WO2010098617A2 - 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법 - Google Patents

포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법 Download PDF

Info

Publication number
WO2010098617A2
WO2010098617A2 PCT/KR2010/001226 KR2010001226W WO2010098617A2 WO 2010098617 A2 WO2010098617 A2 WO 2010098617A2 KR 2010001226 W KR2010001226 W KR 2010001226W WO 2010098617 A2 WO2010098617 A2 WO 2010098617A2
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist pattern
polymer
formula
group
photoresist
Prior art date
Application number
PCT/KR2010/001226
Other languages
English (en)
French (fr)
Other versions
WO2010098617A3 (ko
Inventor
이정열
이재우
김덕배
김재현
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Publication of WO2010098617A2 publication Critical patent/WO2010098617A2/ko
Publication of WO2010098617A3 publication Critical patent/WO2010098617A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a photoresist pattern coating polymer, and more particularly, to a photoresist pattern coating polymer capable of increasing the resolution of a lithography process and a pattern forming method of a semiconductor device using the same.
  • a photolithography process capable of forming an ultrafine photoresist pattern having a line width of 80 nm or less is required.
  • a photoresist composition containing a photosensitive polymer and a solvent is coated on a substrate such as a silicon wafer used for fabricating an integrated circuit, and heated to bake the solvent to evaporate the thin film.
  • a photoresist film in the form of a film is formed.
  • the chemical properties of the photosensitive polymer change in the exposed region.
  • the exposed photoresist film is treated with a developer solution to selectively dissolve and remove portions of the exposed or unexposed photoresist film to form a photoresist pattern.
  • FIG. 1 is a view showing an example of a conventional method for forming a fine photoresist pattern.
  • a photoresist film 120 is formed on the substrate 110 (A in FIG. 1), and the photoresist film 120 is predetermined.
  • the photoresist pattern 122 is formed by exposure and development in the form of an image (B of FIG.
  • a polymer for reducing line width 130 is coated on the formed photoresist pattern 122.
  • FIG. 1C the substrate coated with the line-width reducing polymer 130 is heated to bond the photoresist pattern 122 and the line-width reducing polymer 130 to form a boundary layer 132 (see FIG. 1).
  • D) By developing the unreacted linewidth reducing polymer 130 with a developer such as water (Fig. 1E), the open space between the photoresist patterns 122 is reduced, resulting in a small CD.
  • a photoresist pattern having a (Critical Dimension) may be formed. The method of forming the photoresist pattern shown in FIG. 1 is to reduce the size of the contact hole (C / H) in which the primary pattern is formed.
  • Another object of the present invention is to provide a method for forming a pattern of a semiconductor device having a high resolution by using a photoresist pattern coating polymer.
  • the present invention provides a photoresist pattern coating polymer represented by the following formula (1).
  • R * is each independently a hydrogen atom or a methyl group (-CH 3 )
  • R 1 is a linear or cyclic hydrocarbon group having 1 to 18 carbon atoms
  • R 2 is a hydroxy group (-OH), carboxyl group (-COOH ),
  • x and y are moles of each repeating unit with respect to all repeating units constituting the polymer of Formula 1 above.
  • x is from 5 to 100 mol% and y is from 0 to 95 mol%.
  • the photoresist pattern coating polymer represented by the formula (1) provides a photoresist pattern coating composition comprising a solvent for dissolving the photoresist pattern coating polymer.
  • the present invention comprises the steps of applying a first photoresist on a substrate to form a photoresist film, and exposing and developing the photoresist film to form a first photoresist pattern; A photoresist pattern coating composition comprising a photoresist pattern coating polymer represented by Formula 1 and a solvent for dissolving the photoresist pattern coating polymer is applied to the first photoresist pattern, and the solvent is evaporated to form a coating film.
  • the first photoresist pattern is coated, developed with deionized water, or the like, and then a second (photo) resist pattern is formed again in the developed space region, thereby forming a space of the first photoresist pattern.
  • the line width of the part can be reduced.
  • a double pattern is formed in the space between the lines of the first photoresist pattern so that the second (photo) resist pattern is self aligned. This can reduce the number of alignment errors that can occur.
  • FIG. 1 is a view showing an example of a conventional method for forming a fine photoresist pattern.
  • FIG. 2 is a view showing an example of a pattern forming method of a semiconductor device according to the present invention.
  • FIG. 3 is an electron scanning micrograph of a resist pattern formed according to the method for forming a pattern of a semiconductor device according to the present invention.
  • the polymer for coating a photoresist pattern according to the present invention forms a boundary layer (coating layer) covering the photoresist pattern by reacting with the photoresist pattern, and is represented by the following Chemical Formula 1.
  • R * is each independently a hydrogen atom or a methyl group (-CH 3 ),
  • R 1 is a linear or cyclic hydrocarbon group having 1 to 18 carbon atoms,
  • R 2 is a hydroxy group (-OH), carboxyl group (-COOH ),
  • the R 1 may be a linear or cyclic alkyl or an aryl group, and may include heterogeneous elements such as oxygen (O), nitrogen (N), and sulfur (S) as needed, and specific examples of R 1 may include
  • R 2 is preferably a heterocyclic group such as an imidazole group or a lactam group, and more preferably a pyrrolidone group.
  • x and y are mol% of each repeating unit with respect to the total repeating units constituting the polymer of Formula 1
  • x is 5 to 100 mol%, preferably 10 to 90 mol%, more preferably Preferably from 30 to 40 mol%
  • y is from 0 to 95 mol%, preferably from 10 to 90 mol%, more preferably from 60 to 70 mol%.
  • the polymer for coating a photoresist pattern according to the present invention may be a homopolymer having x of 100 mol%.
  • polymer for photoresist pattern coating according to the present invention may be represented by the following Chemical Formulas 2 to 8.
  • Chemical Formulas 2 to 8 x and y are as defined in Chemical Formula 1.
  • the photoresist pattern coating polymer according to the present invention, , R *, R 2, such as vinyl (vinyl) can be prepared by polymerizing the monomers in a conventional manner, including, at this time can use a conventional polymerization initiator such as azobis (isobutyronitrile) (AIBN).
  • AIBN azobis (isobutyronitrile)
  • the content of each repeating unit is proportional to the content of the monomers used.
  • the photoresist pattern coating polymer according to the present invention may be a block or a random copolymer, the weight average molecular weight (Mw) is preferably 5,000 to 100,000, more preferably 5,000 to 20,000.
  • the polydispersity (PD) of the polymer is preferably 1.0 to 5.0, and more preferably 1.0 to 2.0. If the weight average molecular weight and the polydispersity are outside the above ranges, there is a concern that the physical properties of the coating film coating the photoresist pattern may be lowered. Since the photoresist pattern coating polymer according to the present invention includes an amine group in a molecule, not only the adhesion to the photoresist pattern is easy, but also the coating is possible without damaging the photoresist pattern.
  • the polymer for coating a photoresist pattern according to the present invention can be deprotected by an acid generated by exposure and heating, and is adhered to a primary photoresist pattern by a deprotection of an acetal group in a molecule. Since the property is lowered, development and removal using deionized water or the like is easy, and the contrast of the development process is excellent.
  • the polymer for coating a photoresist pattern according to the present invention is dissolved in a solvent and used in the form of a composition.
  • Water preferably deionized water
  • a mixed solvent of water and alcohol may be used, if necessary.
  • the content of the polymer represented by the formula (1) is 0.5 to 30% by weight, preferably 3 to 10% by weight, and the remaining components are solvents. If the content of the polymer is too small, there is a risk that the polymer layer remaining after coating is too thin to form a coating film of a desired thickness, and if the content of the polymer is too large, coating uniformity may be lowered.
  • examples of the alcohol which may be used together with water may include lower alcohols having 1 to 4 carbon atoms such as methanol and ethanol, and the amount of the alcohol may be used for the entire composition. 0-50% by weight, preferably 1-50% by weight, more preferably 5-25% by weight.
  • the content of the alcohol component is too small, there is a fear that the coating uniformity is lowered, and if the content of the alcohol component is too large, there is a fear that the initial pattern is not dissolved to form a secondary pattern.
  • the composition for coating a photoresist pattern according to the present invention is a conventional photo acid generator (PAG), thermal acid generator (TAG), a resist base (Quencher) as an organic base, It may further include a surfactant.
  • the photoacid generator generates an acid by exposure and serves to deprotect the protecting group of the polymer for coating the photoresist pattern, and any compound capable of generating an acid by light may be used.
  • sulfide salt compounds such as organic sulfonic acid
  • onium salt compounds such as an onium salt, etc. can be used individually or in mixture.
  • Non-limiting examples of the photoacid generator include phthalimidotrifluoromethane sulfonate, dinitrobenzyl tosylate, n-decyl disulfone, naphthylimidotrifluoro Rhomethanesulfonate (naphthylimido trifluoromethane sulfonate), diphenyluretic hexafluorophosphate, diphenyluretic salt hexafluoroarsenate, diphenyluretic salt hexafluoroantimonate, diphenylparamethoxyphenylsulfonium triflate, triphenyl Phenylsulfonium hexafluoroantimonate, triphenylsulfonium triflate, dibutylnaphthylsulfonium triflate, mixtures thereof, and the like.
  • the content thereof is preferably 0 to 20 parts by weight, more preferably 0.05 to 20 parts by weight, and most preferably 0.1 to 10 parts by weight based on 100 parts by weight of the polymer. If the content of the photoacid generator or the thermal acid generator is too small, the sensitivity of the polymer to light may be reduced, so that the deprotection of the protecting group may be insufficient. If the content of the photoacid generator or the thermal acid generator is excessive, excessive acid in the photoacid generator or the thermal acid generator may occur. There is a fear that the shape of the coating film is generated.
  • the surfactant that can be used in the present invention it is preferable to use a water-soluble surfactant, and anionic surfactants, cationic surfactants and amphoteric surfactants can be used, for example, alkylbenzene sulfonate-based and higher amine halogens.
  • a cargo, a quaternary ammonium salt type, an alkyl pyridinium salt type, an amino acid type, a sulfonimide type, and a sulfonamide type surfactant can be used alone or in combination.
  • the amount of the surfactant used is 0.01 to 2 parts by weight, preferably 0.1 to 1 part by weight based on 100 parts by weight of the total photoresist pattern coating composition.
  • the amount of the surfactant is too small, there is a possibility that the uniformity of the coating portion during the film formation may be lowered. If the amount of the surfactant is too large, the loss of the film increases in the process of removing the coating film with water, thereby effectively forming the coating film on the primary pattern. There is a fear of not.
  • the photoresist pattern coating step is substantially the same as that shown in FIG. That is, the photoresist film 20 is formed by applying a first photoresist on a substrate 10 such as a silicon wafer or aluminum (FIG. 2A), and the photoresist film 20 is formed in a predetermined shape (image). ) To form a first photoresist pattern 22 (FIG. 2B), and then apply the photoresist pattern coating composition according to the present invention to the first photoresist pattern 22 and evaporate the solvent. To form a coating film 30 (C in Fig. 2).
  • the first photoresist pattern 22 and the polymer for coating the photoresist pattern are adhered to each other by heating the coating layer 30, or the acid inside the first photoresist pattern 22 ( acid) is diffused into the photoresist pattern coating polymer to form a boundary layer 32 (cap material) covering the first photoresist pattern 22 (D in FIG. 2), and then the unreacted coating film 30 is watered.
  • a developer such as an alcohol, an aqueous alkali solution, a mixture thereof, or the like (E of FIG. 2), the open space between the photoresist patterns 22 is reduced.
  • the first photoresist pattern 22 is coated with the boundary layer 32 to reduce the width of the space, and the second resist is applied to the reduced space to form the second resist pattern 42. (F of FIG. 2).
  • the strength of the second resist pattern 42 is improved by exposing or heating the second resist pattern 42 thus formed to diffuse an acid into the second resist pattern 42, and the like.
  • the deprotection effect of the photoresist pattern coating polymer of the boundary layer 32 may be induced to improve development characteristics.
  • the second resist is preferably a photosensitive photoresist whose physical properties are changed by exposure.
  • the boundary layer 32 (CAP material) is developed again using an alkaline aqueous solution in which alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, and tetramethylammonium hydroxide (TMAH) are dissolved at a concentration of 0.1 to 10% by weight.
  • alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, and tetramethylammonium hydroxide (TMAH) are dissolved at a concentration of 0.1 to 10% by weight.
  • TMAH tetramethylammonium hydroxide
  • the photoresist pattern coating polymer after forming the second resist pattern 42, by performing an acid diffusion process by exposure or heating, by the deprotection action of the photoresist pattern coating polymer, Physical properties of the photoresist pattern coating polymer forming the boundary layer 32 and the photoresist patterns 22 and 42 are further changed.
  • the substrate 10 is etched using the formed photoresist patterns 22 and 42 as a mask, or an open portion of the substrate 10 is formed.
  • the pattern of the semiconductor element can be formed.
  • ArF or KrF resist may be used as the photoresist for forming the first and second photoresist patterns 22 and 42.
  • the photoresist pattern coating polymer according to the present invention is used as a cap material for securing a space for forming a second pattern, so as to form a double pattern. do.
  • a polymer represented by Chemical Formula 6 was prepared in the same manner as in Example 1-1, except that 8.6 g (0.1 mol) of 1-vinyl acetate was used instead of 11.1 g (0.1 mol) of 1-vinyl-pyrrolidone.
  • Mw, Mn weight average and number average molecular weights
  • PD polydispersity
  • a polymer represented by Chemical Formula 7 was prepared in the same manner as in Example 1-1, except that 13.9 g (0.1 mol) of 1-vinyl caprolactam was used instead of 11.1 g (0.1 mol) of 1-vinyl-pyrrolidone. .
  • a polymer represented by Chemical Formula 8 was prepared in the same manner as in Example 1-1, except that 7.2 g (0.1 mol) of acrylic acid was used instead of 11.1 g (0.1 mol) of 1-vinyl-pyrrolidone.
  • Mw, Mn weight average and number average molecular weight
  • PD polydispersity
  • PMEA propylene glycol monomethyl ether acetate
  • a 50 nm 1: 3 line and space pattern (first photoresist pattern) was formed.
  • the film was heated in an oven or a hot plate at 150 ° C. for 60 seconds.
  • the photoresist pattern was coated by soft bake and developed by immersion in deionized water or 2.38 wt% tetramethylammonium hydroxide (TMAH) aqueous solution for 60 seconds.
  • Table 2 shows the linewidth variation of the lines of the coated pattern.
  • Example 3-1 50 nm 82 nm
  • Example 3-2 50 nm 78 nm
  • Example 3-3 50 nm 78 nm
  • Example 3-4 50 nm 65 nm
  • Example 3-5 50 nm 86 nm
  • Example 3-6 50 nm 85 nm
  • Example 3-7 50 nm 76 nm
  • Example 3-8 50 nm 82 nm
  • a secondary pattern on the space portion of the primary photoresist pattern spin coating the photoresist composition (resist for the second pattern) on the wafer, and soft heat treatment for 60 seconds in an oven or hot plate at 120 °C
  • the heat-treated wafer was developed by immersing in a 2.38 wt% tetramethylammonium hydroxide (TMAH) aqueous solution for 60 seconds to remove the coating.
  • TMAH tetramethylammonium hydroxide
  • the second resist pattern can be easily formed in the 1: 3 line and space portion by the self double patterning process according to the present invention. Therefore, when the second resist pattern is formed using the photoresist pattern coating polymer according to the present invention, the mask alignment process of the semiconductor exposure apparatus using the existing 193 nm, 248 nm and other light sources is unnecessary, and the wafer is heated. And only the development process, it is possible to perform a self-double patterning process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

리쏘그래피 공정의 해상도를 증가시킬 수 있는 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법이 개시된다. 상기 포토레지스트 패턴 코팅 고분자는 청구항 1의 화학식 1로 표시된다. 상기 화학식 1에서, R*은 각각 독립적으로 수소 원자 또는 메틸기(-CH3)이고, R1은 탄소수 1 내지 18의 선형 또는 환형 탄화수소기이고, R2는 히드록시기(-OH), 카르복실기(-COOH), 또는 탄소수 3 내지 10, 질소수 1 내지 3 및 산소수 1 내지 3의 선형 또는 환형 탄화수소기이며, x 및 y는 상기 화학식의 고분자를 구성하는 전체 반복단위에 대한 각각의 반복단위의 몰%로서, x는 5 내지 100몰%이고, y는 0 내지 95 몰%이다.

Description

포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법
본 발명은 포토레지스트 패턴 코팅용 고분자에 관한 것으로서, 더욱 상세하게는, 리쏘그래피(lithography) 공정의 해상도를 증가시킬 수 있는 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법에 관한 것이다.
반도체 소자의 집적도(integration degree)가 증가함에 따라, 80 nm 이하의 선폭을 가지는 초미세 포토레지스트 패턴을 형성할 수 있는 포토리쏘그래피 공정(photolithography process)이 요구되고 있다. 통상의 포토리쏘그래피 공정에 있어서, 집적 회로의 제조에 사용되는 실리콘 웨이퍼 등의 기판 상부에, 감광성 고분자 및 용매를 포함하는 포토레지스트 조성물을 코팅하고, 이를 가열(bake)하여 용매를 증발시킴으로써, 얇은 필름 형태의 포토레지스트막을 형성한다. 다음으로, 노광원으로부터 소정 패턴의 빛을 조사하여, 노광원의 패턴에 따라 포토레지스트막을 노광시키면, 노광된 영역에서 감광성 고분자의 화학적 물성이 변화한다. 이와 같은 노광에 사용되는 광으로는, 가시광선, 자외선(UV), 전자빔(electron beam), X-레이 등을 예시할 수 있다. 상기 노광 후, 노광된 포토레지스트막을 현상액(developer solution)으로 처리하여, 노광 또는 노광되지 않은 포토레지스트막 부분을 선택적으로 용해시켜 제거함으로써, 포토레지스트 패턴을 형성한다.
이와 같은 포토리쏘그래피 공정에 있어서, 포토레지스트 패턴의 해상도(resolution)를 증가시키기 위한, 다양한 기술이 개발되고 있다. 예를 들면, PCT 국제공개 WO 2008/122884호, EP 1757989호 등에는, 포토레지스트 패턴을 고분자로 코팅하여 패턴 사이의 공간(space)을 축소시키는 방법이 개시되어 있다. 도 1은 종래의 미세 포토레지스트 패턴 형성 방법의 일 예를 보여주는 도면이다. 도 1에 도시된 바와 같이, 종래의 포토레지스트 패턴 형성 방법에 있어서는, 기판(110)의 상부에 포토레지스트막(120)을 형성하고(도 1의 A), 상기 포토레지스트막(120)을 소정의 형태(image)로 노광 및 현상하여 포토레지스트 패턴(122)를 형성한 다음(도 1의 B), 형성된 포토레지스트 패턴(122)의 상부에 선폭 축소용 고분자(130, shrink material)를 코팅한다(도 1의 C). 이와 같이 선폭 축소용 고분자(130)가 코팅된 기판을 가열(bake)하여, 포토레지스트 패턴(122)과 선폭 축소용 고분자(130)가 접착되어 경계층(132)를 형성하도록 한 다음(도 1의 D), 미반응 선폭 축소용 고분자(130)를 물 등의 현상액으로 현상함으로써(도 1의 E), 포토레지스트 패턴(122) 사이의 개방된 거리(space)가 감소(shrink)되어, 작은 CD(Critical Dimension)을 가지는 포토레지스트 패턴을 형성할 수 있다. 도 1에 도시된 포토레지스트 패턴 형성 방법은, 1차 패턴이 형성된 C/H(contact hole)의 크기(size)를 감소시키는 것이다.
본 발명의 목적은, 리쏘그래피 공정의 해상도를 증가시킬 수 있는 포토레지스트 패턴 코팅용 고분자를 제공하는 것이다.
본 발명의 다른 목적은, 포토레지스트 패턴 코팅용 고분자를 이용하여, 높은 해상도를 가지는 반도체 소자의 패턴 형성 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 패턴의 자가 정열(self align)을 이용하여, 라인(line) 사이의 스페이스(space)에 이중(double) 패턴을 형성할 수 있는, 반도체 소자의 패턴 형성 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 하기 화학식 1로 표시되는 포토레지스트 패턴 코팅 고분자를 제공한다.
[화학식 1]
Figure PCTKR2010001226-appb-I000001
상기 화학식 1에서, R*은 각각 독립적으로 수소 원자 또는 메틸기(-CH3)이고, R1은 탄소수 1 내지 18의 선형 또는 환형 탄화수소기이고, R2는 히드록시기(-OH), 카르복실기(-COOH), 또는 탄소수 3 내지 10, 질소수 1 내지 3 및 산소수 1 내지 3의 선형 또는 환형 탄화수소기이며, x 및 y는 상기 화학식 1의 고분자를 구성하는 전체 반복단위에 대한 각각의 반복단위의 몰%로서, x는 5 내지 100몰%이고, y는 0 내지 95 몰%이다.
또한, 본 발명은, 상기 화학식 1로 표시되는 포토레지스트 패턴 코팅 고분자; 및 상기 포토레지스트 패턴 코팅 고분자를 용해시키는 용매를 포함하는 포토레지스트 패턴 코팅용 조성물을 제공한다. 또한, 본 발명은, 기판 상부에 제1 포토레지스트를 도포하여 포토레지스트막을 형성하고, 상기 포토레지스트막을 노광 및 현상하여 제1 포토레지스트 패턴을 형성하는 단계; 하기 화학식 1로 표시되는 포토레지스트 패턴 코팅 고분자 및 상기 포토레지스트 패턴 코팅 고분자를 용해시키는 용매를 포함하는 포토레지스트 패턴 코팅용 조성물을 상기 제1 포토레지스트 패턴에 도포하고, 용매를 증발시켜, 코팅막을 형성하는 단계; 상기 코팅막과 상기 제1 포토레지스트 패턴을 반응시켜, 상기 제1 포토레지스트 패턴을 덮는 경계층을 형성하고, 미반응 코팅막을 현상하여 제거하는 단계; 상기 경계층 사이의 스페이스에 제2 레지스트를 도포하여, 제2 레지스트 패턴을 형성하는 단계; 및 상기 경계층을 현상하여 제거하고, 제1 포토레지스트 패턴 및 제2 레지스트 패턴을 잔류시키는 단계를 포함하는, 반도체 소자의 패턴 형성 방법을 제공한다.
본 발명에 따른 고분자를 이용하여, 제1 포토레지스트 패턴을 코팅하고, 탈이온수 등으로 현상한 다음, 현상된 스페이스 영역에 다시 제2 (포토)레지스트 패턴을 형성함으로써, 제1 포토레지스트 패턴의 스페이스 부분의 선폭을 감소시킬 수 있다. 이와 같이, 제2 (포토)레지스트 패턴이 자가 정열(self align)되도록, 제1 포토레지스트 패턴의 라인 사이의 스페이스에 이중(double) 패턴을 형성함으로써, 장비를 이용한 제2 포토레지스트 패턴 형성 과정에서 발생할 수 있는 정렬(align) 오류 문제를 감소시킬 수 있다.
도 1은 종래의 미세 포토레지스트 패턴 형성 방법의 일 예를 보여주는 도면.
도 2는 본 발명에 따른 반도체 소자의 패턴 형성 방법의 일 예를 보여주는 도면.
도 3은 본 발명에 따른 반도체 소자의 패턴 형성 방법에 따라 형성된 레지스트 패턴의 전자주사 현미경 사진.
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.
본 발명에 따른 포토레지스트 패턴 코팅용 고분자는, 포토레지스트 패턴과 반응하여 포토레지스트 패턴을 덮는 경계층(코팅막)을 형성하는 것으로서, 하기 화학식 1로 표시된다.
화학식 1
Figure PCTKR2010001226-appb-C000001
상기 화학식 1에서, R*은 각각 독립적으로 수소 원자 또는 메틸기(-CH3)이고, R1은 탄소수 1 내지 18의 선형 또는 환형 탄화수소기이고, R2는 히드록시기(-OH), 카르복실기(-COOH), 또는 탄소수 3 내지 10, 질소수 1 내지 3 및 산소수 1 내지 3의 선형 또는 환형 탄화수소기이다. 상기 R1은 선형 또는 환형 알킬 또는 아릴기일 수 있고, 필요에 따라, 산소(O), 질소(N), 황(S) 등의 이종 원소를 포함할 수 있으며, 상기 R1의 구체적인 예로는,
Figure PCTKR2010001226-appb-I000002
Figure PCTKR2010001226-appb-I000003
Figure PCTKR2010001226-appb-I000004
Figure PCTKR2010001226-appb-I000005
Figure PCTKR2010001226-appb-I000006
Figure PCTKR2010001226-appb-I000007
Figure PCTKR2010001226-appb-I000008
Figure PCTKR2010001226-appb-I000009
Figure PCTKR2010001226-appb-I000010
Figure PCTKR2010001226-appb-I000011
Figure PCTKR2010001226-appb-I000012
Figure PCTKR2010001226-appb-I000013
등을 예시할 수 있다. 또한, 상기 R2는 이미다졸(imidazole)기, 락탐(lactam)기 등의 헤테로고리기인 것이 바람직하고, 더욱 바람직하게는 피롤리돈(pyrrolidone)기이다.
상기 화학식 1에서, x 및 y는 상기 화학식 1의 고분자를 구성하는 전체 반복단위에 대한 각각의 반복단위의 몰%로서, x는 5 내지 100몰%, 바람직하게는 10 내지 90 몰%, 더욱 바람직하게는 30 내지 40 몰%이고, y는 0내지 95 몰%, 바람직하게는 10 내지 90 몰%, 더욱 바람직하게는 60 내지 70 몰%이다. 따라서, 본 발명에 따른 포토레지스트 패턴 코팅용 고분자는 x가 100몰%인 호모폴리머일 수도 있다. 여기서, 상기 x가 너무 작으면, 포토레지스트 패턴에 대한 고분자의 접착력이 저하되거나, 온도나 산에 의한 산 생성 과정 후, 산 확산 가열에 의하여 아세탈 부분의 탈보호 작용에 의한 고분자의 현상액에 대한 선택성이 저하된다. 한편, y가 너무 크면, 포토레지스트 패턴에 대한 고분자의 접착력이 저하될 우려가 있다.
본 발명에 따른 포토레지스트 패턴 코팅용 고분자의 구체적인 예는, 하기 화학식 2 내지 8로 표시될 수 있다. 하기 화학식 2 내지 8에서, x 및 y는 상기 화학식 1에서 정의한 바와 같다.
화학식 2
Figure PCTKR2010001226-appb-C000002
화학식 3
Figure PCTKR2010001226-appb-C000003
화학식 4
Figure PCTKR2010001226-appb-C000004
화학식 5
Figure PCTKR2010001226-appb-C000005
화학식 6
Figure PCTKR2010001226-appb-C000006
화학식 7
Figure PCTKR2010001226-appb-C000007
화학식 8
Figure PCTKR2010001226-appb-C000008
본 발명에 따른 포토레지스트 패턴 코팅용 고분자는,
Figure PCTKR2010001226-appb-I000014
, R*, R2 등을 포함하는 비닐(vinyl) 모노머를 통상의 방법으로 중합하여 제조할 수 있으며, 이때 아조비스(이소부티로니트릴)(AIBN) 등 통상의 중합개시제를 사용할 수 있다. 본 발명에 따른 고분자에 있어서, 각 반복단위의 함량은, 사용된 모노머의 함량에 비례한다. 본 발명에 따른 포토레지스트 패턴 코팅용 고분자는 블록 또는 랜덤 공중합체일 수 있으며, 중량평균 분자량(Mw)은 5,000 내지 100,000인 것이 바람직하고, 더욱 바람직하게는 5,000 내지 20,000이다. 상기 고분자의 다분산도 (Polydispersity: PD)는 1.0 내지 5.0인 것이 바람직하고, 1.0 내지 2.0이면 더욱 바람직하다. 중량평균분자량 및 다분산도가 상기 범위를 벗어나면, 포토레지스트 패턴을 코팅하는 코팅막의 물성이 저하될 우려가 있다. 본 발명에 따른 포토레지스트 패턴 코팅용 고분자는 분자 내에 아민기를 포함하므로, 포토레지스트 패턴과의 접착이 용이할 뿐 만 아니라, 포토레지스트 패턴에 손상을 주지 않고 코팅이 가능하다. 또한, 본 발명에 따른 포토레지스트 패턴 코팅용 고분자는, 노광 및 가열에 의하여 발생된 산에 의하여 탈보호 작용이 가능하며, 분자 내 아세탈기의 탈보호 작용에 의하여, 1차 포토레지스트 패턴과의 접착성이 저하되므로, 탈이온수 등을 이용한 현상 및 제거가 용이하고, 현상 과정의 콘트라스트(contrast)가 우수하다.
본 발명에 따른 포토레지스트 패턴 코팅용 고분자는 용매에 용해되어, 조성물의 형태로 사용된다. 상기 포토레지스트 패턴 코팅용 조성물의 용매로는 물, 바람직하게는 탈이온수를 사용할 수 있으며, 필요에 따라, 물과 알코올의 혼합 용매를 사용할 수 있다. 상기 포토레지스트 패턴 코팅용 조성물에 있어서, 화학식 1로 표시되는 고분자의 함량은 0.5 내지 30중량%, 바람직하게는 3 내지 10 중량%이며, 나머지 성분은 용매이다. 상기 고분자의 함량이 너무 작으면, 코팅 후 남게 되는 고분자층이 너무 얇아 원하는 두께의 코팅막을 형성하기 어려울 우려가 있고, 상기 고분자의 함량이 너무 많으면, 코팅 균일성이 저하될 우려가 있다. 또한, 본 발명에 따른 포토레지스트 패턴 코팅용 조성물에 있어서, 물과 함께 사용될 수 있는 알코올로는 메탄올, 에탄올 등의 탄소수 1 내지 4의 저급 알코올을 예시할 수 있으며, 그 사용량은 조성물 전체에 대하여, 0 내지 50 중량%, 바람직하게는 1 내지 50 중량%, 더욱 바람직하게는 5 내지 25 중량%이다. 여기서, 상기 알코올 성분의 함량이 너무 작으면, 코팅 균일성을 저하시킬 우려가 있고, 상기 알코올 성분의 함량이 너무 많으면, 초기 패턴을 용해시켜 2차 패턴을 형성하지 못 할 우려가 있다. 또한, 필요에 따라, 본 발명에 따른 포토레지스트 패턴 코팅용 조성물은 통상의 광산 발생제(Photo acid generator: PAG), 열산 발생제(Thermal acid generator: TAG), 레지스트 안정제(Quencher)로서 유기 염기, 계면활성제 등을 더욱 포함할 수 있다. 상기 광산 발생제는, 노광에 의해 산(acid)을 생성하여, 상기 포토레지스트 패턴 코팅용 고분자의 보호기를 탈보호시키는 역할을 하는 것으로서, 빛에 의해 산을 발생시킬 수 있는 화합물이면 무엇이든 사용할 수 있으며, 바람직하게는 유기설폰산 등의 황화염계 화합물, 오늄염 등의 오늄염계 화합물 등을 단독 또는 혼합하여 사용할 수 있다. 상기 광산발생제의 비한정적인 예로는 프탈이미도트리플루오로메탄 술포네이트 (phthalimidotrifluoromethane sulfonate), 디니트로벤질토실레이트 (dinitrobenzyl tosylate), n-데실디술폰(n-decyl disulfone), 나프틸이미도트리플루오로메탄술포네이트 (naphthylimido trifluoromethane sulfonate), 디페닐요도염 헥사플루오로포스페이트, 디페닐요도염 헥사플루오로아르세네이트, 디페닐요도염 헥사플루오로안티모네이트, 디페닐파라메톡시페닐설포늄 트리플레이트, 트리페닐설포늄 헥사플루오로안티모네이트, 트리페닐설포늄 트리플레이트, 디부틸나프틸설포늄 트리플레이트, 이들의 혼합물 등을 예시할 수 있다. 상기 광산 발생제 또는 열산 발생제가 사용될 경우, 그 함량은 상기 고분자 100중량부에 대해 0 내지 20 중량부인 것이 바람직하고, 0.05 내지 20중량부이면 더욱 바람직하고, 0.1 내지 10중량부이면 가장 바람직하다. 만일, 상기 광산 발생제 또는 열산 발생제의 함량이 너무 작으면, 고분자의 빛에 대한 민감도가 저하되어 보호기의 탈보호가 불충분할 우려가 있고, 너무 많으면 광산 발생제 또는 열산 발생제에서 과량의 산이 발생하여 코팅막의 형상이 불량해질 우려가 있다. 본 발명에 사용될 수 있는 계면활성제로는, 수용성 계면활성제를 사용하는 것이 바람직하고, 음이온 계면활성제, 양이온 계면활성제, 양쪽성 계면활성제를 사용할 수 있으며, 예를 들면, 알킬벤젠술폰산염계, 고급아민할로겐화물, 제4암모늄염계, 알킬피리디늄염계, 아미노산계, 술폰이미드계, 설폰아미드(sulfonamide)계 계면활성제를 단독 또는 혼합하여 사용할 수 있다. 상기 계면활성제의 사용량은, 전체 포토레지스트 패턴 코팅용 조성물 100 중량부에 대하여 0.01 내지 2 중량부, 바람직하게는 0.1 내지 1 중량부이다. 상기 계면활성제의 사용량이 너무 작으면, 필름 형성시 코팅부의 균일성이 저하될 우려가 있고, 너무 많으면, 코팅막을 물로 제거하는 과정에서, 필름의 손실이 많아져, 1차 패턴에 코팅막을 효과적으로 형성하지 못할 우려가 있다.
다음으로, 도 2를 참조하여, 본 발명에 따른 반도체 소자의 패턴 형성 방법을 설명한다. 도 2에 도시된 반도체 소자의 패턴 형성 방법에 있어서, 포토레지스트 패턴 코팅 단계는 도 1에 도시된 것과 실질적으로 동일하다. 즉, 실리콘 웨이퍼, 알루미늄 등의 기판(10) 상부에 제1 포토레지스트를 도포하여 포토레지스트막(20)을 형성하고(도 2의 A), 상기 포토레지스트막(20)을 소정의 형태(image)로 노광 및 현상하여 제1 포토레지스트 패턴(22)를 형성한 다음(도 2의 B), 제1 포토레지스트 패턴(22)에 본 발명에 따른 포토레지스트 패턴 코팅용 조성물을 도포하고 용매를 증발시켜 코팅막(30)을 형성한다(도 2의 C). 다음으로, 상기 코팅막(30)을 가열(bake)하는 등의 방법으로, 제1 포토레지스트 패턴(22)과 포토레지스트 패턴 코팅용 고분자가 접착되거나, 제1 포토레지스트 패턴(22) 내부의 산(acid)이 포토레지스트 패턴 코팅용 고분자로 확산하여, 제1 포토레지스트 패턴(22)을 덮는 경계층(32, cap material)을 형성하도록 한 다음(도 2의 D), 미반응 코팅막(30)을 물, 알코올, 알카리 수용액, 이들의 혼합물 등의 현상액으로 현상하여 제거함으로써(도 2의 E), 포토레지스트 패턴(22) 사이의 개방된 스페이스(space)를 감소(shrink)시킨다.
이와 같이, 제1 포토레지스트 패턴(22)을 경계층(32)으로 코팅하여, 스페이스의 폭을 감소시키고, 상기 폭이 감소된 스페이스에 제2 레지스트를 도포하여, 제2 레지스트 패턴(42)을 형성한다(도 2의 F). 필요에 따라, 이와 같이 형성된 제2 레지스트 패턴(42)을 노광 또는 가열하여, 제2 레지스트 패턴(42)에 산을 확산시키는 등의 방법으로, 제2 레지스트 패턴(42)의 강도를 향상시키고, 아울러, 경계층(32)의 포토레지스트 패턴 코팅용 고분자의 탈보호 작용을 유도하여, 현상 특성을 향상시킬 수 있다. 이 경우, 상기 제2 레지스트는 노광에 의하여 그 물성이 변화하는 감광성 포토레지스트인 것이 바람직하다. 다음으로, 수산화나트륨, 수산화칼륨, 탄산나트륨, 테트라메틸암모늄 히드록사이드(TMAH) 등의 알칼리성 화합물을 0.1 내지 10중량%의 농도로 용해시킨 알칼리 수용액을 사용하여 다시 경계층(32, CAP material)를 현상하여 제거하고, 제1 포토레지스트 패턴(22) 및 제2 포토레지스트 패턴(42)을 잔류시킴으로써(도 2의 G), 스페이스의 폭이 감소된 포토레지스트 패턴을 형성할 수 있다. 여기서, 상기 제1 및 제2 포토레지스트 패턴(22, 42), 코팅막(30) 및 경계층(32)은 재질 자체의 특성이나 가열, 노광 등에 의하여, 현상액에 대한 용해도가 상이하게 되므로, 현상 조건이나 현상 시간을 적절히 조절함으로써, 경계층(32) 만을 선택적으로 현상시킬 수 있다. 특히, 본 발명에 따른 포토레지스트 패턴 코팅용 고분자의 경우, 제2 레지스트 패턴(42) 형성 후, 노광 또는 가열에 의한 산 확산 과정을 수행함으로써, 포토레지스트 패턴 코팅용 고분자의 탈보호 작용에 의하여, 경계층(32)을 형성하는 포토레지스트 패턴 코팅용 고분자와 포토레지스트 패턴(22, 42)의 물성이 더욱 달라지게 된다. 이와 같이 제1 및 제2 포토레지스트 패턴(22, 42)을 형성한 다음, 형성된 포토레지스트 패턴(22, 42)을 마스크로 사용하여, 기판(10)을 에칭하거나, 개방된 기판(10) 부분의 물성을 변화시키는 등의 방법으로, 기판(10)을 가공함으로써, 반도체 소자의 패턴을 형성할 수 있다.
상기 제1 및 제2 포토레지스트 패턴(22, 42)을 형성하는 포토레지스트로는 통상적인 ArF 또는 KrF 레지스트를 사용할 수 있다. 이와 같이, 제1 포토레지스트 패턴(22)의 스페이스 영역에, 예를 들면, 라인 형태의 제2 포토레지스트 패턴(42)을 형성함으로써, 30 nm 정도의 우수한 해상도를 가지는 패턴을 형성할 수 있다. 이와 같은 반도체 소자의 패턴 형성 방법에 있어서, 본 발명에 따른 포토레지스트 패턴 코팅용 고분자는 제2 패턴형성을 위한 공간 확보용 덮개 물질(cap material)로 사용되어, 이중 패턴(double pattern)을 형성하도록 한다.
이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[실시예 1-1] 화학식 2로 표시되는 고분자 제조
반응기에 1-비닐-피롤리돈 11.1g(0.1 mol), 아크릴릭에시드 아미노메톡시메틸 에스테르 13.2g(0.1 mol) 및 아조비스(이소부티로니트릴)(AIBN) 0.7g를 넣고, 반응물을 아세토니트릴 100g에 용해시킨 후, 동결방법으로 앰플(ampoule)을 사용하여 가스를 제거하고, 가스가 제거된 반응물을 70℃에서 24시간 동안 중합시켰다. 중합반응이 완결된 후, 과량의 디에틸에테르에 반응물을 천천히 적가하여, 생성물을 침전시킨 다음, 다시 아세토니트릴로 용해시키고, 용해된 생성물을 디에틸에테르에서 재침전시켜, 화학식 2로 표시되는 고분자를 제조하였다. GPC(Gel permeation chromatography)를 이용하여, 합성된 고분자의 중량평균 및 수평균 분자량(Mw, Mn) 및 다분산도(PD: Polydispersity)를 측정하였다(GPC 분석: Mn= 29,000, Mw= 81,000, PD=2.79).
[실시예 1-2] 화학식 3으로 표시되는 고분자 제조
아크릴릭에시드 아미노메톡시메틸 에스테르 13.2g(0.1 mol) 대신 아크릴릭에시드 아미노에톡시메틸 에스테르 14.5g(0.1 mol)을 사용한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 화학식 3으로 표시되는 고분자를 제조하였다. GPC를 이용하여, 합성된 고분자의 중량평균 및 수평균 분자량(Mw, Mn) 및 다분산도(PD: Polydispersity)를 측정하였다(GPC 분석: Mn= 26,500, Mw= 69,800, PD=2.63).
[실시예 1-3] 화학식 4로 표시되는 고분자 제조
아크릴릭에시드 아미노메톡시메틸 에스테르 13.2g(0.1 mol) 대신 아크릴릭에시드 4-아미노-사이클로헥실옥시메틸 에스테르 19.9g(0.1mol)을 사용한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 화학식 4로 표시되는 고분자를 제조하였다. GPC를 이용하여, 합성된 고분자의 중량평균 및 수평균 분자량(Mw, Mn) 및 다분산도(PD: Polydispersity)를 측정하였다(GPC 분석: Mn= 24,800, Mw= 78,500, PD=3.17).
[실시예 1-4] 화학식 5로 표시되는 고분자 제조
아크릴릭에시드 아미노메톡시메틸 에스테르 13.2g(0.1 mol) 대신 아크릴릭에시드 4-아미노-페녹시메틸 에스테르 0.1 mol을 사용한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 화학식 5로 표시되는 고분자를 제조하였다. GPC를 이용하여, 합성된 고분자의 중량평균 및 수평균 분자량(Mw, Mn) 및 다분산도(PD: Polydispersity)를 측정하였다(GPC 분석: Mn= 26,900, Mw= 77,000, PD=2.86).
[실시예 1-5] 화학식 6으로 표시되는 고분자 제조
1-비닐-피롤리돈 11.1g(0.1 mol) 대신 1-비닐 아세테이트 8.6g(0.1 mol)을 사용한 것을 제외하고는, 실시예 1-1과 동일한 방법으로 화학식 6으로 표시되는 고분자를 제조하였다. GPC를 이용하여, 합성된 고분자의 중량평균 및 수평균 분자량(Mw, Mn) 및 다분산도(PD: Polydispersity)를 측정하였다(GPC 분석: Mn= 19,000, Mw= 68,400, PD= 3.60).
[실시예 1-6] 화학식 7로 표시되는 고분자 제조
1-비닐-피롤리돈 11.1g(0.1 mol) 대신 1-비닐 카프로락탐 13.9g (0.1 mol)을 사용한 것을 제외하고는, 실시예 1-1와 동일한 방법으로 화학식 7로 표시되는 고분자를 제조하였다. GPC를 이용하여, 합성된 고분자의 중량평균 및 수평균 분자량(Mw, Mn) 및 다분산도(PD: Polydispersity)를 측정하였다(GPC 분석: Mn= 30,200, Mw= 75,600, PD= 2.50).
[실시예 1-7] 화학식 8로 표시되는 고분자 제조
1-비닐-피롤리돈 11.1g(0.1 mol) 대신 아크릴릭에시드 7.2g(0.1 mol)을 사용한 것을 제외하고는, 실시예 1-1와 동일한 방법으로 화학식 8로 표시되는 고분자를 제조하였다. GPC를 이용하여, 합성된 고분자의 중량평균 및 수평균 분자량(Mw, Mn) 및 다분산도(PD: Polydispersity)를 측정하였다(GPC 분석: Mn= 29,500, Mw= 78,600, PD= 2.66).
[실시예 2-1 내지 2-8] 포토레지스트 패턴 코팅용 조성물 제조
하기 표 1에 나타낸 바와 같이, 실시예 1-1 내지 1-7에서 합성한 각각의 포토레지스트 패턴 코팅용 고분자(화학식 2 내지 8) 2.7g, 수용성 계면활성제(TCI 사의 설폰아미드(sulfonamide)계 계면활성제) 0.3g, 열산 발생제(Amonium trifluoromethane sulfonate. Aldrich사 제품) 0.1g 및 광산발생제(트리페닐설포늄 트리플레이트) 0.15g을 탈이온수 17.0g 또는 탈이온수과 이소프로판올 6:4 혼합용매 17.0g에 완전히 용해시킨 후, 0.2㎛의 디스크 필터로 여과하여, 포토레지스트 패턴 코팅용 조성물을 제조하였다.
표 1
구분 고분자 사용량 계면활성제 열산발생제 광산발생제 탈이온수 알코올
실시예 2-1 화학식 2 2.7g 0.3g 0.1g 17g -
실시예 2-2 화학식 3 2.7g 0.3g 0.1g 17g -
실시예 2-3 화학식 4 2.7g 0.3g 0.1g 17g -
실시예 2-4 화학식 5 2.7g 0.3g 0.1g 17g -
실시예 2-5 화학식 6 2.7g 0.3g 0.1g 17g -
실시예 2-6 화학식 7 2.7g 0.3g 0.1g 17g -
실시예 2-7 화학식 8 2.7g 0.3g 0.1g 17g -
실시예 2-8 화학식 8 2.7g 0.3g 0.1g 0.15g 10.2g 6.8g
[실시예 3-1 내지 3-8] 포토레지스트 패턴 코팅용 조성물을 이용한 반도체 소자의 패턴 형성
하기 화학식 9으로 표시되는 ArF용 포토레지스트 폴리머(분자량(Mw): 10,100, 다분산도(PD): 1.89, a: b: c(몰%) = 45: 40: 15) 2g, 트리페닐설포늄 트리플레이트 0.02g 및 트리에탄올아민 0.01g을 프로필렌글리콜모노메틸에테르 아세테이트(PGMEA) 10g에 녹인 후, 0.2㎛필터로 여과하여 포토레지스트 조성물을 제조하였다.
화학식 9
Figure PCTKR2010001226-appb-C000009
상기 포토레지스트 조성물을 이용하여, 50 nm 1:3 라인 앤드 스패이스(line and space) 패턴(제1 포토레지스트 패턴)을 형성하였다. 상기 제1 포토레지스트 패턴이 형성된 웨이퍼 상부에, 실시예 2-1 내지 2-8에서 제조한 포토레지스트 패턴 코팅용 조성물을 스핀 코팅하여 박막을 형성한 후, 150℃의 오븐 또는 열판에서 60초 동안 소프트 열처리(soft bake)하고, 탈이온수 또는 2.38중량% 테트라메틸암모늄하이드록사이드(TMAH) 수용액에 60초 동안 침지하여 현상함으로써, 포토레지스트 패턴을 코팅하였다. 이와 같이 코팅된 패턴의 라인의 선폭 변화량을 표 2에 나타내었다.
표 2
구분 1차 패턴의 선폭(line width),CD(Critical Dimension) 제1 포토레지스트 패턴 코팅 후, 선폭(line width)
실시예 3-1 50 nm 82 nm
실시예 3-2 50 nm 78 nm
실시예 3-3 50 nm 78 nm
실시예 3-4 50 nm 65 nm
실시예 3-5 50 nm 86 nm
실시예 3-6 50 nm 85 nm
실시예 3-7 50 nm 76 nm
실시예 3-8 50 nm 82 nm
다음으로, 하기 화학식 10으로 표시되는 KrF용 포토레지스트 폴리머(분자량(Mw): 14,800, 다분산도(PD): 2.02, a: b(몰%) = 65: 35) 2g 및 트리에탄올아민 0.01g을 프로필렌글리콜모노메틸에테르 아세테이트(PGMEA) 10g에 녹인 후, 0.2㎛필터로 여과하여 포토레지스트 조성물을 제조하였다.
화학식 10
Figure PCTKR2010001226-appb-C000010
상기 1차 포토레지스트 패턴의 스페이스 부분에 2차 패턴을 형성하기 위하여, 상기 웨이퍼에 상기 포토레지스트 조성물(제2 패턴용 레지스트)을 스핀 코팅하고, 120℃의 오븐 또는 열판에서 60초 동안 소프트 열처리한 다음, 열처리된 웨이퍼를 2.38중량% 테트라메틸암모늄하이드록사이드(TMAH) 수용액에 60초 동안 침지하여 현상하여, 코팅부를 제거하였다. 이와 같이, 제1 포토레지스트 패턴의 스페이스 부분에 1차 포토레지스트 패턴 보다 높이가 낮은 2차 레지스트 패턴을 형성하였으며, 실시예 3-5의 화합물을 이용하여 형성된 레지스트 패턴의 전자주사 현미경 사진을 도 3에 나타내었다. 도 3으로부터, 본 발명에 따른 자가 더블 패터닝 과정에 의하여, 1:3 라인 앤드 스패이스 부분에 용이하게 제2 레지스트 패턴을 형성할 수 있음을 알 수 있다. 따라서, 본 발명에 따른 포토레지스트 패턴 코팅용 고분자를 이용하여, 제2 레지스트 패턴을 형성하면, 기존의 193 nm, 248 nm 및 그 외의 광원을 이용한 반도체 노광장비 마스크 정열 과정이 불필요하며, 웨이퍼의 가열 및 현상 과정 만으로, 자가 더블 패터닝 과정을 수행할 수 있다.

Claims (13)

  1. 하기 화학식 1로 표시되는 포토레지스트 패턴 코팅 고분자.
    [화학식 1]
    Figure PCTKR2010001226-appb-I000015
    상기 화학식 1에서, R*은 각각 독립적으로 수소 원자 또는 메틸기(-CH3)이고, R1은 탄소수 1 내지 18의 선형 또는 환형 탄화수소기이고, R2는 히드록시기(-OH), 카르복실기(-COOH), 또는 탄소수 3 내지 10, 질소수 1 내지 3 및 산소수 1 내지 3의 선형 또는 환형 탄화수소기이며, x 및 y는 상기 화학식 1의 고분자를 구성하는 전체 반복단위에 대한 각각의 반복단위의 몰%로서, x는 5 내지 100몰%이고, y는 0 내지 95 몰%이다.
  2. 제1항에 있어서, 상기 R1은 선형 또는 환형 알킬 또는 아릴기이고, 상기 R2는 헤테로고리기인 것인, 포토레지스트 패턴 코팅 고분자.
  3. 제1항에 있어서, 상기 R1
    Figure PCTKR2010001226-appb-I000016
    Figure PCTKR2010001226-appb-I000017
    Figure PCTKR2010001226-appb-I000018
    Figure PCTKR2010001226-appb-I000019
    Figure PCTKR2010001226-appb-I000020
    Figure PCTKR2010001226-appb-I000021
    Figure PCTKR2010001226-appb-I000022
    Figure PCTKR2010001226-appb-I000023
    Figure PCTKR2010001226-appb-I000024
    Figure PCTKR2010001226-appb-I000025
    Figure PCTKR2010001226-appb-I000026
    Figure PCTKR2010001226-appb-I000027
    로 이루어진 군으로부터 선택되며, 상기 R2는 이미다졸(imidazole)기 또는 락탐(lactam)기인 것인, 포토레지스트 패턴 코팅 고분자.
  4. 제1항에 있어서, 상기 포토레지스트 패턴 코팅 고분자의 중량평균 분자량(Mw)은 5,000 내지 100,000 이고, x는 10 내지 90 몰%, y는 10 내지 90 몰%인 것인, 포토레지스트 패턴 코팅 고분자.
  5. 제1항에 있어서, 상기 포토레지스트 패턴 코팅 고분자는
    Figure PCTKR2010001226-appb-I000028
    Figure PCTKR2010001226-appb-I000029
    Figure PCTKR2010001226-appb-I000030
    Figure PCTKR2010001226-appb-I000031
    화학식 1에서 정의한 바와 같다)로 이루어진 군으로부터 선택되는 것인, 포토레지스트 패턴 코팅 고분자.
  6. 하기 화학식 1로 표시되는 포토레지스트 패턴 코팅 고분자; 및
    상기 포토레지스트 패턴 코팅 고분자를 용해시키는 용매를 포함하는 포토레지스트 패턴 코팅용 조성물.
    [화학식 1]
    Figure PCTKR2010001226-appb-I000032
    상기 화학식 1에서, R*은 각각 독립적으로 수소 원자 또는 메틸기(-CH3)이고, R1은 탄소수 1 내지 18의 선형 또는 환형 탄화수소기이고, R2는 히드록시기(-OH), 카르복실기(-COOH), 또는 탄소수 3 내지 10, 질소수 1 내지 3 및 산소수 1 내지 3의 선형 또는 환형 탄화수소기이며, x 및 y는 상기 화학식 1의 고분자를 구성하는 전체 반복단위에 대한 각각의 반복단위의 몰%로서, x는 5 내지 100몰%이고, y는 0 내지 95 몰%이다.
  7. 제6항에 있어서, 상기 포토레지스트 패턴 코팅 고분자를 용해시키는 용매는 탈이온수인 것인, 포토레지스트 패턴 코팅용 조성물.
  8. 제6항에 있어서, 상기 포토레지스트 패턴 코팅용 고분자를 용해시키는 용매는 물과 알코올의 혼합 용매이고, 상기 알코올의 사용량은 조성물 전체에 대하여, 1 내지 50 중량%인 것인, 포토레지스트 패턴 코팅용 조성물.
  9. 제6항에 있어서, 상기 포토레지스트 패턴 코팅 고분자 100중량부에 대해 0.05 내지 20 중량부의 광산 발생제 또는 열산 발생제를 더욱 포함하는, 포토레지스트 패턴 코팅용 조성물.
  10. 제6항에 있어서, 알킬벤젠술폰산염계, 고급아민할로겐화물·제4암모늄염계, 알킬피리디늄염계, 아미노산계, 술폰이미드계, 및 설폰아미드 계면활성제로 이루어진 군으로부터 선택되는 계면활성제를 더욱 포함하며, 상기 계면활성제의 사용량은 전체 포토레지스트 패턴 코팅용 조성물 100 중량부에 대하여 0.01 내지 2 중량부인 것인, 포토레지스트 패턴 코팅용 조성물.
  11. 기판 상부에 제1 포토레지스트를 도포하여 포토레지스트막을 형성하고, 상기 포토레지스트막을 노광 및 현상하여 제1 포토레지스트 패턴을 형성하는 단계;
    하기 화학식 1로 표시되는 포토레지스트 패턴 코팅 고분자 및 상기 포토레지스트 패턴 코팅 고분자를 용해시키는 용매를 포함하는 포토레지스트 패턴 코팅용 조성물을 상기 제1 포토레지스트 패턴에 도포하고, 용매를 증발시켜, 코팅막을 형성하는 단계,
    [화학식 1]
    Figure PCTKR2010001226-appb-I000033
    상기 화학식 1에서, R*은 각각 독립적으로 수소 원자 또는 메틸기(-CH3)이고, R1은 탄소수 1 내지 18의 선형 또는 환형 탄화수소기이고, R2는 히드록시기(-OH), 카르복실기(-COOH), 또는 탄소수 3 내지 10, 질소수 1 내지 3 및 산소수 1 내지 3의 선형 또는 환형 탄화수소기이며, x 및 y는 상기 화학식 1의 고분자를 구성하는 전체 반복단위에 대한 각각의 반복단위의 몰%로서, x는 5 내지 100몰%이고, y는 0 내지 95 몰%이다;
    상기 코팅막과 상기 제1 포토레지스트 패턴을 반응시켜, 상기 제1 포토레지스트 패턴을 덮는 경계층을 형성하고, 미반응 코팅막을 현상하여 제거하는 단계;
    상기 경계층 사이의 스페이스에 제2 레지스트를 도포하여, 제2 레지스트 패턴을 형성하는 단계; 및
    상기 경계층을 현상하여 제거하고, 제1 포토레지스트 패턴 및 제2 레지스트 패턴을 잔류시키는 단계를 포함하는, 반도체 소자의 패턴 형성 방법.
  12. 제11항에 있어서, 상기 미반응 코팅막의 현상은 물에 의하여 수행되고, 상기 경계층의 현상은 0.1 내지 10중량% 농도의 알칼리 수용액에 의하여 수행되는 것인, 반도체 소자의 패턴 형성 방법.
  13. 제11항에 있어서, 상기 제2 레지스트 패턴을 노광하거나 가열하여, 제2 레지스트 패턴의 강도를 향상시키는 단계를 더욱 포함하는, 반도체 소자의 패턴 형성 방법.
PCT/KR2010/001226 2009-02-27 2010-02-26 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법 WO2010098617A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090016965A KR101618316B1 (ko) 2009-02-27 2009-02-27 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법
KR10-2009-0016965 2009-02-27

Publications (2)

Publication Number Publication Date
WO2010098617A2 true WO2010098617A2 (ko) 2010-09-02
WO2010098617A3 WO2010098617A3 (ko) 2010-12-02

Family

ID=42666078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001226 WO2010098617A2 (ko) 2009-02-27 2010-02-26 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법

Country Status (3)

Country Link
KR (1) KR101618316B1 (ko)
TW (1) TW201038595A (ko)
WO (1) WO2010098617A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180090473A (ko) * 2017-02-03 2018-08-13 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물 및 레지스트 패턴 형성 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420947B2 (en) * 2010-12-30 2013-04-16 Globalfoundries Singapore Pte. Ltd. Integrated circuit system with ultra-low k dielectric and method of manufacture thereof
JP6745167B2 (ja) * 2016-08-19 2020-08-26 東京応化工業株式会社 レジストパターン形成方法、及びパターン厚肉化用ポリマー組成物
JP6886844B2 (ja) * 2017-03-16 2021-06-16 東京応化工業株式会社 レジストパターン形成方法
WO2023028244A1 (en) * 2021-08-25 2023-03-02 Geminatio, Inc. Generation of multiline etch substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939242A (en) * 1994-06-22 1999-08-17 Ciba Specialty Chemicals Corporation Positive photoresist with an alkoxyalkyl ester group-containing (co)polymer and carboxyl-group containing (co)polymer
KR20070019450A (ko) * 2005-08-12 2007-02-15 주식회사 동진쎄미켐 감광성 고분자 및 이를 포함하는 포토레지스트 조성물
JP2008180813A (ja) * 2007-01-23 2008-08-07 Tokyo Ohka Kogyo Co Ltd パターン微細化用被覆形成剤及びそれを用いた微細パターンの形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221850A (ja) * 1997-02-12 1998-08-21 Nippon Paint Co Ltd 水現像性感光組成物及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939242A (en) * 1994-06-22 1999-08-17 Ciba Specialty Chemicals Corporation Positive photoresist with an alkoxyalkyl ester group-containing (co)polymer and carboxyl-group containing (co)polymer
KR20070019450A (ko) * 2005-08-12 2007-02-15 주식회사 동진쎄미켐 감광성 고분자 및 이를 포함하는 포토레지스트 조성물
JP2008180813A (ja) * 2007-01-23 2008-08-07 Tokyo Ohka Kogyo Co Ltd パターン微細化用被覆形成剤及びそれを用いた微細パターンの形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180090473A (ko) * 2017-02-03 2018-08-13 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물 및 레지스트 패턴 형성 방법
KR102656746B1 (ko) 2017-02-03 2024-04-11 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물 및 레지스트 패턴 형성 방법

Also Published As

Publication number Publication date
KR20100098013A (ko) 2010-09-06
TW201038595A (en) 2010-11-01
WO2010098617A3 (ko) 2010-12-02
KR101618316B1 (ko) 2016-05-09

Similar Documents

Publication Publication Date Title
WO2013042973A2 (ko) I-선 포토레지스트 조성물 및 이를 이용한 미세패턴 형성 방법
KR100292392B1 (ko) 레지스트재료및레지스트패턴의형성방법
KR100301354B1 (ko) 레지스트조성물및레지스트패턴형성방법
KR100225956B1 (ko) 아민을 도입한 에이알에프 감광막 수지
WO2012081863A2 (ko) 감광성 고분자, 이를 포함하는 포토레지스트 조성물 및 이를 이용한 레지스트 패턴 형성방법
JPH11240919A (ja) 新規なポリマ―及びフォトレジスト組成物
JPH1112326A (ja) 酸感応性重合体、レジスト組成物、レジストパターン形成方法、および半導体装置の製造方法
KR20120061757A (ko) 폴리머, 포토레지스트 조성물 및 포토리소그래피 패턴 형성 방법
KR20120026991A (ko) 포토레지스트 조성물 및 포토리소그래피 패턴 형성 방법
WO2010098617A2 (ko) 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법
CN111538210B (zh) 一种正性光刻胶组合物和形成光刻胶图案的方法
KR20120078672A (ko) 폴리머, 포토레지스트 조성물 및 포토리소그래피 패턴의 형성 방법
WO2010098618A2 (ko) 포토레지스트 패턴 코팅용 고분자 및 이를 이용한 반도체 소자의 패턴 형성 방법
WO2011014011A2 (ko) 가교성 경화 물질을 포함하는 포토레지스트 조성물
JP4144957B2 (ja) レジスト組成物及びレジストパターンの形成方法
WO2011014020A2 (ko) 자가정렬 이중 패턴 형성용 포토레지스트 조성물
WO2023227564A1 (en) Developable resist overlayer composition as well as method for manufacturing resist overlayer pattern and resist pattern
KR100539225B1 (ko) 히드록시기로 치환된 베이스 폴리머와 에폭시 링을포함하는 실리콘 함유 가교제로 이루어지는 네가티브형레지스트 조성물 및 이를 이용한 반도체 소자의 패턴 형성방법
WO2010140870A2 (ko) 반도체 소자의 미세 패턴 형성 방법
KR100669188B1 (ko) 하이드록시페닐 공중합체 및 이를 함유하는 포토레지스트
KR20000047910A (ko) 단파장 이미지화에 특히 적합한 포토레지스트 조성물
EP1455229A1 (en) Silicon-containing fluorinated polymers and photoresists comprising same
KR100669547B1 (ko) 포토레지스트용 오버코팅 조성물 및 이를 이용한포토레지스트 패턴 형성방법
US7081326B2 (en) Negative photoresist and method of using thereof
US20050164507A1 (en) Negative photoresist composition including non-crosslinking chemistry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746456

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746456

Country of ref document: EP

Kind code of ref document: A2