devices", Kunio Itoh and Yuta Iwano, Bulletin of Tsuyama National College of Technology No. 49, 2007
  • the nitrogen gas as the material gas is activated to form a carbon-nitrogen bond.
  • film formation is performed using plasma by a magnetron discharge having a high electron temperature of 10 eV at the maximum, so that the formed film itself is damaged.
  • methane gas (CH 4 ) and nitrogen (N 2 ) are reacted and combined in plasma, carbon-nitrogen (CN) bonds in the formed a-CN: H x film are combined.
  • an object of the present invention is to stably use carbon-nitrogen (C) by using a hydrocarbon compound containing a carbon-nitrogen (CN) bond as a material gas by a method using high-density plasma having a relatively low electron temperature.
  • C carbon-nitrogen
  • CN carbon-nitrogen
  • -N Provided is a film forming method for forming an a-CN: H x film having few defects including bonds and good characteristics. It is another object of the present invention to provide an organic device using the a-CN: H x film and a manufacturing method thereof.
  • a method for forming an amorphous hydrocarbon nitride (a-CN: H x ) film used as a light emitting layer of an organic device comprising a plasma excitation gas and a hydrocarbon containing a CN bond
  • a process comprising: supplying a compound gas and nitrogen or ammonia as a material gas into a processing vessel; and generating a plasma of the plasma excitation gas by a microwave and activating the material gas by the plasma.
  • a method for forming a carbon nitride (a-CN: H x ) film is provided.
  • an organic device manufacturing method wherein a hole injection / transport layer is formed on an object to be processed on which a first conductive electrode is formed, and an amorphous light emitting layer is formed.
  • a hydrocarbon nitride (a-CN: H x ) film is laminated on the hole injection / transport layer, an electron injection layer is laminated on the amorphous hydrocarbon nitride (a-CN: H x ) film, The conductive electrode is laminated on the electron injection layer, the object to be processed, the first conductive electrode, the hole injection / transport layer, the amorphous hydrocarbon nitride (a-CN: H x ) film, the electron
  • An organic device manufacturing method is provided in which an injection layer and a sealing film for sealing so as to cover the second conductive electrode are stacked.
  • stacked on the said hole injection transport layer Amorphous hydrocarbon nitride (a-CN: H x ) film, an electron injection layer laminated on the amorphous hydrocarbon nitride (a-CN: H x ) film, and laminated on the electron injection layer
  • an organic device including a sealing film that seals so as to cover the second conductive electrode.
  • carbon-nitrogen (C—) can be stably produced by using a hydrocarbon compound gas containing a carbon-nitrogen (CN) bond as a material gas by a method using high-density plasma having a relatively low electron temperature.
  • N A film forming method for forming an a-CN: H x film having few defects including bonds and good characteristics is realized, and an organic device using the a-CN: H x film and a method for manufacturing the organic device are provided. Is done.
  • ITO indium tin oxide
  • a hydrocarbon gas containing nitrogen and nitrogen or ammonia are used as a material gas, or a hydrocarbon compound containing a C—N bond is used as a material gas, and RLSA ( A light emitting layer 12 (a-CN: H x film) is formed on the hole injection / transport layer 11 by a plasma CVD (Chemical Vapor Deposition) of a Radial Line Slot Antenna) method.
  • a plasma CVD Chemical Vapor Deposition
  • PBD (2- (4-tert-butylphenyl) -5- (4-biphenylyl) -1,3,4-oxadiazole is deposited on the light emitting layer 12 by vapor deposition. ) Or the like is formed.
  • target atoms for example, Mg, Ag, Al, etc.
  • the second conductive electrode A (cathode) 14 is formed.
  • the first conductive electrode 10, the hole injection / transport layer 11, the light emitting layer 12, the electron injection layer 13, and the second conductive electrode 14 are referred to as an organic element.
  • the hole injection / transport layer 11, the light emitting layer 12, and the electron injection layer 13 are etched using the second conductive electrode 14 as a mask.
  • the exposed portion of the organic element and the glass substrate G (first conductive electrode 10) is cleaned to remove a substance adsorbed on the organic element (for example, organic matter) ( Pre-cleaning).
  • a sealing film 15 which is a SiN x film (silicon nitride film) is formed.
  • the sealing film 15 is formed by microwave plasma CVD. Specifically, plasma is generated by exciting a gas containing silane or nitrogen with microwave power, and a high-quality SiN x film is formed at a low temperature of 100 ° C. or lower using the generated plasma. Since the organic EL element is damaged when it reaches a high temperature of 100 ° C. or higher, the SiN x film needs to be formed by a low-temperature process of 100 ° C. or lower.
  • the organic EL element is formed as described above. Since the light emitting layer 12 that is an a-CN: H x film is difficult to emit light in a single layer, a hole injection / transport layer 11 is formed below the light emitting layer 12, and an electron injection layer 13 is formed above the light emitting layer 12. .
  • the a-CN: H x film has a polymer-like structure containing C—H bonds and C—N bonds.
  • strong PL Photo Luminescence
  • the film is formed with a high plasma electron temperature.
  • the CH bond and CN bond in the a-CN: H x film may be broken by the high-frequency power supplied, Since many defects such as dangling bonds occur, there is a concern about deterioration of light emission characteristics.
  • the light emitting layer 12 of FIG. 1B described above is formed by using a hydrocarbon compound gas containing a C—N bond and nitrogen or ammonia and using a high electron density plasma RLSA method with a low electron temperature. Form. Since the generated plasma has a low electron temperature, CH bonds and CN bonds contained in the material gas are not excessively dissociated. As a result, an a-CN: H x film having stable CH bonds and CN bonds with few defects is formed as the light emitting layer 12. The light emitting characteristics of an organic device (for example, an organic EL element) using the light emitting layer 12 formed in this way are excellent.
  • the plasma electron temperature when using the CCP is generally about 1 to 5 eV on the substrate surface, and 2 to 10 eV when using the ICP, whereas it is 1 to 2 eV when using the RLSA method. Low compared to that of the plasma source.
  • the plasma density of the CCP is 10 10 cm ⁇ 3 or less and the plasma density of the ICP is 10 12 cm ⁇ 3 or less, whereas in the RLSA system, it is around 10 12 cm ⁇ 3 , and other plasma reductions. It is equal to or better than that.
  • hydrocarbon compound gas containing a CN bond examples include methylamine (CH 3 NH 2 ), dimethylamine ((CH 3 ) 2 NH), trimethylamine ((CH 3 ) 3 N), pyridine (C 5 H 5 N) and the like.
  • These material gases may contain C—H bonds and C—N bonds, and if the film is formed using plasma with a high electron temperature, these bonds may be broken. Therefore, it can be seen that when these material gases are used, a high-density plasma RLSA system having a low electron temperature is preferable.
  • the substrate processing system Sys includes a cluster type substrate processing apparatus 1 having a plurality of processing apparatuses and a control device 20 that controls the substrate processing apparatus 1.
  • the substrate processing apparatus 1 includes a load lock chamber LLM, a transfer chamber TM (Transfer Module), a cleaning chamber CM (Cleaning Module), and six process modules PM (Process Module) 1-6.
  • the load lock chamber LLM is a vacuum transfer chamber in which the inside can be shifted to a predetermined reduced pressure state in order to transfer the glass substrate G transferred from the atmospheric system to the transfer chamber TM in a reduced pressure state.
  • the transfer chamber TM is provided with an articulated transfer arm Arm that can bend, stretch and turn.
  • the glass substrate G is transferred from the load lock chamber LLM to the cleaning chamber CM using the transfer arm Arm, and the ITO surface is cleaned. Thereafter, it is transferred to the process module PM1, and further transferred to the other process modules PM2 to PM6.
  • contaminants mainly organic substances
  • the hole injection / transport layer 11 is formed on the ITO surface of the glass substrate G by vapor deposition in PM1.
  • the glass substrate G is transferred to PM2, and a light emitting layer 12 (a-CN: Hx film) is formed adjacent to the hole injection / transport layer 11 by RLSA plasma CVD.
  • the glass substrate G is conveyed to PM3, and the electron injection layer 13 is formed adjacent to the light emitting layer 12 by vapor deposition in PM3.
  • the glass substrate G is transported to PM4, and the second conductive electrode 14 is formed on the electron injection layer 13 by sputtering process at PM4.
  • the glass substrate G is transported to PM5, and an etching process is performed using the second conductive electrode 14 as a mask.
  • the glass substrate G is transported to the cleaning chamber CM, and impurities such as organic substances adhering to the exposed portions of the hole injection / transport layer 11, the light emitting layer 12, and the electron injection layer 13 are removed during the process.
  • the glass substrate G is transferred to the PM 6, and the sealing film 16 made of, for example, SiN x is formed by microwave plasma CVD.
  • the control device 20 is a computer that controls the entire substrate processing system Sys. Specifically, the control device 20 controls the conveyance of the glass substrate G in the substrate processing system Sys and the actual process inside the substrate processing apparatus 10.
  • the control device 20 includes a ROM 22a, a RAM 22b, a CPU 24, a bus 26, an external interface (external I / F) 28a, and an internal interface (internal I / F) 28b.
  • ROM 22a a basic program executed by the control device 20, a program that is activated in the event of an abnormality, a recipe that indicates a process procedure of each PM, and the like are recorded.
  • the RAM 22b stores data indicating process conditions in each PM and a control program for executing the process.
  • the ROM 22a and the RAM 22b are examples of storage media, and may be an EEPROM, an optical disk, a magneto-optical disk, or the like.
  • the CPU24 controls the process which manufactures an organic electronic device on the glass substrate G by running a control program according to various recipes.
  • the bus 26 is a path for exchanging data between devices.
  • the internal interface 28a inputs data and outputs necessary data to a monitor or a speaker (not shown).
  • the external interface 28b transmits and receives data to and from the substrate processing apparatus 1 via the network.
  • the substrate processing apparatus 1 transports the instructed glass substrate G, drives the instructed PM, controls a necessary process, and controls a control result (response Signal) to the control device 20.
  • the control device 20 (computer) executes the control program stored in the ROM 22a and RAM 22b, so that the substrate EL processing (device) manufacturing process shown in FIG. 1 is performed. Control the system Sys.
  • FIG. 3 is a schematic explanatory diagram of the vapor deposition apparatus 30 for PM1.
  • the vapor deposition processing apparatus 30 shown in FIG. 3 forms the hole injection / transport layer 11 shown in FIG. 1A by vapor deposition.
  • the hole injection / transport layer 11 may be formed by polymerizing the hole injection layer and the hole transport layer, or the hole injection layer and the hole transport layer may be provided separately.
  • the vapor deposition processing apparatus 30 has a sealed processing container 31.
  • a gate valve 32 for loading / unloading the glass substrate G is provided on the front surface of the processing container 31.
  • An exhaust line 33 having a vacuum pump (not shown) is connected to the bottom surface of the processing container 31 so that the inside of the processing container 31 is decompressed.
  • the glass substrate G is placed on the holding table 35 in a face-up state with the surface on which the hole injection / transport layer 11 is deposited facing up.
  • the holding table 35 travels on the rail 36 and conveys the glass substrate G.
  • a vapor deposition head 37 is disposed on the ceiling surface of the processing vessel 31.
  • a vapor supply source 38 that supplies vapor of a film forming material such as CuPe (Copper (II) Phthalocyanine) for forming the hole injection / transport layer 11 is connected to the vapor deposition head 37 via a pipe 39.
  • the hole injection transport layer 11 is formed on the upper surface of the glass substrate G by transporting the glass substrate G held on the holding table 35 while ejecting the vapor of the film forming material supplied from the vapor supply source 38 from the vapor deposition head 37. It is formed.
  • FIG. 4 schematically shows a longitudinal section of the microwave plasma processing apparatus PM2 that performs the film forming process.
  • the microwave plasma processing apparatus PM4 includes a processing container 60 having a bottomed rectangular shape with an open ceiling.
  • the processing container 60 is made of, for example, an aluminum alloy and is grounded.
  • a mounting table 61 on which the glass substrate G is mounted is provided at the bottom center of the processing container 60.
  • a high frequency power source 63 is connected to the mounting table 61 via a matching unit 62, and a predetermined bias voltage is applied to the inside of the processing container 60 by the high frequency power output from the high frequency power source 63.
  • a high voltage DC power supply 65 is connected to the mounting table 61 via a coil 64, and the glass substrate G is electrostatically attracted by a DC voltage output from the high voltage DC power supply 65.
  • a heater 66 is embedded in the mounting table 61. The heater 66 is connected to an AC power source 67 and holds the glass substrate G at a predetermined temperature.
  • the opening of the ceiling portion of the processing container 60 is closed by a dielectric plate 68 made of quartz or the like, and further, an O-ring 69 provided between the processing container 60 and the dielectric plate 68 is hermetically sealed in the processing chamber. Is held.
  • a radial line slot antenna 70 (RLSA: Radial Line Slot Antenna) is disposed above the dielectric plate 68.
  • the RLSA 70 has an antenna body 70a whose bottom surface is open.
  • a slot in which a large number of slots are formed in the bottom surface opening of the antenna body 70a via a dielectric plate 70b formed of a low-loss dielectric material.
  • a plate 70c is provided.
  • the RLSA 70 is connected to an external microwave generator 72 via a coaxial waveguide 71.
  • a 2.45 GHz microwave output from the microwave generator 72 propagates through the antenna body 70a of the RLSA 70 via the coaxial waveguide 71 and is shortened by the dielectric plate 70b. It passes through each slot of the plate 70c and is supplied into the processing vessel 60 while being circularly polarized.
  • a large number of gas supply ports 73 for supplying gas are formed in the upper side wall of the processing container 60, and each gas supply port 73 communicates with an argon gas supply source 75 through a gas line 74.
  • a substantially flat gas shower plate 76 is provided in the approximate center of the processing chamber. The gas shower plate 76 is formed in a lattice shape so that the gas pipes are orthogonal to each other. Each gas pipe is provided with a large number of gas holes 76a at equal intervals on the mounting table 61 side.
  • hydrocarbon compound gas supplied from 77a methylamine (CH 3 NH 2 ), dimethylamine ((CH 3 ) 2 NH), trimethylamine ((CH 3 ) 3 N), pyridine (C 5 H) 5 N) is exemplified, and the gas supplied from 77b may be NH 4 in addition to N 2 .
  • the upper space of the gas shower plate 76 is called a plasma excitation region A1
  • the lower space of the gas shower plate 76 is called a diffusion plasma region A2.
  • plasma excitation region A1 plasma having a relatively high electron temperature is generated and diffuses into the diffusion plasma region A2.
  • An exhaust device 79 is attached to the processing container 60 via a gas discharge pipe 78, and the processing chamber can be decompressed to a desired degree of vacuum by discharging the gas in the processing container 60.
  • the pressure in the processing chamber is, for example, 20 mTorr or less and supplied from the microwave generator 72 to the processing chamber by the exhaust device 79 based on the control of the control device 20.
  • the power of the wave is 3.0 W / cm 2 or more, and the temperature in the vicinity of the glass substrate G placed in the processing chamber (for example, the substrate surface temperature) is controlled to 100 ° C. or less, preferably 70 ° C. or less.
  • 50 sccm of argon gas (inert gas) is supplied as a plasma excitation gas from the gas supply port 73 above the processing chamber.
  • a hydrocarbon compound gas containing C—N bonds (C x H y N z gas) is supplied at 50 sccm, argon gas is supplied at 200 sccm, and nitrogen is supplied. According to this, argon plasma as an excitation gas is generated by the power of the microwave, and the mixed gas is activated by the plasma.
  • the light emitting layer 12 (a-CN: H x film) is formed at a low temperature of 100 ° C. or less (preferably 70 ° C. or less).
  • the glass substrate G is conveyed to the vapor deposition apparatus PM3 based on the control of the control device 20, and the electron injection layer 13 is formed on the light emitting layer 12 by vapor deposition, as shown in FIG.
  • the vapor deposition processing device PM3 the same one as the vapor deposition processing device 30 of PM1 shown in FIG.
  • the glass substrate G is transported to the PM 5, and the hole injection transport layer 11 and the light emitting layer 12 are masked by using the second conductive electrode 14 as a mask by the plasma generated by exciting the etching gas based on the control of the control device 20.
  • the electron injection layer 13 is dry etched. Thereby, the hole injection / transport layer 11, the light emitting layer 12, and the electron injection layer 13 are formed as shown in FIG.
  • CM Pre-cleaning
  • the glass substrate G is transferred to the microwave plasma processing apparatus PM6 based on the control of the control apparatus 20, and as shown in FIG. 1G, the sealing film 15 that is a SiN x film (silicon nitride film) is formed. A film is formed so as to seal the exposed portion of the organic element.
  • the internal structure of the microwave plasma processing apparatus PM6 is the same as that of the microwave plasma processing apparatus PM2 shown in FIG.
  • the pressure in the processing chamber is 10 mTorr or less by the vacuum device 79, for example, and the power of the microwave supplied from the microwave generator 72 to the processing chamber is 4.
  • the temperature in the vicinity of the glass substrate G placed in the processing chamber is 0 W / cm 2 or more (for example, the substrate surface temperature) is controlled to 100 ° C. or less, and in this state, argon gas is supplied from 5 to 500 sccm from above, Silane (SiH 4 ) gas is supplied from the gas shower plate 76 in an amount of 0.1 to 100 sccm, whereas the flow rate ratio of silane gas and nitrogen gas is 1: 100.
  • the mixed gas is excited by the microwave power to generate plasma, and the generated plasma is used to form the SiN x film (sealing film 15 which is a silicon nitride film) at a low temperature.
  • the SiN x film which is a silicon nitride film
  • the SiNx film (sealing film 15) is laminated as a sealing layer in the protective film of the organic element.
  • the SiNx film (sealing film 15) needs to be thin to some extent. The following is preferable.
  • the electron temperature of the plasma in which the light emitting layer 12 (a-CN: Hx film) is generated is low and high density It is formed by RLSA type CVD plasma treatment using plasma.
  • the processing space of the RLSA type CVD plasma processing apparatus is divided into a plasma excitation region A1 for generating plasma and a diffusion plasma region A2 as shown in FIG. 4, and the electron temperature of the plasma in the diffusion plasma region A2 for processing the substrate. Is as low as about 1 to 2 eV. Therefore, there is a low possibility of breaking the CN bond of the gas used for film formation. Then, since a hydrocarbon compound gas containing a CN bond can be used as a material gas, an a-CN film can be efficiently formed.
  • the light emitting layer 12 (a-CN: H x film) is formed in a state where the electron temperature of the plasma is low, the CN bonds contained in the material gas are not broken, and the light emitting layer 12 (a The CN bond is maintained within the (CN: H x film). Further, other CH bonds and the like are stably maintained in the light emitting layer 12 (a-CN: Hx film).
  • the light emitting layer 12 (a-CN: Hx film) emits light based on these CN bonds and CH bonds, and therefore these CN bonds and CH bonds are stably contained.
  • Such a light emitting layer 12 (a-CN: H x film) is very excellent in stability as a light emitting device, and is very useful as a light emitting layer used in an organic device such as an organic EL element. .
  • the a-CN: H x film can control the emission color by the amount of CN bonds.
  • FIG. 5 is a longitudinal sectional view of an RLSA type microwave plasma processing apparatus PM2 ′ according to another embodiment of the present invention.
  • a gas supply source 77b for supplying N 2 is connected to a gas supply port 73 via a gas line 74 during the film forming process of the light emitting layer 12. This is different from the above embodiment. Since the other configuration is the same as that of the microwave plasma processing apparatus PM2 according to the above embodiment, the description thereof is omitted.
  • the N 2 gas is supplied to the plasma excitation region A1 above the inside of the processing container 60.
  • the N 2 gas can be excited using plasma having a relatively higher electron temperature than the region A2.
  • the excited nitrogen atoms diffuse from the plasma excitation region A1 to the diffusion plasma region A2.
  • a hydrocarbon compound gas and nitrogen atoms dissociated while containing CN bonds are deposited on the glass substrate G, and film formation is performed. Therefore, it becomes possible to add more nitrogen atoms without giving a large damage to the light emitting layer 12 to be formed.
  • the present invention is not limited to this, and it can also be used for a top emission type organic device that extracts light from the upper surface of the element. It is.
  • the second conductive electrode 14 needs to be a transparent electrode.
  • the present invention is, for example, an amorphous hydrocarbon nitride used as the light emitting layer of an organic EL device (a-CN: H x) method of forming a film, said amorphous hydrocarbon nitride: use the (a-CN H x) film
  • a-CN organic EL device
  • the present invention can be applied to conventional organic EL devices and manufacturing methods thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】比較的電子温度の低い高密度プラズマを用いた方法で、炭素-窒素(C-N)結合を含む炭化水素化合物を材料ガスとして、安定的に炭素-窒素(C-N)結合が含まれる欠陥の少なく特性の良いa-CN:H膜を形成し、a-CN:H膜を用いた有機デバイスを提供する。 【解決手段】C-N結合を含む炭化水素化合物と窒素もしくはアンモニアを材料ガスとして用いて発光層の成膜を行い、発光層の下部にホール注輸送層、発光層の上部に電子注入層を形成し、アモルファスハイドロカーボンナイトライド(a-CN:H)膜を発光層とした有機デバイスが得られる。

Description

アモルファスハイドロカーボンナイトライド(a-CN:Hx)膜の成膜方法、有機ELデバイスおよびその製造方法
 本発明は、例えば有機ELデバイスの発光層として用いられるアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法、該アモルファスハイドロカーボンナイトライド(a-CN:H)膜を用いた有機ELデバイスおよびその製造方法に関する。
 近年、有機化合物を用いて発光させる有機エレクトロルミネッセンス(EL:Electro Luminescence)素子を利用した有機ELディスプレイが注目されている。有機EL素子は、自発光し、反応速度が速く、消費電力が低い等の特徴を有しているため、バックライトを必要とせず、例えば、携帯型機器の表示部等への応用が期待されている。
 有機EL素子の発光層としては様々な化合物材料が検討されており、薄膜発光デバイスの1つとしてアモルファスハイドロカーボンナイトライド膜(以下、a-CN:H膜と呼ぶ)が報告されている(例えば、非特許文献1参照)。また、非特許文献2によれば、a-CN:H膜を発光層として用いることで、赤、緑、青の3色を発光させることが可能であり、この3原色により全ての色が発光させられると考えられる。なお、非特許文献1においては、平行平板型RFマグネトロン放電方式のプラズマCVD装置により、材料ガスとしてメタン(CH)ガスと窒素(N)を用いてa-CN:H膜を成膜するとしている。
「高周波プラズマプロセスによる機能性窒化物薄膜の成膜とその応用」醍醐佳明、東京電機大学、2005 「Studyof Amorphous Carbon Nitride Films Aiming at White Light Emitting Devices」Kunio Itoh and Yuta Iwano 、津山高専紀要 第49号、2007
 しかしながら、上記非特許文献1に記載の平行平板型RFマグネトロン放電方式のプラズマCVD装置によるa-CN:H膜の成膜においては、材料ガスである窒素ガスを活性化させ、炭素-窒素結合を形成するために、プラズマ中の電子温度が最大10eVと高いマグネトロン放電によるプラズマを用いて成膜を行うため、成膜された膜自体がダメージを負ってしまうという問題点があった。さらに、材料ガスであるメタンガス(CH)と窒素(N)をプラズマ中で反応させ、結合させるため、成膜されたa-CN:H膜中の炭素-窒素(C-N)結合の安定性にばらつきが生じ、膜中にダングリングボンドが生じるため、a-CN:H膜の特性が劣化してしまうという問題点があった。
 そこで、本発明の目的は、比較的電子温度の低い高密度プラズマを用いた方法で、炭素-窒素(C-N)結合を含む炭化水素化合物を材料ガスとして、安定的に炭素-窒素(C-N)結合が含まれる欠陥の少ない特性の良いa-CN:H膜を形成する成膜方法を提供する。さらに、該a-CN:H膜を用いた有機デバイスおよびその製造方法を提供することにある。
 本発明によれば、有機デバイスの発光層として用いられるアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法であって、プラズマ励起用ガスと、C-N結合を含む炭化水素化合物ガスと窒素もしくはアンモニアを材料ガスとして処理容器内に供給する工程と、マイクロ波により前記プラズマ励起用ガスのプラズマを生成し、該プラズマにより前記材料ガスを活性化させる工程と、を備えるアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法が提供される。
 かかる成膜方法によれば、材料ガスの段階において既にC-N結合が含まれるものを使用するため、プラズマ中において高いエネルギー励起状態でCHとNを反応させC-N結合を形成させる必要がなく、安定的にC-N結合が含まれ、欠陥が少なく発光特性の良好なアモルファスハイドロカーボンナイトライド(a-CN:H)膜が得られる。
 また、別の観点からの本発明によれば、有機デバイスの製造方法であって、第1の導電性電極が形成された被処理体上にホール注輸送層を形成し、発光層であるアモルファスハイドロカーボンナイトライド(a-CN:H)膜を前記ホール注輸送層上に積層し、電子注入層を前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜上に積層し、第2の導電性電極を前記電子注入層上に積層し、前記被処理体、第1の導電性電極、前記ホール注輸送層、前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜、前記電子注入層、前記第2の導電性電極を覆うように封止する封止膜を積層する、有機デバイスの製造方法が提供される。
 さらに、別の観点からの本発明によれば、第1の導電性電極が形成されている被処理体上に形成されるホール注輸送層と、前記ホール注輸送層上に積層される発光層であるアモルファスハイドロカーボンナイトライド(a-CN:H)膜と、前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜上に積層される電子注入層と、前記電子注入層上に積層される第2の導電性電極と、前記被処理体、前記第1の導電性電極、前記ホール注輸送層、前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜、前記電子注入層、前記第2の導電性電極を覆うように封止する封止膜と、を備える有機デバイスが提供される。
 本発明によれば、比較的電子温度の低い高密度プラズマを用いた方法で、炭素-窒素(C-N)結合を含む炭化水素化合物ガスを材料ガスとして、安定的に炭素-窒素(C-N)結合が含まれる欠陥の少なく特性の良いa-CN:H膜を形成する成膜方法が実現され、さらに、該a-CN:H膜を用いた有機デバイスおよびその製造方法が提供される。
本発明の実施の形態にかかる有機デバイスの製造工程を示した説明図である。 本発明の実施の形態にかかる基板処理システムの説明図である。 本発明にかかる蒸着処理装置30の概略的な説明図である。 本発明の実施の形態にかかるRLSA型プラズマ処理装置の説明図である。 本発明の他の実施の形態にかかるRLSA方式のマイクロ波プラズマ処理装置PM2’の説明図である。
 1…基板処理装置
10…第1の導電性電極
11…ホール注輸送層
12…発光層(a-CN:H膜)
13…電子注入層
14…第2の導電性電極
15…封止膜
20…制御装置
30…蒸着処理装置
 以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 まず、本発明の実施の形態にかかる有機デバイスの製造方法について、その概略構成を示した図1を参照しながら説明する。
(有機デバイスの製造方法)
 図1(a)に示したように、ガラス基板G上には予め陽極層として、例えばインジウムスズ酸化物(ITO:Indium Tin Oxide)からなる第1の導電性電極(陽極)10が形成されている。その表面をクリーニングした後、蒸着により第1の導電性電極10上に、例えばCuPe等の有機化合物であるホール注輸送層11が形成される。
 ついで、図1(b)に示したように、窒素を含む炭化水素ガスと、窒素もしくはアンモニアを材料ガスとして用いるか、またはC-N結合を含む炭化水素化合物を材料ガスとして用いて、RLSA(Radial Line Slot Antenna)方式のプラズマCVD(Chemical Vapor Deposition)により、ホール注輸送層11上に発光層12(a-CN:H膜)が成膜される。
 次に、図1(c)に示したように、蒸着により発光層12上に、例えばPBD(2-(4-tert-Butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole)等である電子注入層13が形成される。
 ついで、図1(d)に示したように、スパッタリングによりパターンマスクを介して電子注入層13上にターゲット原子(たとえば、Mg、Ag、Al等)が堆積することにより、第2の導電性電極(陰極)14が形成される。以下では、上記第1の導電性電極10、ホール注輸送層11、発光層12、電子注入層13および第2の導電性電極14を含めて有機素子という。
 次に、図1(e)に示したように、第2の導電性電極14をマスクとして、ホール注輸送層11、発光層12、電子注入層13がエッチングされる。その後、図1(f)に示したように、有機素子およびガラス基板G(第1の導電性電極10)の露出部分をクリーニングして、有機素子に吸着した物質(例えば有機物など)を取り除く(プリクリーニング)。
 次に、図1(g)に示したように、SiN膜(シリコン窒化膜)である封止膜15が形成される。封止膜15は、マイクロ波プラズマCVDにより形成される。具体的には、マイクロ波のパワーによりシランや窒素を含むガスを励起させてプラズマを生成し、生成されたプラズマを用いて100℃以下の低温で、良質なSiN膜を形成する。有機EL素子は100℃以上の高温になるとダメージを受けるので、SiN膜は100℃以下の低温プロセスで形成される必要がある。
 本実施の形態において、有機EL素子は以上に説明したように、形成される。なお、a-CN:H膜である発光層12は、単層での発光は困難であるため、発光層12の下部にホール注輸送層11、上部に電子注入層13が成膜される。
 a-CN:H膜はC-H結合およびC-N結合を含むポリマー状構造を有する。ここで、a-CN:H膜は室温において強いPL(Photo Luminescence)が観測されることが報告されている。このa-CN:H膜の成膜において、メタンと窒素を用いて、平行平板装置におけるプラズマ(CCP)や誘電結合プラズマ(ICP)を用いるときに、プラズマの電子温度が高い状態で成膜を行った場合、成膜される過程において、a-CN:H膜中のC-H結合およびC-N結合は投入される高周波電力によりその結合が切れてしまう場合があり、膜中にダングリングボンド等の欠陥が多く生じてしまうため、発光特性等の劣化が懸念される。
 そこで、上記説明した図1(b)の発光層12の成膜を、C-N結合を含む炭化水素化合物ガスと、窒素もしくはアンモニアを用い、低電子温度の高密度プラズマRLSA方式によって発光層12を形成する。生成されるプラズマが低電子温度であるため、材料ガスに含まれるC-H結合、C-N結合が過剰に解離されることがない。結果的に、欠陥の少ない安定したC-H結合、C-N結合を有するa-CN:H膜が発光層12として形成される。このように形成された発光層12を用いた有機デバイス(例えば有機EL素子)の発光特性は優良なものとなる。なお、上記CCPを用いた場合のプラズマの電子温度は一般的には基板表面で1~5eV程度、ICPを用いた場合では2~10eVであるのに対し、RLSA方式では1~2eVであり他のプラズマ源のそれに比べ低い。また、上記CCPのプラズマ密度は1010cm-3以下であり、ICPのプラズマ密度は1012cm-3以下であるのに対し、RLSA方式では1012cm-3前後であり、他のプラズマ減のそれと比べ同等以上である。
 上述したC-N結合を含む炭化水素化合物ガスとしては、メチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)、ピリジン(CN)等が挙げられる。これらの材料ガスにはC-H結合やC-N結合が含まれている場合があり、電子温度の高いプラズマを用いて成膜を行うとそれらの結合が切れてしまう恐れがある。そのため、これらの材料ガスを用いる場合には低電子温度である高密度プラズマRLSA方式が好ましいことがわかる。
(基板処理システム)
 次に、図1に示した一連のプロセスを実施するための基板処理システムについて、図2を参照しながら説明する。本実施形態にかかる基板処理システムSysは、複数の処理装置を有するクラスタ型の基板処理装置1および基板処理装置1を制御する制御装置20を有している。
(基板処理装置1)
 基板処理装置1は、ロードロック室LLM、搬送室TM(Transfer Module)、クリーニング室CM(Cleaning Module)および6つのプロセスモジュールPM(Process Module)1~6から構成されている。
 ロードロック室LLMは、大気系から搬送されたガラス基板Gを、減圧状態にある搬送室TMに搬送するために内部を所定の減圧状態に移行可能な真空搬送室である。搬送室TMには、その内部に屈伸および旋回可能な多関節状の搬送アームArmが配設されている。最初に、ガラス基板Gは、搬送アームArmを用いてロードロック室LLMからクリーニング室CMに搬送され、ITO表面をクリーニングされる。その後、プロセスモジュールPM1に搬送され、さらに、他のプロセスモジュールPM2~PM6に搬送される。クリーニング室CMでは、ガラス基板Gに形成されたITO(陽極層)の表面に付着した汚染物(主に有機物)を光照射等により除去する。
 6つのプロセスモジュールPM1~6においては、まず、PM1にて蒸着によりガラス基板GのITO表面にホール注輸送層11が成膜される。次に、ガラス基板GはPM2に搬送され、RLSA方式プラズマCVDによりホール注輸送層11に隣接して発光層12(a-CN:H膜)が形成される。
 次に、ガラス基板GはPM3に搬送され、PM3にて蒸着により発光層12に隣接して電子注入層13が形成される。次に、ガラス基板GはPM4に搬送され、PM4にてスパッタリング処理により第2の導電性電極14が電子注入層13上に形成される。ついで、ガラス基板GはPM5に搬送され、第2の導電性電極14をマスクとしてエッチング処理が行われる。次に、ガラス基板Gはクリーニング室CMに搬送され、プロセス中にホール注輸送層11、発光層12、電子注入層13の露出部分に付着した有機物等の不純物を除去する。
その後、ガラス基板GはPM6に搬送され、マイクロ波プラズマCVDにより例えばSiNからなる封止膜16が形成される。
(制御装置20)
 制御装置20は、基板処理システムSysの全体を制御するコンピュータである。具体的には、制御装置20は、基板処理システムSys内のガラス基板Gの搬送および基板処理装置10内部での実際のプロセスを制御する。制御装置20は、ROM22a、RAM22b、CPU24、バス26、外部インタフェース(外部I/F)28aおよび内部インタフェース(内部I/F)28bを有している。
 ROM22aには、制御装置20にて実行される基本プログラムや、異常時に起動するプログラムや各PMのプロセス手順が示されたレシピ等が記録されている。RAM22bには、各PMでのプロセス条件を示すデータやプロセスを実行するための制御プログラムが蓄積されている。ROM22aおよびRAM22bは、記憶媒体の一例であり、EEPROM、光ディスク、光磁気ディスクなどであってもよい。
 CPU24は、各種レシピにしたがって制御プログラムを実行することにより、ガラス基板G上に有機電子デバイスを製造するプロセスを制御する。バス26は、各デバイス間でデータをやりとりする経路である。内部インタフェース28aは、データを入力し、必要なデータを図示しないモニタやスピーカ等に出力する。外部インタフェース28bは、ネットワークを介して基板処理装置1との間でデータを送受信する。
 たとえば、制御装置20から駆動信号が送信されると、基板処理装置1では、指示されたガラス基板Gを搬送し、指示されたPMを駆動させ、必要なプロセスを制御するとともに、制御結果(応答信号)を制御装置20に通知する。このようにして、制御装置20(コンピュータ)は、ROM22aやRAM22bに記憶された制御プログラムを実行することにより、図1に示した有機EL素子(デバイス)の製造プロセスが遂行されるように基板処理システムSysを制御する。
 次に、各PMの内部構成および各PMで実行される具体的処理について説明する。なお、エッチングおよびスパッタリングの各処理を実行するPM4およびPM5については、一般的な装置を用いればよく、その内部構成の説明は省略する。
(PM1:ホール注輸送層11の蒸着処理)
 図3は、PM1の蒸着処理装置30の概略的な説明図である。図3に示す蒸着処理装置30は、蒸着によって図1(a)に示したホール注輸送層11を成膜する。なお、ホール注輸送層11とは、ホール注入層とホール輸送層を重合させ成膜したものであってもよいし、ホール注入層とホール輸送層を別々に設けることもできる。
 蒸着処理装置30は、密閉された処理容器31を有している。また、処理容器31の前面には、ガラス基板Gの搬入出用のゲートバルブ32が設けられている。
 処理容器31の底面には、真空ポンプ(図示せず)を有する排気ライン33が接続され、処理容器31の内部は減圧されるようになっている。処理容器31の内部には、ガラス基板Gを水平に保持する保持台35を有する。ガラス基板Gはホール注輸送層11を蒸着させる面を上に向けたフェースアップの状態で、保持台35に載置される。保持台35は、レール36上を走行し、ガラス基板Gを搬送する。
 処理容器31の天井面には、蒸着ヘッド37が配置されている。蒸着ヘッド37には、ホール注輸送層11を成膜させるCuPe(Copper(II)Phthalocyanine)等の成膜材料の蒸気を供給する蒸気供給源38が配管39を介して接続されている。蒸気供給源38から供給された成膜材料の蒸気を蒸着ヘッド37から噴出させながら、保持台35上に保持したガラス基板Gを搬送することにより、ガラス基板Gの上面にホール注輸送層11が形成される。
(PM2:発光層12(a-CN:H膜)の成膜処理)
 次に、ガラス基板Gは制御装置20の制御に基づきマイクロ波プラズマ処理装置PM2に搬送され、図1(b)に示したように、ホール注輸送層11の上面にa-CN:H膜が成膜される。図4に成膜処理を実行するマイクロ波プラズマ処理装置PM2の縦断面を模式的に示す。
マイクロ波プラズマ処理装置PM4は、天井部が開口した有底直方形状の処理容器60を有している。処理容器60は、たとえばアルミニウム合金により形成され、接地されている。処理容器60の底部中央にはガラス基板Gを載置する載置台61が設けられている。載置台61には、整合器62を介して高周波電源63が接続され、高周波電源63から出力された高周波電力により処理容器60の内部に所定のバイアス電圧が印加される。また、載置台61には、コイル64を介して高圧直流電源65が接続されていて、高圧直流電源65から出力された直流電圧によりガラス基板Gを静電吸着するように構成される。さらに、載置台61の内部にはヒータ66が埋設されている。ヒータ66は交流電源67に接続されていて、ガラス基板Gを所定の温度に保持する。
 処理容器60の天井部の開口は、石英などから形成された誘電体プレート68により閉塞され、さらに、処理容器60と誘電体プレート68との間に設けられたOリング69により処理室内の気密性が保持されている。
 誘電体プレート68の上部にはラジアルラインスロットアンテナ70(RLSA:Radial Line Slot Antenna)が配設されている。RLSA70は、下面が開口したアンテナ本体70aを有していて、そのアンテナ本体70aの下面開口には、低損失誘電体材料により形成された誘電体板70bを介して多数のスロットが形成されたスロット板70cが設けられている。
 RLSA70は、同軸導波管71を介して外部のマイクロ波発生器72に接続されている。マイクロ波発生器72から出力された、たとえば2.45GHzのマイクロ波は、同軸導波管71を介してRLSA70のアンテナ本体70aを伝搬し、誘電体板70bにて短波長化された後、スロット板70cの各スロットに通され、円偏波しながら処理容器60内部に供給される。
 処理容器60の上部側壁にはガスを供給するためのガス供給口73が多数形成され、各ガス供給口73は、ガスライン74を介してアルゴンガス供給源75に連通している。処理室の略中央には略平板状のガスシャワープレート76が設けられている。ガスシャワープレート76は、ガス管が互いに直交するように格子状に形成されている。各ガス管には載置台61側にガス孔76aが等間隔に多数設けられている。ガスシャワープレート76に連通されたC-N結合を含む炭化水素化合物ガスCを供給するガス供給源77a、Nを供給するガス供給源77b、Arを供給するガス供給源77cから供給されたガスは、ガスシャワープレート76のガス孔76aから均等にガラス基板Gに向けて放出される。ここで、77aから供給される炭化水素化合物ガスとしては、メチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)、ピリジン(CN)が例示され、77bから供給されるガスは、Nの他NHでもよい。また、処理容器60内部においてガスシャワープレート76の上部空間はプラズマ励起領域A1と呼ばれ、ガスシャワープレート76の下部空間は拡散プラズマ領域A2と呼ぶ。プラズマ励起領域A1において、比較的高い電子温度を持つプラズマが生成され、拡散プラズマ領域A2へ拡散していく。
 処理容器60には、ガス排出管78を介して排気装置79が取り付けられていて、処理容器60内のガスを排出することにより、処理室を所望の真空度まで減圧可能である。
 このように構成されたマイクロ波プラズマ処理装置PM2では、制御装置20の制御に基づき、排気装置79により処理室内の圧力が、例えば、20mTorr以下、マイクロ波発生器72から処理室内に供給されるマイクロ波のパワーが3.0W/cm以上、同処理室内に載置されるガラス基板G近傍の温度(たとえば、基板表面温度)が100℃以下、好ましくは70℃以下に制御され、この状態で、処理室上方のガス供給口73からプラズマ励起用ガスとしてアルゴンガス(不活性ガス)を50sccm供給する。処理室中央のガスシャワープレート76からC-N結合を含む炭化水素化合物ガス(Cガス)を50sccm、アルゴンガスを200sccmおよび窒素を供給する。これによれば、マイクロ波のパワーにより励起用ガスのアルゴンのプラズマが生成され、そのプラズマにより混合ガスが活性化される。100℃以下(好ましくは70℃以下)の低温にて発光層12(a-CN:H膜)が成膜される。
(PM3:電子注入層13の蒸着処理)
 次に、ガラス基板Gは制御装置20の制御に基づき蒸着装置PM3に搬送され、図1(c)に示すように、蒸着によって電子注入層13が発光層12上に成膜される。蒸着処理装置PM3としては図3に示したPM1の蒸着処理装置30と同様のものを用いるため、その内部構成の説明は省略する。
(PM4:第2の導電性電極14のスパッタリング処理)
 次に、ガラス基板GはPM4に搬送され、制御装置20の制御に基づき処理容器内に供給されたガスを励起させてプラズマを生成し、生成されたプラズマ中のイオンをターゲットに衝突させ(スパッタリング)、ターゲットから飛び出したターゲット原子を電子注入層13の上に堆積させることにより、図1(d)示した第2の導電性電極14(陰極)を形成する。
(PM5:エッチング処理)
 次に、ガラス基板GはPM5に搬送され、制御装置20の制御に基づきエッチングガスを励起させることにより生成されたプラズマにより第2の導電性電極14をマスクとしてホール注輸送層11、発光層12、電子注入層13をドライエッチングする。これにより、図1(e)に示したようにホール注輸送層11、発光層12、電子注入層13が形成される。
(CM:プリクリーニング)
 次に、ガラス基板Gは、制御装置20の制御に基づきCMに搬送され、アルゴンガスを励起させて生成したプラズマを用いてホール注輸送層11、発光層12、電子注入層13の界面や露出部に付着した有機物等の不純物を取り除く。
(PM6:封止膜15の成膜処理)
 次に、ガラス基板Gは制御装置20の制御に基づきマイクロ波プラズマ処理装置PM6に搬送され、図1(g)に示すように、SiN膜(シリコン窒化膜)である封止膜15が、有機素子の露出部を封止するように成膜される。なお、マイクロ波プラズマ処理装置PM6の内部構造は図4に示したマイクロ波プラズマ処理装置PM2と同様であるため、ここでは説明を省略する。
 マイクロ波プラズマ処理装置PM6では、制御装置20の制御に基づき、真空装置79により処理室内の圧力が、例えば、10mTorr以下、マイクロ波発生器72から処理室内に供給されるマイクロ波のパワーが4.0W/cm以上、同処理室内に載置されるガラス基板G近傍の温度(たとえば、基板表面温度)が100℃以下に制御され、この状態で、上部からアルゴンガスを5~500sccm供給し、ガスシャワープレート76からシラン(SiH)ガスを0.1~100sccm供給するのに対して、シランガスと窒素ガスの流量比を1:100にして供給する。これによれば、マイクロ波のパワーにより上記混合ガスが励起してプラズマが生成され、生成されたプラズマを用いて低温にてSiN膜(シリコン窒化膜である封止膜15が成膜される。なお、有機素子への影響を考慮すると、ガラス基板Gの表面温度は70℃以下に制御する方がより好ましい。
 SiNx膜(封止膜15)は、有機素子の保護膜のうち、封止層として積層される。封止膜の耐透湿性や耐酸化性と封止膜に内在する応力とのバランスを保つためには、SiNx膜(封止膜15)はある程度薄い必要があり、たとえば、その膜厚は1000Å以下であることが好ましい。
 以上説明してきた、本実施の形態にかかる有機デバイスの製造方法によって製造された有機デバイスにおいては、発光層12(a-CN:H膜)を生成されたプラズマの電子温度が低く、高密度プラズマを用いるRLSA方式のCVDプラズマ処理によって形成する。RLSA方式のCVDプラズマ処理装置の処理空間は、図4に示すようにプラズマを生成するプラズマ励起領域A1と拡散プラズマ領域A2に分けられ、基板を処理する拡散プラズマ領域A2での、プラズマの電子温度は、1~2eV程度と低い。よって、成膜に用いられるガスのC-N結合を切断する可能性が低い。そうすると、材料ガスとしてC-N結合を含む炭化水素化合物ガスを用いることができるので、a-CN膜を効率的に成膜することが可能となる。
 プラズマの電子温度が低い状態で発光層12(a-CN:H膜)が成膜されるため、材料ガスに含まれるC-N結合は結合が切られることはなく、発光層12(a-CN:H膜)内にC-N結合は維持される。また他のC-H結合等についても安定的に発光層12(a-CN:H膜)内に維持されることとなる。発光層12(a-CN:H膜)においては、これらC-N結合、C-H結合に基づいて発光がなされるため、これらC-N結合、C-H結合が安定的に含有されるような発光層12(a-CN:H膜)は、発光デバイスとしての安定性に非常に優れ、例えば有機EL素子等の有機デバイスに用いられる発光層として非常に有用的に活用される。
 また、a-CN:H膜は、C-N結合の量により発光色をコントロールすることができる。本発明では、材料ガスとして用いられる炭化水素化合物と、窒素もしくはアンモニアの供給量を制御することにより、C-N結合の量をすることが可能である。
 以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 図5は本発明の他の実施の形態にかかるRLSA方式のマイクロ波プラズマ処理装置PM2’の縦断面図である。他の実施の形態にかかるマイクロ波プラズマ処理装置PM2’の構造は、発光層12の成膜処理時に、Nを供給するガス供給源77bがガスライン74を介してガス供給口73に接続されている点で上記実施の形態と異なる。なお、その他の構成については上記実施の形態にかかるマイクロ波プラズマ処理装置PM2と同様であるため、説明は省略する。
 図5に示す他の実施の形態にかかるマイクロ波プラズマ処理装置PM2’によれば、処理容器60の内部上方のプラズマ励起領域A1にNガスを供給するので、処理容器60内部下方の拡散プラズマ領域A2よりも比較的高い電子温度を持つプラズマを用いてNガスを励起させることができる。励起された窒素原子は、プラズマ励起領域A1から拡散プラズマ領域A2へと拡散する。拡散プラズマ領域A2では、C-N結合を含んだまま解離した炭化水素化合物ガスと窒素原子がガラス基板G上に堆積し、成膜が行われる。よって、成膜される発光層12内に大きなダメージを与えることなく、より多くの窒素原子を添加させることが可能となる。
 また、上記実施の形態では、素子下面から光を取り出すボトムエミッション型の有機デバイスについて説明したが、本発明はこれに限らず、素子上面から光を取り出すトップエミッション型の有機デバイスに用いることも可能である。なお、この場合、第2の導電性電極14は透明電極である必要がある。
 本発明は、例えば有機ELデバイスの発光層として用いられるアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法、該アモルファスハイドロカーボンナイトライド(a-CN:H)膜を用いた有機ELデバイスおよびその製造方法に適用できる。

Claims (12)

  1. 有機デバイスの発光層として用いられるアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法であって、
    プラズマ励起用ガスと、C-N結合を含む炭化水素化合物ガスと窒素もしくはアンモニアを材料ガスとして処理容器内に供給する工程と、
    マイクロ波により前記プラズマ励起用ガスのプラズマを生成し、該プラズマにより前記材料ガスを活性化させる工程と、を備えるアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法。
  2. 前記C-N結合を含む炭化水素化合物ガスはメチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)、ピリジン(CN)のいずれかである、請求項1に記載のアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法。
  3. プラズマの生成においてRLSA方式を用いる、請求項1に記載のアモルファスハイドロカーボンナイトライド(a-CN:H)膜の成膜方法。
  4. 有機デバイスの製造方法であって、
    第1の導電性電極が形成された被処理体上にホール注輸送層を形成し、
    発光層であるアモルファスハイドロカーボンナイトライド(a-CN:H)膜を前記ホール注輸送層上に積層し、
    電子注入層を前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜上に積層し、
    第2の導電性電極を前記電子注入層上に積層し、
    前記被処理体、第1の導電性電極、前記ホール注輸送層、前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜、前記電子注入層、前記第2の導電性電極を覆うように封止する封止膜を積層する、有機デバイスの製造方法。
  5. 前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜は、C-N結合を含む炭化水素化合物ガスと窒素もしくはアンモニアを材料ガスとして用い、マイクロ波のパワーにより材料ガスを励起させてプラズマを生成し、生成されたプラズマを用いて成膜される、請求項4に記載の有機デバイスの製造方法。
  6. 前記C-N結合を含む炭化水素化合物ガスはメチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)、ピリジン(CN)のいずれかである、請求項5に記載の有機デバイスの製造方法。
  7. プラズマの生成においてRLSA方式を用いる、請求項5に記載の有機デバイスの製造方法。
  8. 処理容器内にプラズマを励起させるプラズマ励起領域と、基板を処理する拡散プラズマ領域を設け、窒素もしくはアンモニアを前記プラズマ励起領域に導入し、C-N結合を含む炭化水素化合物ガスを前記拡散プラズマ領域に導入する、請求項7に記載の有機デバイスの製造方法。
  9. 第1の導電性電極が形成されている被処理体上に形成されるホール注輸送層と、
    前記ホール注輸送層上に積層される発光層であるアモルファスハイドロカーボンナイトライド(a-CN:H)膜と、
    前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜上に積層される電子注入層と、
    前記電子注入層上に積層される第2の導電性電極と、
    前記被処理体、前記第1の導電性電極、前記ホール注輸送層、前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜、前記電子注入層、前記第2の導電性電極を覆うように封止する封止膜と、を備える有機デバイス。
  10. 前記アモルファスハイドロカーボンナイトライド(a-CN:H)膜は、C-N結合を含む炭化水素化合物ガスを材料ガスとして用い、マイクロ波のパワーによりプラズマ励起用ガスを励起して生成されたプラズマにより材料ガスを励起させて成膜される、請求項9に記載の有機デバイス。
  11. 前記C-N結合を含む炭化水素化合物ガスはメチルアミン(CHNH)、ジメチルアミン((CHNH)、トリメチルアミン((CHN)、ピリジン(CN)のいずれかである、請求項10に記載の有機デバイス。
  12. プラズマの生成においてRLSA方式を用いる、請求項10に記載の有機デバイス。
PCT/JP2010/054120 2009-03-13 2010-03-11 アモルファスハイドロカーボンナイトライド(a-CN:Hx)膜の成膜方法、有機ELデバイスおよびその製造方法 WO2010104152A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800118272A CN102348777A (zh) 2009-03-13 2010-03-11 非晶碳氢氮化物(a-CN:Hx)膜的成膜方法、有机EL器件及其制造方法
KR1020117023946A KR101284671B1 (ko) 2009-03-13 2010-03-11 어모퍼스 하이드로카본 나이트라이드(a­CN:Hx)막의 성막 방법, 유기 EL 디바이스 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-061175 2009-03-13
JP2009061175A JP2010219112A (ja) 2009-03-13 2009-03-13 アモルファスハイドロカーボンナイトライド(a−CN:Hx)膜の成膜方法、有機ELデバイスおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2010104152A1 true WO2010104152A1 (ja) 2010-09-16

Family

ID=42728440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054120 WO2010104152A1 (ja) 2009-03-13 2010-03-11 アモルファスハイドロカーボンナイトライド(a-CN:Hx)膜の成膜方法、有機ELデバイスおよびその製造方法

Country Status (5)

Country Link
JP (1) JP2010219112A (ja)
KR (1) KR101284671B1 (ja)
CN (1) CN102348777A (ja)
TW (1) TW201105819A (ja)
WO (1) WO2010104152A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013546182A (ja) * 2010-11-04 2013-12-26 東京エレクトロン株式会社 マイクロ波プラズマを用いる誘電膜堆積方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5941653B2 (ja) 2011-02-24 2016-06-29 東京エレクトロン株式会社 シリコン窒化膜の成膜方法及びシリコン窒化膜の成膜装置
JP2013191494A (ja) * 2012-03-15 2013-09-26 Tokyo Electron Ltd 有機電子デバイス、有機電子デバイスの製造方法、プラズマ処理装置
CN105529239B (zh) * 2016-03-07 2018-06-29 京东方科技集团股份有限公司 一种干法刻蚀装置及方法
KR102065686B1 (ko) 2017-12-05 2020-01-13 인하대학교 산학협력단 그래피틱 카본 나이트라이드의 제조방법, 그래피틱 카본 나이트라이드-폴리스티렌 복합체의 제조방법 및 그래피틱 카본 나이트라이드-폴리스티렌 복합체를 포함하는 oled 소자

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105727A1 (ja) * 2006-03-13 2007-09-20 Tokyo Electron Limited プラズマエッチング方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352000A (ja) * 2005-06-20 2006-12-28 Canon Inc 有機発光素子
EP2361882B9 (en) * 2006-05-22 2017-03-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive member provided with amorphous carbon film and fuel cell separator
TW200930135A (en) * 2007-08-31 2009-07-01 Tokyo Electron Ltd Organic electronic device, organic electronic device manufacturing method, organic electronic device manufacturing apparatus, substrate processing system, protection film structure and storage medium with control program stored therein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105727A1 (ja) * 2006-03-13 2007-09-20 Tokyo Electron Limited プラズマエッチング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. IWANO ET AL.: "Study of Amorphous Carbon Nitride Films Aiming at White Light Emitting Devices", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 47, no. 10, 2008, pages 7842 - 7844 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013546182A (ja) * 2010-11-04 2013-12-26 東京エレクトロン株式会社 マイクロ波プラズマを用いる誘電膜堆積方法

Also Published As

Publication number Publication date
KR101284671B1 (ko) 2013-07-16
CN102348777A (zh) 2012-02-08
JP2010219112A (ja) 2010-09-30
TW201105819A (en) 2011-02-16
KR20110138373A (ko) 2011-12-27

Similar Documents

Publication Publication Date Title
JP5410978B2 (ja) 有機電子デバイスの製造方法および制御プログラムが記憶された記憶媒体
TW201413043A (zh) 氮化矽膜之成膜方法、有機電子元件之製造方法及氮化矽膜之成膜裝置
JP4853857B2 (ja) 基板の処理方法,コンピュータ読み取り可能な記録媒体及び基板処理装置
JP5941653B2 (ja) シリコン窒化膜の成膜方法及びシリコン窒化膜の成膜装置
WO2010104152A1 (ja) アモルファスハイドロカーボンナイトライド(a-CN:Hx)膜の成膜方法、有機ELデバイスおよびその製造方法
KR101972148B1 (ko) 유기 디바이스의 제조 방법 및 유기 디바이스의 제조 장치
WO2010113659A1 (ja) 成膜装置、成膜方法及び有機el素子
US20100259162A1 (en) Film forming device control method, film forming method, film forming device, organic el electronic device, and recording medium storing its control program
JP2013125761A (ja) 半導体製造装置及び半導体製造方法
KR101068883B1 (ko) 유기 전자 디바이스, 유기 전자 디바이스의 제조 방법 및 유기 전자 디바이스의 제조 장치
US20090314635A1 (en) Plasma processing apparatus, plasma processing method, and organic electron device
TW202217029A (zh) 成膜裝置及成膜方法
JP2008226472A (ja) 電子デバイス、電子デバイスの製造方法、封止膜の構造体、電子デバイスを製造する製造装置およびプラズマ処理装置
WO2013137116A1 (ja) 有機電子デバイス、有機電子デバイスの製造方法、プラズマ処理装置
KR20140113386A (ko) 유기 디바이스의 제조 방법, 유기 디바이스의 제조 장치 및 유기 디바이스
JP2015135924A (ja) 基板処理装置及び基板処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011827.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117023946

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10750905

Country of ref document: EP

Kind code of ref document: A1