WO2010101426A2 - 기체 압축기 및 기체 압축기의 유량 제어 방법 - Google Patents

기체 압축기 및 기체 압축기의 유량 제어 방법 Download PDF

Info

Publication number
WO2010101426A2
WO2010101426A2 PCT/KR2010/001361 KR2010001361W WO2010101426A2 WO 2010101426 A2 WO2010101426 A2 WO 2010101426A2 KR 2010001361 W KR2010001361 W KR 2010001361W WO 2010101426 A2 WO2010101426 A2 WO 2010101426A2
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
ring valve
ring
vane
diffuser
Prior art date
Application number
PCT/KR2010/001361
Other languages
English (en)
French (fr)
Other versions
WO2010101426A3 (ko
Inventor
정규옥
정현욱
정진욱
Original Assignee
주식회사 에어젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090019011A external-priority patent/KR101080954B1/ko
Priority claimed from KR1020090019013A external-priority patent/KR101066968B1/ko
Application filed by 주식회사 에어젠 filed Critical 주식회사 에어젠
Priority to JP2011552890A priority Critical patent/JP5394509B2/ja
Priority to CN201080010449.6A priority patent/CN102341604B/zh
Priority to US13/254,250 priority patent/US20110318182A1/en
Priority to DE112010000450T priority patent/DE112010000450T5/de
Publication of WO2010101426A2 publication Critical patent/WO2010101426A2/ko
Publication of WO2010101426A3 publication Critical patent/WO2010101426A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a gas compressor, and more particularly, to a variable diffuser system installed in a diffuser passage connected to an impeller outlet to prevent stall and surge, and a flow control method of a gas compressor using the same.
  • Conventional gas compressors pass gas through a rotating impeller to accelerate and compress the gas with the centrifugal compression of the impeller.
  • the diffuser passage is connected with the impeller outlet to reduce the noise and increase the blowing efficiency, and to reduce the high speed and high pressure gas discharged from the impeller to convert the kinetic energy of the gas into pressure energy.
  • variable diffuser that changes the area of the diffuser passage to minimize the stall and surge and to control the flow rate.
  • a typical variable diffuser consists of a plurality of vanes disposed along the circumferential direction of the diffuser passage. The variable diffuser reduces the area of the diffuser passage as the flow rate decreases or the pressure difference between the impeller inlet and outlet decreases, and vice versa to increase the area of the diffuser passage to stabilize the airflow.
  • the conventional variable diffuser may not completely seal the impeller outlet, and may allow a reverse flow of the gas through a space between the impeller and the variable diffuser, thereby limiting stall and surge prevention.
  • the conventional variable diffuser has a limited flow control range, and the maximum flow rate controllable with the conventional variable diffuser is about 45% of the rated flow rate.
  • the present invention is to provide a gas compressor and a flow rate control method of the gas compressor that can effectively prevent stall and surge by blocking the back flow of the gas by improving the variable diffuser system.
  • the present invention is to improve the variable diffuser system to provide a gas compressor and a flow control method of the gas compressor that can expand the maximum controllable flow rate range.
  • Gas compressor according to an embodiment of the present invention is fixed to the rotary shaft, i) an impeller having a plurality of blades on the outer circumferential surface including a wing surface and the edge surface, and ii) an outer wall surrounding the wing surface and parallel to the edge surface And a iii) a shroud provided in the diffuser passage connected to the outlet of the impeller to open and close the diffuser passage and maintain a distance from the end of the impeller along the radial direction of the impeller.
  • the ring valve slides along the outer wall of the shroud while contacting the outer wall of the shroud.
  • the ring valve may maintain a gap G between the end of the impeller and the following conditions along the radial direction of the impeller.
  • D represents the exit diameter of the impeller (mm).
  • the gas compressor may further include a plurality of vanes installed along the circumferential direction of the diffuser passage outside the ring valve in the diffuser passage.
  • a gas compressor comprising: i) an impeller fixed to a rotating shaft, the impeller including a plurality of blades including a wing surface and an edge surface on an outer circumferential surface thereof, and ii) a shroud surrounding the wing surface; ) Is installed in the diffuser passage connected to the outlet of the impeller, the ring valve is moved along the direction parallel to the rotation axis to open and close the diffuser passage, and iv) is installed along the circumferential direction of the diffuser passage at the outside of the ring valve among the diffuser passages. V) a plurality of vanes having a vane shaft, and v) an actuator coupled to the ring valve and the plurality of vane shafts to sequentially control the movement of the ring valve and the rotation angle of the vanes.
  • the ring valve may maintain a gap G between the end of the impeller and the following conditions along the radial direction of the impeller.
  • D represents the exit diameter of the impeller (mm).
  • the outer wall of the shroud is parallel to the edge surface, and the ring valve can slide along the outer wall of the shroud while contacting the outer wall of the shroud.
  • the impeller may be configured such that the spaces between the blades communicate with each other over the wing surface inside the shroud.
  • the impeller may be configured such that the spaces between the blades are separated from each other by the cover plate at the wing face side.
  • the actuator includes: i) an inner guide ring surrounding the vane shaft, ii) a plurality of ball levers that engage the inner guide ring and vane shaft through the inner guide ring and vane shaft along the radial direction of the impeller, and iii) the inner guide ring. And an outer guide ring integrally connected with the ring valve by the connecting portion, and having an inclined sliding hole, and iv) a fixing pin fixed to the inner guide ring through the inclined sliding hole.
  • the gas compressor may further comprise a diffuser frame for supporting the vane shaft, the inner guide ring, and the ring valve.
  • the vane axis forms a cavity through the vane axis along the radial direction of the impeller, and the inner guide ring may define a plurality of openings facing the cavity along the radial direction of the impeller.
  • Each of the plurality of ball levers may include a ball member in close contact with the opening sidewall of the inner guide ring, and a support member fitted into the cavity and fixed to the vane shaft.
  • the actuator may further comprise i) a stop member for limiting the amount of rotation of the inner guide ring, ii) a control handle fixed to the outer guide ring, and iii) an elastic member provided between the diffuser frame and the fixing pin.
  • the stop member is i) a pair of first rods positioned at a distance along the circumferential direction from one surface of the inner guide ring, and ii) is fixed to the diffuser frame and a portion thereof protrudes between the pair of first rods. It may include a second bar.
  • the actuator may be configured to: i) a link member fixed to the vane shaft, ii) a guide shaft fixed to the link member at a distance from the vane shaft, and iii) a first guide groove for receiving the guide shaft on one surface thereof. It may include a control member for moving the axis to rotate the vane axis.
  • the first guide groove may be formed along the radial direction of the impeller, and the control member may further include a second guide groove formed along the circumferential direction of the control member while being connected to the first guide groove.
  • the gas compressor further includes a diffuser frame surrounding the ring valve and supporting the ring valve and the vane shaft and the control member, wherein the diffuser frame may form an inclined sliding hole in an area overlapping the ring valve.
  • the control member may further include a third guide groove connected to the second guide groove and formed on an inner surface of the control member.
  • the actuator may further include a fixing key penetrating the inclined sliding hole, one end of which is fixed to the ring valve and the other end of which is received in the third guide groove.
  • the diffuser frame may form a plurality of vane holes through which the vane shaft penetrates along a direction parallel to the rotation axis, and the inclined sliding holes may be spaced apart from the vane holes between two neighboring vane holes.
  • the control member may be connected to a control unit that detects an operating condition of the gas compressor and operate by a command of the control unit.
  • the actuator may include i) a first actuator coupled to the plurality of vane axes to control the angle of rotation of the vane, and ii) a second actuator coupled to the ring valve to control the movement of the ring valve.
  • the first actuator moves the guide shaft while forming i) a link member fixed to the vane shaft, ii) a guide shaft fixed to the link member at a distance from the vane shaft, and iii) a first guide groove for receiving the guide shaft on one surface.
  • a control member for rotating the vane axis i) a first actuator coupled to the plurality of vane axes to control the angle of rotation of the vane
  • a second actuator coupled to the ring valve to control the movement of the ring valve.
  • the first guide groove may be formed along the radial direction of the impeller, and the control member may further include a second guide groove formed along the circumferential direction of the control member while being connected to the first guide groove.
  • the ring valve forms an expansion ring on the outer surface
  • the second actuator includes: i) a first nozzle for injecting compressed air toward one side of the expansion ring towards the diffuser passage; and ii) an opposite side of the expansion ring away from the diffuser passage. It may include a second nozzle for injecting compressed air toward.
  • the gas compressor may further include a top cover installed between the diffuser frame and the ring valve.
  • the first nozzle may be formed over the top cover and the diffuser frame, and the second nozzle may be formed on the top cover.
  • the control member, the first nozzle, and the second nozzle may be connected to a control unit that detects an operating condition of the gas compressor, and operate by a command of the control unit.
  • the flow rate control method of the gas compressor comprises: i) closing the ring valve during initial operation to seal the diffuser passage, and closing the plurality of vanes to reduce the area of the diffuser passage outside the ring valve. And ii) a second step of opening the diffuser passage by opening the ring valve for rated operation, and iii) a third step of opening the plurality of vanes to enlarge the area of the diffuser passage outside the ring valve.
  • the flow rate control method of the gas compressor includes: i) closing the plurality of vanes to reduce the area of the diffuser passage outside the ring valve to stop operation after the third stage; and ii) closing the ring valve to seal the diffuser passage.
  • a fifth step may be further included.
  • the gas compressor according to the present invention includes a ring valve that closes the entire outlet of the impeller so that the compressed gas does not leave the impeller or the compressed gas in use does not flow back to the impeller. Therefore, no-load operation is possible at initial operation, and stalling and surge generation due to gas backflow can be effectively prevented during start-up and stop.
  • the ring valve and the plurality of vanes in conjunction with each other the maximum controllable flow rate range can be expanded.
  • the gas compressor according to the present invention sequentially controls the movement of the ring valve and the vane rotation angle using a single actuator, thereby simplifying the mechanical configuration of the variable diffuser system for controlling the rotation angle of the ring valve and vanes. Can be. Therefore, the manufacturing cost can be lowered by facilitating the fabrication and assembly of parts.
  • noise is rarely generated when the ring valve is operated. Therefore, it is not necessary to install a silencer, and the installation of the piping is omitted since the compressed gas is not configured to control the flow of the compressed gas by communicating with the atmosphere. can do.
  • FIG. 1 is a partial cross-sectional view of a gas compressor according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of the gas compressor shown in FIG. 1.
  • FIG. 3 is a plan view schematically illustrating an impeller and a ring valve of the gas compressor illustrated in FIG. 1.
  • FIG. 4 is a plan view schematically showing an impeller and a ring valve in the gas compressor of the comparative example.
  • Figure 5 is a graph showing the measurement of the vibration state according to the change in the gap between the ring valve and the impeller end.
  • FIG. 6 and 7 are exploded perspective views of the variable diffuser system of the gas compressor shown in FIG.
  • FIG. 8 is a cross-sectional view of the outer guide ring, the ring valve, and the connection of the variable diffuser system shown in FIG. 7.
  • FIG. 9 is a perspective view illustrating a coupled state of the variable diffuser system in the gas compressor illustrated in FIG. 1.
  • 10 to 13 are schematic views of a variable diffuser system shown for explaining a flow rate control method in the gas compressor according to the first embodiment of the present invention.
  • FIG. 14 is a partial sectional view of a gas compressor according to a second embodiment of the present invention.
  • FIG. 15 is a partially enlarged view of the gas compressor shown in FIG. 14.
  • FIG. 16 is an exploded perspective view of the variable diffuser system of the gas compressor illustrated in FIG. 14.
  • FIG. 17 is a partially enlarged view of FIG. 16.
  • FIG. 18 is a perspective view illustrating a coupling state of the diffuser frame and the ring valve illustrated in FIG. 17.
  • FIG. 19 is a right side view of the variable diffuser system of the gas compressor shown in FIG.
  • FIG. 20 is a partially enlarged perspective view illustrating a part of a control member, a guide shaft, and a fixing key in the configuration of the variable diffuser system shown in FIG. 19.
  • 21 to 23 are perspective views showing the state of the ring valve and the vanes at the points (A), (B) and (C) shown in FIG. 19, respectively.
  • 24 is a partial cross-sectional view of the gas compressor according to the third embodiment of the present invention.
  • FIG. 25 is an exploded perspective view of the variable diffuser system of the gas compressor illustrated in FIG. 24.
  • FIG. 26 is a right side view of the variable diffuser system shown in FIG. 24.
  • FIG. 27 is a partially enlarged view of the gas compressor shown in FIG. 24.
  • FIG. 1 is a partial cross-sectional view of a gas compressor 100 according to a first embodiment of the present invention.
  • the gas compressor 100 of the first embodiment includes a rotating shaft 11, an impeller 12, a shroud 13, a ring valve 14, and a plurality of vanes 15 (one in FIG. 1). Vanes), and actuator 20.
  • the gas compressor 100 shown in FIG. 1 is symmetrical with respect to the center line (A-A line) of the rotation shaft 11.
  • the impeller 12 is fixed to the rotating shaft 11, the rotating shaft 11 is coupled to the rotating shaft of the motor (not shown).
  • a plurality of blades 16 having a curved radial shape are formed on the outer circumferential surface of the impeller 12, a plurality of blades 16 having a curved radial shape are formed.
  • the blade 16 includes a wing surface 161 having a predetermined curvature, and an edge surface 162 connected to the wing surface 161 and parallel to the rotation axis 11.
  • the shroud 13 is installed to surround the impeller 12 at regular intervals from the wing surface 161 of the blade 16.
  • the diffuser passage 17 is located outside the outlet of the impeller 12.
  • the diffuser passage 17 is a space formed between the discharge scroll 18 and the diffuser frame 30 and is provided in an annular shape having a predetermined height and width.
  • the diffuser passage 17 is connected to the internal passage of the discharge scroll 18 and functions to diffuse and decelerate the high speed and high pressure gas discharged from the impeller 12 to convert the kinetic energy of the gas into pressure energy.
  • the ring valve 14, the plurality of vanes 15 and the actuator 20 constitute a variable diffuser system.
  • the ring valve 14 operates to open and close the diffuser passage 17 and seals the diffuser passage 17 during initial operation to prevent stall and surge.
  • the plurality of vanes 15 operate to change the rotation angle, and stabilize the airflow by changing the area of the diffuser passage 17 outside the ring valve 14.
  • the actuator 20 is mechanically coupled to the ring valve 14 and the plurality of vanes 15 to sequentially control the movement of the ring valve 14 and the rotation angle of the vanes 15.
  • FIG. 2 is a partially enlarged view of the gas compressor 100 shown in FIG. 1, in which the ring valve 14 descends toward the discharge scroll 18 to seal the diffuser passage 17.
  • 3 is a plan view schematically illustrating the impeller 12 and the ring valve 14 of the gas compressor 100 shown in FIG. 1.
  • the outer wall 131 of the shroud 13 is parallel to the edge surface 162 of the blade 16, and the edge surface 162 and the impeller along the radial direction of the impeller 12.
  • a predetermined interval is maintained with the end of (12).
  • the 'radiation direction' is defined as a direction extending in all directions along the direction orthogonal to the rotation axis 11 from the center of the impeller 12.
  • the ring valve 14 contacts the outer wall of the shroud 13 and slides along the outer wall 131 of the shroud 13 to open and close the diffuser passage 17. Thus, when the ring valve 14 descends toward the discharge scroll 18 to seal the diffuser passage 17, the ring valve 14 maintains a predetermined distance from the edge surface 162 and the ends of the impeller 12.
  • the gap G (see enlarged circle in FIG. 2 and FIG. 3) between the ring valve 14 and the end of the impeller 12 measured along the radial direction of the impeller 12 is the outlet side of the impeller 12. It is set to satisfy the following conditions according to the diameter D; mm (see FIG. 3).
  • interval G takes into account restrictions, such as thermal expansion of the impeller 12 and the ring valve 14, and radial play of the rotating shaft 11, and the like. That is, when the gap G is less than 0.002D, the impeller 12 and the ring valve 14 may contact each other by thermal expansion of the impeller 12 and the ring valve 14, and the rotation shaft 11 may be in contact with the rotating shaft 11 during the installation process. Difficulties arise in precisely adjusting the play of the impeller 12. In addition, when the assembly accuracy is low, the impeller 12 may hit the ring valve 14 during the operation of the gas compressor 100.
  • the maximum value of the gap G takes into account the functionality of the ring valve 14 to prevent stall and surge. That is, when the gap G exceeds 0.008D, stall and surge occur by allowing the backflow of gas through the space between the impeller 12 and the ring valve 14, resulting in stability of the gas compressor 100. And greatly reduce the efficiency.
  • the gas compressor 100 of the first embodiment may implement higher efficiency as the distance G between the end of the ring valve 14 and the impeller 12 is set closer to the minimum value in the range of the condition (1).
  • the outlet diameter D of the impeller 12 may be 10 mm to 800 mm, in which case the distance G between the end of the ring valve 14 and the impeller 12 is 0.02 mm to 6.4 mm depending on the condition (1). Is set.
  • the gap G may be 0.2 mm when the outlet diameter D of the impeller 12 is 50 mm, although there are differences depending on the rated air flow rate and pressure.
  • the gap G may be 2 mm.
  • FIG. 4 is a plan view schematically showing the impeller 12 and the ring valve 14 'of the gas compressor of the comparative example in which the gap G2 between the ring valve 14' and the end of the impeller 12 exceeds 0.008D.
  • the arrow B indicates the rotation direction of the impeller 12.
  • the ring valve 14 maintains an interval G satisfying the end of the impeller 12 and condition (1) along the circumference of the impeller 12. do.
  • the gap G is set in the range of 0.4 mm to 1.6 mm.
  • the impeller 12 when the ring valve 14 is lowered to close the diffuser passage 17, the impeller 12 has a shroud 13 and a ring valve 14 except for an inlet through which external gas is introduced. Surrounded by).
  • the gas compressed in the space 19 between the blades 16 is not discharged to the outside of the impeller 12, and in the same space without flowing back against the impeller 12 due to the centrifugal force. The rotation will continue as it is.
  • the ring valve 14 ′ maintains an end G of the impeller 12 and a gap G2 not satisfying the condition (1) along the circumference of the impeller 12.
  • the gap G2 exceeds 1.6 mm.
  • the back flow of gas is allowed through the space between the impeller 12 and the ring valve 14 '. That is, when the impeller 12 rotates, the compressed gas in the space 19 between the blades 16 moves in the opposite direction to the rotation direction of the impeller 12 through the space between the impeller 12 and the ring valve 14 ′. Accordingly, it flows back into the space between the other blades 16 and faces the inlet of the impeller 12.
  • the moving direction of the compressed gas is illustrated by an arrow. Therefore, no load operation is possible in the gas compressor of the comparative example, and stall and surge due to gas backflow are allowed.
  • Figure 5 is a graph showing the measurement of the vibration state according to the change in the gap (G) of the ring valve and the impeller end.
  • the outlet diameter D of the impeller was 200 mm
  • the height of the blade was 18 mm
  • the experiment was performed at room temperature and atmospheric pressure.
  • the gap G between the ring valve and the impeller end was 0.4 mm or more according to condition (1), and the vibration value of the impeller was measured while increasing the interval by 0.2 mm.
  • the ring valve 14 is basically a valve which not only has a flow control function but also closes the entire outlet of the impeller 12 so that the compressed gas cannot escape the impeller 12. Function. Therefore, by blocking the gas backflow using the ring valve 14, stall and surge can be effectively prevented.
  • the actuator 20 is mechanically coupled to the ring valve 14 and the plurality of vanes 15, and sequentially controls the movement of the ring valve 14 and the rotation angle of the vanes 15. Next, the coupling structure of the ring valve 14, the some vane 15, and the actuator 20 is demonstrated.
  • FIG. 6 and 7 are exploded perspective views of the variable diffuser system of the gas compressor 100 shown in FIG.
  • the plurality of vanes 15 are disposed at equal intervals along the circumferential direction of the diffuser passage 17 at one side of the diffuser frame 30.
  • the vane shaft 21 is fixed to each vane 15, and the vane shaft 21 is formed with a cavity 211 penetrating the vane shaft 21 along the radial direction.
  • the diffuser frame 30 may include a first flange 31 and a second flange 32 spaced apart from each other, and a connecting flange connecting the inner end of the first flange 31 and the inner end of the second flange 32. 33).
  • a plurality of first openings 301 for mounting the vane shaft 21 are disposed at equal intervals along the circumferential direction.
  • the actuator 20 includes an inner guide ring 22 surrounding the plurality of vane shafts 21, a plurality of ball levers 23 coupling the vane shaft 21 and the inner guide ring 22, and an inner guide ring.
  • An outer guide ring 24 surrounding the 22 and integrally connected with the ring valve 14, and a plurality of fixing pins 25 for engaging the inner guide ring 22 and the outer guide ring 24. .
  • a plurality of second openings 221 penetrating the inner guide ring 22 in the radial direction of the impeller 12 are disposed at equal intervals along the circumferential direction.
  • the inner guide ring 22 is connected to the connecting flange 33 and the second flange 32. It is disposed outside and surrounds the plurality of vane shafts 21.
  • the cavity 211 of the vane shaft 21 and the second opening 221 of the inner guide ring 22 are disposed to face each other along the radial direction.
  • the ball lever 23 is fixed to the vane shaft 21 through the second opening 221 of the inner guide ring 22 and the cavity 211 of the vane shaft 21.
  • the ball lever 23 includes a ball member 231 in close contact with the sidewall of the second opening 221 of the inner guide ring 22, and a support member 232 fitted into the cavity 211 and fixed to the vane shaft 21. Include. Therefore, when the inner guide ring 22 rotates, the vane shaft 21 rotates together with the inner guide ring 22 through the ball lever 23.
  • the diffuser frame 30 and the inner guide ring 22 are provided with a stop member 26 that limits the amount of rotation of the inner guide ring 22.
  • the stop member 26 is fixed to the pair of first rods 27 and the diffuser frame 30 positioned at a distance along the circumferential direction from one surface of the inner guide ring 22, and a part of the pair of first And a second rod 28 protruding to be positioned between the first rods 27.
  • the pair of first rods 27 are spaced apart by the maximum rotational distance of the inner guide ring 22, and the inner guide ring 22 is the first rod 27 of any one of the pair of first rods 27. ) Is locked to the second rod 28 and rotation is limited.
  • the vane shaft 21 is formed with an internal space into which the fixing screw 29 is fitted so that the ball lever 23 can be tightened with the fixing screw 29.
  • the connecting flange 33 is formed with a plurality of third openings 331 penetrating the connecting flange 33 in the radial direction of the impeller 12.
  • FIG. 8 is a cross-sectional view of the outer guide ring 24, the ring valve 14, and the connecting portion 34 of the variable diffuser system shown in FIG. 7.
  • the outer guide ring 24 is formed to have a smaller height than the ring valve 14, and the connection portion 34 integrally connects the end of the ring valve 14 and the end of the outer guide ring 24. do.
  • At least one inclined sliding hole 35 is formed in the outer guide ring 24.
  • four inclined sliding holes 35 may be disposed along the circumferential direction of the outer guide ring 24.
  • the fixing pins 25 are provided in the same number as the inclined sliding holes 35, and each of the fixing pins 25 is fixed to the inner guide ring 22 through the inclined sliding holes 35.
  • FIG. 9 is a perspective view illustrating a coupled state of the variable diffuser system in the gas compressor 100 shown in FIG. 1.
  • an elastic member 36 is installed between the diffuser frame 30 and the fixing pin 25.
  • One end of the elastic member 36 is fixed to the diffuser frame 30, and the opposite end of the elastic member 36 is fixed to the fixing pin 25.
  • the elastic member 36 uses a restoring force to exert a force to pull the fixing pin 25 clockwise (reference to the drawing).
  • a control handle 37 is attached to the outer guide ring 24 to control the rotation of the outer guide ring 24 by the operation of the control handle 37.
  • the control handle 37 detects operating conditions of the gas compressor 100 such as a flow rate of the gas passing through the impeller 12, a pressure difference between the inlet and the outlet of the impeller 12, and a back flow of the gas generated due to a problem. It is connected to the control unit 38 and operates by the command of the control unit 38.
  • FIGS. 9 to 13 A flow control method of the gas compressor 100 using the variable diffuser system will be described with reference to FIGS. 9 to 13.
  • the 'clockwise' and 'counterclockwise' referred to below are based on the drawings.
  • 10 and 11 show the state of the ring valve 14 and the vane 15 for the initial operation. 10 and 11, during initial operation, the outer guide ring 24 and the ring valve 14 are lowered so that the ring valve 14 seals the diffuser passage 17. The plurality of vanes 15 remain closed to minimize the area of the diffuser passage 17 outside of the ring valve 14 (first step).
  • the fixing pin 25 is located at the upper end of the inclined sliding hole 35. And although the elastic member 36 is pulling the fixing pin 25 clockwise with a restoring force, the inner guide ring 22 can no longer be moved clockwise by the stop member 26. Thus, the angle of the vanes 15 is limited at the specified lowest flow rate position.
  • the control handle 37 and the outer guide ring 24 are then rotated counterclockwise for rated operation. Then, as shown in FIG. 9, the fixing pin 25 acts as the inclined guide so that the outer guide ring 24 rises from the diffuser frame 30. Thus, the ring valve 14 is raised to open the diffuser passage 17 (second step).
  • the fixing pin 25 is located at the lower end of the inclined sliding hole 35.
  • the control handle 37 and the outer guide ring 24 are further rotated counterclockwise. 12 and 13, the outer guide ring 24 overcomes the restoring force of the elastic member 36 applied to the fixing pin 25 without height change, and pulls the fixing pin 25 in a counterclockwise direction and rotates. do. Accordingly, the vane 15 is opened while the fixing pin 25, the inner guide ring 22, and the vane shaft 21 move to enlarge the area of the diffuser passage 17 (third step). In this process, the fixing pin 25 is moved by the stop member 26 until the rotation of the inner guide ring 22 stops.
  • the gas compressor 100 of the present exemplary embodiment controls the ring valve 14 and the plurality of vanes 15 together using a single actuator 20, the mechanical configuration for the control may be simplified.
  • the gas compressor 100 of the present embodiment sequentially drives the ring valve 14 and the vane 15, the flow rate range that can be controlled by the variable diffuser system can be extended up to 100%.
  • the flow control range of the ring valve 14 is approximately 0 to 45%
  • the flow control range of the vane 15 is approximately 45 to 100%.
  • FIGS. 1 to 3 illustrate structures in which the spaces between the blades 16 communicate with each other beyond the wing surface 161 in the shroud 13, the cover plate (161) is provided on the wing surface 161. It is also possible to apply a structure in which the spaces between the blades 16 on the wing surface 161 are separated from each other.
  • the spaces between the blades 16 are separated by the cover plate except for the inlet through which the gas is introduced from the impeller 12 and the outlet (the ground side) through which the compressed gas is discharged.
  • the cover plate rotates with the impeller 12 and keeps a distance from the shroud 13 inside the shroud 13.
  • the shape of the gas compressor 100 except for the cover plate is the same as that of the above-described embodiment, and the distance G between the end of the ring valve 14 and the impeller 12 is also determined by the condition (1) described above. Satisfies.
  • FIG. 14 is a partial cross-sectional view of the gas compressor 200 according to the second embodiment of the present invention
  • FIG. 15 is a partially enlarged view of the gas compressor 200 shown in FIG. 14, in which the ring valve 141 has a discharge scroll ( 18 shows a state in which the diffuser passage 17 is sealed by descending toward 18).
  • the gas compressor 200 of the second embodiment includes a rotating shaft 11, an impeller 12, a shroud 132, a ring valve 141, and a plurality of vanes 15 (FIG. 14).
  • One vane One vane), and an actuator 40.
  • the gas compressor 200 of the second embodiment has the same configuration as the gas compressor 100 of the first embodiment except for the shape of the ring valve 141, the actuator 40, and the diffuser frame 50.
  • the same reference numerals are used for the same members as those of the first embodiment, and the following will mainly describe different parts from the first embodiment.
  • FIG. 16 is an exploded perspective view of the variable diffuser system of the gas compressor 200 shown in FIG. 14, and FIG. 17 is a partially enlarged view of FIG. 16.
  • the plurality of vanes 15 are disposed at equal intervals along the circumferential direction of the diffuser passage 17 at one side of the diffuser frame 50, and each vane 15 has a vane shaft ( 21) is fixed.
  • the diffuser frame 50 includes an annular flange 51 and a cylindrical support 52 extending to a predetermined height from the inside of the flange 51.
  • the flange 51 is arranged to face the discharge scroll 18 within the shroud 132 to form a diffuser passage 17 between the discharge scroll 18.
  • the support 52 extends along the direction away from the discharge scroll 18 from the inside of the flange 51.
  • the support part 52 is formed with a plurality of vane holes 53 passing through the support part 52 in a direction parallel to the rotation shaft 11.
  • Each vane shaft 21 is inserted into the vane hole 53 so that the vanes 15 and the vane shaft 21 are supported by the diffuser frame 50.
  • the length of the vane shaft 21 is greater than the height of the support 52, the end of the vane shaft 21 is projected out of the support 52 after the vane shaft 21 is coupled to the diffuser frame 50. .
  • the end of the vane shaft 21 is fixed to one end of the link member 41, and the guide shaft 42 is fixed to the opposite end of the link member 41 at a predetermined distance from the vane shaft 21.
  • the link member 41 and the guide shaft 42 are provided in a number corresponding to the vane shaft 21, and the guide shaft 42 is formed to have a length smaller than the vane shaft 21.
  • the ring valve 141 is coupled to the inside of the support 52, and the outer surface of the ring valve 141 is in close contact with the inner surface of the support 52.
  • the support 52 is formed with a plurality of inclined sliding holes 54 passing through the support 52 along the radial direction of the impeller 12.
  • the inclined sliding hole 54 is disposed between two neighboring vane holes 53 so as not to be connected to the vane hole 53 and is inclined with respect to the direction parallel to the rotation shaft 11.
  • FIG. 18 is a perspective view illustrating a coupling state of the diffuser frame 50 and the ring valve 141 illustrated in FIG. 17.
  • a plurality of fixing keys 55 pass through the inclined sliding hole 54 outside the support 52 and then the ring valve. 141 is fixed. At this time, the end of the fixing key 55 protrudes out of the support 52.
  • the width of the fixed key 55 is smaller than the width of the inclined sliding hole 54 so that the fixed key 55 can move along the longitudinal direction of the inclined sliding hole 54.
  • the ring valve 141 When the retaining key 55 is positioned at the end of the inclined sliding hole 54 away from the flange 51, the ring valve 141 is positioned at a distance from the discharge scroll 18 to open the diffuser passage 17. .
  • the fixing key 55 when the fixing key 55 is positioned at the end of the inclined sliding hole 54 toward the flange 51, the ring valve 141 contacts the discharge scroll 18 to seal the diffuser passage 17.
  • the former case is shown by the solid line, and the latter case is shown by the dotted line.
  • a ring-shaped control member 43 is installed outside the support 52.
  • the control member 43 is coupled with the fixed key 55 to control the forward and backward movement of the ring valve 141 by moving the fixed key 55.
  • the control member 43 is also coupled to the guide shaft 42 to control the rotation angle of the vane 15 by rotating the guide shaft 42.
  • the control member 43, the plurality of link members 41, the plurality of guide shafts 42, and the plurality of fixing keys 55 constitute the actuator 40.
  • One surface of the control member 43 is provided with a plurality of first guide grooves 431 along the radial direction.
  • a second guide groove 432 connected to the first guide groove 431 is formed along the circumferential direction of the control member 43.
  • the first and second guide grooves 431 and 432 are provided in a number corresponding to the vane shaft 21.
  • a third guide groove 433 is formed on the inner surface of the control member 43 along the thickness direction of the control member 43.
  • the third guide groove 433 is provided in a number corresponding to the fixing key 55, and is connected to the second guide groove 432.
  • the guide shaft 42 is accommodated in the first and second guide grooves 431 and 432 and moves along the first and second guide grooves 431 and 432 when the control member 43 rotates.
  • the fixed key 55 is accommodated in the third guide groove 433 and moves along the third guide groove 433 when the control member 43 rotates.
  • a control handle 37 for transmitting rotational power to the control member 43 is located on the outer surface of the control member 43.
  • the control handle 37 is connected to the control unit 38 and operated by the command of the control unit 38.
  • FIG. 19 is a right side view of the variable diffuser system of the gas compressor 200 shown in FIG. 14, and FIG. 20 is a part of the control member 43 and the guide shaft 42 in the configuration of the variable diffuser system shown in FIG. 19.
  • the control member 43 sequentially controls the position of the ring valve 141 and the rotation angle of the vanes 15 according to the rotation direction and the rotation angle. That is, the amount of movement of the ring valve 141 is controlled through the rotation of the control member 43 in the first section between the point (a) and the point (b). In addition, the rotation angle of the vane 15 is controlled through the rotation of the control member 43 in the second section between the point (b) and the point (c).
  • the locking key 55 is located at the end of the inclined sliding hole 54 toward the discharge scroll 18 (see dashed line in FIG. 18).
  • the ring valve 141 thus contacts the discharge scroll 18 to seal the diffuser passage 17.
  • the end of the fixing key 55 is located at the end of the third guide groove 433 facing the discharge scroll 18.
  • the guide shaft 42 is located at the end of the second guide groove 432 far from the first guide groove 431. In this state, the vane 15 has a minimum inclination angle with respect to the tangent of the outer surface of the ring valve 141 to reduce the area of the diffuser passage 17.
  • the guide shaft 42 Although the position of the guide shaft 42 does not change in the first section, due to the rotation of the control member 43, the guide shaft 42 is connected to the first guide groove 431 at the point (b) and the second guide groove 432. Is located at the end of the Since there is no change in the position of the guide shaft 42 in the first section, the vane 15 remains closed. As described above, the amount of movement of the ring valve 141 may be controlled without changing the rotation angle of the vane 15.
  • the fixing key 55 is connected to the first guide groove 431 and the second guide groove 432 at the point (C). Is located at the end of the Since there is no change in the position of the holding key 55 in the second section, the ring valve 141 remains open. As described above, the rotation angle of the vane 15 may be controlled without moving the ring valve 141.
  • FIG. 21 is a perspective view showing the state of the ring valve 141 and the vane 15 at the point (A) shown in FIG. 19.
  • the ring valve 141 is lifted from the diffuser frame 50 to seal the diffuser passage 17.
  • the plurality of vanes 15 remain closed to reduce the area of the diffuser passage 17 outside the ring valve 141 (first step). In this way, if the start of the operation in a state in which the diffuser passage 17 is sealed with the ring valve 141, no load operation can be performed. In addition, stall and surge can be suppressed by preventing backflow of the compressed gas.
  • FIG. 22 is a perspective view showing the state of the ring valve 141 and the vane 15 at the point (b) shown in FIG.
  • FIG. 23 is a perspective view showing the state of the ring valve 141 and the vane 15 at the point (c) shown in FIG.
  • the vane 15 is controlled according to the operating state detected by the controller 38 to change the area of the diffuser passage 17 for stabilizing the airflow.
  • the variable diffuser system returns to the initial position shown in FIG. 11 to seal the diffuser passage 17 with the ring valve 141. In order to prevent surges,
  • 24 is a partial cross-sectional view of the gas compressor 300 according to the third embodiment of the present invention.
  • the gas compressor 300 of the third embodiment has a configuration in which a plurality of vanes 15 and a ring valve 142 are controlled by different actuators, unlike the second embodiment described above. That is, the gas compressor 300 of the third embodiment is combined with the vane shaft 21 to control the rotation angle of the vane 15 and the front and rear of the ring valve 142 using compressed air. And a second actuator 70 for controlling the true movement.
  • FIG. 25 is an exploded perspective view of the variable diffuser system of the gas compressor 300 shown in FIG. 24, and FIG. 26 is a right side view of the variable diffuser system shown in FIG. 24.
  • the shapes of the vanes 15 and the vane shaft 21 are the same as in the above-described second embodiment.
  • the shape of the diffuser frame 56 is the same as that of the above-described second embodiment, except that the inclined sliding hole is not formed in the support portion 52, and the first nozzle (described below) is formed in the diffuser frame 56. It is done.
  • One surface of the control member 44 is provided with a plurality of first guide grooves 441 in the radial direction.
  • the vane shaft 21 is joined to the diffuser frame 56 and its end protrudes out of the support 52, and the end of the vane shaft 21 is fixed to one end of the link member 41.
  • the guide shaft 42 is fixed to one end opposite the link member 41 at a distance from the vane shaft 21.
  • the guide shaft 42 is received in the first guide groove 441, and the link member 41 is disposed in parallel with the radial direction.
  • On the outer surface of the control member 44 is a control handle 37 for transmitting rotational power to the control member 44.
  • the plurality of link members 41, the plurality of guide shafts 42, and the control member 44 constitute the first actuator 60.
  • the control member 44 When the control member 44 is rotated in the clockwise direction (see FIG. 26), the guide shaft 42 rotates clockwise along the first guide groove 441, and the vane shaft 21 and the vane 15 are rotated in the same direction. Rotate to enlarge the area of the diffuser passage 17.
  • the control member 44 rotates in the counterclockwise direction (see FIG. 26)
  • the vane shaft 21 and the vanes 15 are rotated counterclockwise along the first guide groove 441.
  • FIG. 27 is a partially enlarged view of the gas compressor 300 shown in FIG. 24, in which the ring valve 142 is advanced toward the discharge scroll 18 to seal the diffuser passage 17.
  • the ring valve 142 forms an expansion ring 143 on its outer surface, and the inner side of the support 52 so that the outer surface of the expansion ring 143 is in close contact with the inner surface of the support 52. Is coupled to.
  • the top cover 45 is installed between the support part 52 and the ring valve 142, and the top cover 45 is fixed to the support part 52 by screwing.
  • the ring valve 142 maintains the gap G at the outlet of the impeller 12 along the radial direction of the impeller 12 and satisfying the above-described condition (1) along the radial direction of the impeller 12. .
  • the second actuator 70 is formed in the top cover 45 and the support 52 and compressed air toward one side of the expansion ring 143 toward the diffuser passage 17 (left side of the expansion ring with reference to FIG. 27).
  • the expansion ring 143 receives the force toward the direction away from the discharge scroll 18 to move the ring valve 142 backward. To open the diffuser passage 17.
  • the second nozzle 72 is opened and compressed air is injected through the second nozzle 72, the expansion ring 143 is forced toward the discharge scroll 18 to advance the ring valve 142 to diffuse the diffuser.
  • the passage 17 is sealed.
  • control handle 37 of the first actuator 60 and the first and second nozzles 71 and 72 of the second actuator 70 are connected to the control unit 38 to control the control unit 38. It is operated sequentially by the command of).
  • the flow rate control method of the gas compressor 300 using the ring valve 142 and the plurality of vanes 15 is the same as in the above-described second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

실속(stall)과 서지(surge)를 억제할 수 있는 가변 디퓨저 시스템을 구비한 기체 압축기를 제공한다. 기체 압축기는, i) 회전축에 고정되며, 날개면과 에지면을 포함하는 복수의 블레이드를 외주면에 구비하는 임펠러와, ii) 날개면을 둘러싸는 쉬라우드와, iii) 임펠러의 출구와 연결된 디퓨저 통로에 설치되며, 회전축과 나란한 방향을 따라 이동하여 디퓨저 통로를 개폐시키는 링 밸브와, iv) 디퓨저 통로 중 링 밸브의 외측에서 디퓨저 통로의 원주 방향을 따라 설치되는 복수의 베인과, v) 링 밸브 및 복수의 베인과 결합되어 링 밸브의 이동과 복수의 베인의 회전각을 순차적으로 제어하는 액츄에이터를 포함한다.

Description

기체 압축기 및 기체 압축기의 유량 제어 방법
본 발명은 기체 압축기에 관한 것으로서, 보다 상세하게는 임펠러 출구와 연결된 디퓨저 통로에 설치되어 실속(stall)과 서지(surge)를 방지하는 가변 디퓨저 시스템 및 이를 이용한 기체 압축기의 유량 제어 방법에 관한 것이다.
통상의 기체 압축기는 회전하는 임펠러에 기체를 통과시켜 임펠러의 원심 압축력으로 기체를 가속 및 압축시킨다. 디퓨저 통로는 임펠러 출구와 연결되어 소음을 줄이고 송풍 효율을 높이면서 임펠러에서 토출된 고속 고압의 기체를 감속시켜 기체의 운동 에너지를 압력 에너지로 변환시키는 기능을 한다.
임펠러를 통과하는 기체의 유량이 감소하거나 임펠러 입구와 출구의 압력 차이가 작아지면 기류가 불안정해진다. 따라서 디퓨저 통로에서 역류가 발생하고, 이로 인해 실속과 서지 현상이 나타난다. 더욱이 기체의 유량이 더 감소하거나 임펠러 입구와 출구의 압력이 같아지면, 디퓨저 통로에서 주기적으로 완전한 역류가 발생하는 서지 상태에 돌입하여 압축기 효율이 크게 저하된다.
따라서 실속과 서지를 최소함과 동시에 유량을 조절할 수 있도록 디퓨저 통로의 면적을 변화시키는 가변 디퓨저가 제안되었다. 통상의 가변 디퓨저는 디퓨저 통로의 원주 방향을 따라 배치되는 복수의 베인으로 이루어진다. 가변 디퓨저는 유량이 감소하거나, 임펠러 입구와 출구의 압력 차이가 작아질수록 디퓨저 통로의 면적을 축소시키고, 그 반대의 경우에는 디퓨저 통로의 면적을 확대시켜 기류를 안정화한다.
그런데 종래의 가변 디퓨저로는 임펠러 출구를 완전히 밀폐시킬 수 없으며, 임펠러와 가변 디퓨저 사이의 공간을 통해 기체의 역류를 허용하게 되므로 실속과 서지 예방에 한계가 있다. 또한, 종래의 가변 디퓨저는 유량 제어 범위가 제한적인데, 종래의 가변 디퓨저로 제어 가능한 최대 유량 범위는 정격 유량의 대략 45% 정도이다.
본 발명은 가변 디퓨저 시스템을 개선하여 기체의 역류를 차단함으로써 실속과 서지를 효과적으로 예방할 수 있는 기체 압축기 및 기체 압축기의 유량 제어 방법을 제공하고자 한다.
또한, 본 발명은 가변 디퓨저 시스템을 개선하여 제어 가능한 최대 유량 범위를 확대시킬 수 있는 기체 압축기 및 기체 압축기의 유량 제어 방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 기체 압축기는 i) 회전축에 고정되며, 날개면과 에지면을 포함하는 복수의 블레이드를 외주면에 구비하는 임펠러와, ii) 날개면을 둘러싸며 에지면과 평행한 외벽을 구비하는 쉬라우드와, iii) 임펠러의 출구와 연결된 디퓨저 통로에 설치되어 디퓨저 통로를 개폐시키며, 임펠러의 방사 방향을 따라 임펠러의 단부와 간격을 유지하는 링 밸브를 포함한다. 링 밸브는 쉬라우드의 외벽과 접촉하면서 쉬라우드의 외벽을 따라 슬라이드 이동한다.
링 밸브는 임펠러의 방사 방향을 따라 임펠러의 단부와 하기 조건의 간격(G)을 유지할 수 있다.
Figure PCTKR2010001361-appb-I000001
여기서, D는 임펠러의 출구측 직경(mm)을 나타낸다.
기체 압축기는 디퓨저 통로 중 링 밸브의 외측에서 디퓨저 통로의 원주 방향을 따라 설치되는 복수의 베인을 더 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 기체 압축기는 i) 회전축에 고정되며, 날개면과 에지면을 포함하는 복수의 블레이드를 외주면에 구비하는 임펠러와, ii) 날개면을 둘러싸는 쉬라우드와, iii) 임펠러의 출구와 연결된 디퓨저 통로에 설치되며, 회전축과 나란한 방향을 따라 이동하여 디퓨저 통로를 개폐시키는 링 밸브와, iv) 디퓨저 통로 중 링 밸브의 외측에서 디퓨저 통로의 원주 방향을 따라 설치되며, 각각의 베인 축을 구비하는 복수의 베인과, v) 링 밸브 및 복수의 베인 축과 결합되어 링 밸브의 이동과 베인의 회전각을 순차적으로 제어하는 액츄에이터를 포함한다.
링 밸브는 임펠러의 방사 방향을 따라 임펠러의 단부와 하기 조건의 간격(G)을 유지할 수 있다.
Figure PCTKR2010001361-appb-I000002
여기서, D는 임펠러의 출구측 직경(mm)을 나타낸다.
쉬라우드의 외벽은 에지면과 평행하고, 링 밸브는 쉬라우드의 외벽과 접촉하면서 쉬라우드의 외벽을 따라 슬라이드 이동할 수 있다.
임펠러는 블레이드의 사이 공간들이 쉬라우드의 내측에서 날개면을 넘어 서로 연통하도록 구성될 수 있다. 다른 한편으로, 임펠러는 블레이드의 사이 공간들이 날개면 측에서 덮개판에 의해 서로 분리되도록 구성될 수 있다.
액츄에이터는 i) 베인 축을 둘러싸는 내측 가이드 링과, ii) 임펠러의 방사 방향을 따라 내측 가이드 링과 베인 축을 관통하여 내측 가이드 링과 베인 축을 결합시키는 복수의 볼 레버와, iii) 내측 가이드 링을 둘러싸며, 연결부에 의해 링 밸브와 일체로 연결되고, 경사 슬라이딩 홀을 구비하는 외측 가이드 링과, iv) 경사 슬라이딩 홀을 관통하여 내측 가이드 링에 고정되는 고정 핀을 포함할 수 있다. 기체 압축기는 베인 축, 내측 가이드 링, 및 링 밸브를 지지하는 디퓨저 프레임을 더 포함할 수 있다.
베인 축은 임펠러의 방사 방향을 따라 베인 축을 관통하는 공동을 형성하고, 내측 가이드 링은 임펠러의 방사 방향을 따라 공동과 마주하는 복수의 개구부를 형성할 수 있다. 복수의 볼 레버 각각은 내측 가이드 링의 개구부 측벽에 밀착되는 볼 부재와, 공동에 끼워져 베인 축에 고정되는 지지 부재를 포함할 수 있다.
액츄에이터는 i) 내측 가이드 링의 회전량을 제한하는 멈춤 부재와, ii) 외측 가이드 링에 고정되는 제어 핸들과, iii) 디퓨저 프레임과 고정 핀 사이에 설치되는 탄성 부재를 더 포함할 수 있다.
멈춤 부재는 i) 내측 가이드 링의 일면에서 원주 방향을 따라 거리를 두고 위치하는 한 쌍의 제1 막대와, ii) 디퓨저 프레임에 고정되며 그 일부가 한 쌍의 제1 막대 사이에 위치하도록 돌출되는 제2 막대를 포함할 수 있다.
다른 한편으로, 액츄에이터는 i) 베인 축에 고정되는 링크 부재와, ii) 베인 축과 거리를 두고 링크 부재에 고정되는 가이드 축과, iii) 일면에 가이드 축을 수용하는 제1 가이드 홈을 형성하면서 가이드 축을 이동시켜 베인 축을 회전시키는 제어 부재를 포함할 수 있다.
제1 가이드 홈은 임펠러의 방사 방향을 따라 형성되고, 제어 부재는 제1 가이드 홈과 이어지면서 제어 부재의 원주 방향을 따라 형성되는 제2 가이드 홈을 더 포함할 수 있다. 기체 압축기는 링 밸브를 둘러싸면서 링 밸브와 베인 축 및 제어 부재를 지지하는 디퓨저 프레임을 더 포함하며, 디퓨저 프레임은 링 밸브와 중첩되는 영역에 경사 슬라이딩 홀을 형성할 수 있다.
제어 부재는 제2 가이드 홈과 이어지면서 제어 부재의 내면에 형성되는 제3 가이드 홈을 더 포함할 수 있다. 액츄에이터는, 경사 슬라이딩 홀을 관통하여 일단이 링 밸브에 고정되고 다른 일단이 제3 가이드 홈에 수용되는 고정 키를 더 포함할 수 있다.
디퓨저 프레임은 회전축과 나란한 방향을 따라 베인 축이 관통하는 복수의 베인 홀을 형성하고, 경사 슬라이딩 홀은 이웃한 2개의 베인 홀 사이에서 베인 홀과 이격 배치될 수 있다. 제어 부재는 기체 압축기의 동작 조건을 감지하는 제어부와 연결되어 제어부의 명령에 의해 작동할 수 있다.
다른 한편으로, 액츄에이터는 i) 복수의 베인 축과 결합되어 베인의 회전각을 제어하는 제1 액츄에이터와, ii) 링 밸브와 결합되어 링 밸브의 이동을 제어하는 제2 액츄에이터를 포함할 수 있다. 제1 액츄에이터는 i) 베인 축에 고정되는 링크 부재와, ii) 베인 축과 거리를 두고 링크 부재에 고정되는 가이드 축과, iii) 일면에 가이드 축을 수용하는 제1 가이드 홈을 형성하면서 가이드 축을 이동시켜 베인 축을 회전시키는 제어 부재를 포함할 수 있다.
제1 가이드 홈은 임펠러의 방사 방향을 따라 형성되고, 제어 부재는 제1 가이드 홈과 이어지면서 제어 부재의 원주 방향을 따라 형성되는 제2 가이드 홈을 더 포함할 수 있다.
링 밸브는 외면에 확장 링을 형성하고, 제2 액츄에이터는 i) 디퓨저 통로를 향한 확장 링의 일면을 향해 압축 공기를 분사하는 제1 노즐과, ii) 디퓨저 통로와 멀리 떨어진 확장 링의 반대측 일면을 향해 압축 공기를 분사하는 제2 노즐을 포함할 수 있다.
기체 압축기는 디퓨저 프레임과 링 밸브 사이에 설치되는 탑 커버를 더 포함할 수 있다. 제1 노즐은 탑 커버와 디퓨저 프레임에 걸쳐 형성되고, 제2 노즐은 탑 커버에 형성될 수 있다. 제어 부재와 제1 노즐 및 제2 노즐은 기체 압축기의 동작 조건을 감지하는 제어부와 연결되어 제어부의 명령에 의해 작동할 수 있다.
본 발명의 일 실시예에 따른 기체 압축기의 유량 제어 방법은, i) 초기 가동시 링 밸브를 닫아 디퓨저 통로를 밀폐시키고, 복수의 베인을 닫아 링 밸브의 외측에서 디퓨저 통로의 면적을 축소시키는 제1 단계와, ii) 정격 가동을 위해 링 밸브를 열어 디퓨저 통로를 개방시키는 제2 단계와, iii) 복수의 베인을 열어 링 밸브의 외측에서 디퓨저 통로의 면적을 확대시키는 제3 단계를 포함한다.
기체 압축기의 유량 제어 방법은, 제3 단계 이후 작동 정지를 위해 i) 복수의 베인을 닫아 링 밸브의 외측에서 디퓨저 통로의 면적을 축소시키는 제4 단계와, ii) 링 밸브를 닫아 디퓨저 통로를 밀폐시키는 제5 단계를 더 포함할 수 있다.
본 발명에 의한 기체 압축기는 압축 기체가 임펠러를 벗어나지 못하도록 하거나 사용처의 압축 기체가 임펠러로 역류하지 못하도록 임펠러의 출구 전체를 폐쇄하는 링 밸브를 구비한다. 따라서 초기 가동시 무부하 운전이 가능하며, 기동 및 정지시 기체 역류에 의한 실속과 서지 발생을 효과적으로 차단할 수 있다. 그리고 링 밸브와 복수의 베인을 연동시켜 구동함으로써 제어 가능한 최대 유량 범위를 확대시킬 수 있다.
또한, 본 발명에 의한 기체 압축기는 단일 액츄에이터를 이용하여 링 밸브의 이동과 베인의 회전각을 순차적으로 제어함에 따라, 링 밸브와 베인의 회전각 제어를 위한 가변 디퓨저 시스템의 기구적 구성을 단순화할 수 있다. 따라서 부품 제작과 조립을 용이하게 하여 제조 비용을 낮출 수 있다.
또한, 본 발명에 의한 기체 압축기에서는 링 밸브 작동시 소음이 거의 발생하지 않으므로 소음기를 장착해야 할 필요가 없고, 압축 기체를 대기와 연통시켜 압축 기체의 흐름을 제어하는 구성이 아니므로 배관 설치를 생략할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 기체 압축기의 부분 단면도이다.
도 2는 도 1에 도시한 기체 압축기의 부분 확대도이다.
도 3은 도 1에 도시한 기체 압축기 중 임펠러와 링 밸브를 개략적으로 나타낸 평면도이다.
도 4는 비교예의 기체 압축기 중 임펠러와 링 밸브를 개략적으로 나타낸 평면도이다.
도 5는 링 밸브와 임펠러 단부의 간격 변화에 따른 진동 상태를 측정하여 나타낸 그래프이다.
도 6과 도 7은 도 1에 도시한 기체 압축기 중 가변 디퓨저 시스템의 분해 사시도이다.
도 8은 도 7에 도시한 가변 디퓨저 시스템 중 외측 가이드 링과 링 밸브 및 연결부의 단면도이다.
도 9는 도 1에 도시한 기체 압축기 중 가변 디퓨저 시스템의 결합 상태 사시도이다.
도 10 내지 도 13은 본 발명의 제1 실시예에 따른 기체 압축기에서 유량 제어 방법을 설명하기 위해 도시한 가변 디퓨저 시스템의 개략도이다.
도 14는 본 발명의 제2 실시예에 따른 기체 압축기의 부분 단면도이다.
도 15는 도 14에 도시한 기체 압축기의 부분 확대도이다.
도 16은 도 14에 도시한 기체 압축기 중 가변 디퓨저 시스템의 분해 사시도이다.
도 17은 도 16의 부분 확대도이다.
도 18은 도 17에 도시한 디퓨저 프레임과 링 밸브의 결합 상태를 나타낸 사시도이다.
도 19는 도 14에 도시한 기체 압축기 중 가변 디퓨저 시스템의 우측면도다.
도 20은 도 19에 도시한 가변 디퓨저 시스템의 구성에서 제어 부재의 일부와 가이드 축 및 고정 키를 나타낸 부분 확대 사시도이다.
도 21 내지 도 23은 각각 도 19에 도시한 (가)지점과 (나)지점 및 (다)지점에서 링 밸브와 베인의 상태를 나타낸 사시도이다.
도 24는 본 발명의 제3 실시예에 따른 기체 압축기의 부분 단면도이다.
도 25는 도 24에 도시한 기체 압축기 중 가변 디퓨저 시스템의 분해 사시도이다.
도 26은 도 24에 도시한 가변 디퓨저 시스템의 우측면도이다.
도 27은 도 24에 도시한 기체 압축기의 부분 확대도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 기체 압축기(100)의 부분 단면도이다.
도 1을 참고하면, 제1 실시예의 기체 압축기(100)는 회전축(11), 임펠러(12), 쉬라우드(13), 링 밸브(14), 복수의 베인(15)(도 1에서는 하나의 베인을 도시), 및 액츄에이터(20)를 포함한다. 도 1에 도시한 기체 압축기(100)는 회전축(11)의 중심선(A-A선)을 기준으로 좌우 대칭을 이룬다.
임펠러(12)는 회전축(11)에 고정되며, 회전축(11)은 도시하지 않은 모터의 회전축에 결합된다. 임펠러(12)의 외주면에는 굽은 방사 형태로 이루어진 복수의 블레이드(16)가 형성된다. 블레이드(16)는 소정의 곡률로 형성되는 날개면(161)과, 날개면(161)에 연결되며 회전축(11)과 평행을 이루는 에지면(162)을 포함한다. 쉬라우드(13)는 블레이드(16)의 날개면(161)과 일정한 간격을 두고 임펠러(12)를 둘러싸도록 설치된다.
모터의 작동으로 임펠러(12)가 회전하면, 외부 기체가 회전하는 임펠러(12)로 유입되고, 블레이드(16)의 사이 공간을 통과하면서 가속 및 압축된 후 블레이드(16)의 에지면(162) 외측으로 배출된다. 도 1에서 기체의 유입 방향과 배출 방향을 화살표로 도시하였다. 본 실시예에서 '임펠러 출구'는 압축된 기체가 배출되는 임펠러(12)의 단부 주위를 의미한다.
임펠러(12) 출구의 외측으로 디퓨저 통로(17)가 위치한다. 디퓨저 통로(17)는 배출 스크롤(18)과 디퓨저 프레임(30) 사이에 형성되는 공간으로서, 소정의 높이와 폭을 가지는 고리 모양으로 제공된다. 디퓨저 통로(17)는 배출 스크롤(18)의 내부 통로와 연결되며, 임펠러(12)에서 배출된 고속 고압의 기체를 확산 및 감속시켜 기체의 운동 에너지를 압력 에너지로 변환시키는 기능을 한다.
본 실시예에서 링 밸브(14), 복수의 베인(15) 및 액츄에이터(20)가 가변 디퓨저 시스템을 구성한다. 링 밸브(14)는 디퓨저 통로(17)를 열고 닫도록 작동하며, 초기 가동시 디퓨저 통로(17)를 밀폐시켜 실속과 서지를 방지한다. 복수의 베인(15)은 회전각이 변하도록 작동하며, 링 밸브(14)의 외측에서 디퓨저 통로(17)의 면적을 변화시켜 기류를 안정화시킨다. 액츄에이터(20)는 링 밸브(14) 및 복수의 베인(15)과 기구적으로 결합되어 링 밸브(14)의 이동과 베인(15)의 회전각을 순차적으로 제어한다.
도 2는 도 1에 도시한 기체 압축기(100)의 부분 확대도로서, 링 밸브(14)가 배출 스크롤(18)을 향해 하강하여 디퓨저 통로(17)를 밀폐시킨 상태를 도시하였다. 도 3은 도 1에 도시한 기체 압축기(100) 중 임펠러(12)와 링 밸브(14)를 개략적으로 나타낸 평면도이다.
도 2와 도 3을 참고하면, 쉬라우드(13)의 외벽(131)은 블레이드(16)의 에지면(162)과 평행하고, 임펠러(12)의 방사 방향을 따라 에지면(162) 및 임펠러(12)의 단부와 소정의 간격을 유지한다. 여기서, '방사 방향'은 임펠러(12)의 중심으로부터 회전축(11)과 직교하는 방향을 따라 사방으로 뻗어 나가는 방향으로 정의한다.
링 밸브(14)는 쉬라우드(13)의 외벽과 접촉하며, 쉬라우드(13)의 외벽(131)을 따라 슬라이드 이동하여 디퓨저 통로(17)를 개폐시킨다. 따라서 링 밸브(14)는 배출 스크롤(18)을 향해 하강하여 디퓨저 통로(17)를 밀폐시킬 때, 에지면(162) 및 임펠러(12)의 단부와 소정의 간격을 유지한다.
본 실시예에서 임펠러(12)의 방사 방향을 따라 측정되는 링 밸브(14)와 임펠러(12) 단부의 간격(G)(도 2의 확대원 및 도 3 참조)은 임펠러(12)의 출구측 직경(D; mm)(도 3 참조)에 따라 하기 조건을 만족하도록 설정된다.
Figure PCTKR2010001361-appb-I000003
--- (1)
간격(G)의 최소값은 임펠러(12)와 링 밸브(14)의 열팽창 및 회전축(11)의 반경 방향 유격 등의 제한 사항을 고려한 것이다. 즉, 간격(G)이 0.002D 미만이면, 임펠러(12)와 링 밸브(14)의 열팽창에 의해 임펠러(12)와 링 밸브(14)가 접촉할 수 있고, 설치 과정에서 회전축(11)과 임펠러(12)의 유격을 정밀하게 조정하는데 어려움이 생긴다. 또한, 조립 정밀도가 낮은 경우, 기체 압축기(100) 작동시 임펠러(12)가 링 밸브(14)에 부딪힐 우려가 있다.
간격(G)의 최대값은 실속과 서지를 예방하는 링 밸브(14)의 기능성을 고려한 것이다. 즉, 간격(G)이 0.008D를 초과하면, 임펠러(12)와 링 밸브(14) 사이의 공간을 통해 기체의 역류를 허용하여 실속과 서지가 발생하고, 그 결과 기체 압축기(100)의 안정성과 효율을 크게 저하시킨다. 제1 실시예의 기체 압축기(100)는 링 밸브(14)와 임펠러(12) 단부의 간격(G)을 조건 (1)의 범위 중 최소값에 근접하게 설정할수록 높은 효율을 구현할 수 있다.
임펠러(12)의 출구측 직경(D)은 10mm 내지 800mm일 수 있으며, 이 경우 링 밸브(14)와 임펠러(12) 단부의 간격(G)은 조건 (1)에 따라 0.02mm 내지 6.4mm로 설정된다. 기체 압축기(100)가 7000rpm 이상의 고속 기체 압축기인 경우, 정격 풍량과 압력에 따라 차이는 있지만, 임펠러(12)의 출구측 직경(D)이 50mm일 때 간격(G)은 0.2mm일 수 있고, 임펠러(12)의 출구측 직경(D)이 500mm일 때 간격(G)은 2mm일 수 있다.
도 4는 링 밸브(14')와 임펠러(12) 단부의 간격(G2)이 0.008D를 초과하는 비교예의 기체 압축기 중 임펠러(12)와 링 밸브(14')를 개략적으로 나타낸 평면도이다. 도 3과 도 4를 참고하여 조건 (1)을 만족하는 실시예의 기체 압축기와, 조건 (1)을 만족하지 않는 비교예의 기체 압축기에서 안정성 및 효율 차이가 발생하는 이유에 대해 설명한다. 도 3과 도 4에서 B 화살표는 임펠러(12)의 회전 방향을 나타낸다.
먼저 도 3을 참고하면, 본 실시예의 기체 압축기(100)에서 링 밸브(14)는 임펠러(12)의 둘레를 따라 임펠러(12)의 단부와 조건 (1)을 만족하는 간격(G)을 유지한다. 예를 들어, 임펠러(12)의 출구측 직경(D)이 200mm일 때, 간격(G)은 0.4mm 내지 1.6mm 범위로 설정된다.
본 실시예의 기체 압축기(100)에서 링 밸브(14)를 하강시켜 디퓨저 통로(17)를 밀폐시키면, 임펠러(12)는 외부 기체가 유입되는 입구를 제외하고 쉬라우드(13)와 링 밸브(14)에 의해 완전히 둘러싸인다. 이 상태에서 초기 가동을 시작하면, 블레이드(16)의 사이 공간(19)에서 압축된 기체는 임펠러(12)의 외측으로 토출되지 못하고, 원심력 때문에 임펠러(12)를 거슬러 역류하지도 못한 채 같은 공간에서 그대로 회전을 계속하게 된다.
도 3에서 압축 기체의 회전 방향을 점선 화살표로 도시하였다. 따라서 블레이드(16)의 사이 공간(19) 전체가 압축된 기체로 가득 채워지며, 임펠러(12) 입구에서는 더 이상의 외부 기체가 흡입되지 못한다.
그 결과, 초기 가동시 최소량의 기체 흡입 이외에 추가적으로 기체가 흡입되지 못한 상태에서 정격 회전수까지 상승하므로 무부하 운전이 가능해지고, 기체 역류로 인한 실속과 서지를 예방할 수 있다. 또한, 배출 스크롤(18)과 연결된 사용처 등의 문제로 인해 기체가 임펠러(12)로 역류하는 경우에 있어서도 링 밸브(14)로 디퓨저 통로(17)를 밀폐시키면 기체 역류를 차단할 수 있으므로, 실속과 서지를 효과적으로 억제할 수 있다.
도 4를 참고하면, 비교예의 기체 압축기에서 링 밸브(14')는 임펠러(12)의 둘레를 따라 임펠러(12)의 단부와 조건 (1)을 만족하지 않는 간격(G2)을 유지한다. 예를 들어, 임펠러(12)의 출구측 직경(D)이 200mm일 때, 간격(G2)은 1.6mm를 초과한다.
비교예의 경우, 임펠러(12)와 링 밸브(14') 사이의 공간을 통해 기체의 역류를 허용한다. 즉, 임펠러(12) 회전시 블레이드(16)의 사이 공간(19)에서 압축된 기체는 임펠러(12)와 링 밸브(14') 사이의 공간을 통해 임펠러(12)의 회전 방향과 반대 방향을 따라 다른 블레이드(16)의 사이 공간으로 역류하여 임펠러(12) 입구를 향하게 된다. 도 4에서 압축 기체의 이동 방향을 화살표로 도시하였다. 따라서 비교예의 기체 압축기에서는 무부하 운전이 불가능하며, 기체 역류로 인한 실속과 서지를 허용하게 된다.
도 5는 링 밸브와 임펠러 단부의 간격(G) 변화에 따른 진동 상태를 측정하여 나타낸 그래프이다. 실험에 사용된 기체 압축기에서 임펠러의 출구측 직경(D)은 200mm이고, 블레이드의 높이는 18mm이며, 상온 및 대기압 조건에서 실험하였다. 링 밸브와 임펠러 단부의 간격(G)은 조건 (1)에 따라 0.4mm 이상이고, 0.2mm씩 간격을 확대시키면서 임펠러의 진동 수치를 측정하였다.
도 5를 참고하면, 링 밸브와 임펠러 단부의 간격(G)이 커질수록 진동 수치는 점차 높아지지만 간격(G)이 1.6mm 이하인 영역은 정상 동작 범위에 속한다. 반면, 간격(G)이 1.6mm를 초과하면서 진동 수치가 급격하게 상승하여 초기 실속 및 서지 영역으로 돌입하는 것을 확인할 수 있다. 도 5의 결과로부터 조건 (1)을 만족하지 않는 비교예의 기체 압축기에서 안정성과 효율이 크게 저하됨을 알 수 있다.
제1 실시예의 기체 압축기(100)에서 링 밸브(14)는 기본적으로 유량 제어 기능을 가질 뿐만 아니라 압축 기체가 임펠러(12)를 벗어날 수 없도록 임펠러(12) 출구 전체를 폐쇄하는 밸브로 보다 주요하게 기능한다. 따라서 링 밸브(14)를 이용하여 기체 역류를 차단함으로써 실속과 서지를 효과적으로 예방할 수 있다.
액츄에이터(20)는 링 밸브(14) 및 복수의 베인(15)과 기구적으로 결합되며, 링 밸브(14)의 이동과 베인(15)의 회전각을 순차적으로 제어한다. 다음으로, 링 밸브(14)와 복수의 베인(15) 및 액츄에이터(20)의 결합 구조에 대해 설명한다.
도 6과 도 7은 도 1에 도시한 기체 압축기(100) 중 가변 디퓨저 시스템의 분해 사시도이다.
도 6과 도 7을 참고하면, 복수의 베인(15)은 디퓨저 프레임(30)의 일측에서 디퓨저 통로(17)의 원주 방향을 따라 등간격으로 배치된다. 각각의 베인(15)에는 베인 축(21)이 고정되며, 베인 축(21)에는 방사 방향을 따라 베인 축(21)을 관통하는 공동(211)이 형성된다.
디퓨저 프레임(30)은 서로 이격 배치되는 제1 플랜지(31) 및 제2 플랜지(32)와, 제1 플랜지(31)의 내측 단부와 제2 플랜지(32)의 내측 단부를 연결하는 연결 플랜지(33)로 구성된다. 제1 및 제2 플랜지(31, 32)에는 베인 축(21) 장착을 위한 복수의 제1 개구부(301)가 원주 방향을 따라 등간격으로 배치된다.
액츄에이터(20)는 복수의 베인 축(21)을 둘러싸는 내측 가이드 링(22)과, 베인 축(21)과 내측 가이드 링(22)을 결합시키는 복수의 볼 레버(23)와, 내측 가이드 링(22)을 둘러싸며 링 밸브(14)와 일체로 연결되는 외측 가이드 링(24)과, 내측 가이드 링(22)과 외측 가이드 링(24)을 결합시키는 복수의 고정 핀(25)을 포함한다.
내측 가이드 링(22)에는 임펠러(12)의 방사 방향을 따라 내측 가이드 링(22)을 관통하는 복수의 제2 개구부(221)가 원주 방향을 따라 등간격으로 배치된다. 베인 축(21)이 디퓨저 프레임(30)의 제1 개구부(301)를 관통하여 디퓨저 프레임(30)에 결합되면, 내측 가이드 링(22)이 연결 플랜지(33)와 제2 플랜지(32)의 외측에 배치되어 복수의 베인 축(21)을 둘러싼다. 이때, 베인 축(21)의 공동(211)과 내측 가이드 링(22)의 제2 개구부(221)는 방사 방향을 따라 서로 마주하도록 배치된다.
볼 레버(23)는 내측 가이드 링(22)의 제2 개구부(221) 및 베인 축(21)의 공동(211)을 관통하여 베인 축(21)에 고정된다. 볼 레버(23)는 내측 가이드 링(22)의 제2 개구부(221) 측벽에 밀착되는 볼 부재(231)와, 공동(211)에 끼워져 베인 축(21)에 고정되는 지지 부재(232)를 포함한다. 따라서 내측 가이드 링(22)이 회전하면 볼 레버(23)를 통해 베인 축(21)이 내측 가이드 링(22)과 연동하여 같이 회전한다.
디퓨저 프레임(30)과 내측 가이드 링(22)에는 내측 가이드 링(22)의 회전량을 제한하는 멈춤 부재(26)가 설치된다. 멈춤 부재(26)는 내측 가이드 링(22)의 일면에서 원주 방향을 따라 거리를 두고 위치하는 한 쌍의 제1 막대(27)와, 디퓨저 프레임(30)에 고정되며 그 일부가 한 쌍의 제1 막대(27) 사이에 위치하도록 돌출되는 제2 막대(28)를 포함한다. 한 쌍의 제1 막대(27)는 내측 가이드 링(22)의 최대 회전 거리만큼 떨어져 위치하며, 내측 가이드 링(22)은 한 쌍의 제1 막대(27) 중 어느 하나의 제1 막대(27)가 제2 막대(28)에 걸리면서 회전이 제한된다.
한편, 베인 축(21)에는 고정 나사(29)가 끼워지는 내부 공간이 형성되어 고정 나사(29)로 볼 레버(23)를 단단하게 조일 수 있다. 또한, 연결 플랜지(33)에는 임펠러(12)의 방사 방향을 따라 연결 플랜지(33)를 관통하는 복수의 제3 개구부(331)가 형성된다. 가변 디퓨저 시스템 분해시 연결 플랜지(33)의 내측에서 제3 개구부(331)로 공구를 밀어 넣어 볼 레버(23)를 밀어냄으로써 베인 축(21)으로부터 볼 레버(23)를 분리시킬 수 있다.
외측 가이드 링(24)은 링 밸브(14)와 나란하게 위치하며, 연결부(34)에 의해 링 밸브(14)와 일체로 형성된다. 도 8은 도 7에 도시한 가변 디퓨저 시스템 중 외측 가이드 링(24)과 링 밸브(14) 및 연결부(34)의 단면도이다. 도 8을 참고하면, 외측 가이드 링(24)은 링 밸브(14)보다 작은 높이로 형성되고, 연결부(34)가 링 밸브(14)의 단부와 외측 가이드 링(24)의 단부를 일체로 연결한다.
다시 도 6과 도 7을 참고하면, 외측 가이드 링(24)에는 적어도 하나의 경사 슬라이딩 홀(35)이 형성된다. 일례로 4개의 경사 슬라이딩 홀(35)이 외측 가이드 링(24)의 원주 방향을 따라 배치될 수 있다. 고정 핀(25)은 경사 슬라이딩 홀(35)과 같은 개수로 구비되고, 각각의 고정 핀(25)은 경사 슬라이딩 홀(35)을 관통하여 내측 가이드 링(22)에 고정된다.
도 9는 도 1에 도시한 기체 압축기(100) 중 가변 디퓨저 시스템의 결합 상태 사시도이다.
도 9를 참고하면, 디퓨저 프레임(30)과 고정 핀(25) 사이에 탄성 부재(36)가 설치된다. 탄성 부재(36)의 일단은 디퓨저 프레임(30)에 고정되고, 탄성 부재(36)의 반대편 일단은 고정 핀(25)에 고정된다. 탄성 부재(36)는 복원력을 이용하여 고정 핀(25)을 시계 방향(도면 기준)으로 끌어당기는 힘을 발휘한다.
그리고 외측 가이드 링(24)에는 제어 핸들(37)이 부착되어 제어 핸들(37)의 작동으로 외측 가이드 링(24)의 회전을 제어한다. 제어 핸들(37)은 임펠러(12)를 통과하는 기체의 유량, 임펠러(12) 입구와 출구의 압력 차이, 사용처 등의 문제로 발생하는 기체의 역류 등 기체 압축기(100)의 동작 조건을 감지하는 제어부(38)와 연결되며, 제어부(38)의 명령에 의해 작동한다.
도 9 내지 도 13을 참고하여 가변 디퓨저 시스템을 이용한 기체 압축기(100)의 유량 제어 방법에 대해 설명한다. 아래에서 언급하는 '시계 방향'과 '반시계 방향'은 도면을 기준으로 한다.
도 10과 도 11은 초기 가동을 위한 링 밸브(14)와 베인(15)의 상태를 나타내고 있다. 도 10과 도 11을 참고하면, 초기 가동시 외측 가이드 링(24)과 링 밸브(14)는 하강하여 링 밸브(14)가 디퓨저 통로(17)를 밀폐시킨다. 그리고 복수의 베인(15)은 닫힌 상태를 유지하여 링 밸브(14)의 외측에서 디퓨저 통로(17)의 면적을 최소화한다(제1 단계).
이때, 고정 핀(25)은 경사 슬라이딩 홀(35)의 상단부에 위치한다. 그리고 탄성 부재(36)가 복원력으로 고정 핀(25)을 시계 방향으로 끌어당기고 있으나, 내측 가이드 링(22)은 멈춤 부재(26)에 의해 더 이상 시계 방향으로 움직일 수 없다. 따라서 베인(15)의 각도가 지정된 최저 유량 위치에서 제한된다.
이와 같이 링 밸브(14)로 디퓨저 통로(17)를 밀폐시킨 상태에서 가동을 시작하면, 도 3을 참고로 설명한 바와 같이 무부하 운전을 할 수 있다. 또한, 압축 기체의 역류를 방지하여 실속과 서지를 억제할 수 있다.
이후 정격 가동을 위해 제어 핸들(37)과 외측 가이드 링(24)을 반시계 방향으로 회전시킨다. 그러면 도 9에 도시한 바와 같이, 고정 핀(25)이 경사 가이드로 작용하여 외측 가이드 링(24)이 디퓨저 프레임(30)으로부터 상승한다. 따라서 링 밸브(14)가 상승하여 디퓨저 통로(17)를 개방시킨다(제2 단계).
이때, 탄성 부재(36)가 고정 핀(25)을 시계 방향으로 끌어당기고 있으므로, 내측 가이드 링(22)과 그에 연동되는 베인(15)은 움직이지 않고 최저 유량 위치를 유지한다. 제2 단계에서 고정 핀(25)은 경사 슬라이딩 홀(35)의 하단부에 위치한다.
이어서 제어 핸들(37)과 외측 가이드 링(24)을 반시계 방향으로 더 회전시킨다. 그러면 도 12와 도 13에 도시한 바와 같이, 외측 가이드 링(24)은 높이 변화 없이 고정 핀(25)에 가해진 탄성 부재(36)의 복원력을 이기고 반시계 방향으로 고정 핀(25)을 끌고 회전한다. 따라서 고정 핀(25)과 내측 가이드 링(22) 및 베인 축(21)이 움직이면서 베인(15)이 개방되어 디퓨저 통로(17)의 면적을 확대시킨다(제3 단계). 이 과정에서 고정 핀(25)은 멈춤 부재(26)에 의해 내측 가이드 링(22)의 회전이 멈출때까지 이동한다.
다음으로, 정지를 위한 작동 순서는 전술한 과정과 반대로 이루어진다.
즉, 도 12에서 제어 핸들(37)을 시계 방향으로 회전시키면, 탄성 부재(36)가 고정 핀(25)을 시계 방향으로 끌어당기고 있으므로 고정 핀(25)이 외부 가이드 링(24)에 대해 경사 가이드로 기능하지 못한다. 따라서 외부 가이드 링(24)은 높이 변화 없이 시계 방향으로 회전만 하게 되고, 탄성 부재(36)의 복원력에 이끌린 고정 핀(25)이 시계 방향으로 이동하여 베인(15)을 닫는다(제4 단계, 도 9 참조). 이 과정에서 고정 핀(25)은 멈춤 부재(26)에 의해 내측 가이드 링(22)의 회전이 멈출때까지 이동한다.
그리고 도 9에서 제어 핸들(37)을 시계 방향으로 더 회전시키면, 고정 핀(25)이 경사 가이드로 작용하므로 도 11에 도시한 바와 같이 외부 가이드 링(24)과 링 밸브(14)가 하강하여 디퓨저 통로(17)를 밀폐시킨다(제5 단계). 따라서 정격 가동으로부터 임펠러(12) 정지에 이르는 시기에서도 서지 발생을 효과적으로 억제할 수 있다.
이와 같이 본 실시예의 기체 압축기(100)는 단일 액츄에이터(20)를 이용하여 링 밸브(14)와 복수의 베인(15)을 함께 제어하므로, 제어를 위한 기구적 구성을 단순화할 수 있다. 또한, 본 실시예의 기체 압축기(100)는 링 밸브(14)와 베인(15)을 순차적으로 구동시키므로, 가변 디퓨저 시스템으로 제어할 수 있는 유량 범위를 최대 100%까지 확대시킬 수 있다. 본 실시예에서 링 밸브(14)의 유량 제어 범위는 대략 0~45%이고, 베인(15)의 유량 제어 범위는 대략 45~100%이다.
한편, 도 1 내지 도 3에서는 쉬라우드(13)의 내측에서 블레이드(16)의 사이 공간들이 날개면(161)을 넘어 서로 연통할 수 있는 구조를 도시하였으나, 날개면(161)에 덮개판(도시하지 않음)이 고정되어 날개면(161) 측에서 블레이드(16)의 사이 공간들이 서로 분리되는 구조도 적용 가능하다.
즉, 후자의 경우 임펠러(12)에서 기체가 유입되는 입구와 압축된 기체가 배출되는 출구(에지면측)를 제외하고 블레이드(16)의 사이 공간들은 덮개판으로 분리된다. 덮개판은 임펠러(12)와 함께 회전하고, 쉬라우드(13)의 내측에서 쉬라우드(13)와 거리를 유지한다. 후자의 경우, 덮개판을 제외한 기체 압축기(100)의 형상은 전술한 실시예의 구조와 모두 동일하며, 링 밸브(14)와 임펠러(12) 단부의 간격(G) 또한 전술한 조건 (1)을 만족한다.
도 14는 본 발명의 제2 실시예에 따른 기체 압축기(200)의 부분 단면도이고, 도 15는 도 14에 도시한 기체 압축기(200)의 부분 확대도로서, 링 밸브(141)가 배출 스크롤(18)을 향해 하강하여 디퓨저 통로(17)를 밀폐시킨 상태를 도시하였다.
도 14와 도 15를 참고하면, 제2 실시예의 기체 압축기(200)는 회전축(11), 임펠러(12), 쉬라우드(132), 링 밸브(141), 복수의 베인(15)(도 14에서는 하나의 베인을 도시), 및 액츄에이터(40)를 포함한다.
제2 실시예의 기체 압축기(200)는 링 밸브(141)와 액츄에이터(40) 및 디퓨저 프레임(50)의 형상을 제외하고 전술한 제1 실시예의 기체 압축기(100)와 동일한 구성으로 이루어진다. 제1 실시예와 같은 부재에 대해서는 같은 도면 부호를 사용하며, 아래에서는 제1 실시예와 다른 부분에 대해 주로 설명한다.
도 16은 도 14에 도시한 기체 압축기(200) 중 가변 디퓨저 시스템의 분해 사시도이고, 도 17은 도 16의 부분 확대도이다.
도 16과 도 17을 참고하면, 복수의 베인(15)은 디퓨저 프레임(50)의 일측에서 디퓨저 통로(17)의 원주 방향을 따라 등간격으로 배치되며, 각각의 베인(15)에는 베인 축(21)이 고정된다.
디퓨저 프레임(50)은 고리 모양의 플랜지(51)와, 플랜지(51)의 내측으로부터 소정 높이로 연장된 원통 모양의 지지부(52)를 포함한다. 플랜지(51)는 쉬라우드(132)의 내부에서 배출 스크롤(18)과 마주하도록 배치되어 배출 스크롤(18)과의 사이에 디퓨저 통로(17)를 형성한다. 지지부(52)는 플랜지(51)의 내측으로부터 배출 스크롤(18)과 멀어지는 방향을 따라 연장된다.
지지부(52)에는 회전축(11)과 나란한 방향을 따라 지지부(52)를 관통하는 복수의 베인 홀(53)이 형성된다. 그리고 각각의 베인 축(21)이 베인 홀(53)에 삽입되어 베인(15)과 베인 축(21)이 디퓨저 프레임(50)에 의해 지지된다. 이때, 베인 축(21)의 길이는 지지부(52)의 높이보다 크며, 베인 축(21)이 디퓨저 프레임(50)에 결합된 이후 베인 축(21)의 단부가 지지부(52) 바깥으로 돌출된다.
베인 축(21)의 단부는 링크 부재(41)의 일단에 고정되고, 베인 축(21)과 일정한 거리를 두고 링크 부재(41)의 반대편 일단에 가이드 축(42)이 고정된다. 링크 부재(41)와 가이드 축(42)은 베인 축(21)에 대응하는 개수로 구비되며, 가이드 축(42)은 베인 축(21)보다 작은 길이로 형성된다. 베인 축(21)이 링크 부재(41)를 통해 가이드 축(42)과 연결됨에 따라, 베인 축(21)을 중심으로 가이드 축(42)이 회전 이동하면 베인 축(21)이 회전하여 베인(15)의 개폐 정도를 조절할 수 있다.
링 밸브(141)는 지지부(52)의 내측에 결합되며, 링 밸브(141)의 외면이 지지부(52)의 내면에 밀착된다. 지지부(52)에는 임펠러(12)의 방사 방향을 따라 지지부(52)를 관통하는 복수의 경사 슬라이딩 홀(54)이 형성된다. 경사 슬라이딩 홀(54)은 베인 홀(53)과 연결되지 않도록 이웃한 2개의 베인 홀(53) 사이에 위치하고, 회전축(11)과 나란한 방향에 대해 기울어지게 배치된다.
도 18은 도 17에 도시한 디퓨저 프레임(50)과 링 밸브(141)의 결합 상태를 나타낸 사시도이다.
도 18을 참고하면, 링 밸브(141)가 지지부(52)의 내측에 결합된 이후, 복수의 고정 키(55)가 지지부(52)의 외측에서 경사 슬라이딩 홀(54)을 관통한 다음 링 밸브(141)에 고정된다. 이때, 고정 키(55)의 단부는 지지부(52)의 바깥으로 돌출된다. 그리고 고정 키(55)의 폭은 경사 슬라이딩 홀(54)의 폭보다 작게 형성되어 고정 키(55)가 경사 슬라이딩 홀(54)의 길이 방향을 따라 이동할 수 있도록 한다.
고정 키(55)가 플랜지(51)와 멀리 떨어진 경사 슬라이딩 홀(54)의 단부에 위치하면, 링 밸브(141)는 배출 스크롤(18)과 거리를 두고 위치하여 디퓨저 통로(17)를 개방시킨다. 반면, 고정 키(55)가 플랜지(51)를 향한 경사 슬라이딩 홀(54)의 단부에 위치하면, 링 밸브(141)는 배출 스크롤(18)과 접촉하여 디퓨저 통로(17)를 밀폐시킨다. 전자의 경우를 실선으로 도시하였고, 후자의 경우를 점선으로 도시하였다.
다시 도 16과 도 17을 참고하면, 지지부(52)의 외측에 링 형상의 제어 부재(43)가 설치된다. 제어 부재(43)는 고정 키(55)와 결합되어 고정 키(55)를 이동시킴으로써 링 밸브(141)의 전후진 이동을 제어한다. 이와 동시에 제어 부재(43)는 가이드 축(42)과도 결합되어 가이드 축(42)을 회전 이동시킴으로써 베인(15)의 회전각을 제어한다. 제2 실시예의 기체 압축기(200)에서 제어 부재(43), 복수의 링크 부재(41), 복수의 가이드 축(42), 및 복수의 고정 키(55)가 액츄에이터(40)를 구성한다.
제어 부재(43)의 일면에는 방사 방향을 따라 복수의 제1 가이드 홈(431)이 형성된다. 그리고 제1 가이드 홈(431)과 이어지는 제2 가이드 홈(432)이 제어 부재(43)의 원주 방향을 따라 형성된다. 제1 및 제2 가이드 홈(431, 432)은 베인 축(21)에 대응하는 개수로 구비된다. 또한, 제어 부재(43)의 내면에는 제어 부재(43)의 두께 방향을 따라 제3 가이드 홈(433)이 형성된다. 제3 가이드 홈(433)은 고정 키(55)에 대응하는 개수로 구비되며, 제2 가이드 홈(432)과 이어진다.
가이드 축(42)은 제1 및 제2 가이드 홈(431, 432)에 수용되어 제어 부재(43) 회전시 제1 및 제2 가이드 홈(431, 432)을 따라 이동한다. 고정 키(55)는 제3 가이드 홈(433)에 수용되어 제어 부재(43) 회전시 제3 가이드 홈(433)을 따라 이동한다. 제어 부재(43)의 외면에는 제어 부재(43)에 회전 동력을 전달하는 제어 핸들(37)이 위치한다. 제어 핸들(37)은 제어부(38)와 연결되어 제어부(38)의 명령에 의해 작동한다.
도 19는 도 14에 도시한 기체 압축기(200) 중 가변 디퓨저 시스템의 우측면도이고, 도 20은 도 19에 도시한 가변 디퓨저 시스템의 구성에서 제어 부재(43)의 일부와 가이드 축(42) 및 고정 키(55)를 나타낸 부분 확대 사시도이다.
도 19와 도 20을 참고하면, 제어 부재(43)는 회전 방향과 회전각에 따라 링 밸브(141)의 위치와 베인(15)의 회전각을 순차적으로 제어한다. 즉, (가)지점에서 (나)지점 사이의 제1 구간에서 제어 부재(43)의 회전을 통해 링 밸브(141)의 이동량을 제어한다. 그리고 (나)지점에서 (다)지점 사이의 제2 구간에서 제어 부재(43)의 회전을 통해 베인(15)의 회전각을 제어한다.
먼저, (가)지점에서 고정 키(55)는 배출 스크롤(18)을 향한 경사 슬라이딩 홀(54)의 단부에 위치한다(도 18의 점선 표시 참조). 따라서 링 밸브(141)는 배출 스크롤(18)과 접촉하여 디퓨저 통로(17)를 밀폐시킨다. 이때, 고정 키(55)의 단부는 배출 스크롤(18)을 향한 제3 가이드 홈(433)의 단부에 위치한다. 또한, (가)지점에서 가이드 축(42)은 제1 가이드 홈(431)과 멀리 떨어진 제2 가이드 홈(432)의 단부에 위치한다. 이 상태에서 베인(15)은 링 밸브(141) 외면의 접선에 대한 경사각이 최소가 되어 디퓨저 통로(17)의 면적을 축소시킨다.
제어 핸들(37)이 (가)지점에서 (나)지점을 향해 이동하여 제어 부재(43)가 반시계 방향으로 회전하면, 고정 키(55)는 제3 가이드 홈(433)을 따라 배출 스크롤(18)과 멀어지는 방향으로 이동한다. 따라서 링 밸브(141)가 후진하여 디퓨저 통로(17)를 개방시킨다.
제1 구간에서 가이드 축(42)의 위치는 변하지 않지만, 제어 부재(43)의 회전으로 인해 가이드 축(42)은 (나)지점에서 제1 가이드 홈(431)과 이어지는 제2 가이드 홈(432)의 단부에 위치한다. 제1 구간에서 가이드 축(42)의 위치 변화가 없기 때문에, 베인(15)은 닫힌 상태를 그대로 유지한다. 이와 같이 제1 구간에서는 베인(15)의 회전각 변화 없이 링 밸브(141)의 이동량을 제어할 수 있다.
제어 핸들(37)이 (나)지점에서 (다)지점을 향해 이동하여 제어 부재(43)가 반시계 방향으로 더 회전하면, 가이드 축(42)이 제1 가이드 홈(431)을 따라 슬라이드 이동하여 베인 축(21)을 회전시킨다. 따라서 베인(15)은 링 밸브(141) 외면의 접선에 대한 경사각이 최대가 되도록 회전하여 디퓨저 통로(17)의 면적을 확대시킨다.
제2 구간에서 고정 키(55)의 위치는 변하지 않지만, 제어 부재(43)의 회전으로 인해 고정 키(55)는 (다)지점에서 제1 가이드 홈(431)과 이어지는 제2 가이드 홈(432)의 단부에 위치한다. 제2 구간에서 고정 키(55)의 위치 변화가 없기 때문에, 링 밸브(141)는 열린 상태를 그대로 유지한다. 이와 같이 제2 구간에서는 링 밸브(141)의 이동 없이 베인(15)의 회전각을 제어할 수 있다.
도 21 내지 도 23을 참고하여 가변 디퓨저 시스템을 이용한 유량 제어 방법에 대해 설명한다.
도 21은 도 19에 도시한 (가)지점에서 링 밸브(141)와 베인(15)의 상태를 나타낸 사시도이다.
도 21을 참고하면, 초기 가동시 링 밸브(141)는 디퓨저 프레임(50)으로부터 상승하여 디퓨저 통로(17)를 밀폐시킨다. 그리고 복수의 베인(15)은 닫힌 상태를 유지하여 링 밸브(141)의 외측에서 디퓨저 통로(17)의 면적을 축소시킨다(제1 단계). 이와 같이 링 밸브(141)로 디퓨저 통로(17)를 밀폐시킨 상태에서 가동을 시작하면 무부하 운전을 할 수 있다. 또한, 압축 기체의 역류를 방지하여 실속과 서지를 억제할 수 있다.
도 22는 도 19에 도시한 (나)지점에서 링 밸브(141)와 베인(15)의 상태를 타낸 사시도이다.
도 22를 참고하면, 정격 가동을 위해 제어 핸들(37)과 제어 부재(43)를 반시계 방향(도 19 기준)으로 회전시키면, 고정 키(55)가 제3 가이드 홈(433)을 따라 이동하면서 링 밸브(141)를 후진시켜 링 밸브(141) 위치에서 디퓨저 통로(17)를 개방시킨다(제2 단계). 이때, 복수의 베인(15)은 초기 상태를 그대로 유지한다.
도 23은 도 19에 도시한 (다)지점에서 링 밸브(141)와 베인(15)의 상태를 나타낸 사시도이다.
도 23을 참고하면, 제어 핸들(37)과 제어 부재(43)를 반시계 방향(도 19 기준)으로 더 회전시키면, 가이드 축(42)이 제1 가이드 홈(431)을 따라 이동하면서 베인 축(21)을 회전시킨다. 따라서 복수의 베인(15)이 최대 유량 위치로 움직여 디퓨저 통로(17)를 개방시킨다(제3 단계).
제3 단계에서 정격 가동이 이루어지며, 제어부(38)가 감지하는 동작 상태에 따라 베인(15)을 제어하여 기류 안정화를 위해 디퓨저 통로(17)의 면적을 변화시킨다. 또한, 정격 가동시 사용처 등의 문제로 임펠러(12)를 향한 기체 역류가 감지되면, 가변 디퓨저 시스템은 도 11에 도시한 초기 위치로 복귀하여 링 밸브(141)로 디퓨저 통로(17)를 밀폐시킴에 따라 서지가 발생하지 않도록 한다.
정지를 위한 작동 순서는 전술한 순서와 반대로 이루어진다.
제어 핸들(37)과 제어 부재(43)를 시계 방향(도 19 기준)으로 회전시키면, 도 22에 도시한 바와 같이 베인(15)이 닫히면서 디퓨저 통로(17)의 면적을 축소시킨다(제4 단계). 그런 다음 제어 핸들(37)과 제어 부재(43)를 시계 방향(도 19 기준)으로 더 회전시키면, 도 21에 도시한 바와 같이 디퓨저 프레임(50)으로부터 링 밸브(141)가 상승하여 디퓨저 통로(17)를 밀폐시킨다(제5 단계). 따라서 정격 가동으로부터 임펠러(12) 정지에 이르는 시기에서도 서지 발생을 효과적으로 억제할 수 있다.
도 24는 본 발명의 제3 실시예에 따른 기체 압축기(300)의 부분 단면도이다.
도 24를 참고하면, 제3 실시예의 기체 압축기(300)는 전술한 제2 실시예와 달리 복수의 베인(15)과 링 밸브(142)가 서로 다른 액츄에이터에 의해 제어되는 구성으로 이루어진다. 즉, 제3 실시예의 기체 압축기(300)는 베인 축(21)과 결합하여 베인(15)의 회전각을 제어하는 제1 액츄에이터(60)와, 압축 공기를 이용하여 링 밸브(142)의 전후진 이동을 제어하는 제2 액츄에이터(70)를 포함한다.
제1 및 제2 액츄에이터(60, 70)의 구조를 제외하고 베인(15)과 링 밸브(142)의 기본 구성 및 작용은 전술한 제2 실시예와 동일하게 이루어진다. 제2 실시예와 같은 부재에 대해서는 같은 도면 부호를 사용하며, 아래에서는 제2 실시예와 다른 부분에 대해 주로 설명한다.
도 25는 도 24에 도시한 기체 압축기(300) 중 가변 디퓨저 시스템의 분해 사시도이고, 도 26은 도 24에 도시한 가변 디퓨저 시스템의 우측면도이다.
도 25와 도 26을 참고하면, 베인(15)과 베인 축(21)의 형상은 전술한 제2 실시예와 동일하게 이루어진다. 디퓨저 프레임(56)의 형상은 지지부(52)에 경사 슬라이딩 홀이 형성되지 않고, 다음에 설명하는 제1 노즐()이 디퓨저 프레임(56)에 형성되는 것을 제외하고 전술한 제2 실시예와 동일하게 이루어진다.
제어 부재(44)의 일면에는 방사 방향을 따라 복수의 제1 가이드 홈(441)이 형성된다. 베인 축(21)은 디퓨저 프레임(56)에 결합된 이후 그 단부가 지지부(52) 바깥으로 돌출되며, 베인 축(21)의 단부는 링크 부재(41)의 일단에 고정된다. 베인 축(21)과 일정한 거리를 두고 링크 부재(41)의 반대편 일단에 가이드 축(42)이 고정된다. 가이드 축(42)은 제1 가이드 홈(441)에 수용되며, 링크 부재(41)는 방사 방향과 나란하게 배치된다. 제어 부재(44)의 외면에는 제어 부재(44)에 회전 동력을 전달하는 제어 핸들(37)이 위치한다.
제3 실시예에서 복수의 링크 부재(41), 복수의 가이드 축(42), 및 제어 부재(44)가 제1 액츄에이터(60)를 구성한다. 제어 부재(44)가 시계 방향(도 26 기준)으로 회전하면, 가이드 축(42)이 제1 가이드 홈(441)을 따라 시계 방향으로 회전하면서 베인 축(21)과 베인(15)을 같은 방향으로 회전시켜 디퓨저 통로(17)의 면적을 확대시킨다. 반면, 제어 부재(44)가 반시계 방향(도 26 기준)으로 회전하면, 가이드 축(42)이 제1 가이드 홈(441)을 따라 반시계 방향으로 회전하면서 베인 축(21)과 베인(15)을 같은 방향으로 회전시켜 디퓨저 통로(17)의 면적을 축소시킨다.
도 27은 도 24에 도시한 기체 압축기(300)의 부분 확대도로서, 링 밸브(142)가 배출 스크롤(18)을 향해 전진하여 디퓨저 통로(17)를 밀폐시킨 상태를 도시하였다.
도 25와 도 27을 참고하면, 링 밸브(142)는 그 외면에 확장 링(143)을 형성하며, 확장 링(143)의 외면이 지지부(52)의 내면에 밀착하도록 지지부(52)의 내측에 결합된다. 지지부(52)와 링 밸브(142) 사이에는 탑 커버(45)가 설치되고, 탑 커버(45)는 나사 결합으로 지지부(52)에 고정된다. 링 밸브(142)는 제2 실시예와 마찬가지로 임펠러(12) 출구에서 임펠러(12)의 방사 방향을 따라 임펠러(12)의 단부와 전술한 조건 (1)을 만족하는 간격(G)을 유지한다.
제2 액츄에이터(70)는 탑 커버(45)와 지지부(52)에 형성되며 디퓨저 통로(17)를 향한 확장 링(143)의 일면(도 27을 기준으로 확장 링의 왼쪽 측면)을 향해 압축 공기를 분사하는 제1 노즐(71)과, 탑 커버(45)에 형성되며 디퓨저 통로(17)와 멀리 떨어진 확장 링(143)의 다른 일면(도 27을 기준으로 확장 링의 오른쪽 측면)을 향해 압축 공기를 분사하는 제2 노즐(72)을 포함한다.
따라서 제1 노즐(71)이 개방되어 제1 노즐(71)을 통해 압축 공기가 분사되면, 확장 링(143)은 배출 스크롤(18)과 멀어지는 방향을 향해 힘을 받아 링 밸브(142)를 후진시켜 디퓨저 통로(17)를 개방시킨다. 반면, 제2 노즐(72)이 개방되어 제2 노즐(72)을 통해 압축 공기가 분사되면, 확장 링(143)은 배출 스크롤(18)을 향해 힘을 받아 링 밸브(142)를 전진시켜 디퓨저 통로(17)를 밀폐시킨다.
제3 실시예의 가변 디퓨저 시스템에서 제1 액츄에이터(60)의 제어 핸들(37)과 제2 액츄에이터(70)의 제1 및 제2 노즐(71, 72)은 제어부(38)와 연결되어 제어부(38)의 명령에 의해 순차적으로 작동한다. 링 밸브(142)와 복수의 베인(15)을 이용한 기체 압축기(300)의 유량 제어 방법은 전술한 제2 실시예와 동일하게 이루어진다.
한편, 도 12와 도 27에서는 쉬라우드(132)의 내측에서 블레이드(16)의 사이 공간들이 날개면(161)을 넘어 서로 연통할 수 있는 구조를 도시하였으나, 날개면(161)에 덮개판(도시하지 않음)이 고정되어 날개면(161) 측에서 블레이드(16)의 사이 공간들이 서로 분리되는 구조도 적용 가능하다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (26)

  1. 회전축에 고정되며, 날개면과 에지면을 포함하는 복수의 블레이드를 외주면에 구비하는 임펠러;
    상기 날개면을 둘러싸며 상기 에지면과 평행한 외벽을 구비하는 쉬라우드;
    상기 임펠러의 출구와 연결된 디퓨저 통로에 설치되어 상기 디퓨저 통로를 개폐시키며, 상기 임펠러의 방사 방향을 따라 상기 임펠러의 단부와 간격을 유지하는 링 밸브
    를 포함하며,
    상기 링 밸브는 상기 쉬라우드의 외벽과 접촉하면서 상기 쉬라우드의 외벽을 따라 슬라이드 이동하는 기체 압축기.
  2. 제1항에 있어서,
    상기 링 밸브는 상기 임펠러의 방사 방향을 따라 상기 임펠러의 단부와 하기 조건의 간격(G)을 유지하는 기체 압축기.
    Figure PCTKR2010001361-appb-I000004
    여기서, D는 상기 임펠러의 출구측 직경(mm)을 나타낸다.
  3. 제2항에 있어서,
    상기 디퓨저 통로 중 상기 링 밸브의 외측에서 상기 디퓨저 통로의 원주 방향을 따라 설치되는 복수의 베인을 더 포함하는 기체 압축기.
  4. 회전축에 고정되며, 날개면과 에지면을 포함하는 복수의 블레이드를 외주면에 구비하는 임펠러;
    상기 날개면을 둘러싸는 쉬라우드;
    상기 임펠러의 출구와 연결된 디퓨저 통로에 설치되며, 상기 회전축과 나란한 방향을 따라 이동하여 상기 디퓨저 통로를 개폐시키는 링 밸브;
    상기 디퓨저 통로 중 상기 링 밸브의 외측에서 상기 디퓨저 통로의 원주 방향을 따라 설치되며, 각각의 베인 축을 구비하는 복수의 베인; 및
    상기 링 밸브 및 상기 복수의 베인 축과 결합되어 상기 링 밸브의 이동과 상기 베인의 회전각을 순차적으로 제어하는 액츄에이터
    를 포함하는 기체 압축기.
  5. 제4항에 있어서,
    상기 링 밸브는 상기 임펠러의 방사 방향을 따라 상기 임펠러의 단부와 하기 조건의 간격(G)을 유지하는 기체 압축기.
    Figure PCTKR2010001361-appb-I000005
    여기서, D는 상기 임펠러의 출구측 직경(mm)을 나타낸다.
  6. 제5항에 있어서,
    상기 쉬라우드의 외벽은 상기 에지면과 평행하고, 상기 링 밸브는 상기 쉬라우드의 외벽과 접촉하면서 상기 쉬라우드의 외벽을 따라 슬라이드 이동하는 기체 압축기.
  7. 제6항에 있어서,
    상기 임펠러는 상기 블레이드의 사이 공간들이 상기 쉬라우드의 내측에서 상기 날개면을 넘어 서로 연통하도록 구성되는 기체 압축기.
  8. 제6항에 있어서,
    상기 임펠러는 상기 블레이드의 사이 공간들이 상기 날개면측에서 덮개판에 의해 서로 분리되도록 구성되는 기체 압축기.
  9. 제4항 내지 제8항 중 어느 한 항에 있어서,
    상기 액츄에이터는,
    상기 베인 축을 둘러싸는 내측 가이드 링;
    상기 임펠러의 방사 방향을 따라 상기 내측 가이드 링과 상기 베인 축을 관통하여 상기 내측 가이드 링과 상기 베인 축을 결합시키는 복수의 볼 레버;
    상기 내측 가이드 링을 둘러싸며, 연결부에 의해 상기 링 밸브와 일체로 연결되고, 경사 슬라이딩 홀을 구비하는 외측 가이드 링; 및
    상기 경사 슬라이딩 홀을 관통하여 상기 내측 가이드 링에 고정되는 고정 핀
    을 포함하며,
    상기 기체 압축기는 상기 베인 축, 상기 내측 가이드 링 및 상기 링 밸브를 지지하는 디퓨저 프레임을 더 포함하는 기체 압축기.
  10. 제9항에 있어서,
    상기 베인 축은 상기 임펠러의 방사 방향을 따라 상기 베인 축을 관통하는 공동을 형성하고, 상기 내측 가이드 링은 상기 임펠러의 방사 방향을 따라 상기 공동과 마주하는 복수의 개구부를 형성하는 기체 압축기.
  11. 제10항에 있어서,
    상기 복수의 볼 레버 각각은 상기 내측 가이드 링의 개구부 측벽에 밀착되는 볼 부재와, 상기 공동에 끼워져 상기 베인 축에 고정되는 지지 부재를 포함하는 기체 압축기.
  12. 제9항에 있어서,
    상기 액츄에이터는,
    상기 내측 가이드 링의 회전량을 제한하는 스토퍼;
    상기 외측 가이드 링에 고정되는 제어 핸들; 및
    상기 디퓨저 프레임과 상기 고정 핀 사이에 설치되는 탄성 부재
    를 더 포함하는 기체 압축기.
  13. 제12항에 있어서,
    상기 스토퍼는,
    상기 내측 가이드 링의 일면에서 원주 방향을 따라 거리를 두고 위치하는 한 쌍의 제1 막대; 및
    상기 디퓨저 프레임에 고정되며 그 일부가 상기 한 쌍의 제1 막대 사이에 위치하도록 돌출되는 제2 막대
    를 포함하는 기체 압축기.
  14. 제4항 내지 제8항 중 어느 한 항에 있어서,
    상기 액츄에이터는,
    상기 베인 축에 고정되는 링크 부재;
    상기 베인 축과 거리를 두고 상기 링크 부재에 고정되는 가이드 축; 및
    일면에 상기 가이드 축을 수용하는 제1 가이드 홈을 형성하면서 상기 가이드 축을 이동시켜 상기 베인 축을 회전시키는 제어 부재
    를 포함하는 기체 압축기.
  15. 제14항에 있어서,
    상기 제1 가이드 홈은 상기 임펠러의 방사 방향을 따라 형성되고,
    상기 제어 부재는 상기 제1 가이드 홈과 이어지면서 상기 제어 부재의 원주 방향을 따라 형성되는 제2 가이드 홈을 더 포함하는 기체 압축기.
  16. 제15항에 있어서,
    상기 기체 압축기는 상기 링 밸브를 둘러싸면서 상기 링 밸브와 상기 베인 축 및 상기 제어 부재를 지지하는 디퓨저 프레임을 더 포함하며,
    상기 디퓨저 프레임은 상기 링 밸브와 중첩되는 영역에 경사 슬라이딩 홀을 형성하는 기체 압축기.
  17. 제16항에 있어서,
    상기 제어 부재는 상기 제2 가이드 홈과 이어지면서 상기 제어 부재의 내면에 형성되는 제3 가이드 홈을 더 포함하며,
    상기 액츄에이터는, 상기 경사 슬라이딩 홀을 관통하여 일단이 상기 링 밸브에 고정되고 다른 일단이 상기 제3 가이드 홈에 수용되는 고정 키를 더 포함하는 기체 압축기.
  18. 제16항에 있어서,
    상기 디퓨저 프레임은 상기 회전축과 나란한 방향을 따라 상기 베인 축이 관통하는 복수의 베인 홀을 형성하고, 상기 경사 슬라이딩 홀은 이웃한 2개의 베인 홀 사이에서 상기 베인 홀과 이격 배치되는 기체 압축기.
  19. 제14항에 있어서,
    상기 제어 부재는 상기 기체 압축기의 동작 조건을 감지하는 제어부와 연결되어 상기 제어부의 명령에 의해 작동하는 기체 압축기.
  20. 제4항 내지 제8항 중 어느 한 항에 있어서,
    상기 액츄에이터는,
    상기 복수의 베인 축과 결합되어 상기 베인의 회전각을 제어하는 제1 액츄에이터; 및
    상기 링 밸브와 결합되어 상기 링 밸브의 이동을 제어하는 제2 액츄에이터
    를 포함하며,
    상기 제1 액츄에이터는,
    상기 베인 축에 고정되는 링크 부재;
    상기 베인 축과 거리를 두고 상기 링크 부재에 고정되는 가이드 축; 및
    일면에 상기 가이드 축을 수용하는 제1 가이드 홈을 형성하면서 상기 가이드 축을 이동시켜 상기 베인 축을 회전시키는 제어 부재
    를 포함하는 기체 압축기.
  21. 제20항에 있어서,
    상기 제1 가이드 홈은 상기 임펠러의 방사 방향을 따라 형성되고,
    상기 제어 부재는 상기 제1 가이드 홈과 이어지면서 상기 제어 부재의 원주 방향을 따라 형성되는 제2 가이드 홈을 더 포함하는 기체 압축기.
  22. 제20항에 있어서,
    상기 링 밸브는 외면에 확장 링을 형성하고,
    상기 제2 액츄에이터는,
    상기 디퓨저 통로를 향한 상기 확장 링의 일면을 향해 압축 공기를 분사하는 제1 노즐; 및
    상기 디퓨저 통로와 멀리 떨어진 상기 확장 링의 반대측 일면을 향해 압축 공기를 분사하는 제2 노즐
    을 포함하는 기체 압축기.
  23. 제22항에 있어서,
    상기 기체 압축기는 상기 디퓨저 프레임과 상기 링 밸브 사이에 설치되는 탑 커버를 더 포함하며,
    상기 제1 노즐은 상기 탑 커버와 상기 디퓨저 프레임에 걸쳐 형성되고, 상기 제2 노즐은 상기 탑 커버에 형성되는 기체 압축기.
  24. 제22항에 있어서,
    상기 제어 부재와 상기 제1 노즐 및 상기 제2 노즐은 상기 기체 압축기의 동작 조건을 감지하는 제어부와 연결되어 상기 제어부의 명령에 의해 작동하는 기체 압축기.
  25. 임펠러 출구와 연결된 디퓨저 통로에 설치되는 링 밸브와, 상기 링 밸브의 외측에서 상기 디퓨저 통로의 원주 방향을 따라 설치되는 복수의 베인과, 상기 복수의 베인 각각에 고정되는 베인 축과, 상기 링 밸브 및 상기 베인 축과 결합하는 액츄에이터를 포함하는 기체 압축기의 유량 제어 방법에 있어서,
    초기 가동시 상기 링 밸브를 닫아 상기 디퓨저 통로를 밀폐시키고, 상기 복수의 베인을 닫아 상기 링 밸브의 외측에서 상기 디퓨저 통로의 면적을 축소시키는 제1 단계;
    정격 가동을 위해 상기 링 밸브를 열어 상기 디퓨저 통로를 개방시키는 제2 단계; 및
    상기 복수의 베인을 열어 상기 링 밸브의 외측에서 상기 디퓨저 통로의 면적을 확대시키는 제3 단계
    를 포함하는 기체 압축기의 유량 제어 방법.
  26. 제25항에 있어서,
    상기 제3 단계 이후 작동 정지를 위해,
    상기 복수의 베인을 닫아 상기 링 밸브의 외측에서 상기 디퓨저 통로의 면적을 축소시키는 제4 단계; 및
    상기 링 밸브를 닫아 상기 디퓨저 통로를 밀폐시키는 제5 단계
    를 더 포함하는 기체 압축기의 유량 제어 방법.
PCT/KR2010/001361 2009-03-05 2010-03-04 기체 압축기 및 기체 압축기의 유량 제어 방법 WO2010101426A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011552890A JP5394509B2 (ja) 2009-03-05 2010-03-04 気体圧縮機
CN201080010449.6A CN102341604B (zh) 2009-03-05 2010-03-04 气体压缩机及气体压缩机的流量控制方法
US13/254,250 US20110318182A1 (en) 2009-03-05 2010-03-04 Gas compressor and method for controlling flow rate thereof
DE112010000450T DE112010000450T5 (de) 2009-03-05 2010-03-04 Gasverdichter und Verfahren zum Steuern seines Volumenstromes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090019011A KR101080954B1 (ko) 2009-03-05 2009-03-05 기체 압축기 및 기체 압축기의 유량 제어 방법
KR10-2009-0019011 2009-03-05
KR1020090019013A KR101066968B1 (ko) 2009-03-05 2009-03-05 기체 압축기 및 기체 압축기의 유량 제어 방법
KR10-2009-0019013 2009-03-05

Publications (2)

Publication Number Publication Date
WO2010101426A2 true WO2010101426A2 (ko) 2010-09-10
WO2010101426A3 WO2010101426A3 (ko) 2010-12-02

Family

ID=42710129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001361 WO2010101426A2 (ko) 2009-03-05 2010-03-04 기체 압축기 및 기체 압축기의 유량 제어 방법

Country Status (5)

Country Link
US (1) US20110318182A1 (ko)
JP (1) JP5394509B2 (ko)
CN (1) CN102341604B (ko)
DE (1) DE112010000450T5 (ko)
WO (1) WO2010101426A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104632682A (zh) * 2015-02-09 2015-05-20 浙江富春江水电设备有限公司 一种可调节的水轮发电机组冷却风扇及其叶片调节方法
JP2017061936A (ja) * 2010-04-14 2017-03-30 ターボメカTurbomeca 遠心圧縮機を有するタービンエンジンの空気流を適合するための方法およびその実施のためのディフューザ
US9638111B2 (en) 2011-09-14 2017-05-02 Anthony R. Martinez Providing oxidation to a gas turbine engine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2991384B1 (fr) * 2012-06-01 2014-06-20 Snecma Circuit de fluide dans une turbomachine
DE102012212410A1 (de) * 2012-07-16 2014-01-30 Siemens Aktiengesellschaft Paralleldiffusor für eine Fluidmaschine
US10443603B2 (en) 2012-10-03 2019-10-15 Praxair Technology, Inc. Method for compressing an incoming feed air stream in a cryogenic air separation plant
US9175691B2 (en) * 2012-10-03 2015-11-03 Praxair Technology, Inc. Gas compressor control system preventing vibration damage
KR20170089949A (ko) * 2012-11-09 2017-08-04 존슨 컨트롤스 테크놀러지 컴퍼니 연장된 경로를 갖는 가변 기하학적 디퓨저 및 그 제어방법
KR102104415B1 (ko) * 2015-02-05 2020-04-24 한화파워시스템 주식회사 압축기
KR101734722B1 (ko) * 2015-12-14 2017-05-11 엘지전자 주식회사 공기 조화기의 오리피스
CN107202035A (zh) * 2016-03-17 2017-09-26 西门子公司 一种管道压缩机
US11408439B2 (en) * 2017-03-28 2022-08-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
DE102017118794A1 (de) * 2017-08-17 2019-02-21 Ihi Charging Systems International Gmbh Verstellbarer Leitapparat für eine Turbine, Turbine für einen Abgasturbolader und Abgasturbolader
JP7220208B2 (ja) 2017-09-25 2023-02-09 ジョンソン コントロールズ テクノロジー カンパニー コンパクトな可変形状ディフューザ機構
FR3099806B1 (fr) * 2019-08-07 2021-09-03 Safran Power Units Régulation anti-pompage d’un compresseur de charge équipant un groupe auxiliaire de puissance
CN115076129B (zh) * 2022-06-23 2023-04-07 西安交通大学 一种具有自适应降噪功能的离心机扩压器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057999U (ja) * 1986-07-02 1993-02-02 キヤリア コーポレイシヨン 遠心圧縮機
KR100433324B1 (ko) * 2001-07-16 2004-05-27 미츠비시 쥬고교 가부시키가이샤 원심 압축기
JP2006509155A (ja) * 2002-12-06 2006-03-16 ヨーク・インターナショナル・コーポレーション 可変容量式遠心圧縮機用のディフューザーシステム
JP2008031876A (ja) * 2006-07-27 2008-02-14 Toyota Industries Corp 遠心圧縮機
JP2008111369A (ja) * 2006-10-30 2008-05-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2455361A1 (de) * 1973-12-11 1975-06-12 Plessey Handel Investment Ag Turbine bzw. kompressor insbesondere fuer turbolader
US4257733A (en) * 1978-12-26 1981-03-24 Carrier Corporation Diffuser control
CA2149576A1 (en) * 1994-05-19 1995-11-20 Hideomi Harada Surge detection device and turbomachinery therewith
US5807071A (en) * 1996-06-07 1998-09-15 Brasz; Joost J. Variable pipe diffuser for centrifugal compressor
JP4573074B2 (ja) * 2000-05-24 2010-11-04 株式会社Ihi 可変ディフューザ付き遠心圧縮機とその制御方法
JP2003293995A (ja) * 2002-04-02 2003-10-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機及び遠心圧縮機の運転方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057999U (ja) * 1986-07-02 1993-02-02 キヤリア コーポレイシヨン 遠心圧縮機
KR100433324B1 (ko) * 2001-07-16 2004-05-27 미츠비시 쥬고교 가부시키가이샤 원심 압축기
JP2006509155A (ja) * 2002-12-06 2006-03-16 ヨーク・インターナショナル・コーポレーション 可変容量式遠心圧縮機用のディフューザーシステム
JP2008031876A (ja) * 2006-07-27 2008-02-14 Toyota Industries Corp 遠心圧縮機
JP2008111369A (ja) * 2006-10-30 2008-05-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061936A (ja) * 2010-04-14 2017-03-30 ターボメカTurbomeca 遠心圧縮機を有するタービンエンジンの空気流を適合するための方法およびその実施のためのディフューザ
US9638111B2 (en) 2011-09-14 2017-05-02 Anthony R. Martinez Providing oxidation to a gas turbine engine
CN104632682A (zh) * 2015-02-09 2015-05-20 浙江富春江水电设备有限公司 一种可调节的水轮发电机组冷却风扇及其叶片调节方法

Also Published As

Publication number Publication date
CN102341604B (zh) 2014-10-29
JP2012519793A (ja) 2012-08-30
US20110318182A1 (en) 2011-12-29
DE112010000450T5 (de) 2012-08-09
CN102341604A (zh) 2012-02-01
WO2010101426A3 (ko) 2010-12-02
JP5394509B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2010101426A2 (ko) 기체 압축기 및 기체 압축기의 유량 제어 방법
WO2019221417A1 (ko) 터보 압축기
WO2014098276A1 (ko) 케이싱 트리트먼트를 활용한 축류 압축기의 스톨 억제 장치
WO2016195238A1 (ko) 직결 구동형 터보 블로워 냉각 구조
WO2017164586A1 (ko) 압축기용 냉각 장치
EP3054105A1 (en) Component, gas turbine component and corresponding method of forming
WO2020111653A1 (ko) 서지 영역에서의 운전이 가능한 터보 블로어
JPH0120320B2 (ko)
WO2018038457A1 (ko) 가스 터빈 블레이드
WO2015133833A1 (ko) 유로 상에 구비되는 유량 조절 유닛
JPH0264203A (ja) バリアブルジオメトリタービン
JPS6248041B2 (ko)
WO2014119813A1 (ko) 와류형 스왈러팬 배기장치
WO2022154340A1 (ko) 공기조화기
WO2018217068A1 (ko) 천장형 공기조화기용 에어가이드 및 이를 구비하는 천장형 공기조화기
WO2015178544A1 (ko) 병렬 실린더형 체크밸브
WO2021045361A1 (ko) 로터리 압축기 및 이를 포함하는 가전기기
KR100656721B1 (ko) 축류 터어빈
CN1942656A (zh) 带防冷却的压缩机外壳的燃气轮机和运行燃气轮机的方法
EP1431519A1 (en) Apparatus for controlling fluid leakage through gas turbine engines
WO2020116781A1 (ko) 고압식 스크롤 압축기
JPH1150809A (ja) 回転体の伸び量調整装置
KR101080954B1 (ko) 기체 압축기 및 기체 압축기의 유량 제어 방법
WO2015108370A1 (ko) 냉각스크류 및 이를 이용하는 냉각스크류의 냉각방법
KR200174662Y1 (ko) 가스터빈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010449.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748968

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13254250

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011552890

Country of ref document: JP

Ref document number: 112010000450

Country of ref document: DE

Ref document number: 1120100004501

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748968

Country of ref document: EP

Kind code of ref document: A2