WO2010098491A2 - 羽根車を利用した発電装置 - Google Patents

羽根車を利用した発電装置 Download PDF

Info

Publication number
WO2010098491A2
WO2010098491A2 PCT/JP2010/053373 JP2010053373W WO2010098491A2 WO 2010098491 A2 WO2010098491 A2 WO 2010098491A2 JP 2010053373 W JP2010053373 W JP 2010053373W WO 2010098491 A2 WO2010098491 A2 WO 2010098491A2
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
heat
flow path
fluid
circulation path
Prior art date
Application number
PCT/JP2010/053373
Other languages
English (en)
French (fr)
Other versions
WO2010098491A3 (ja
Inventor
小田 貴弘
佐藤 大輔
Original Assignee
ティーエス ヒートロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエス ヒートロニクス株式会社 filed Critical ティーエス ヒートロニクス株式会社
Publication of WO2010098491A2 publication Critical patent/WO2010098491A2/ja
Publication of WO2010098491A3 publication Critical patent/WO2010098491A3/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0291Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes comprising internal rotor means, e.g. turbine driven by the working fluid

Definitions

  • the present invention relates to a power generation apparatus using an impeller that is rotationally driven by a two-phase heat transfer fluid circulating between a heat receiving portion and a heat radiating portion.
  • the heat transfer fluid in the prior art is a fluid of one liquid and two phases, which is the same as a working fluid in a general heat flow path. That is, the vapor (gas phase) is condensable and circulates in the liquid phase in the heat radiating section 1 and the heat radiating section 1 to the heat receiving section 2 of the loop type flow path, and the heat receiving section 2 and the heat receiving section. In the flow path from the part 2 to the heat radiating part 1, it circulates in the gas phase.
  • this conventional technique as shown in FIG.
  • the cylinder type container 3 and the composite container of the thin tube container group are connected to each other in a portion where the heat transfer fluid is in a liquid phase flow to form a closed loop tube type container 4. Accordingly, a water turbine 5 is arranged in the cylinder type container 3 to constitute a power generation unit. The water turbine 5 is strongly driven by the liquid phase flow 6 of the heat carrier fluid that is strongly sucked into the thin tube container group ejected into the cylinder type container 3.
  • the gas phase flow part is only in the heat receiving part and the downstream vicinity.
  • the cylinder-type container 3 can be connected to the upstream side of the heat dissipating part 1 close to the heat dissipating part 1.
  • 7 is a gaseous-phase flow
  • 8 is a circulation direction control means
  • 9 is a high temperature part
  • 10 is a low temperature part.
  • Japanese Patent Laid-Open No. 2002-34233 shown in FIG. This is a heat flow path in which a conductive liquid is enclosed, and forms a loop. When one end of the loop is heated and the other end is cooled, the liquid and the liquid vapor are discharged.
  • FIG. 8A when a conductive fluid flows in the direction of the arrow, an electromotive force is generated between the two electrodes in accordance with Fleming's right-hand rule.
  • FIG. 8B the heat flow paths are bent and arranged in n rows and m columns (n and m are arbitrary natural numbers).
  • the electromotive force E is expressed by the following equation.
  • E ⁇ ⁇ v ⁇ L ⁇ m ⁇ n.
  • check valves are provided in the heat flow paths 11 to 13 so as to flow only in one direction.
  • Reference numeral 16 denotes a housing for accommodating and sandwiching the heat flow paths 11 to 13
  • 17 denotes a high temperature portion
  • 18 denotes a low temperature portion.
  • FIG. 9 shows an open downstream type power generation method in the prior art, and rotation is given by the water flow flowing in the water channel 19 in the middle of the water channel 19 in which the water flow flows at a predetermined flow velocity.
  • a water turbine 20 is installed, and the rotation of the water turbine 20 is increased by using a speed increasing mechanism 21 and, if necessary, a speed increasing rotation transmission means (not shown), and the generator 22 is driven to generate power.
  • the water channel 19 include water supply / drainage channels in facilities of various factories, public facilities, large stores, water supply / drainage channels of hotels, rivers, agricultural water channels, and the like.
  • the power generator described above in the prior art has the following problems because it has the above-described configuration and operation. That is, in the first example of the prior art, a loop type flow path as a plurality of pressure thin tubes and a circulation direction regulating means, that is, a check valve, are required for each of the plurality of loop type flow paths. There is a problem that the structure of the apparatus is complicated and maintenance is difficult. In the second example of the prior art, the two-phase liquid to be used is limited to a conductive or magnetic liquid and is not versatile. Therefore, there is a problem that the structure of the flow path in the power generation unit becomes complicated.
  • the power generation device since the power is generated by the water flowing through the inclined water channel, the power generation device is large-scale, and is not suitable for the power generation means in the mobile body such as in-vehicle use. There was a problem that there was.
  • the power generation apparatus using the impeller according to the present invention is invented to solve the above-mentioned problems, and is constituted by the following configuration and means. That is, according to the first aspect of the present invention, in the configuration including the endless circulation path filled with the heat carrier fluid that is fed by the propulsive force due to the temperature difference between the heat receiving portion and the heat radiating portion, the endless circulation is provided.
  • the rotor includes a rotor arranged in a direction perpendicular to the flow direction of the heat carrier fluid and having a generator rotor fixed to the rotor. The rotation axis of the rotor can be arranged perpendicular to the flow direction of the heat carrier fluid.
  • the endless circulation path is a single substantially O-shaped circulation path.
  • the endless circulation path is plural.
  • the endless circulation path is an endless circular circulation path.
  • a throttle valve is interposed in the endless circulation path.
  • a circular circulation path comprising a rotor arranged in a direction perpendicular to the flow direction of the heat carrier fluid and having a generator rotor fixed to the rotor.
  • a power generator using an impeller With such a configuration, the impeller is rotated by the heat carrier fluid and rotationally drives the generator rotor.
  • this generator rotor is structured to rotate with a relatively low torque, an output voltage is generated from the generator stator. Since the rotating shaft of the impeller and the generator rotor are arranged at a position perpendicular to the flow direction of the heat carrier fluid, the heat carrier fluid has a high pressure, a low flow rate, and the generator stator There is an effect that stable power generation can be performed.
  • the endless circulation path is a single substantially O-shaped circulation path.
  • a power generator using an impeller according to the first aspect wherein the endless circulation path is an endless circular circulation path. Since it was set as such a structure, in addition to the effect of invention of Claim 1, since a heat receiving part and a heat radiating part can be arrange
  • FIG. 1 is a view showing a power generation device E as an embodiment of a power generation device using an impeller according to the present invention, in which an impeller is installed on one side of a flow path constituting an endless circulation path. And (a) is a horizontal sectional view thereof, and (b) is a sectional view of an impeller constituting a generator provided in the power generation apparatus E as seen from the direction of the arrows AA.
  • FIG. 2 is a drawing showing an embodiment of a power generator using an impeller according to the present invention
  • FIG. 2A is a drawing showing a first embodiment of the power generator E1 using an impeller according to the present invention.
  • FIG. 3 is a drawing showing a third embodiment of the power generation device using the impeller according to the present invention, and in the power generation device E3 constituting the endless circulation path, two impellers are provided on the other side of the flow path.
  • FIG. 4 is a drawing showing a power generation device E4 as a fourth embodiment of a power generation device using an impeller according to the present invention, in which an impeller is installed on one side of a flow path constituting an endless circulation path
  • FIG. 5 is a drawing showing a power generation device E5 as a fifth embodiment of a power generation device using an impeller according to the present invention, in which an impeller and a throttle valve are installed on one side of a flow path constituting an endless circulation path.
  • FIG. 6 is a view showing a power generation device E6 as a sixth embodiment of the power generation device using the impeller according to the present invention, in which a heat receiving portion and a heat radiating portion that also serve as a casing that accommodates the substantially disk-shaped impeller are arranged.
  • It is a schematic diagram which shows an example, (a) is a vertical direction sectional view of the center part of (b), (b) is a horizontal direction sectional view.
  • FIG. 7 is a drawing showing a first example of a power generation device in the prior art.
  • FIG. 8 is a drawing showing a second example of a power generation device in the prior art, in which (a) is a front view thereof and (b) is a right side view thereof.
  • FIG. 10 is a drawing showing a power generation device E as an embodiment of a power generation device using a magnetic impeller according to the present invention, in which a magnetic impeller is installed on one side of a flow path constituting an endless circulation path. It is an example, (a) is the horizontal sectional view, (b) is the vertical sectional schematic diagram which looked at the magnetic impeller which comprises the generator with which the electric power generating apparatus E was equipped from the arrow AA line direction.
  • FIG. 1 is a view showing a power generation device E as an embodiment of a power generation device using an impeller according to the present invention, in which an impeller is installed on one side of a flow path constituting an endless circulation path.
  • FIG. 6A is a horizontal sectional view
  • FIG. 5B is a vertical sectional view of the impeller constituting the generator provided in the power generation apparatus E as seen from the direction of the arrows AA shown in FIG.
  • Reference numeral 23 denotes an impeller, and the impeller 23 is an impeller that can be classified as an impulse turbine used for normal hydropower generation.
  • a Pelton turbine can be used.
  • the impeller 23 is positioned at the rotation center of the impeller 23, rotates and supports the impeller 23, a cylindrical runner 23b fixed to the rotary shaft 23a, and an outer peripheral cylinder of the cylindrical runner 23b. On the surface, it is composed of a plurality of blade-like buckets 23c arranged with the same opening angle radially from the center of the rotating shaft 23a.
  • the impeller 23 is structured to rotate with a low torque, and a check valve can be installed at an appropriate position so as not to reverse.
  • the bucket 23c is a flat blade shown by a straight line in the normal direction from the center of rotation.
  • the bucket 23c is not limited to this and may be a bucket-like container.
  • Reference numeral 23d denotes a generator rotor fixed to the rotating shaft 23a.
  • the impeller 23 is rotated by the flow of the heat transfer fluid 26 and has a power generation function.
  • Reference numeral 24 denotes a casing.
  • the casing 24 includes a bearing (not shown) that supports the rotating shaft 23a of the impeller 23, and is a fixed, substantially cylindrical container that accommodates the entire impeller 23. It is. Further, as shown in FIG. 1, a slight gap is set between the bucket 23 c of the impeller 23 and the inner surface of the casing 24, and the impeller 23 can smoothly rotate in the casing 24. .
  • the casing 24 is provided with a heat carrier fluid introduction part 24a and a heat carrier fluid outlet part 24b on a part of its outer periphery, and the heat carrier fluid inlet part 24a and the heat carrier fluid outlet part 24b serve as an endless circulation path to be described later. It is connected to the flow path with a sealing structure.
  • Reference numeral 25 denotes a flow path having, for example, a substantially U-shaped circulation path, and the inside of the flow path 25 is filled with a heat transfer fluid 26 described later.
  • the cross-sectional shape of the channel 25 is preferably substantially circular or elliptical, but may be rectangular, triangular, semicircular or serpentine. As shown in FIG. 1, the overall shape is formed in a vertically long rectangle. As shown in FIG.
  • the flow path 25 is integrally formed and connected to the heat transfer fluid introduction part 24a and the heat transfer fluid lead-out part 24b of the casing 24.
  • Reference numeral 26 denotes a heat carrier fluid.
  • the heat carrier fluid 26 is, for example, water, and is a two-phase fluid that exhibits a liquid phase or a gas phase depending on the amount of applied heat energy.
  • the heat carrier fluid 26 is required to have a critical temperature not higher than the heat source temperature, not to be solidified within the temperature range of the heat radiating portion or the operating temperature range. In FIG.
  • the heat carrier fluid 26 is a mixed fluid of a gas phase and a liquid phase in the flow path 25, 26 a indicates a liquid phase part of the heat carrier fluid 26, and 26 b indicates a gas phase part of the heat carrier fluid 26. It is.
  • the heat transfer fluid 26 as the mixed fluid of the gas phase part 26b2 and the liquid phase part 26a shown in a substantially elliptical shape is the heat transfer fluid as the mixed fluid of the gas phase part 26b1 and the liquid phase part 26a shown in a circle.
  • the heat transfer fluid 26 as a mixed fluid of the gas phase portion 26b2 and the liquid phase portion 26a shown in a substantially elliptical shape is a gas phase portion shown in a circle.
  • the heat transfer fluid 26 has more latent heat, that is, transition heat.
  • transition heat For example, when the thin plate heat device as the heat transport device is used as the flow channel 25, an optimum effect is obtained. It is designed to transport large amounts of heat smoothly.
  • the thin plate heat device incorporates a loop-type meandering small diameter tunnel heat pipe, and the working fluid sealed inside the loop-type meandering small-diameter tunnel heat pipe is sent through the reflux line, that is, the flow path 25. To do.
  • the loop-type meandering thin tunnel heat pipe of the thin plate heat device needs to have sufficient strength against the internal pressure of the hydraulic fluid.
  • a thin plate heat device that satisfies such various conditions includes the loop-type meandering thin tunnel heat pipe described above in the thin plate.
  • a group of such unit pairs of loop-type small-diameter tunnel heat pipes are connected and communicated with each other, and are configured and integrated in a planar shape.
  • the group of loop type small diameter tunnel heat pipes integrated in this way is hermetically sealed and vacuum degassed, and then a predetermined amount of a predetermined two-phase condensable hydraulic fluid is sealed in the heat pipe.
  • the thin plate heat device is composed of a welded laminate of unit thin plates and flat thin plates made of a metal having good thermal conductivity. Prior to lamination, a series of long meandering grooves are formed in advance on the welding surface of the unit thin plate.
  • the long meandering narrow grooves may be formed by any means such as cutting, electric discharge machining, or press molding.
  • the long meandering narrow groove is configured as a closed meandering narrow tunnel by stacking, and a predetermined amount of a predetermined working fluid is sealed in the sealed meandering narrow tunnel, thereby forming a meandering narrow tunnel heat pipe.
  • Reference numeral 27 denotes an evaporating part, that is, a heat receiving part, and the heat receiving part 27 has a structure surrounding the flow path 25 in order to efficiently transmit heat energy to the heat transfer fluid 26.
  • the heat receiving part 27 is a part that changes the phase of the heat carrier fluid 26 from the liquid phase 26a to the gas phase 26b.
  • Reference numeral 28 denotes a condensing part, that is, a heat radiating part.
  • the heat dissipating part 28 is a part that rotates the impeller 23 to lower the temperature of the heat carrier fluid 26 that imparts kinetic energy to the impeller 23 and changes the phase of the heat carrier fluid 26 from the gas phase 26b to the liquid phase 26a.
  • the flow path 25 is surrounded.
  • the heat receiving portion 27 When the heat receiving portion 27 is heated and the heat radiating portion 28 is cooled, an interaction occurs due to a temperature difference between the heat receiving portion 27 and the heat radiating portion 28, and a propulsive force is given to the heat carrying fluid 26.
  • the flow path 25 As shown in FIG. 1, the flow path 25 is circulated and sent from below to above. And by the function of the heat receiving part 27 and the heat radiating part 28, the heat carrier fluid 26 filled in the flow path 25 is sent from the heat receiving part 27 in the directions of arrows B1 to B4. Therefore, the impeller 23 is rotated by the heat carrier fluid 26.
  • the rotating shaft 23a rotates, the rotating shaft 23a protrudes from the fluid seal to the atmosphere side through a shaft seal (not shown), and is connected coaxially with the generator rotor 23d to be connected to the generator rotor 23d. Is driven to rotate.
  • the generator rotor 23d rotates with a relatively low torque.
  • an output voltage is generated from the generator stator (not shown).
  • the rotating shaft 23a of the impeller 23 and the generator rotor 23d are arranged at positions perpendicular to the flow direction of the heat transfer fluid 26. Therefore, the heat carrier fluid 26 has a high pressure, a low flow rate, and stable power generation in the generator stator.
  • the heat receiving portion 27 is disposed below and the heat radiating portion 28 is disposed above.
  • the heat receiving portion 27 may be disposed above and the heat radiating portion 28 may be disposed below.
  • the direction of rotation of the impeller 23 can be reversed. Further, at the time of starting the generator, in order to rotate the rotation direction of the impeller 23 in an arbitrary direction, electric power is applied from the outside to the generator rotor 23d to temporarily drive it as an electric motor, and heat transfer fluid When the circulation flow direction of 26 is stabilized, the operation may be shifted to the power generation operation.
  • FIG. 2 (a) is a diagram showing a first embodiment of a power generation apparatus using an impeller according to the present invention, in which one endless shape in the power generation apparatus E1 constituting two endless circulation paths. It is a schematic diagram which shows the example which installed the impeller between the other flow path of the circulation path, and the one flow path of the other endless circulation path.
  • Reference numeral 23A denotes an impeller, whose structure and operation are substantially the same as those of the impeller 23 shown in FIG.
  • the impeller 23A is an impeller that can be classified as an impulse turbine used for normal hydropower generation. For example, a Pelton turbine can be used.
  • the impeller 23A is located at the center of rotation of the impeller 23A, and rotates and supports the impeller 23A, a cylindrical runner 23b fixed to the rotary shaft 23a, and the cylindrical runner
  • the outer peripheral cylindrical surface 23b is constituted by a plurality of blade-like buckets 23c arranged with an opening angle radially equal from the center of the rotating shaft 23a.
  • 25A and 25B are flow paths, and the inside of the flow paths 25A and 25B is filled with the heat transfer fluid 26 described above.
  • the flow paths 25A and 25B preferably have a substantially circular or oval cross-sectional shape, but may have a rectangular shape, a triangular shape, a semicircular shape, or a meandering shape. As shown in FIG.
  • the overall shape is formed in a vertically long rectangle.
  • the flow paths 25A and 25B are integrally formed and connected to the heat carrier fluid introduction part and the heat carrier fluid outlet part of the casing 24.
  • Reference numeral 27A denotes an evaporating section, that is, a heat receiving section, and the heat receiving section 27A has a structure surrounding the flow paths 25A and 25B in order to efficiently transfer heat energy to the heat transfer fluid 26.
  • the heat receiving portion 27A is a portion that changes the phase of the heat transfer fluid 26 from the liquid phase to the gas phase.
  • 28A is a condensing part, that is, a heat radiating part.
  • the heat radiating portion 28A is a portion that rotates the impeller 23A to lower the temperature of the heat carrier fluid 26 that imparts kinetic energy to the impeller 23A, and changes the phase of the heat carrier fluid 26 from the gas phase to the liquid phase.
  • the flow channel 25A, 25B is surrounded.
  • the impeller 23A is driven by the temperature difference between the heat receiving portion 27A and the heat radiating portion 28A and propelled to the heat transfer fluid 26. A force is applied, and the heat carrier fluid 26 circulates in the flow paths 25A and 25B from the top to the bottom as shown in FIG.
  • Example 1 in the power generation apparatus using the impeller according to the present invention are substantially the same as those in the above-described embodiment, and the description thereof is omitted.
  • FIG. 2 (b) is a diagram showing a second embodiment of the power generator using the impeller according to the present invention, and in the power generator E2 constituting the endless circulation path, the blades are provided on both sides of the flow path.
  • Reference numeral 23B denotes an impeller, whose structure and operation are substantially the same as those of the impeller 23 shown in FIG.
  • Reference numeral 25C denotes a flow path, and the inside of the flow path 25C is filled with the heat transfer fluid 26 described above.
  • the impeller 23B When the heat receiving portion 27B is heated and the heat radiating portion 28B is cooled, the impeller 23B is driven by the temperature difference between the heat receiving portion 27B and the heat radiating portion 28B and propelled to the heat transfer fluid 26. A force is applied, and the heat carrier fluid 26 circulates and flows from above to below in the flow path 25C as shown in FIG. 2 (b). Then, due to the functions of the heat receiving portion 27B and the heat radiating portion 28B, the heat transfer fluid 26 filled in the flow path 25C is directed from the heat receiving portion 27B on the one hand in the direction of arrows B11, B12, B13, B14, and on the other hand, on the arrow B15, It is sent in the B13, B12, and B16 directions, respectively. Therefore, the impeller 23B is rotated by the heat carrier fluid 26.
  • the other configurations and operations of the power generation apparatus using the impeller according to the present invention are substantially the same as those of the above-described embodiment, and the description thereof is o
  • FIG. 3 is a drawing showing a third embodiment of the power generation device using the impeller according to the present invention, and in the power generation device E3 constituting the endless circulation path, two impellers are provided on the other side of the flow path.
  • Reference numeral 23C denotes a first impeller and 23D denotes a second impeller. Its structure and operation are substantially the same as those of the impeller 23 shown in FIG.
  • Reference numeral 25D denotes a flow path, and the inside of the flow path 25D is filled with the heat transfer fluid 26 described above.
  • the driving operation of the first impeller 23C and the second impeller 23D is as follows.
  • the heat receiving portion 27C is heated and the heat radiating portion 28C is cooled, an interaction occurs due to a temperature difference between the heat receiving portion 27C and the heat radiating portion 28C on the other side of the flow path 25D, and the heat transfer fluid 26 is generated.
  • Propulsive force is applied, and the heat carrier fluid 26 circulates and flows from above to below as shown in FIG.
  • the heat carrier fluid 26 filled in the flow path 25D is flowed from the heat receiving part 27C in the directions of arrows B17 to B22.
  • first impeller 23C and the second impeller 23D are rotated by the heat transfer fluid 26.
  • the other configurations and operations of the power generator using the impeller according to the present invention are substantially the same as those of the above-described embodiment, and the description thereof is omitted.
  • FIG. 4 is a drawing showing a power generation device E4 as a fourth embodiment of a power generation device using an impeller according to the present invention, in which an impeller is installed on one side of a flow path constituting an endless circulation path, It is a schematic diagram which shows the example which installed the meandering line-shaped flow path in the other side of the flow path which comprises a circular circulation path.
  • Reference numeral 23E denotes an impeller, whose structure and operation are substantially the same as those of the impeller 23 shown in FIG.
  • Reference numeral 25E denotes a flow path, and the inside of the flow path 25E is filled with the heat transfer fluid 26 described above.
  • the driving operation of the impeller 23E is as follows.
  • the heat receiving portion 27D is heated and the heat radiating portion 28D is cooled, an interaction occurs due to a temperature difference between the heat receiving portion 27D and the heat radiating portion 28D on one side, that is, the left side of the flow path 25E.
  • the heat transport fluid 26 circulates and flows from below to above as a propulsive force is applied to 26.
  • the heat carrier fluid 26 filled in the flow path 25E is flowed from the heat receiving part 27D in the directions of arrows B23 to B26. Therefore, the impeller 23E is rotated by the heat carrier fluid 26.
  • the heat carrier fluid 26 to which the propulsive force is given by the temperature difference between the heat receiving portion 27D and the heat radiating portion 28D easily flows in the direction of arrows B23 to B26 on the left side where the resistance of the flow path is small, and the impeller 23E. Rotate efficiently.
  • the other configurations and operations of the power generation apparatus using the impeller according to the present invention are substantially the same as those of the above-described embodiment, and the description thereof is omitted.
  • FIG. 5 is a drawing showing a power generation device E5 as a fifth embodiment of a power generation device using an impeller according to the present invention, in which an impeller and a throttle valve are installed on one side of a flow path constituting an endless circulation path.
  • FIG. Reference numeral 23F denotes an impeller, and the structure and operation thereof are substantially the same as those of the impeller 23 shown in FIG.
  • Reference numeral 25F denotes a flow path, and the inside of the flow path 25F is filled with the heat transfer fluid 26 described above. 29 is a throttle valve.
  • the heat transfer fluid 26 in the flow path 25F that has changed in phase from the liquid phase to the gas phase in the heat receiving part 27E flows in the flow path 25F as shown in FIG. It rises from the flow path 25F on one side and flows through the heat dissipating section 28E and the throttle valve 29 to efficiently rotate the impeller 23F. That is, the heat carrier fluid 26 flows in the directions of arrows B30 to B34.
  • the throttle valve 29 increases the flow velocity of the heat transfer fluid 26 flowing through the basket 23c of the impeller 23F, and rotates the impeller 23F at high speed. Therefore, it manages the high power generation function.
  • the other configurations, operations, and the like of Example 5 in the power generation apparatus using the impeller according to the present invention are substantially the same as those in the above-described embodiment, and the description thereof is omitted.
  • FIG. 6 is a view showing a power generation device E6 as a sixth embodiment of the power generation device using the impeller according to the present invention, in which a heat receiving portion and a heat radiating portion that also serve as a casing that accommodates the substantially disk-shaped impeller are arranged.
  • It is a schematic diagram which shows an example, (a) is a vertical direction sectional view of the center part of (b), (b) is a horizontal direction sectional view.
  • 23G is an impeller, the whole shape is formed in a substantially disk shape, for example, and the outer peripheral surface 23G1 has a plurality of baskets 23e.
  • An endless annular circulation path 25G is formed between the outer peripheral surface 23G1, the heat receiving portion 27F, and the heat radiating portion 28F.
  • This configuration is a gap formed by the inner peripheral surface of the casing as the heat receiving portion 27F and the heat radiating portion 28F and the outer peripheral surface 23G1 of the impeller 23G, and also functions as a flow path.
  • the heat receiving part 27F and the heat radiating part 28F are fitted with the magnetic impeller 23G.
  • a rotating shaft 23G2 in which N poles and S poles are alternately arranged in the rotation direction is formed at the center of the impeller 23G, and the outer periphery of the rotating shaft 23G2 is coaxial with the rotating shaft 23G2.
  • the other configurations, operations, and the like of Example 6 in the power generation apparatus using the magnetic impeller according to the present invention are substantially the same as those in the above-described embodiment, and the description thereof is omitted.
  • an inner permanent magnet having an N pole and an S pole is formed in a central portion of the impeller 23G in FIG.
  • a rotating shaft (not shown) in which external permanent magnets having N poles and S poles are arranged also on the periphery 23H of the shaft 23G2 to form a magnet coupling, and the external permanent magnet 23H is coaxial with the rotating shaft 23G2.
  • Has a generator rotor (not shown) that is driven to rotate by a rotating shaft.
  • FIG. 10 is a drawing showing a power generation device E as an embodiment of a power generation device using a magnetic impeller according to the present invention, in which a magnetic impeller is installed on one side of a flow path constituting an endless circulation path.
  • a is a horizontal sectional view
  • (b) is a vertical sectional view of the magnetic impeller constituting the generator provided in the power generation device E as seen from the direction of the arrows AA shown in (a). is there.
  • Reference numeral 23 denotes a magnetic impeller, and the magnetic impeller 23 is an impeller that can be classified as an impulse turbine used for normal hydropower generation.
  • the magnetic impeller 23 is provided with a magnetic gear 23f via a tube wall of the flow path 25 below the magnetic impeller 23 disposed in a flow path 25 described later.
  • the generator includes the magnetic gear 23f, a rotating shaft 23a that is positioned at the rotation center of the magnetic impeller 23, and rotates and supports the magnetic gear 23f, and a generator rotor 23d.
  • the magnetic impeller 23 has a central portion 23b. The central portion 23b is alternately magnetized with N and S poles, and the magnetic gear 23f is rotationally driven by this magnetic force.
  • a plurality of blade-like buckets 23c are arranged on the outer peripheral cylindrical surface of the central portion 23b of the magnetic impeller 23 from the central portion 23b of the magnetic impeller 23 with a radially equal opening angle.
  • the magnetic impeller 23 is structured to rotate with a low torque, and a check valve can be installed at an appropriate position so as not to reverse.
  • the bucket 23c is a flat blade shown by a straight line in the normal direction from the central portion 23b.
  • the bucket 23c is not limited to this and may be a bucket-like container.
  • Reference numeral 23d denotes a generator rotor fixed to the rotary shaft 23a, and the magnetic impeller 23 is rotated by the flow of the heat transfer fluid 26 to have a power generation function.
  • Reference numeral 24 denotes a casing.
  • the casing 24 includes a bearing that supports the rotating shaft 23g of the magnetic impeller 23, and is a fixed, substantially cylindrical container that accommodates the entire magnetic impeller 23. As shown in FIG. 10, a slight gap is set between the bucket 23 c of the magnetic impeller 23 and the inner surface of the casing 24, and the magnetic impeller 23 rotates smoothly in the casing 24. Can do.
  • the casing 24 is provided with a heat carrier fluid introduction part 24a and a heat carrier fluid outlet part 24b on a part of its outer periphery, and the heat carrier fluid inlet part 24a and the heat carrier fluid outlet part 24b serve as an endless circulation path to be described later. It is connected to the flow path with a sealing structure.
  • Reference numeral 25 denotes a flow path having, for example, a substantially U-shaped circulation path, and the inside of the flow path 25 is filled with a heat transfer fluid 26 described later.
  • the cross-sectional shape of the channel 25 is preferably substantially circular or elliptical, but may be rectangular, triangular, semicircular or serpentine. As shown in FIG. 10, the overall shape is a vertically long rectangle.
  • the flow path 25 is integrally formed and connected to the heat transfer fluid introduction part 24a and the heat transfer fluid lead-out part 24b of the casing 24.
  • Reference numeral 26 denotes a heat carrier fluid.
  • the heat carrier fluid 26 is, for example, water, and is a two-phase fluid that exhibits a liquid phase or a gas phase depending on the amount of applied heat energy.
  • the heat carrier fluid 26 is required to have a critical temperature not higher than the heat source temperature, not to be solidified within the temperature range of the heat radiating portion or the operating temperature range.
  • the heat carrier fluid 26 is a mixed fluid of a gas phase and a liquid phase in the flow path 25, 26 a indicates a liquid phase part of the heat carrier fluid 26, and 26 b indicates a gas phase part of the heat carrier fluid 26. It is.
  • Reference numerals 26b1 and 26b2 represented by a circular shape and a substantially elliptical shape schematically show the gas phase portion 26b of the heat transfer fluid 26.
  • the heat transfer fluid 26 as the mixed fluid of the gas phase part 26b2 and the liquid phase part 26a shown in a substantially elliptical shape is the heat transfer fluid as the mixed fluid of the gas phase part 26b1 and the liquid phase part 26a shown in a circle. Since the proportion of the gas phase portion is larger than that of the fluid 26, the heat transfer fluid 26 as a mixed fluid of the gas phase portion 26b2 and the liquid phase portion 26a shown in a substantially elliptical shape is a gas phase portion shown in a circle. Compared to the heat transfer fluid 26 as a mixed fluid of the liquid phase portion 26a and the liquid phase portion 26b1, the heat transfer fluid 26 has more latent heat, that is, transition heat.
  • the thin plate heat device as the heat transport device 25
  • the thin plate heat device incorporates a loop-type meandering small diameter tunnel heat pipe, and the working fluid sealed inside the loop-type meandering small-diameter tunnel heat pipe is sent through the reflux line, that is, the flow path 25.
  • the loop-type meandering thin tunnel heat pipe of the thin plate heat device needs to have sufficient strength against the internal pressure of the hydraulic fluid.
  • a thin plate heat device that satisfies such various conditions includes the loop-type meandering thin tunnel heat pipe described above in the thin plate.
  • a group of such unit pairs of loop-type small-diameter tunnel heat pipes are connected and communicated with each other, and are configured and integrated in a planar shape.
  • the group of loop type small diameter tunnel heat pipes integrated in this way is hermetically sealed and vacuum degassed, and then a predetermined amount of a predetermined two-phase condensable hydraulic fluid is sealed in the heat pipe.
  • the thin plate heat device is composed of a welded laminate of unit thin plates and flat thin plates made of a metal having good thermal conductivity. Prior to lamination, a series of long meandering grooves are formed in advance on the welding surface of the unit thin plate.
  • the long meandering narrow grooves may be formed by any means such as cutting, electric discharge machining, or press molding.
  • the long meandering narrow groove is configured as a closed meandering narrow tunnel by stacking, and a predetermined amount of a predetermined working fluid is sealed in the sealed meandering narrow tunnel, thereby forming a meandering narrow tunnel heat pipe.
  • Reference numeral 27 denotes an evaporating part, that is, a heat receiving part, and the heat receiving part 27 has a structure surrounding the flow path 25 in order to efficiently transmit heat energy to the heat transfer fluid 26.
  • the heat receiving part 27 is a part that changes the phase of the heat carrier fluid 26 from the liquid phase 26a to the gas phase 26b.
  • Reference numeral 28 denotes a condensing part, that is, a heat radiating part.
  • the heat dissipating unit 28 is a portion that rotates the magnetic impeller 23 to lower the temperature of the heat carrier fluid 26 that imparts kinetic energy to the magnetic impeller 23 and changes the phase of the heat carrier fluid 26 from the gas phase 26b to the liquid phase 26a. And has a structure surrounding the flow path 25 in order to efficiently remove the heat energy from the heat transfer fluid 26. In addition, it is good also as a structure which changes the shape of the upper side part or lower side part of the said endless circulation path, and increases flow resistance.
  • the heat receiving portion 27 When the heat receiving portion 27 is heated and the heat radiating portion 28 is cooled, an interaction occurs due to a temperature difference between the heat receiving portion 27 and the heat radiating portion 28, and a propulsive force is given to the heat carrying fluid 26.
  • the flow path 25 As shown in FIG. 1, the flow path 25 is circulated and sent from below to above. And by the function of the heat receiving part 27 and the heat radiating part 28, the heat carrier fluid 26 filled in the flow path 25 is sent from the heat receiving part 27 in the directions of arrows B1 to B4. Therefore, the magnetic impeller 23 is rotated by the heat carrier fluid 26. By rotating the magnetic impeller 23, the magnetic gear 23f is rotated by this magnetic force, and the rotating shaft 23a is also rotated. Then, the generator rotor 23d is rotationally driven.
  • the generator rotor 23d rotates with a relatively low torque. As a result, an output voltage is generated from the generator stator (not shown).
  • the rotary shaft 23g of the magnetic impeller 23, the rotary shaft 23a of the magnetic gear 23f, and the generator rotor 23d are arranged at positions perpendicular to the flow direction of the heat transfer fluid 26. Therefore, the heat carrier fluid 26 has a high pressure, a low flow rate, and stable power generation in the generator stator.
  • the heat receiving portion 27 is disposed below and the heat radiating portion 28 is disposed above. However, the heat receiving portion 27 may be disposed above and the heat radiating portion 28 may be disposed below.
  • the direction of rotation of the magnetic impeller 23 can be reversed.
  • the magnetic impeller 23 may be a rotation of the generator, and the magnetic gear 23f may be a fixed generator having a plurality of coils arranged on a disk. .
  • the magnet portion of the magnetic impeller 23 can be projected in the direction of the rotation axis, and the stator of the generator can be arranged on the circumference of the magnet.
  • the rotation of the impeller is transmitted to the rotation of the generator in a non-contact manner using a magnet so that the rotation shaft of the impeller is sealed from the inside of the hydraulic fluid via the shaft seal.
  • the seal between the atmosphere side of the rotating shaft portion and the inside of the hydraulic fluid seal can be improved rather than projecting to the atmosphere side and connecting the rotating shaft of the generator to the rotating shaft of the impeller. Furthermore, it is possible to improve efficiency deterioration due to frictional resistance at the seal portion and reduction in seal life.
  • the heating unit is an engine and the cooling unit is a radiator.
  • the heating part is an engine
  • the cooling part is engine cooling water or seawater.
  • the heating part is a turbine
  • the cooling part is a pipe of hot water or tap water before heating.
  • the heating unit is a CPU
  • the cooling unit is a fan used for a case or a power source.
  • the heat generating part is a furnace and the cooling part is a factory cooling water or water pipe.
  • the heat generating part is an inverter
  • the cooling part is a traveling radiator or fan.
  • the heating unit is the one with the higher indoor or outdoor temperature
  • the cooling unit is the one with the lower indoor or outdoor temperature.
  • the heating unit is the back of the panel
  • the cooling unit is the ground or a water pipe.
  • the heating unit is a different fermented product and the cooling unit is tap water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 受熱部と放熱部の間を循環する2相の熱搬送流体によって回転駆動される羽根車を利用した発電装置の技術を提供する。 羽根車23はその回転中心に位置して該羽根車23を回転・支承する回転軸23aと、該回転軸23aに固着した円筒型ランナー23bと、該円筒型ランナー23bの外周円筒面に於いて、前記回転軸23aの中心から放射状に等しい開角をもって配設した複数の羽根状のバケット23cで構成する。該羽根車23は低トルクで回転する構造とし、逆転しないように適宜位置に逆止弁を設置する。発電機回転子23dは前記回転軸23aに固定してあり、熱搬送流体26の流れによって羽根車23が回転し、発電機能を有する。

Description

羽根車を利用した発電装置
 本発明は受熱部と放熱部の間を循環する2相の熱搬送流体によって回転駆動される羽根車を利用した発電装置に関する。
 従来、この種の羽根車を利用した発電装置の従来の技術の一例としては図7に示す特開平1−130007号公開特許公報に開示されたものがある。これについて説明すれば、従来の技術に於ける熱搬送流体は1液2相の流体で一般のヒート流路の作動液と同じである。即ちその蒸気(気相)は凝縮性でありループ型流路の放熱部1及び放熱部1から受熱部2に至る間の流路中に於いては液相で循環し、受熱部2及び受熱部2から放熱部1に至る間の流路中に於いては気相で循環する。この従来の技術では図9の如く熱媒流体が液相流である部分においてシリンダ型コンテナ3と細管コンテナ群の複合コンテナとが連結されて閉ループ管型コンテナ4を形成している。
 従ってシリンダ型コンテナ3の中には水車5が配置されて動力発生部が構成されている。水車5はシリンダ型コンテナ3内に噴出した細管コンテナ群に強力に吸入される熱搬送流体の液相流6により強力に駆動される。従来の技術に於いて閉ループ管型コンテナ4内に封入される液量がコンテナ内容積の80~90%如く多量である場合は、気相流部分は受熱部内とその下流の近傍部だけとなるから、シリンダ型コンテナ3は放熱部1に近い放熱部1の上流側に連結して実施することもできる。尚、7は気相流、8は循環方向規制手段、9は高温部、10は低温部である。
 従来の技術の第2の例としては、図8に示す特開2002−34233号公開特許公報に開示されたものがある。これについて説明すれば、導電性を有する液体が内部に封入されたヒート流路であって、ループを形成し、該ループの一端が加熱され他端が冷却されたときに液体及び液体の蒸気を循環させるためのヒート流路11~13と、ヒート流路のループの少なくとも一部において磁界を発生させる手段14、15と、液体及び液体の蒸気が磁界を横切って運動する際に発生する電気エネルギーを取り出す手段(図示せず)とを具備する。
 図8(a)において、導電性を有する流体が矢印の向きに流れると、フレミングの右手の法則に従って、2つの電極間に起電力が発生する。図8(b)に示すように、ヒート流路は折り曲げられ、n行m列で配列されている(nとmは任意の自然数)。ここで、永久磁石が作る磁界の磁束密度をφ、流体の速度をv、永久磁石の長さをLとすると、起電力Eは、次式で表される。E=φ・v・L・m・nである。一般的には、流体の運動方向が交互に変化するので、交流起電力が発生することになる。
 これに対して、直流起電力を得たい場合には、ヒート流路11~13の中に逆止弁を設けて一方向のみに流過させる。
尚、16はヒート流路11ないし13を収容・挟持するハウジング、17は高温部、18は低温部である。
 従来の技術の第3の例としては、図9に示す特開2006−132344号公開特許公報に開示されたものがある。これについて説明すれば、図9は従来の技術に於ける開放下流型の発電方法を示し、所定の流速で水流が流れる水路19の途中に、この水路19内を流れる水流によって回転が付与される水車20を設置し、この水車20の回転を増速機構21及び必要に応じて更に増速回転伝達手段(図示せず)を用いて増速し、発電機22を駆動することにより発電するようにしたものである。上記水路19としては、各種工場の施設における給排水路のほか、公共施設、大型店舗、ホテル等の給排水路、河川や農業用水路等を挙げることができる。
特開平1−130007号公開特許公報 特開2002−34233号公開特許公報 特開2006−132344号公開特許公報
 従来の技術に於ける前述した発電装置は上述した構成、作用であるので次の問題点が存在した。すなわち、従来の技術の第1の例に於いては複数の圧力細管としてのループ型流路と該複数のループ型流路のそれぞれ対して循環方向規制手段すなわち逆止弁が必要であり、発電装置の構造が複雑でありかつ保守が困難であるという問題点があった。また、従来の技術の第2の例に於いては、使用する2相の液体は導電性又は磁性を有する液体に限定され汎用性に乏しいという問題点があり、電気絶縁性及び気液密封性を得るために発電部における流路の構造が複雑になるという問題点があった。さらに、従来の技術の第3の例に於いては、傾斜した水路を流過する水によって発電するので発電装置が大規模であり、車載用途などの移動体に於ける発電手段には不適であるという問題点があった。
 本発明に係る羽根車を利用した発電装置は叙上の問題点を解決すべく発明したものであり、次の構成、手段から成立する。
 すなわち、請求項1記載の発明によれば、受熱部と放熱部との温度差による推進力で流送する熱搬送流体を充填した無端状循環経路を備えた構成に於いて、該無端状循環経路であって、熱搬送流体の流送方向に対して垂直方向に回転子を配設しかつ該回転子に固定された発電機回転子を有した羽根車を備えたことを特徴とする。前記熱搬送流体の流送方向に対して回転子の回転軸を垂直に配設することができる。
 請求項2記載の発明によれば、請求項1記載の羽根車を利用した発電装置に於いて、前記無端状循環経路は単一の略O字状循環経路であることを特徴とする。
 請求項3記載の発明によれば、請求項1記載の羽根車を利用した発電装置に於いて、前記無端状循環経路は複数個であることを特徴とする。
 請求項4記載の発明によれば、請求項1記載の羽根車を利用した発電装置に於いて、前記無端状循環経路は無端状円環循環経路であることを特徴とする。
 請求項5記載の発明によれば、請求項1記載の羽根車を利用した発電装置に於いて、前記無端状循環経路に絞り弁を介在させたことを特徴とする。
 本発明に係る羽根車を利用した発電装置は上述した構成を有するので次の効果がある。
 すなわち、請求項1に記載した本発明によれば、受熱部と放熱部との温度差による推進力で流送する熱搬送流体を充填した無端状循環経路を備えた構成に於いて、該無端状循環経路であって、熱搬送流体の流送方向に対して垂直方向に回転子を配設しかつ該回転子に固定された発電機回転子を有した羽根車を備えたことを特徴とする羽根車を利用した発電装置を提供する。
このような構成としてので、羽根車はこの熱搬送流体により回転し、発電機回転子を回転駆動する。この発電機回転子は比較的低トルクで回転する構造となっているので発電機固定子から出力電圧を発生する。熱搬送流体の流送方向に対して垂直方向位置に羽根車の回転軸及び発電機回転子を配置しているので、上記熱搬送流体が高圧であって、低流量であり発電機固定子が安定した発電を行えるという効果がある。
 請求項2に記載した本発明によれば、前記無端状循環経路は単一の略O字状循環経路であることを特徴とする請求項1記載の羽根車を利用した発電装置を提供する。
このような構成としたので、請求項1記載の発明の効果に加えて、無端状循環経路は単一の流路で構成することができるので、発電装置の構造を単純化することができるという効果があり、保守点検が容易であるという効果がある。
 請求項3に記載した本発明によれば、前記無端状循環経路は複数個であることを特徴とする請求項1記載の羽根車を利用した発電装置を提供する。
このような構成としたので、請求項1記載の発明の効果に加えて、受熱部に与えられる熱量が大きい場合でも多量の熱搬送流体に熱エネルギーを伝導することができるので単一の回転子が熱搬送流体の熱エネルギーを効率的に電気エネルギーに変換できるという効果がある。
 請求項4に記載した本発明によれば、前記無端状循環経路は無端状円環循環経路であることを特徴とする請求項1記載の羽根車を利用した発電装置を提供する。
このような構成としたので、請求項1記載の発明の効果に加えて、受熱部と放熱部を羽根車の近傍に配設できるので、エネルギー変換効率が向上するという効果があり、発電装置を小型化できるという効果がある。さらに、羽根車の回転半径を大きくでき、回転トルクを大きくできる。
 請求項5に記載した本発明によれば、前記無端状循環経路に絞り弁を介在させたことを特徴とする請求項1記載の羽根車を利用した発電装置を提供する。
このような構成としたので、請求項1記載の発明の効果に加えて、熱搬送流体の流送方向を制御することが容易となるという効果がある。
 図1は本発明に係る羽根車を利用した発電装置の実施の形態としての発電装置Eを示す図面であって、無端状循環経路を構成する流路の一方側に羽根車を設置した例であり、(a)はその水平断面図、(b)は発電装置Eに備えた発電機を構成する羽根車を矢視A−A線方向から見た断面図である。
 図2は本発明に係る羽根車を利用した発電装置の実施例を示す図面であって、(a)は本発明に係る羽根車を利用した発電装置E1に於ける実施例1を示す図面であって、2個の無端状循環経路を構成する発電装置E1に於いて一方の無端状循環経路の他方の流路と、他方の無端状循環経路の一方の流路との間に羽根車を設置した例を示す模式図、(b)は本発明に係る羽根車を利用した発電装置に於ける実施例2を示す図面であって、無端状循環経路を構成する発電装置E2に於いて流路の両側面に羽根車を設置した例を示す模式図である。
 図3は本発明に係る羽根車を利用した発電装置の実施例3を示す図面であって、無端状循環経路を構成する発電装置E3に於いて流路の他方側に2個の羽根車を隣接配置した例を示す模式図である。
 図4は本発明に係る羽根車を利用した発電装置の実施例4としての発電装置E4を示す図面であって、無端状循環経路を構成する流路の一方側に羽根車を設置し、無端状循環経路を構成する流路の他方側に蛇行ライン状流路を設置した例を示す模式図である。
 図5は本発明に係る羽根車を利用した発電装置の実施例5としての発電装置E5を示す図面であって、無端状循環経路を構成する流路の一方側に羽根車及び絞り弁を設置した例を示す模式図である。
 図6は本発明に係る羽根車を利用した発電装置の実施例6としての発電装置E6を示す図面であって、略円盤状の羽根車を収容するケーシングを兼ねる受熱部及び放熱部を配置した例を示す模式図であり、(a)は(b)の中央部分の垂直方向断面図、(b)は水平方向断面図である。
 図7は従来の技術に於ける発電装置の第1の例を示す図面である。
 図8は従来の技術に於ける発電装置の第2の例を示す図面であって、(a)はその正面図、(b)は右側面図である。
 図9は従来の技術に於ける発電装置の第3の例を示す図面である。
 図10は本発明に係る磁気羽根車を利用した発電装置の実施の形態としての発電装置Eを示す図面であって、無端状循環経路を構成する流路の一方側に磁気羽根車を設置した例であり、(a)はその水平断面図、(b)は発電装置Eに備えた発電機を構成する磁気羽根車を矢視A−A線方向から見た垂直断面概要図である。
 23    羽根車
 23A   羽根車
 23B   羽根車
 23C   第1羽根車
 23D   第1羽根車
 23E   羽根車
 23F   羽根車
 23G   羽根車
 23G1  羽根車の外周面
 23G2  回転軸
 23a   回転軸
 23b   円筒型ランナー
 23c   バケット
 23d   発電機回転子
 23e   バケット
 24    ケーシング
 24a   熱搬送流体導入部
 24b   熱搬送流体導出部
 25    流路
 25A   流路
 25B   流路
 25C   流路
 25D   流路
 25E   流路
 25F   流路
 25G   無端状円環循環経路
 26    熱搬送流体
 26a   熱搬送流体の液相部
 26b   熱搬送流体の気相部
 26b1  熱搬送流体の気相部
 26b2  熱搬送流体の気相部
 27    受熱部
 27A   受熱部
 27B   受熱部
 27C   受熱部
 27D   受熱部
 27E   受熱部
 27F   受熱部
 28    放熱部
 28A   放熱部
 28B   放熱部
 28C   放熱部
 28D   放熱部
 28E   放熱部
 28F   放熱部
 29    絞り弁
 以下、本発明に係る羽根車を利用した発電装置に於ける実施の形態について添付図面に基づき詳細に説明する。
図1は本発明に係る羽根車を利用した発電装置の実施の形態としての発電装置Eを示す図面であって、無端状循環経路を構成する流路の一方側に羽根車を設置した例であり、(a)は水平断面図、(b)は発電装置Eに備えた発電機を構成する羽根車を(a)に示す矢視A−A線方向から見た垂直断面図である。
 23は羽根車であって、羽根車23は通常の水力発電に用いる衝動水車に分類することができる羽根車であり、例えばペルトン水車を用いることが可能である。羽根車23は該羽根車23の回転中心に位置して該羽根車23を回転・支承する回転軸23aと、該回転軸23aに固着した円筒型ランナー23bと、該円筒型ランナー23bの外周円筒面に於いて、前記回転軸23aの中心から放射状に等しい開角をもって配設した複数の羽根状のバケット23cで構成する。該羽根車23は低トルクで回転する構造とし、逆転しないように適宜位置に逆止弁を設置することもできる。図1に於いて該バケット23cは前記回転中心から法線方向に直線で示す平板状の羽根であるが、これに限らずバケツ状の容器でも良い。23dは前記回転軸23aに固定した発電機回転子であって、熱搬送流体26の流れによって羽根車23が回転し、発電機能を有する。
 24はケーシングであって、ケーシング24は前記羽根車23の前記回転軸23aを支承する軸受け(図示せず)を具備しており、羽根車23の全体を収容する固定された略円筒形の容器である。また、図1に示すように、羽根車23のバケット23cとケーシング24の内面との間にはわずかの隙間が設定され、ケーシング24内に於いて、羽根車23は円滑に回転することができる。
 ケーシング24はその外周の一部に熱搬送流体導入部24a及び熱搬送流体導出部24bを配設し、該熱搬送流体導入部24a及び熱搬送流体導出部24bは後述する無端状循環経路としての流路に密封構造をもって接続している。
 25は流路であって、例えば、略U字状循環経路を有しており該流路25の内部は後述する熱搬送流体26が充填されている。流路25は断面形状が略円形又は楕円形が望ましいが、矩形状、三角形状、半円形状又は蛇行形状であってもよい。図1に示すように全体形状が縦に長い長方形に形成している。該流路25は図1に示すように前記ケーシング24の熱搬送流体導入部24a及び熱搬送流体導出部24bと一体的に形成し接続する。
 26は熱搬送流体であって、熱搬送流体26は例えば水等であり、与えられた熱エネルギーの多寡によって液相又は気相を呈する2相の流体である。そして該熱搬送流体26は臨界温度が熱源温度以下、放熱部温度又は使用温度範囲で固体化しないことが条件であり、水の場合例えば100℃~300℃の範囲内を適用する。図1に於いて、熱搬送流体26は流路25内において気相と液相の混合流体であり、26aは熱搬送流体26の液相部を示し、26bは熱搬送流体26の気相部である。円形及び略楕円形で表された26b1、26b2は前記熱搬送流体26の気相部26bを模式的に示す。そして、略楕円形で示された気相部26b2と液相部26aの混合流体としての熱搬送流体26は、円形で示された気相部26b1と液相部26aの混合流体としての熱搬送流体26に比較して気相部の割合が多いので、略楕円形で示された気相部26b2と液相部26aの混合流体としての熱搬送流体26は、円形で示された気相部26b1と液相部26aの混合流体としての熱搬送流体26に比較して、より多くの潜熱すなわち転移熱を有している。
 前記流路25は、例えば熱輸送デバイスとしての薄型プレートヒートデバイスを使用すると最適な効果が得られる。これは大きな熱量を円滑に輸送するように設計されている。また薄型プレートヒートデバイスの内部はループ型蛇行細径トンネルヒートパイプを内蔵しておりこのループ型蛇行細径トンネルヒートパイプの内部に封入した作動液が還流管路、つまり流路25内を流送する。そしてこの作動液の内圧に対して該薄型プレートヒートデバイスのループ型蛇行細径トンネルヒートパイプが十分な強度を有する必要がある。このような各種の条件を満足する薄型プレートヒートデバイスは薄型プレート内に前述したループ型蛇行細径トンネルヒートパイプを備えてある。そして、このような単位対のループ型細径トンネルヒートパイプの群は相互に連結連通されて、平面状に構成されて一体化されてある。このように一体化されたループ型細径トンネルヒートパイプの群は、一括して密閉封止され且つ真空脱気された上で所定の二相凝縮性作動液の所定量が封入されてヒートパイプ化されて、構成されている。また薄型プレートヒートデバイスは、熱伝導性の良好な金属からなる単位薄板及び平薄板の溶接積層体で構成される。単位薄板の溶接面には積層に先立って予め一連の長尺蛇行細溝が形成されてある。該長尺蛇行細溝の形成は切削、放電加工、プレス成形等何れの手段によってなされたものであっても良い。長尺蛇行細溝は積層により密閉蛇行細径トンネルとして構成され、この密閉蛇行細径トンネルに所定の作動液の所定量が封入されて蛇行細径トンネルヒートパイプとして構成されてある。
 27は蒸発部すなわち受熱部であって、受熱部27は熱搬送流体26に熱エネルギーを効率的に伝達するために流路25を取り囲んだ構造を有する。受熱部27は熱搬送流体26を液相26aから気相26bに相変化させる部分である。
28は凝縮部すなわち放熱部である。放熱部28は羽根車23を回転させて羽根車23に運動エネルギーを与えた熱搬送流体26の温度を低下させ、熱搬送流体26を気相26bから液相26aに相変化させる部分であり、熱搬送流体26から熱エネルギーを効率的に除去するために流路25を取り囲んだ構造を有する。
尚、上記無端状循環経路の上辺部分又は下辺部分の形状を変化させ、流送抵抗を増大する構成としてもよい。
 次に本発明に係る羽根車を利用した発電装置の実施の形態に基づく動作等を説明する。
受熱部27が加熱され放熱部28が冷却されると、該受熱部27と該放熱部28との温度差により相互作用が発生し熱搬送流体26に推進力が与えられ該熱搬送流体26は流路25内を図1に示すように下方から上方に循環流送する。そして、受熱部27と放熱部28の機能により、該流路25内に充填された熱搬送流体26は該受熱部27から矢印B1ないしB4方向に流送される。そこで該羽根車23はこの熱搬送流体26により回転する。回転軸23aが回転し、軸シール(図示せず)を介して回転軸23aが動液封止内から大気側に突出され、発電機回転子23dと同軸に連結されて該発電機回転子23dを回転駆動する。この発電機回転子23dは比較的低トルクで回転する構造となっている。これにより該発電機固定子(図示せず)から出力電圧を発生する。ここで、熱搬送流体26の流送方向に対して垂直方向位置に羽根車23の回転軸23a及び発電機回転子23dを配置している。それ故に上記熱搬送流体26が高圧であって、低流量であり発電機固定子に安定した発電を奏する。
尚、図1に於いては受熱部27を下方に配置し、放熱部28を上方に配置しているが、受熱部27を上方に配置し、放熱部28を下方に配置してもよく、羽根車23の回転方向を逆転することができる。また、発電機の始動時において、羽根車23の回転方向を任意の方向に回転させるために、発電機回転子23dに外部から電力を印加して一時的に電動機として駆動して、熱搬送流体26の循環流送方向が安定したら、発電動作に移行してもよい。
 次に本発明に係る羽根車を利用した発電装置に於ける実施例1について添付図面に基づき詳細に説明する。
図2(a)は本発明に係る羽根車を利用した発電装置に於ける実施例1を示す図面であって、2個の無端状循環経路を構成する発電装置E1に於いて一方の無端状循環経路の他方の流路と、他方の無端状循環経路の一方の流路との間に羽根車を設置した例を示す模式図である。
 23Aは羽根車でありその構造や動作等は図1に示す羽根車23と略同一である。羽根車23Aは通常の水力発電に用いる衝動水車に分類することができる羽根車であり、例えばペルトン水車を用いることが可能である。羽根車23Aは該羽根車23Aの回転中心に位置して該羽根車23Aを回転・支承する回転軸(図示せず)と、該回転軸23aに固着した円筒型ランナー23bと、該円筒型ランナー23bの外周円筒面に於いて、前記回転軸23aの中心から放射状に等しい開角をもって配設した複数の羽根状のバケット23cで構成する。
 25A、25Bは流路であって、該流路25A、25Bの内部は前述した熱搬送流体26が充填されている。流路25A、25Bは断面形状が略円形又は楕円形が望ましいが、矩形状、三角形状、半円形状又は蛇行形状であってもよい。図2(a)に示すように全体形状が縦に長い長方形に形成している。該流路25A、25Bは図2(a)に示すように前記ケーシング24の熱搬送流体導入部及び熱搬送流体導出部と一体的に形成し接続する。
 27Aは蒸発部すなわち受熱部であって、受熱部27Aは熱搬送流体26に熱エネルギーを効率的に伝達するために流路25A、25Bを取り囲んだ構造を有する。受熱部27Aは熱搬送流体26を液相から気相に相変化させる部分である。28Aは凝縮部すなわち放熱部である。放熱部28Aは羽根車23Aを回転させて羽根車23Aに運動エネルギーを与えた熱搬送流体26の温度を低下させ、熱搬送流体26を気相から液相に相変化させる部分であり、熱搬送流体26から熱エネルギーを効率的に除去するために流路25A、25Bを取り囲んだ構造を有する。
 そして、羽根車23Aの駆動動作は、受熱部27Aが加熱され放熱部28Aが冷却されると、該受熱部27Aと該放熱部28Aとの温度差により相互作用が発生し熱搬送流体26に推進力が与えられ該熱搬送流体26は流路25A、25B内を図2(a)に示すように上方から下方に循環流送する。そして、受熱部27Aと放熱部28Aの機能により、該流路25A、25B内に充填された熱搬送流体26、26は一方では矢印B5、B6、B7を経て、他方では矢印B8、B9、B10を経て流路25AS、25B内を流送する。そこで該羽根車23Aはこの熱搬送流体26により2つの経路から回転エネルギーを付与され回転する。
尚、本発明に係る羽根車を利用した発電装置に於ける実施例1のほかの構成及び動作等は前述した実施の形態の場合と略同一であり、その説明を省略する。
 次に本発明に係る羽根車を利用した発電装置に於ける実施例2について添付図面に基づき詳細に説明する。
図2(b)は本発明に係る羽根車を利用した発電装置に於ける実施例2を示す図面であって、無端状循環経路を構成する発電装置E2に於いて流路の両側面に羽根車を設置した例を示す模式図である。
 23Bは羽根車であり、その構造や動作等は図1に示す羽根車23と略同一でありその説明を省略する。25Cは流路であって、該流路25Cの内部は前述した熱搬送流体26が充填されている。そして、羽根車23Bの駆動動作は、受熱部27Bが加熱され放熱部28Bが冷却されると、該受熱部27Bと該放熱部28Bとの温度差により相互作用が発生し熱搬送流体26に推進力が与えられ該熱搬送流体26は流路25C内を図2(b)に示すように上方から下方に循環流送する。そして、受熱部27Bと放熱部28Bの機能により、該流路25C内に充填された熱搬送流体26は該受熱部27Bから一方では矢印B11、B12、B13、B14方向に、他方では矢印B15、B13、B12、B16方向にそれぞれ流送される。そこで該羽根車23Bはこの熱搬送流体26により回転する。
尚、本発明に係る羽根車を利用した発電装置に於ける実施例2のほかの構成及び動作等は前述した実施の形態の場合と略同一であり、その説明を省略する。
 次に本発明に係る羽根車を利用した発電装置に於ける実施例3について添付図面に基づき詳細に説明する。
図3は本発明に係る羽根車を利用した発電装置の実施例3を示す図面であって、無端状循環経路を構成する発電装置E3に於いて流路の他方側に2個の羽根車を隣接配置した例を示す模式図である。
 23Cは第1羽根車、23Dは第2羽根車であり、その構造や動作等は図1に示す羽根車23と略同一でありその説明を省略する。25Dは流路であって、該流路25Dの内部は前述した熱搬送流体26が充填されている。そして、第1羽根車23C及び第2羽根車23Dの駆動動作は以下の通りとなる。受熱部27Cが加熱され放熱部28Cが冷却されると、流路25Dの他方側に於いては、該受熱部27Cと該放熱部28Cとの温度差により相互作用が発生し熱搬送流体26に推進力が与えられ該熱搬送流体26は図3に示すように上方から下方に循環流送する。そして、受熱部27Cと放熱部28Cの機能により、該流路25D内に充填された熱搬送流体26は該受熱部27Cから矢印B17ないしB22方向に流送される。そこで該第1羽根車23C及び第2羽根車23Dはこの熱搬送流体26により回転する。
尚、本発明に係る羽根車を利用した発電装置に於ける実施例3のほかの構成及び動作等は前述した実施の形態の場合と略同一であり、その説明を省略する。
 次に本発明に係る羽根車を利用した発電装置に於ける実施例4について添付図面に基づき詳細に説明する。
図4は本発明に係る羽根車を利用した発電装置の実施例4としての発電装置E4を示す図面であって、無端状循環経路を構成する流路の一方側に羽根車を設置し、無端状循環経路を構成する流路の他方側に蛇行ライン状流路を設置した例を示す模式図である。
 23Eは羽根車であり、その構造や動作等は図1に示す羽根車23と略同一でありその説明を省略する。25Eは流路であって、該流路25Eの内部は前述した熱搬送流体26が充填されている。
そして、羽根車23Eの駆動動作は以下の通りとなる。受熱部27Dが加熱され放熱部28Dが冷却されると、流路25Eの一方側すなわち左側に於いては、該受熱部27Dと該放熱部28Dとの温度差により相互作用が発生し熱搬送流体26に推進力が与えられ該熱搬送流体26は図4に示すように下方から上方に循環流送する。そして、受熱部27Dと放熱部28Dの機能により、該流路25E内に充填された熱搬送流体26は該受熱部27Dから矢印B23ないしB26方向に流送される。そこで該羽根車23Eはこの熱搬送流体26により回転する。
 一方、受熱部27Dが加熱され放熱部28Dが冷却されると、流路25Eの他方側すなわち右側に於いては、該受熱部27Dと該放熱部28Dとの温度差により相互作用が発生し熱搬送流体26に推進力が与えられ該熱搬送流体26は下方から上方に流送するが、流路25Eの他方側すなわち右側は流路25Eが蛇行ライン状を成しており、矢印B27ないしB29方向に流送する。この流れは流路25Eの一方側すなわち左側に比較して、流路の抵抗が大きい。そこで、該受熱部27Dと該放熱部28Dとの温度差により推進力が与えられた熱搬送流体26は流路の抵抗が小さい左側を矢印B23ないしB26方向に容易に流送して羽根車23Eを効率的に回転させる。
尚、本発明に係る羽根車を利用した発電装置に於ける実施例4のほかの構成及び動作等は前述した実施の形態の場合と略同一であり、その説明を省略する。
次に本発明に係る羽根車を利用した発電装置に於ける実施例5について添付図面に基づき詳細に説明する。
図5は本発明に係る羽根車を利用した発電装置の実施例5としての発電装置E5を示す図面であって、無端状循環経路を構成する流路の一方側に羽根車及び絞り弁を設置した例を示す模式図である。
 23Fは羽根車であり、その構造や動作等は図1に示す羽根車23と略同一でありその説明を省略する。25Fは流路であって、該流路25Fの内部は前述した熱搬送流体26が充填されている。29は絞り弁である。従って、受熱部27Eが加熱され放熱部28Eが冷却されると、受熱部27Eにおいて液相から気相に相変化した流路25F内の熱搬送流体26は図5に示すように流路25Fの一方側の流路25Fから上昇し放熱部28E、絞り弁29を流過して羽根車23Fを効率的に回転させる。すなわち熱搬送流体26は矢印B30ないしB34方向に流送する。そして
絞り弁29により羽根車23Fのバスケット23cに流過する熱搬送流体26を高流速化し、該羽根車23Fを高速回転する。よって高発電機能を司る。
尚、本発明に係る羽根車を利用した発電装置に於ける実施例5のほかの構成及び動作等は前述した実施の形態の場合と略同一であり、その説明を省略する。
 次に本発明に係る羽根車を利用した発電装置に於ける実施例6について添付図面に基づき詳細に説明する。
図6は本発明に係る羽根車を利用した発電装置の実施例6としての発電装置E6を示す図面であって、略円盤状の羽根車を収容するケーシングを兼ねる受熱部及び放熱部を配置した例を示す模式図であり、(a)は(b)の中央部分の垂直方向断面図、(b)は水平方向断面図である。
 23Gは羽根車であり、全体形状が例えば略円盤状に形成され、その外周面23G1には複数個のバスケット23eを有する。前記外周面23G1と受熱部27F及び放熱部28Fとの間は無端状円環循環経路25Gを構成している。この構成は受熱部27F及び放熱部28Fとしてのケーシングの内周面と羽根車23Gの外周面23G1とで形成する間隙であって、流路の機能を兼ねている。また、前記受熱部27F及び放熱部28Fは前記磁気羽根車23Gを嵌入している。無端状円環循環経路25G内に充填している熱搬送流体26が流送することにより該バスケット23e・・・を駆動し、該羽根車23Gを例えば図示するR方向に回転動作させる。そして図6に示すように羽根車23Gの中央部に永久磁石を回転方向でN極とS極が交互に配置された回転軸23G2を形成し、回転軸23G2と同軸上に回転軸23G2の外周を覆うように複数のコイルを配置した発電機回転子23Hを有する。
尚、本発明に係る磁気羽根車を利用した発電装置に於ける実施例6のほかの構成及び動作等は前述した実施の形態の場合と略同一であり、その説明を省略する。また、実施例6の変形実施例として図6の羽根車23Gの中央部にN極、S極を有する内部永久磁石が羽根車23G全体で密閉状態に配置された回転軸23G2を形成し、回転軸23G2の周辺23HにもN極、S極を有する外部永久磁石が配置された回転軸(図示せず)を形成してマグネットカップリングを構成し、回転軸23G2と同軸上に外部永久磁石23Hが配置された回転軸によって回転駆動される発電機回転子(図示せず)を有する。
 次に本発明に係る磁気羽根車を利用した発電装置に於ける実施例7について添付図面に基づき詳細に説明する。
図10は本発明に係る磁気羽根車を利用した発電装置の実施の形態としての発電装置Eを示す図面であって、無端状循環経路を構成する流路の一方側に磁気羽根車を設置した例であり、(a)は水平断面図、(b)は発電装置Eに備えた発電機を構成する磁気羽根車を(a)に示す矢視A−A線方向から見た垂直断面図である。
 23は磁気羽根車であって、磁気羽根車23は通常の水力発電に用いる衝動水車に分類することができる羽根車であり、例えばペルトン水車を用いることが可能である。磁気羽根車23は後述する流路25内に配置してあるこの磁気羽根車23の下側に流路25の管壁を介して磁気歯車23fを備えている。発電機は前記磁気歯車23fと、該磁気羽根車23の回転中心に位置して該磁気歯車23fを回転・支承する回転軸23aと、発電機回転子23dとを備えている。前記磁気羽根車23は中心部23bを有している。この中心部23bはN極、S極が交互に帯磁されており、この磁力により磁気歯車23fを回転駆動する。該磁気羽根車23の中心部23bの外周円筒面に於いて、前記磁気羽根車23の中心部23bから放射状に等しい開角をもって配設した複数の羽根状のバケット23cを構成する。該磁気羽根車23は低トルクで回転する構造とし、逆転しないように適宜位置に逆止弁を設置することもできる。図10に於いて該バケット23cは前記中心部23bから法線方向に直線で示す平板状の羽根であるが、これに限らずバケツ状の容器でも良い。23dは前記回転軸23aに固定した発電機回転子であって、熱搬送流体26の流れによって磁気羽根車23が回転し、発電機能を有する。
 24はケーシングであって、ケーシング24は前記磁気羽根車23の前記回転軸23gを支承する軸受けを具備しており、磁気羽根車23の全体を収容する固定された略円筒形の容器である。また、図10に示すように、磁気羽根車23のバケット23cとケーシング24の内面との間にはわずかの隙間が設定され、ケーシング24内に於いて、磁気羽根車23は円滑に回転することができる。
 ケーシング24はその外周の一部に熱搬送流体導入部24a及び熱搬送流体導出部24bを配設し、該熱搬送流体導入部24a及び熱搬送流体導出部24bは後述する無端状循環経路としての流路に密封構造をもって接続している。
 25は流路であって、例えば、略U字状循環経路を有しており該流路25の内部は後述する熱搬送流体26が充填されている。流路25は断面形状が略円形又は楕円形が望ましいが、矩形状、三角形状、半円形状又は蛇行形状であってもよい。図10に示すように全体形状が縦に長い長方形に形成している。該流路25は図1に示すように前記ケーシング24の熱搬送流体導入部24a及び熱搬送流体導出部24bと一体的に形成し接続する。
 26は熱搬送流体であって、熱搬送流体26は例えば水等であり、与えられた熱エネルギーの多寡によって液相又は気相を呈する2相の流体である。そして該熱搬送流体26は臨界温度が熱源温度以下、放熱部温度又は使用温度範囲で固体化しないことが条件であり、水の場合例えば100℃~300℃の範囲内を適用する。図10に於いて、熱搬送流体26は流路25内において気相と液相の混合流体であり、26aは熱搬送流体26の液相部を示し、26bは熱搬送流体26の気相部である。円形及び略楕円形で表された26b1、26b2は前記熱搬送流体26の気相部26bを模式的に示す。そして、略楕円形で示された気相部26b2と液相部26aの混合流体としての熱搬送流体26は、円形で示された気相部26b1と液相部26aの混合流体としての熱搬送流体26に比較して気相部の割合が多いので、略楕円形で示された気相部26b2と液相部26aの混合流体としての熱搬送流体26は、円形で示された気相部26b1と液相部26aの混合流体としての熱搬送流体26に比較して、より多くの潜熱すなわち転移熱を有している。
 前記流路25は、例えば熱輸送デバイスとしての薄型プレートヒートデバイスを使用すると最適な効果が得られる。これは大きな熱量を円滑に輸送するように設計されている。また薄型プレートヒートデバイスの内部はループ型蛇行細径トンネルヒートパイプを内蔵しておりこのループ型蛇行細径トンネルヒートパイプの内部に封入した作動液が還流管路、つまり流路25内を流送する。そしてこの作動液の内圧に対して該薄型プレートヒートデバイスのループ型蛇行細径トンネルヒートパイプが十分な強度を有する必要がある。このような各種の条件を満足する薄型プレートヒートデバイスは薄型プレート内に前述したループ型蛇行細径トンネルヒートパイプを備えてある。そして、このような単位対のループ型細径トンネルヒートパイプの群は相互に連結連通されて、平面状に構成されて一体化されてある。このように一体化されたループ型細径トンネルヒートパイプの群は、一括して密閉封止され且つ真空脱気された上で所定の二相凝縮性作動液の所定量が封入されてヒートパイプ化されて、構成されている。また薄型プレートヒートデバイスは、熱伝導性の良好な金属からなる単位薄板及び平薄板の溶接積層体で構成される。単位薄板の溶接面には積層に先立って予め一連の長尺蛇行細溝が形成されてある。該長尺蛇行細溝の形成は切削、放電加工、プレス成形等何れの手段によってなされたものであっても良い。長尺蛇行細溝は積層により密閉蛇行細径トンネルとして構成され、この密閉蛇行細径トンネルに所定の作動液の所定量が封入されて蛇行細径トンネルヒートパイプとして構成されてある。
 27は蒸発部すなわち受熱部であって、受熱部27は熱搬送流体26に熱エネルギーを効率的に伝達するために流路25を取り囲んだ構造を有する。受熱部27は熱搬送流体26を液相26aから気相26bに相変化させる部分である。
28は凝縮部すなわち放熱部である。放熱部28は磁気羽根車23を回転させて磁気羽根車23に運動エネルギーを与えた熱搬送流体26の温度を低下させ、熱搬送流体26を気相26bから液相26aに相変化させる部分であり、熱搬送流体26から熱エネルギーを効率的に除去するために流路25を取り囲んだ構造を有する。
尚、上記無端状循環経路の上辺部分又は下辺部分の形状を変化させ、流送抵抗を増大する構成としてもよい。
 次に本発明に係る磁気羽根車を利用した発電装置の実施の形態に基づく動作等を説明する。
受熱部27が加熱され放熱部28が冷却されると、該受熱部27と該放熱部28との温度差により相互作用が発生し熱搬送流体26に推進力が与えられ該熱搬送流体26は流路25内を図1に示すように下方から上方に循環流送する。そして、受熱部27と放熱部28の機能により、該流路25内に充填された熱搬送流体26は該受熱部27から矢印B1ないしB4方向に流送される。そこで該磁気羽根車23はこの熱搬送流体26により回転する。該磁気羽根車23が回転することによりこの磁力により磁気歯車23fが回転し、回転軸23aも回転する。そして、発電機回転子23dを回転駆動する。この発電機回転子23dは比較的低トルクで回転する構造となっている。これにより該発電機固定子(図示せず)から出力電圧を発生する。ここで、熱搬送流体26の流送方向に対して垂直方向位置に磁気羽根車23の回転軸23g、磁気歯車23fの回転軸23a及び発電機回転子23dを配置している。それ故に上記熱搬送流体26が高圧であって、低流量であり発電機固定子に安定した発電を奏する。
尚、図1に於いては受熱部27を下方に配置し、放熱部28を上方に配置しているが、受熱部27を上方に配置し、放熱部28を下方に配置してもよく、磁気羽根車23の回転方向を逆転することができる。また、発電機の始動時において、磁気羽根車23の回転方向を任意の方向に回転させるために、発電機回転子23dに外部から電力を印加して一時的に電動機として駆動して、熱搬送流体26の循環流送方向が安定したら、発電動作に移行してもよい。
また、実施例7の変形実施例として図10のマグネットカップリングの代わりに磁気羽根車23を発電機の回転とし、磁気歯車23fを円盤上に複数のコイルを配置した発電機の固定としてもよい。さらに、実施例6のように磁気羽根車23の磁石部分を回転軸方向で突出させ、その周円に発電機の固定子を配置することもできる。
 以上の実施例6,7のように磁石を利用して非接触で羽根車の回転を発電機の回転に伝達することにより、羽根車の回転軸を軸シールを介して作動液封止内から大気側に突出させ、該羽根車の回転軸に発電機の回転軸を連結するよりも、回転軸部の大気側と作動液封止内とのシールを向上することができる。さらに、シール部での摩擦抵抗による効率悪化やシールの寿命低下を改善できる。
 自動車や住宅の給湯装置等に於いて、排熱を利用した小型の発電装置として適用できる。例えば、自動車の場合、加熱部をエンジン、冷却部をラジエータとする。船舶の場合、加熱部をエンジン、冷却部をエンジンの冷却水又は海水とする。発電機と給湯器の場合、加熱部をタービン、冷却部を加熱前の給湯水又は水道水の管とする。パソコンやサーバーの場合、加熱部をCPU、冷却部をケース若しくは電源等に使用されているファンとする。火力発電所の場合、発熱部を炉、冷却部を工場冷却水または水道管とする。電気自動車の場合、発熱部をインバータ、冷却部を走行用ラジエータもしくはファンとする。水力発電の場合、加熱部をインバータ、冷却部を外気、ラジエータ、又はファンとする一般建築物の場合、加熱部を室内もしくは室外の温度の高いほう、冷却部を室内もしくは室外の温度の低いほうとする。太陽電池の場合、加熱部をパネルの背面、冷却部を地面または水道管とする。堆肥等の発酵物の場合、加熱部を異発酵物、冷却部を水道水とする。

Claims (5)

  1. 受熱部と放熱部との温度差による推進力で流送する熱搬送流体を充填した無端状循環経路を備えた構成に於いて、該無端状循環経路であって、熱搬送流体の流送方向に対して垂直方向に回転子を配設しかつ該回転子に固定された発電機回転子を有した羽根車を備えたことを特徴とする羽根車を利用した発電装置。
  2. 前記無端状循環経路は単一の略O字状循環経路であることを特徴とする請求項1記載の羽根車を利用した発電装置。
  3. 前記無端状循環経路は複数個であることを特徴とする請求項1記載の羽根車を利用した発電装置。
  4. 前記無端状循環経路は無端状円環循環経路であることを特徴とする請求項1記載の羽根車を利用した発電装置。
  5. 前記無端状循環経路に絞り弁を介在させたことを特徴とする請求項1記載の羽根車を利用した発電装置。
PCT/JP2010/053373 2009-02-25 2010-02-24 羽根車を利用した発電装置 WO2010098491A2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009041682A JP2010196568A (ja) 2009-02-25 2009-02-25 羽根車を利用した発電装置
JP2009-041682 2009-02-25

Publications (2)

Publication Number Publication Date
WO2010098491A2 true WO2010098491A2 (ja) 2010-09-02
WO2010098491A3 WO2010098491A3 (ja) 2011-02-24

Family

ID=42666013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053373 WO2010098491A2 (ja) 2009-02-25 2010-02-24 羽根車を利用した発電装置

Country Status (2)

Country Link
JP (1) JP2010196568A (ja)
WO (1) WO2010098491A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521430A (en) * 2013-12-19 2015-06-24 Ibm Device and method for converting heat into mechanical energy
CN115419553A (zh) * 2022-08-31 2022-12-02 中铁第一勘察设计院集团有限公司 隧道防冻害系统
CN115419553B (zh) * 2022-08-31 2024-06-04 中铁第一勘察设计院集团有限公司 隧道防冻害系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314389A (zh) * 2016-04-15 2017-11-03 周维武 垃圾焚烧发电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248749A (en) * 1975-10-15 1977-04-19 Takenori Nakagawa Power generation method by the specific gravity difference of liquid and gas and its device
JPS57148011A (en) * 1981-03-09 1982-09-13 Koji Akagawa Motive power generator employing low-temperature energy source for natural circulating force
JP2005195226A (ja) * 2004-01-06 2005-07-21 Mitsubishi Electric Corp ポンプレス水冷システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2151949A (en) * 1934-07-30 1939-03-28 Edward T Turner Method and apparatus for converting heat energy into mechanical energy
US3972195A (en) * 1973-12-14 1976-08-03 Biphase Engines, Inc. Two-phase engine
US4106294A (en) * 1977-02-02 1978-08-15 Julius Czaja Thermodynamic process and latent heat engine
JPH01130007A (ja) * 1987-11-16 1989-05-23 Akutoronikusu Kk 動力発生装置
JP3924800B2 (ja) * 1996-01-29 2007-06-06 石川島播磨重工業株式会社 冷熱発電設備
JP4367733B2 (ja) * 1999-08-07 2009-11-18 有限会社オバラフローラ 蒸気タービン装置
JP2006090217A (ja) * 2004-09-24 2006-04-06 Hiroshi Ichikawa マガリ円筒導流管回転装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248749A (en) * 1975-10-15 1977-04-19 Takenori Nakagawa Power generation method by the specific gravity difference of liquid and gas and its device
JPS57148011A (en) * 1981-03-09 1982-09-13 Koji Akagawa Motive power generator employing low-temperature energy source for natural circulating force
JP2005195226A (ja) * 2004-01-06 2005-07-21 Mitsubishi Electric Corp ポンプレス水冷システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521430A (en) * 2013-12-19 2015-06-24 Ibm Device and method for converting heat into mechanical energy
US10683776B2 (en) 2013-12-19 2020-06-16 International Business Machines Corporation Device and method for converting heat into mechanical energy
CN115419553A (zh) * 2022-08-31 2022-12-02 中铁第一勘察设计院集团有限公司 隧道防冻害系统
CN115419553B (zh) * 2022-08-31 2024-06-04 中铁第一勘察设计院集团有限公司 隧道防冻害系统

Also Published As

Publication number Publication date
JP2010196568A (ja) 2010-09-09
WO2010098491A3 (ja) 2011-02-24

Similar Documents

Publication Publication Date Title
ES2546452T3 (es) Máquina eléctrica con apilamiento de laminaciones de doble cara
CA2862347C (en) Power conversion and energy storage device
CN1326239C (zh) 冷却装置
TWI552647B (zh) Induction heating device and its power generation system
US20150381014A1 (en) Water-cooled motor
TW201312066A (zh) 離心式永久磁石加熱裝置
JP2006189014A (ja) 水力発電装置
CN106452013B (zh) 一种绕组强化散热的轴向磁通轮毂电机
CN103397974B (zh) 磁悬浮水轮发电机
CN104595094B (zh) 水力涡轮发电机
WO2010098491A2 (ja) 羽根車を利用した発電装置
US20220021275A1 (en) Cooling of electrical machines
CN104734387A (zh) 一种具有良好散热结构的大型潜水泵用电机
CN102679527A (zh) 一种液体加热装置
EP4266551A1 (en) Magnetic geared electric machine and power generation system using same
JP6380148B2 (ja) 渦電流式発熱装置
KR101471530B1 (ko) 지열에너지 시스템의 발전용 수차
JP2009019532A (ja) 相反転クロスフロー型超小形発電装置
CN102651595B (zh) 高效能发电装置
JP6380147B2 (ja) 渦電流式発熱装置
JP6544063B2 (ja) 渦電流式発熱装置
CN204578235U (zh) 一种具有良好散热结构的大型潜水泵用电机
WO2024088258A1 (zh) 端盖、电机和车辆
KR20230094282A (ko) 상수도 배관용 수차시스템
CN102808782A (zh) 一种潜水排污泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746364

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/12/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 10746364

Country of ref document: EP

Kind code of ref document: A2