WO2010101408A2 - 원자공명기용 셀 공진기 - Google Patents

원자공명기용 셀 공진기 Download PDF

Info

Publication number
WO2010101408A2
WO2010101408A2 PCT/KR2010/001324 KR2010001324W WO2010101408A2 WO 2010101408 A2 WO2010101408 A2 WO 2010101408A2 KR 2010001324 W KR2010001324 W KR 2010001324W WO 2010101408 A2 WO2010101408 A2 WO 2010101408A2
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
cell
gas cell
gas
loop antenna
Prior art date
Application number
PCT/KR2010/001324
Other languages
English (en)
French (fr)
Other versions
WO2010101408A3 (ko
Inventor
김연호
한태환
유리트레쎈코
Original Assignee
㈜에이알텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜에이알텍 filed Critical ㈜에이알텍
Publication of WO2010101408A2 publication Critical patent/WO2010101408A2/ko
Publication of WO2010101408A3 publication Critical patent/WO2010101408A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference

Definitions

  • the present invention relates to a cell resonator for an atomic resonator, wherein an antenna is disposed to surround a gas cell, and microwaves in a frequency band to be applied are applied to the gas cell without loss, thereby obtaining an accurate atomic resonance. It is about.
  • Such a resonator refers to a device in which the metal atoms become a gas state by applying heat to metal atoms existing in a gas cell to achieve atomic resonance. At this time, the resonator has a cavity structure by applying a microwave into the cavity, thereby applying a microwave to the gas cell.
  • the present invention has been proposed by such a problem, and an object thereof is to provide a cell resonator for an atomic resonator, in which microwaves in a frequency band to be applied are applied to a gas cell without loss, thereby obtaining an accurate resonance state.
  • a cell resonator for an atomic resonance apparatus includes a cylindrical gas cell into which rubidium gas or metal atoms are injected; A ring-shaped loop antenna fitted to an outer circumferential surface of the gas cell and disposed at the center of the gas cell; A feeder provided at both ends of the loop antenna to apply microwaves to the antenna; An insulation member disposed to surround the loop antenna and electrically insulating the loop antenna; A heating member disposed to surround the insulating member and supplying heat to the gas cell; It is disposed on one side of the heating member, and includes a light detector for sensing the light emitted from the gas cell and a housing disposed outside the heating member, shielding the magnetic field transmitted to the gas cell.
  • it may include a feed loop and the loop antenna connected by screwing or soldering.
  • the insulating member and the housing may include at least one hole at an arbitrary position, and the loop antenna and the feeder may be screwed through the hole.
  • it may include an insulating member which is a tube made of Teflon.
  • it may include a heating member having a temperature sensing transistor for sensing the internal temperature of the gas cell.
  • it may include a photodetector that is a photo diode.
  • the cell resonator for an atomic resonator according to the present invention has an effect of obtaining an accurate resonance state by applying microwaves in a frequency band to be applied to a gas cell without loss.
  • FIG. 1 is a perspective view of an atomic resonance cell resonator according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing the inside of a cell resonator for an atomic resonator according to an embodiment of the present invention
  • FIG. 3 is a perspective view illustrating an antenna structure of a cell resonator for an atomic resonator according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of a state in which a part of an atomic resonance cell resonator is cut according to an exemplary embodiment of the present disclosure.
  • the cell resonator 100 for an atomic resonance apparatus of the present invention includes a gas cell 110 into which metal atoms are injected and a loop antenna 120 delivering microwaves to the gas cell 110. ), Feeding parts 130a and 130b for applying microwaves to the loop antenna 120, an insulating member 140 for electrically insulating the loop antenna, and a heating member 150 for supplying heat to the gas cell 110. ), A photodetector 160 for detecting light emitted from the gas cell 110, and a housing 170 for shielding a magnetic field.
  • the gas cell 110 has a cylindrical structure in which rubidium gas or metal atoms are injected. Since the gas cell 110 has a cylindrical structure, the size of the cell resonator for the atomic resonance group including the gas cell may be reduced.
  • the loop antenna 120 is fitted to an outer circumferential surface of the gas cell 110, and a ring-shaped loop antenna is preferably disposed at the center of the gas cell. At this time, the loop antenna receives a frequency of the 6.8GHz band.
  • the loop antenna 120 is also formed in a cylindrical structure, thereby reducing the overall size of the cell resonator and simultaneously allowing microwaves of a desired frequency band without a cavity to have a frequency error. It can be applied to the gas cell 110 without.
  • the insulating member 140 is disposed to surround the loop antenna 120 to electrically insulate the loop antenna 120.
  • the insulating member 140 is preferably in the form of a tube made of Teflon (Tube).
  • the feeders 130a and 130b are provided at both ends of the loop antenna 120 to apply microwaves to the antenna 120.
  • the heating member 150 is disposed to surround the insulating member 140 to supply heat to the gas cell 110. As the heating member 150 is disposed surrounding the gas cell 110, heat loss generated due to a difference between the positions of the heating member 140 and the gas cell 110 may be prevented.
  • the heating member 150 is preferably provided with a temperature sensing transistor (Transistor) for sensing the internal temperature of the gas cell (110).
  • Transistor temperature sensing transistor
  • the heating member 150 includes a temperature sensing transistor, there is a problem due to a difference between the internal temperature and the measurement temperature of the gas cell 110 generated by specifying a temperature at one side of a conventional cavity. Overcome, the internal temperature of the gas cell 110 can be measured without error.
  • the light detector 160 is disposed on one surface of the heating member 150 to detect light emitted from the gas cell 110.
  • the housing 170 is disposed outside the heating member 150 to shield the generated magnetic field.
  • the housing is preferably made of mu-metal (Mu-metal).
  • the cell resonator for an atomic resonator except for a housing and a heating member includes a gas cell 110, an antenna 120, a power supply unit 130a and 130b, and an insulating member ( 140), and includes a photodetector 160, the function of which is similar to that described above with reference to FIG. 1, and thus, a description of functions of each component will be omitted.
  • the antenna 120 is inserted into the insulating member 140 made of Teflon.
  • the antenna 120 is preferably a circular loop antenna for receiving a frequency of 6.8 GHz band.
  • the insulating member 140 having the antenna 120 inserted therein is inserted into the housing (not shown).
  • the feeders 130a and 130b are connected to the antenna 120 inserted into the housing (not shown).
  • the antenna 120 and the power supply unit (130a, 130b) is preferably connected by screwing or soldering.
  • a cylindrical gas cell 110 is inserted into the antenna 120 to manufacture the cell resonator for the atomic resonator.
  • a cell resonator for an atomic resonator includes a gas cell 110, and an antenna 120 is provided along the shape of the gas cell 110.
  • the feeders 130a and 130b are provided at both ends of the antenna 120, and at this time, the antenna and the feeder are connected by screws or soldering.
  • the light detector 160 may be disposed in contact with one surface of the gas cell 110 to detect light emitted from the gas cell 110.
  • Light is applied to the gas cell 110 in which rubidium gas or metal gas is injected from the light source unit externally, and microwaves in the 6.8 GHz frequency band are generated through the antenna 120 disposed on the outer circumferential surface of the gas cell 100. It is applied to the gas cell 110.
  • the heating member 150 disposed surrounding the antenna 120 supplies heat to the gas cell 110. Accordingly, the rubidium gas or the metal atoms present in the gas cell 110 are excited, and atomic resonance is achieved by microwaves injected from the antenna 120.
  • the cell resonator 100 for an atomic resonator may apply microwaves having a frequency of a set band to be applied to the gas cells without error. Therefore, accurate atomic resonance occurs in the set band, there is an effect that can develop and produce a high accuracy atomic resonator.
  • the heating member is disposed surrounding the gas cell, there is an effect of preventing heat loss caused by the positional difference between the heating member and the gas cell.
  • the heating member since the heating member includes a temperature sensing transistor, it overcomes the problem of the difference between the internal temperature and the measured temperature of the gas cell generated by measuring the temperature at one side of the conventional cavity, without changing the internal temperature of the gas cell without error. It can be measured. As a result, since the heat is smoothly supplied from the heating member to the gas cell, excitation of rubidium gas or metal atoms present in the gas cell can be made more efficient.
  • the housing is disposed outside the heating member to shield the generated magnetic field, thereby preventing the magnetic field from being supplied to the gas cell.
  • the antenna is disposed to surround the gas cell, microwaves of the frequency band to be applied are applied to the gas cell without loss, thereby obtaining accurate atomic resonance.
  • microwaves of the frequency band to be applied are applied to the gas cell without loss, thereby obtaining accurate atomic resonance.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

본 발명은 원자공명기에 관한 것으로, 가스셀을 둘러싸고 안테나가 배치됨으로써, 인가하고자 하는 주파수 대역의 마이크로파가 손실없이 가스셀에 인가되어 정확한 원자공명을 얻을 수 있는 원자공명기용 셀 공진기를 제공한다. 이를 위한 본 발명은 루비듐가스 또는 금속원자가스가 주입되는 원통형의 가스셀과; 상기 가스셀의 외주면에 끼워 맞춰지고, 상기 가스셀의 정중앙의 배치되는 링형상의 루프 안테나와; 상기 루프안테나의 양끝단에 구비되어, 상기 안테나로 마이크로파를 인가하는 급전부와; 상기 루프안테나를 둘러쌓도록 배치되고, 상기 루프안테나를 전기적으로 절연시키는 절연부재와; 상기 절연부재를 둘러쌓도록 배치되고, 상기 가스셀에 열을 공급하는 가열부재와; 상기 가열부재의 한쪽 면에 배치되며, 상기 가스셀에서 방출되는 빛을 감지하는 광검출부 및 상기 가열부재 외부에 배치되고, 상기 가스셀에 전달되는 자기장을 차폐시키는 하우징을 포함한다. 이러한 구성에 의해, 인가하고자 하는 주파수 대역의 마이크로파가 손실없이 가스셀에 인가되어 정확한 원자공명을 얻을 수 있는 동시에, 크기가 축소되며, 전력효율이 높은 원자공명기용 셀 공진기를 생산할 수 있는 효과가 있다.

Description

원자공명기용 셀 공진기
본 발명은 원자공명기용 셀 공진기에 관한 것으로, 가스셀을 둘러쌓도록 안테나가 배치되어, 인가하고자 하는 주파수 대역의 마이크로파가 손실없이 가스셀에 인가되어 정확한 원자공명을 얻을 수 있는 원자공명기용 셀 공진기에 관한 것이다.
최근의 정보통신기기는 처리속도의 고속화, 데이터의 높은 정확도 등이 소비자들로부터 요구되어, 소형의 공명기에 대한 수요가 점차 증가하고 있는 추세이다.
이러한 공명기는 가스셀 내부의 존재하는 금속원자에 열을 가하여 상기 금속원자가 기체상태가 되어 원자공명을 이루는 장치를 말한다. 이 때, 상기 공명기는 캐비티구조를 가지며 상기 캐비티 내부로 마이크로파의 주입함으로써, 상기 가스셀에 마이크로파를 인가한다.
하지만 이러한 인가방법은 마이크로파가 인가되는 부분과 가스셀이 위치되는 부분의 위치차가 존재하므로, 설정된 주파수대역을 갖는 마이크로파가 상기 가스셀에 인가될 때, 주파수 손실이 발생하는 경우가 생긴다. 이러한 경우, 상기 손실된 주파수가 상기 가스셀로 인가되어, 공진상태가 변화되어 정확한 공명현상이 발생하기 어려운 문제점이 있다.
본 발명은 이러한 문제점에 의해 제안된 것으로, 인가하고자 하는 주파수 대역의 마이크로파가 손실없이 가스셀에 인가되어 정확한 공진상태를 얻을 수 있는 원자공명기용 셀 공진기를 제공하는 것을 그 목적으로 한다.
상기와 같은 목적을 달성하기 위해서, 본 발명에 의한 원자공명기용 셀 공진기는 루비듐가스 또는 금속원자가스가 주입되는 원통형의 가스셀과; 상기 가스셀의 외주면에 끼워 맞춰지고, 상기 가스셀의 정중앙의 배치되는 링형상의 루프 안테나와; 상기 루프안테나의 양끝단에 구비되어, 상기 안테나로 마이크로파를 인가하는 급전부와; 상기 루프안테나를 둘러쌓도록 배치되고, 상기 루프안테나를 전기적으로 절연시키는 절연부재와; 상기 절연부재를 둘러쌓도록 배치되고, 상기 가스셀에 열을 공급하는 가열부재와; 상기 가열부재의 한쪽 면에 배치되며, 상기 가스셀에서 방출되는 빛을 감지하는 광검출부 및 상기 가열부재 외부에 배치되고, 상기 가스셀에 전달되는 자기장을 차폐시키는 하우징을 포함한다.
바람직하게는 나사결합 또는 납땜에 의해 연결되는 상기 루프안테나와 급전부를 포함할 수 있다.
특히 상기 절연부재와 하우징은 임의의 위치에 적어도 하나의 홀을 포함하고, 상기 홀을 통해 상기 루프안테나와 급전부가 나사결합될 수 있다.
특히 테프론(Teflon)으로 이루어진 튜브인 절연부재를 포함할 수 있다.
특히 상기 가스셀의 내부온도를 감지하기 위한 온도감지용 트랜지스터를 구비하는 가열부재를 포함할 수 있다.
특히 포토다이오드(Photo Diode)인 광검출부를 포함할 수 있다.
상술한 바와 같이, 본 발명에 따른 원자공명기용 셀 공진기는 인가하고자 하는 주파수 대역의 마이크로파가 손실없이 가스셀에 인가되어 정확한 공진상태를 얻을 수 있는 효과가 있다.
도 1은 본 발명의 일 실시 예에 따른 원자공명용 셀 공진기의 사시도이고,
도 2는 본 발명의 일 실시 예에 따른 원자공명기용 셀 공진기의 내부를 나타낸 사시도이고,
도 3은 본 발명의 일 실시 예에 따른 원자공명기용 셀 공진기의 안테나구조를 나타낸 사시도이다.
본 발명에 따른 원자공명기용 셀 공진기에 대한 예는 다양하게 적용될 수 있으며, 이하에서는 첨부된 도면을 참조하여 바람직한 실시 예에 대해 설명하기로 한다.
도 1은 본 발명의 일 실시 예에 따른 원자공명용 셀 공진기의 일부가 절단된 상태의 사시도이다.
도 1에 도시된 바와 같이, 본 발명의 원자공명기용 셀 공진기(100)는 금속원자가스가 주입되는 가스셀(110), 마이크로파(Microwave)를 상기 가스셀(110)로 전달하는 루프안테나(120), 상기 루프안테나(120)로 마이크로파를 인가하는 급전부(130a, 130b), 상기 루프안테나를 전기적으로 절연시키는 절연부재(140), 상기 가스셀(110)에 열을 공급하는 가열부재(150), 상기 가스셀(110)에 방출되는 빛을 검출하는 광검출부(160), 자기장를 차폐시키는 하우징(170)을 포함한다.
상기 가스셀(110)은 원통형의 구조로서, 루비듐가스 또는 금속원자가스가 주입된다. 이러한 상기 가스셀(110)은 원통형의 구조를 가짐으로써, 상기 가스셀을 포함하는 원자공명기용 셀 공진기의 크기가 축소될 수 있다.
상기 루프안테나(120)는 상기 가스셀(110)의 외주면에 끼워 맞춰지고, 상기 가스셀의 정중앙에 배치되는 링형상의 루프안테나(Loop-Antenna)가 바람직하다. 이 때, 상기 루프안테나는 6.8GHz 대역의 주파수를 수신한다. 이와 같이, 상기 가스셀(110)이 원통형 구조로 형성되기 때문에, 상기 루프안테나(120)도 원통형 구조로 형성함으로써, 셀 공진기의 전체크기를 축소시키는 동시에, 캐비티없이도 원하는 주파수 대역의 마이크로파를 주파수 오차없이 상기 가스셀(110)로 인가할 수 있다.
상기 절연부재(140)는 상기 루프안테나(120)를 둘러쌓도록 배치되어, 상기 루프안테나(120)를 전기적으로 절연시킨다. 이러한 상기 절연부재(140)는 테프론(Teflon)으로 이루어진 튜브(Tube)형태가 바람직하다.
상기 급전부(130a, 130b)는 상기 루프안테나(120)의 양끝단에 구비되어, 상기 안테나(120)로 마이크로파를 인가한다.
상기 가열부재(150)는 상기 절연부재(140)를 둘러쌓도록 배치되어 상기 가스셀(110)에 열을 공급한다. 이처럼 상기 가열부재(150)가 상기 가스셀(110)을 둘러싸고 배치됨에 따라, 상기 가열부재(140)와 상기 가스셀(110)의 위치간의 차로 인해 발생하는 열손실을 방지할 수 있다.
또한 상기 가열부재(150)는 상기 가스셀(110)의 내부온도를 감지하기 위한 온도감지용 트랜지스터(Transistor)를 구비함이 바람직하다. 이와 같이, 상기 가열부재(150)가 온도감지용 트랜지스터를 포함함으로써, 종래의 캐비티(Cavity) 한쪽에서 온도를 특정함에 따라 발생하는 가스셀(110)의 내부온도와 측정온도의 차이로 인한 문제점을 극복하여, 상기 가스셀(110)의 내부온도를 오차없이 측정할 수 있다.
결과적으로, 상기 가열부재(150)로부터 상기 가스셀(110)로 원활한 열공급이 이루어지므로, 상기 가스셀(110)에 존재하는 루비듐가스 또는 금속원자가스를 보다 효율적으로 여기시킬 수 있다.
상기 광검출부(160)는 상기 가열부재(150)의 한쪽 면에 배치되어 상기 가스셀(110)에서 방출되는 빛을 검출한다.
상기 하우징(170)은 상기 가열부재(150) 외부에 배치되어, 발생한 자기장을 차폐시킨다. 이 때, 상기 하우징은 뮤메탈(Mu-metal)로 이루어짐이 바람직하다.
이하, 도 2를 참조하여 본 발명의 일 실시 예에 따른 원자공명기용 셀 공진기의 내부를 보다 자세히 살펴보도록 한다.
도 2에 도시된 바와 같이, 하우징과 가열부재를 제외한 본 발명의 일 실시 예에 따른 원자공명기용 셀 공진기는 가스셀(110), 안테나(120), 급전부(130a, 130b), 절연부재(140), 광검출부(160)를 포함하며, 그 기능은 앞서 도 1을 통해 설명한 바와 유사하므로, 각 구성에 대한 기능설명은 생략하도록 한다.
본 발명의 일 실시예인 원자공명기용 셀 공진기의 제조공정을 살펴보면 다음과 같다.
먼저, 테프론으로 이루어진 절연부재(140) 내부에 안테나(120)가 삽입된다.이 때, 상기 안테나(120)는 6.8GHz 대역의 주파수를 수신하는 원형의 루프안테나임이 바람직하다. 도 2에서는 도시되지 않았지만, 내부에 안테나(120)가 삽입된 상기 절연부재(140)가 하우징(미도시) 내부에 삽입된다. 이후 상기 하우징(미도시) 내부에 삽입된 안테나(120)에 급전부(130a, 130b)가 연결된다. 이 때, 상기 안테나(120)와 급전부(130a, 130b)는 나사결합 또는 납땜을 통해 연결됨이 바람직하다.
이후, 상기 안테나(120) 내부에 원통형의 가스셀(110)을 삽입하여, 상기 원자공명기용 셀 공진기가 제조된다.
이하 도 3을 참조하여, 본 발명의 일 실시 예인 원자공명기용 셀 공진기의 안테나구조에 대하여 설명하도록 한다.
도 3에 도시된 바와 같이, 원자공명기용 셀 공진기가 가스셀(110)을 포함하고, 상기 가스셀(110)의 형태를 따라 안테나(120)가 구비된다. 이 때, 상기 안테나(120)의 양끝단에 급전부(130a, 130b)가 구비되며, 이 때, 상기 안테나와 급전부는 스크루(screw) 또는 납땜에 의해 연결된다. 또한, 광검출부(160)가 상기 가스셀(110)의 한쪽 면에 접촉되어 배치되어, 상기 가스셀(110)에서 방출된 빛을 감지할 수 있다.
이하, 본 발명의 일 실시 예인 원자공명기용 셀 공진기의 동작방법을 살펴보도록 한다.
루비듐가스 또는 금속원자가스가 주입된 가스셀(110)에 외부에 존재하는 광원부로부터 빛이 인가되고, 상기 가스셀(100)의 외주면에 배치되는 안테나(120)를 통해 6.8GHz 주파수 대역의 마이크로파가 상기 가스셀(110)에 인가된다.
상기 안테나(120)를 둘러싸며 배치된 가열부재(150)가 상기 가스셀(110)로 열을 공급한다. 이에 따라, 상기 가스셀(110)에 존재하는 상기 루비듐가스 또는 금속원자가스를 여기시키고, 상기 안테나(120)로부터 주입된 마이크로파에 의해 원자공명을 이루게 된다.
이러한 상기 원자공명기용 셀 공진기(100)는 마이크로파를 인가하고자 하는 가스셀에 안테나가 배치되므로, 상기 가스셀에 인가하고자 하는 설정대역의 주파수를 갖는 마이크로파를 오차없이 인가할 수 있다. 따라서 설정한 대역에서의 정확한 원자공명이 발생하므로, 정확성이 높은 원자공명기를 개발 및 생산할 수 있는 효과가 있다.
또한, 상기 가열부재가 상기 가스셀을 둘러싸고 배치됨에 따라 가열부재와 가스셀의 위치차로 인해 발생하는 열손실을 방지하는 효과가 있다.
더불어, 상기 가열부재가 온도감지용 트랜지스터를 포함하므로, 종래의 캐비티 한쪽에서 온도를 측정함에 따라 발생하는 가스셀의 내부온도와 측정온도의 차이문제를 극복하여, 상기 가스셀의 내부온도를 오차없이 측정할 수 있다. 이로 인해, 상기 가열부재로부터 상기 가스셀로 원활한 열공급이 이루어지므로, 상기 가스셀에 존재하는 루비듐가스 또는 금속원자가스의 여기를 보다 효율적으로 시킬 수 있다.
이와 더불어, 상기 가열부재 외부에 하우징이 배치되어, 발생된 자기장을 차폐시켜 상기 가스셀로 자기장이 공급되는 것을 방지하는 효과가 있다.
이상 본 발명에 의한 원자공명용 셀 공진기에 대하여 설명하였다. 이러한 본 발명의 기술적 구성은 본 발명이 속하는 기술 분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시 예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해되어야하고, 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 따라, 가스셀을 둘러쌓도록 안테나가 배치되어 인가하고자 하는 주파수 대역의 마이크로파가 손실없이 가스셀에 인가됨에 따라, 정확한 원자공명을 얻을 수 있다. 특히 정보통신기기 분야에 있어서, 소형의 공명기를 구현할 수 있어 산업상 이용가능성이 크다.

Claims (6)

  1. 루비듐가스 또는 금속원자가스가 주입되는 원통형의 가스셀과;
    상기 가스셀의 외주면에 끼워 맞춰지고, 상기 가스셀의 정중앙에 배치되는 링형상의 루프 안테나와;
    상기 루프안테나의 양끝단에 구비되어, 상기 안테나로 마이크로파를 인가하는 급전부와;
    상기 루프안테나를 둘러싸도록 배치되고, 상기 루프안테나를 전기적으로 절연시키는 절연부재와;
    상기 절연부재를 둘러싸도록 배치되고, 상기 가스셀에 열을 공급하는 가열부재와;
    상기 가열부재의 한쪽 면에 배치되며, 상기 가스셀에서 방출되는 빛을 감지하는 광검출부 및
    상기 가열부재 외부에 배치되고, 상기 가스셀에 전달되는 자기장을 차폐시키는 하우징을 포함하는 원자공명기용 셀 공진기.
  2. 제1항에 있어서,
    상기 루프안테나와 급전부는 나사결합 또는 납땜에 의해 연결됨을 특징으로 하는 원자공명기용 셀 공진기.
  3. 제2항에 있어서,
    상기 절연부재와 하우징은 임의의 위치에 적어도 하나의 홀을 포함하고, 상기 홀을 통해 상기 루프안테나와 급전부가 나사결합됨을 특징으로 하는 원자공명기용 셀 공진기.
  4. 제1항에 있어서,
    상기 절연부재는 테프론(Teflon)으로 이루어진 튜브임을 특징으로 하는 원자공명기용 셀 공진기.
  5. 제1항에 있어서,
    상기 가열부재는 상기 가스셀의 내부온도를 감지하기 위한 온도감지용 트랜지스터를 구비함을 특징으로 하는 원자공명기용 셀 공진기.
  6. 제1항에 있어서,
    상기 광검출부는 포토다이오드(Photo Diode)임을 특징으로 하는 원자공명기용 셀 공진기.
PCT/KR2010/001324 2009-03-03 2010-03-03 원자공명기용 셀 공진기 WO2010101408A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0018085 2009-03-03
KR1020090018085A KR100912733B1 (ko) 2009-03-03 2009-03-03 원자공명기용 셀 공진기

Publications (2)

Publication Number Publication Date
WO2010101408A2 true WO2010101408A2 (ko) 2010-09-10
WO2010101408A3 WO2010101408A3 (ko) 2010-12-09

Family

ID=41209947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001324 WO2010101408A2 (ko) 2009-03-03 2010-03-03 원자공명기용 셀 공진기

Country Status (2)

Country Link
KR (1) KR100912733B1 (ko)
WO (1) WO2010101408A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389136A (zh) * 2019-07-25 2019-10-29 中国计量科学研究院 一种基于电磁超表面的无电磁扰动可控温原子气室及其加工工艺流程

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003280B2 (ja) * 2012-06-20 2016-10-05 セイコーエプソン株式会社 原子発振器および電子機器
JP5924155B2 (ja) * 2012-06-25 2016-05-25 セイコーエプソン株式会社 原子発振器および電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033373A (ja) * 2004-07-15 2006-02-02 Anritsu Corp 原子発振器のマイクロ波空洞共振装置
JP2007287835A (ja) * 2006-04-14 2007-11-01 Epson Toyocom Corp ルビジウム原子発振器
JP2007324818A (ja) * 2006-05-31 2007-12-13 Epson Toyocom Corp 原子発振器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177121A (ja) * 1983-03-25 1984-10-06 Hitachi Ltd 同位体分離装置
JPS59207747A (ja) * 1983-05-10 1984-11-24 Fujitsu Ltd 原子発振器用光源ランプ励振器
JPH07264064A (ja) * 1994-03-17 1995-10-13 Nippon Dempa Kogyo Co Ltd ガスセル型原子発振器
JPH07263776A (ja) * 1994-03-25 1995-10-13 Nippon Dempa Kogyo Co Ltd ガスセル型原子発振器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033373A (ja) * 2004-07-15 2006-02-02 Anritsu Corp 原子発振器のマイクロ波空洞共振装置
JP2007287835A (ja) * 2006-04-14 2007-11-01 Epson Toyocom Corp ルビジウム原子発振器
JP2007324818A (ja) * 2006-05-31 2007-12-13 Epson Toyocom Corp 原子発振器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389136A (zh) * 2019-07-25 2019-10-29 中国计量科学研究院 一种基于电磁超表面的无电磁扰动可控温原子气室及其加工工艺流程
CN110389136B (zh) * 2019-07-25 2021-07-27 中国计量科学研究院 一种基于电磁超表面的无电磁扰动可控温原子气室及其加工工艺流程

Also Published As

Publication number Publication date
WO2010101408A3 (ko) 2010-12-09
KR100912733B1 (ko) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2017099502A1 (ko) 자기차폐형 변류기
WO2010101408A2 (ko) 원자공명기용 셀 공진기
BR9911011A (pt) Posicionamento de sensor térmico em um guia de onda de microondas
WO2018199582A1 (ko) 기판 처리 장치
US20200020466A1 (en) Combination of an electricity conducting element, such as bushing, and a connector cable
WO2017007075A1 (ko) 비아를 이용한 엔드-파이어 안테나 및 그 제조 방법
WO2022177247A1 (ko) 전류 센싱 장치
WO2021221361A1 (ko) 안테나 모듈 및 이를 포함하는 무선 통신 디바이스
CN111712896B (zh) 用于开关设备的无线感测系统和方法
WO2016093646A1 (ko) 동축 케이블형 플라즈마 램프 장치
WO2020154860A1 (en) Bushing, cable accessory, system, method for assembling bushing and method for assembling cable accessory
US11050196B2 (en) Power cable connector, electrical system and method for assembling power cable connector
WO2020218690A1 (ko) 저온 초정밀 열수송 측정용 프로브 시스템 및 이를 포함하는 측정장치
EP3752807B1 (en) Bushings, system for temperature measurement and method for installing measuring assembly in bushing in switchgear
WO2015099272A1 (ko) 무선전력 전송장치 및 그를 이용한 조명장치
WO2020019842A1 (zh) 信号传输装置和智能电视
WO2019147006A1 (ko) 동축 케이블형 플라즈마 램프 장치
CN212811263U (zh) 一种新型t型电缆接头
WO2011025143A2 (ko) 플라즈마 발생용 마이크로웨이브 안테나
CN207427185U (zh) 一种物联网网关装置
CN205792592U (zh) 光模块抗静电放电性能测试系统
WO2015133763A1 (ko) 비접촉식 온도 센서가 장착된 전자 장치 및 비접촉식 온도 센서 모듈
WO2012144851A2 (en) Apparatus for fabricating ingot
CN218271086U (zh) 一种红外热成像仪
CN115216753B (zh) 一种射频电极馈入装置及管式化学气相沉积设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748950

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748950

Country of ref document: EP

Kind code of ref document: A2