WO2010098436A1 - 熱可塑性樹脂製器材用のコーティング剤 - Google Patents

熱可塑性樹脂製器材用のコーティング剤 Download PDF

Info

Publication number
WO2010098436A1
WO2010098436A1 PCT/JP2010/053064 JP2010053064W WO2010098436A1 WO 2010098436 A1 WO2010098436 A1 WO 2010098436A1 JP 2010053064 W JP2010053064 W JP 2010053064W WO 2010098436 A1 WO2010098436 A1 WO 2010098436A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
group
compound
equipment
coating
Prior art date
Application number
PCT/JP2010/053064
Other languages
English (en)
French (fr)
Inventor
富長 深澤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2010509610A priority Critical patent/JPWO2010098436A1/ja
Publication of WO2010098436A1 publication Critical patent/WO2010098436A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a coating agent for thermoplastic resin equipment.
  • Non-patent Document 1 Non-patent Document 1
  • the measured values in quantitative analysis include values such as errors in the analysis, so analysis of the target compound Non-specific adsorption to the device needs to be suppressed as much as possible, and this non-specific adsorption is one factor of deterioration in accuracy.
  • a method for suppressing the adsorption of the target compound for quantitative analysis to the analytical instrument it is common to optimize the pH of the solution in which the target compound is dissolved.
  • a resin such as plastic is used. It is said that it is effective to use a hydrophilic organic solvent such as methanol using the equipment, and to use glass equipment in the case of a hydrophobic compound.
  • the surface of the resin equipment is treated by ultraviolet irradiation, plasma treatment or ozone treatment.
  • ultraviolet irradiation plasma treatment
  • ozone treatment There are known methods for suppressing nonspecific adsorption of an analysis target by a method of introducing a hydroxyl group or a carboxyl group or a method of coating the surface of a resin equipment with a hydrophilic polymer (Patent Documents 1 to 6). ).
  • Patent Documents 1 to 6 cannot suppress nonspecific adsorption of the hydrophilic compound and the hydrophobic compound having a hydrophilic group. Rather, the types of functional groups possessed by these compounds are not possible. Depending on the current situation, non-specific adsorption is increased. In addition, at the stage where the physical properties of the analysis target are unknown, it is possible to determine whether a method suitable for a hydrophobic compound or a method suitable for a hydrophilic compound should be employed in order to suppress nonspecific adsorption. First, when the analysis target is a biological material such as a cell or an enzyme, the current situation is that the optimization of pH and the use of a hydrophilic organic solvent are limited.
  • the present invention suppresses nonspecific adsorption of hydrophilic compounds, hydrophobic compounds, and biological materials to thermoplastic resin equipment, and realizes quantitative analysis with high accuracy for a wide range of analytes. It is an object.
  • thermoplastic resin equipment that suppresses the adsorption of both hydrophobic compounds and hydrophilic compounds, and completed the present invention. It came to do.
  • the present invention provides a coating agent for thermoplastic resin equipment described in the following (1) to (7), a method for suppressing adsorption of both a hydrophobic compound and a hydrophilic compound, and a thermoplastic resin equipment
  • a coating method is provided.
  • R 1 and R 2 each independently represents a hydrogen atom, methyl, ethyl or acetyl, and R 3 represents glycidoxypropyl, 3,4-epoxycyclohexylethyl, methacryloxypropyl or acryloxypropyl. And x represents an integer of 0-2.
  • the thermoplastic resin equipment is a cell culture plate or a conical tube.
  • the present invention it is possible to suppress nonspecific adsorption of hydrophobic compounds, hydrophilic compounds, and biological materials to thermoplastic resin equipment, and the accuracy is improved even in a wide range of analysis targets. Quantitative analysis can be realized. Further, according to the present invention, even if the analysis target is an unknown physical property, it is not necessary to preliminarily determine whether the analysis target is a hydrophilic compound or a hydrophobic compound. Specific adsorption can be suppressed.
  • FIG. 3 is a graph showing the average adsorption rate of each analysis target compound for each of test samples A to E (Example 1 and Comparative Examples 1 to 4). It is a figure which shows the average adsorption rate of each analysis object compound with respect to each of test sample A and FJ (Example 1 and Comparative Examples 5-9). It is a figure which shows the average adsorption rate of each analysis object compound with respect to the test samples K and L (Comparative Example 10 and Example 2). It is a figure which shows the average adsorption rate of a taxol and a verapamil with respect to the test sample F (comparative example 5) and the test samples LO (Examples 2-5).
  • the coating agent for thermoplastic resin equipment of the present invention contains an amphiphilic silicon compound having an epoxy group, an ether group, a methacrylate group or an acrylate group, and coats the surface of the thermoplastic resin equipment by coating the surface of the thermoplastic resin equipment. It is characterized by suppressing adsorption of both the hydrophobic compound and the hydrophilic compound to the plastic resin equipment.
  • thermoplastic resin equipment of the present invention is characterized in that the surface is coated with the above-mentioned coating agent, and suppresses adsorption of both the hydrophobic compound and the hydrophilic compound to the thermoplastic resin equipment of the present invention.
  • the method is characterized in that the surface is coated with the above coating agent.
  • examples of the “amphiphilic silicon compound having an epoxy group, an ether group, a methacrylate group, or an acrylate group” include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethylmethyl Examples include dimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-acryloxypropyltrimethoxysilane.
  • the solvent used for the preparation of the coating agent is not particularly limited, but water, methyl alcohol or ethyl alcohol or a mixture thereof may be used from the viewpoint that it does not react with the thermoplastic resin equipment to be coated and is easy to volatilize after coating. Preferably there is.
  • the amphiphilic silicon compound concentration in the coating agent is preferably 0.1 to 4.0% (v / v) from the viewpoint of uniform coating, and preferably 0.5 to 2.0% ( More preferably, v / v).
  • the material of the “thermoplastic resin equipment” is not particularly limited, but from the viewpoint of promoting the bonding of the amphiphilic silicon compound to the equipment surface, polystyrene that can easily introduce hydrophilic groups such as hydroxyl groups and carboxyl groups to the equipment surface is preferable. . If the surface of the thermoplastic resin equipment is inactive, a known ozone oxidation method (Japanese Patent Application No. 8-258332) or UV treatment method (J. Plasma Fusion Res., 2005, p. 1012). 1015), surface treatment may be performed in advance, and hydrophilic groups may be introduced into the surface of the thermoplastic resin equipment.
  • thermoplastic resin equipment examples include a pipette, a chip, a storage container, a dilution container, a reaction container, and a liquid feeding tube.
  • a storage container Alternatively, a reaction vessel is preferable, and a cell culture plate or a conical tube is more preferable.
  • the coating agent for thermoplastic resin equipment is characterized in that the amphiphilic silicon compound is a compound represented by the following general formula (I). [Wherein R 1 and R 2 each independently represents a hydrogen atom, methyl, ethyl or acetyl, and R 3 represents glycidoxypropyl, 3,4-epoxycyclohexylethyl, methacryloxypropyl or acryloxypropyl. And x represents an integer of 0-2. ]
  • R 1 and R 2 methyl or ethyl is preferable from the viewpoint of appropriate hydrophobicity, stability, and ease of hydrolysis.
  • the acid to be added is preferably an acid that does not react with the thermoplastic resin equipment to be coated and easily volatilizes after coating, and acetic acid is particularly preferable.
  • the acetic acid concentration in the coating agent is preferably 0.1 to 2.0% (v / v) from the viewpoint of adjusting the pH to a range of 3.0 to 5.0 in order to improve the stability of the coating agent. .
  • the coating agent after preparation will superpose
  • the thermoplastic resin equipment coating method of the present invention comprises a hydrolysis step of hydrolyzing an amphiphilic silicon compound having an epoxy group, an ether group, a methacrylate group or an acrylate group to obtain a silicon compound having a silanol group; A step of introducing a hydroxyl group or a carboxyl group into the thermoplastic resin of the thermoplastic resin equipment, and reacting the silanol group of the silicon compound with the hydroxyl group or carboxyl group of the thermoplastic resin and polymerizing each other. And a coating step for coating the surface of the thermoplastic resin equipment.
  • the contact time between the thermoplastic resin equipment obtained by the introduction step and the coating agent obtained by the hydrolysis step, that is, the silanol group of the silicon compound in the coating step is changed to the hydroxyl group or carboxyl group of the thermoplastic resin.
  • the contact time is short, the coating becomes non-uniform, while when the contact time is too long, a silica gel layer is formed on the surface of the equipment and the adsorptive capacity increases, so that it is preferably 1 to 360 minutes, preferably 30 to 120 minutes. More preferred.
  • the effect of the present invention can be obtained by extending the contact time.
  • the contact time is preferably 120 to 360 minutes.
  • the heating temperature is preferably 50 to 150 ° C., more preferably 70 to 120 ° C. from the viewpoint of heat resistance of the thermoplastic resin equipment. preferable.
  • a hydrophilic compound for example, methotrexate and chloroquine
  • Hydrophobic compounds eg, taxol, propranolol and verapamil
  • LogP o / w
  • Example 1 0.5 mL of 3-glycidoxypropyltrimethoxysilane (KBM-403; Shin-Etsu Chemical Co., Ltd.) and 49.5 mL of acetic acid (3-glycidoxypropyltrimethoxysilane concentration 1% (v / v)) at room temperature
  • the coating agent obtained by hydrolyzing 3-glycidoxypropyltrimethoxysilane by stirring for 1 hour was added to each well of a commercially available 96-well polystyrene cell culture microplate (3860-096; IWAKI) at room temperature. For 1 minute, and then the coating agent was discharged.
  • the 96-well polystyrene cell culture microplate after discharging the coating agent was dried at 60 ° C. for 1 hour, and further dried at room temperature for 1 day to obtain a test sample A.
  • test sample B A commercially available glass vial (500-7965; TOMSIC) that was not treated at all was used as test sample B.
  • Example 3 A test sample D was obtained in the same manner as in Example 1 except that vinyltrimethoxysilane (KBM-1003; Shin-Etsu Chemical Co., Ltd.) was used instead of 3-glycidoxypropyltrimethoxysilane. .
  • vinyltrimethoxysilane KBM-1003; Shin-Etsu Chemical Co., Ltd.
  • Example 4 The same as Example 1 except that N-2- (aminomethyl) -3-aminopropyltrimethoxysilane (KBM-603; Shin-Etsu Chemical Co., Ltd.) was used instead of 3-glycidoxypropyltrimethoxysilane.
  • KBM-603 N-2- (aminomethyl) -3-aminopropyltrimethoxysilane
  • the test sample E was obtained.
  • Samples A, C, D, and E of 5 wells or 5 test samples B were each pre-cooled in a refrigerator, methotrexate, taxol, propranolol, verapamil, and chloroquine aqueous solution of each analyte compound (any The concentration is 2 ⁇ mol / L), each 200 ⁇ L, and stored in an autosampler set at 10 ° C., and all the aqueous solution of the compound to be analyzed are subjected to HPLC 5 times at the start of storage and every hour from the start of storage. Analyzed.
  • the HPLC analysis conditions are as follows.
  • Adsorption rate of analysis target compound (%) Analysis target compound peak area value for each analysis / Analysis target compound peak area value at start of storage ⁇ 100
  • FIG. 1 shows changes with time in the adsorption rate of each analysis target compound with respect to the test sample C. Two hours after the start of storage, it can be determined that the adsorption rate of each compound to be analyzed has almost reached equilibrium, and the same time-dependent change in the adsorption rate as that of the test sample C is observed for the other test samples. Therefore, the average value of the three adsorption rates at 2 hours, 3 hours and 4 hours after the start of storage was determined, and this value was determined as the average adsorption rate (%).
  • FIG. 2 shows the average adsorption rate for each test sample A to E for each compound to be analyzed.
  • Test sample B showed a high average adsorption rate only for chloroquine. This is presumably because the hydrophilic and positively charged chloroquine was strongly adsorbed on the hydrophilic and negatively charged glass surface.
  • Test sample C showed a high average adsorption rate for all compounds other than methotrexate.
  • the polystyrene microplate for cell culture has adsorbed chloroquine in the same way as glass because a hydrophilic or negatively charged hydroxyl group or carboxylic acid group is introduced on its surface for the purpose of facilitating cell adhesion. Presumed.
  • these hydrophilic groups are not introduced to the entire surface, it is presumed that taxol, a hydrophobic compound, was adsorbed by hydrophobic interaction with polystyrene.
  • propranolol and verapamil also showed a high average adsorption rate due to the synergistic effect of the introduction of the hydrophilic group and the hydrophobic interaction.
  • Test sample D showed a high average adsorption rate for taxol, propranolol and verapamil. This is because, although the hydrophilic group introduced on the surface of the polystyrene cell culture microplate and the silanol group produced by hydrolysis of vinyltrimethoxysilane are condensed, the adsorption ability of the hydrophilic group is suppressed. It is presumed that taxol and the like were strongly adsorbed on the polystyrene surface where the group was exposed and the hydrophobic interaction increased.
  • Test sample E showed a high average adsorption rate only for methotrexate. This is because, in addition to the suppression of the adsorption ability of the hydrophilic group similar to the sample D, the adsorption of the analyte compound having a positive charge is also suppressed by the action of the amino group having a positive charge, while the methotrexate having a negative charge is reduced. It is estimated that it was strongly adsorbed.
  • the test sample A has an average adsorption rate of less than 10% for all the analytes regardless of whether they are hydrophobic compounds or hydrophilic compounds, and the low-concentration analyte compounds It is clear that this method is suitable as a means for achieving high-precision quantitative analysis. This includes compounds that have a charge because the glycid group, which is a hydrophilic group, is exposed on the polystyrene surface to reduce hydrophobic interactions, while the glycid group does not readily ionize in water and has a weak negative charge. This is presumed to suppress adsorption of hydrophilic compounds.
  • Test sample G A commercially available low-adsorption analyzer (Sumilon Proteo Save (registered trademark); Sumitomo Bakelite) that was not treated at all was used as test sample G.
  • Test samples A and F to J were evaluated in the same manner as described above (evaluation of adsorption characteristics of test samples A to E). The results are shown in FIG.
  • test sample A has an average adsorption rate of less than 10% for all the analyte compounds regardless of whether they are hydrophobic compounds or hydrophilic compounds, and enables high-precision quantification of the low-concentration analyte compounds. Obviously, it is suitable as a means to achieve the analysis.
  • test sample K A commercially available 96-well polystyrene microplate without surface treatment (3860-096; Greiner Japan) was used as test sample K.
  • Example 2 A test sample L was obtained in the same manner as in Example 1, except that a 96-well polystyrene microplate without surface treatment was used instead of the 96-well polystyrene cell culture microplate.
  • Example 3 A test sample M was obtained in the same manner as in Example 2 except that the standing time after the coating agent was placed in each well was extended from 1 minute to 60 minutes.
  • Example 4 A test sample N was obtained in the same manner as in Example 2 except that the standing time after putting the coating agent in each well was extended from 1 minute to 90 minutes.
  • Example 5 A test sample O was obtained in the same manner as in Example 2 except that the standing time after putting the coating agent in each well was extended from 1 minute to 120 minutes.
  • Test samples K and L were evaluated in the same manner as described above (evaluation of adsorption characteristics of test samples A to E). The results are shown in FIG.
  • test sample F and the test samples L to O are evaluated in the same manner as described above (evaluation of the adsorption characteristics of the test samples A to E), and the coating time and average adsorption when the analysis target compound is taxol or verapamil. The relationship with the rate was investigated. The results are shown in FIG.
  • Test sample K showed an extremely high average adsorption rate on taxol, and a certain average adsorption rate on verapamil. This is presumably because hydrophobic taxol and verapamil were adsorbed on the highly hydrophobic polystyrene surface, and in particular, taxol having no charge was adsorbed particularly strongly.
  • Test sample L coated in the same manner as in Example 1 showed a certain average adsorption rate on verapamil. Although there are some hydrophilic groups on the surface of polystyrene that has not been surface-treated, the number of hydrolyzed 3-glycidoxypropyltrimethoxysilanes is smaller than that of polystyrene that has been surface-treated. It is presumed that the silanol group produced as a result of the above is exposed without reacting with the hydrophilic group.
  • test samples M to O with extended coating time had an average adsorption rate of less than 10% for both taxol and verapamil, and for taxol, the average adsorption rate of each analyte was comprehensive.
  • the average adsorption rate was lower than that of the test sample F, which is a commercially available low-adsorption analysis instrument that was low. From these results, the present invention can suppress adsorption of both the hydrophobic compound and the hydrophilic compound even for the thermoplastic resin equipment not subjected to the surface treatment by appropriately adjusting the coating time. It is apparent that the method is suitable as a means for achieving high-precision quantitative analysis of a concentration analysis target compound.
  • the present invention can be used for pipettes, chips, storage containers, dilution containers, reaction containers, liquid supply tubes, etc. in the analysis field, particularly in low-concentration sample analysis where adsorption of the target compound to be analyzed is problematic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、親水性化合物、疎水性化合物及び生物学的材料の熱可塑性樹脂製器材への非特異的吸着を抑制し、広範囲の分析対象に対して精度を高めた定量分析を実現することを目的としている。本発明は、エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物を含み、熱可塑性樹脂器材の表面をコーティングすることにより該熱可塑性樹脂器材への疎水性化合物及び親水性化合物の双方の吸着を抑制する、熱可塑性樹脂製器材用のコーティング剤を提供する。

Description

熱可塑性樹脂製器材用のコーティング剤
 本発明は、熱可塑性樹脂製器材用のコーティング剤に関する。
 近年の分析手法の高感度化により、極めて低濃度の対象化合物の定量分析が可能となっている。一般的に、定量分析手法の許容精度は、±15%以内とされているが(非特許文献1)、定量分析における測定値は分析における誤差などを含む値であることから、対象化合物の分析器材への非特異的吸着は極力抑制される必要があり、この非特異的吸着が精度悪化の1つの要因となっている。
 定量分析の対象化合物の分析器材への吸着を抑制する方法としては、対象化合物を溶解する溶液のpHを最適化することが一般的であるが、親水性化合物の場合には、プラスチック等の樹脂製器材を用いてメタノール等の親水性有機溶媒を使用すること、疎水性化合物の場合には、ガラス製器材を使用すること、が効果的であるとされている。
 また、樹脂製器材を用いて疎水性化合物あるいは細胞や酵素等の生物学的材料を定量分析する必要がある場合には、紫外線照射、プラズマ処理若しくはオゾン処理を行うことによって樹脂製器材の表面に水酸基又はカルボキシル基を導入する方法や、樹脂製器材の表面を親水性高分子で表面をコーティングする方法によって、分析対象の非特異的吸着を抑制する方法が知られている(特許文献1~6)。
特許第1385695号公報 特開平10-101820号公報 特開2000-346765号公報 特開2005-270706号公報 特開2006-131823号公報 特開2008-107310号公報
Shahら、Pharm. Res.、1992年、第9巻、p.588-592
 しかしながら、上記の特許文献1~6に記載の方法では、親水性化合物及び親水基を有する疎水性化合物の非特異的吸着を抑制することはできず、むしろ、これらの化合物の有する官能基の種類によっては、非特異的吸着を増加させてしまうのが現状である。また、分析対象の物理的性質が不明な段階では、非特異的吸着を抑制するために疎水性化合物に適した手法を採用すべきか、親水性化合物に適した手法を採用すべきかの判断ができず、分析対象が細胞や酵素等の生物学的材料の場合には、pHの最適化や親水性有機溶媒の使用が制限されるのが現状である。
 このため、親水性化合物、疎水性化合物、生物学的材料のいずれの分析対象であっても非特異的吸着を効果的に抑制できる共通の技術が切望されている。
 そこで本発明は、親水性化合物、疎水性化合物及び生物学的材料の熱可塑性樹脂製器材への非特異的吸着を抑制し、広範囲の分析対象に対して精度を高めた定量分析を実現することを目的としている。
 上記課題を解決するために鋭意研究を重ねた結果、本発明者らは、疎水性化合物及び親水性化合物の双方の吸着を抑制する熱可塑性樹脂製器材用のコーティング剤を見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の(1)~(7)に記載した熱可塑性樹脂製器材用のコーティング剤、疎水性化合物及び親水性化合物の双方の吸着を抑制する方法及び熱可塑性樹脂製器材のコーティング方法を提供する。
(1) エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物を含み、熱可塑性樹脂器材の表面をコーティングすることにより該熱可塑性樹脂器材への疎水性化合物及び親水性化合物の双方の吸着を抑制する、熱可塑性樹脂製器材用のコーティング剤。
(2) 上記ケイ素化合物は、下記の一般式(I)で示される化合物である、上記(1)記載のコーティング剤。
Figure JPOXMLDOC01-appb-C000002
[式中、R及びRは、それぞれ独立して水素原子、メチル、エチル又はアセチルを表し、Rは、グリシドキシプロピル、3,4-エポキシシクロヘキシルエチル、メタクリロキシプロピル又はアクリロキシプロピルを表し、xは、0~2の整数を表す。]
(3) 上記熱可塑性樹脂製器材は、ポリスチレン製器材である、上記(1)又は(2)記載のコーティング剤。
(4) 上記熱可塑性樹脂製器材は、細胞培養用プレート又はコニカルチューブである、上記(1)~(3)のいずれかに記載のコーティング剤。
(5) 上記(1)~(4)のいずれかに記載のコーティング剤で表面がコーティングされた、熱可塑性樹脂製器材。
(6) 上記(1)~(4)のいずれかに記載のコーティング剤で表面をコーティングする、熱可塑性樹脂器材への疎水性化合物及び親水性化合物の双方の吸着を抑制する方法。
(7) エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物を加水分解して、シラノール基を有するケイ素化合物を得る加水分解ステップと、熱可塑性樹脂製器材の熱可塑性樹脂に水酸基又はカルボキシル基を導入する導入ステップと、上記ケイ素化合物のシラノール基を上記熱可塑性樹脂の水酸基又はカルボキシル基と反応させ、かつ、上記ケイ素化合物を相互に重合させて、該熱可塑性樹脂器材の表面をコーティングするコーティングステップと、を備える、熱可塑性樹脂製器材のコーティング方法。
 本発明によれば、疎水性化合物、親水性化合物及び生物学的材料の熱可塑性樹脂製器材への非特異的吸着を抑制することが可能となり、広範囲の分析対象であっても精度を高めた定量分析を実現できる。また本発明によれば、物理的性質が不明な分析対象であっても、分析対象が親水性化合物であるか疎水性化合物であるかを予備検討することなく、熱可塑性樹脂製器材への非特異的吸着を抑制できる。
被検サンプルC(比較例2)に対する、各分析対象化合物の吸着率の経時変化を示す図である。 被検サンプルA~E(実施例1及び比較例1~4)それぞれに対する、各分析対象化合物の平均吸着率を示す図である。 被検サンプルA及びF~J(実施例1及び比較例5~9)それぞれに対する、各分析対象化合物の平均吸着率を示す図である。 被検サンプルK及びL(比較例10及び実施例2)に対する、各分析対象化合物の平均吸着率を示す図である。 被検サンプルF(比較例5)及び被検サンプルL~O(実施例2~5)に対する、タキソール及びベラパミルの平均吸着率を示す図である。
 本発明の熱可塑性樹脂製器材用のコーティング剤は、エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物を含み、熱可塑性樹脂器材の表面をコーティングすることにより、該熱可塑性樹脂器材への疎水性化合物及び親水性化合物の双方の吸着を抑制することを特徴としている。
 また本発明の熱可塑性樹脂製器材は、上記のコーティング剤で表面がコーティングされていることを特徴とし、本発明の熱可塑性樹脂器材への疎水性化合物及び親水性化合物の双方の吸着を抑制する方法は、上記のコーティング剤で表面をコーティングすることを特徴としている。
 ここで、「エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物」としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリメトキシシランが挙げられる。
 上記コーティング剤の調製に用いる溶媒は特に限定されないが、コーティングする熱可塑性樹脂製器材と反応せず、コーティング後の揮発が容易である観点から、水、メチルアルコール若しくはエチルアルコール又はこれらの混合液であることが好ましい。
 上記コーティング剤中の両親媒性のケイ素化合物濃度は、均一なコーティングをする観点から、0.1~4.0%(v/v)であることが好ましく、0.5~2.0%(v/v)であることがより好ましい。
 「熱可塑性樹脂器材」の材質は特に限定されないが、器材表面への両親媒性のケイ素化合物の結合を促進する観点から、器材表面に水酸基及びカルボキシル基等の親水基が導入し易いポリスチレンが好ましい。もし、熱可塑性樹脂器材の表面が不活性の場合には、公知のオゾン酸化法(特願平8-258332号公報)又はUV処理法(J.Plasma Fusion Res.、2005年、p.1012-1015)に基づいて予め表面処理を施し、熱可塑性樹脂器材の表面に親水基を導入しておけばよい。
 「熱可塑性樹脂器材」の形状としては、例えば、ピペット、チップ、保存容器、希釈容器、反応容器、送液チューブが挙げられるが、分析対象化合物との接触時間が比較的長い観点から、保存容器又は反応容器が好ましく、細胞培養用プレート又はコニカルチューブがより好ましい。
 上記の熱可塑性樹脂製器材用のコーティング剤は、上記の両親媒性のケイ素化合物が下記の一般式(I)で示される化合物であることを特徴としている。
Figure JPOXMLDOC01-appb-C000003
[式中、R及びRは、それぞれ独立して水素原子、メチル、エチル又はアセチルを表し、Rは、グリシドキシプロピル、3,4-エポキシシクロヘキシルエチル、メタクリロキシプロピル又はアクリロキシプロピルを表し、xは、0~2の整数を表す。]
 R及びRとしては、適度な疎水性、安定性及び加水分解の容易性を有する観点から、メチル又はエチルが好ましい。また、上記コーティング剤の調製に際しては、Rを加水分解してシラノール基を生じさせる観点から、酸を添加することが好ましい。
 添加する酸としては、コーティングする熱可塑性樹脂製器材と反応せず、コーティング後の揮発が容易である酸が好ましく、酢酸が特に好ましい。
 上記コーティング剤中の酢酸濃度は、pHをコーティング剤の安定性向上のために3.0~5.0の範囲に調整する観点から、0.1~2.0%(v/v)が好ましい。
 なお、調製後のコーティング剤は、時間の経過とともに重合し、ゲル化等の不都合が生じることから、調製後1日以内に使用することが好ましい。
 本発明の熱可塑性樹脂製器材のコーティング方法は、エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物を加水分解して、シラノール基を有するケイ素化合物を得る加水分解ステップと、熱可塑性樹脂製器材の熱可塑性樹脂に水酸基又はカルボキシル基を導入する導入ステップと、上記ケイ素化合物のシラノール基を、上記熱可塑性樹脂の水酸基又はカルボキシル基と反応させ、かつ、相互に重合させて、該熱可塑性樹脂器材の表面をコーティングするコーティングステップと、を備えることを特徴としている。
 上記導入ステップにより得られた熱可塑性樹脂製器材と、上記加水分解ステップにより得られたコーティング剤との接触時間、すなわち、コーティングステップにおける、ケイ素化合物のシラノール基を熱可塑性樹脂の水酸基又はカルボキシル基と反応させる時間は、接触時間が短いとコーティングが不均一となる一方で、長すぎると器材表面にシリカゲル層が形成されて吸着能が増加するため、1~360分が好ましく、30~120分がより好ましい。
 ここで、熱可塑性樹脂製器材が上記導入ステップを経ていない場合、すなわち、熱可塑性樹脂に水酸基又はカルボキシル基が導入されていない場合は、上記接触時間を延長することにより本発明の効果を得ることができる。この場合には、上記接触時間は、120~360分であることが好ましい。
 コーティングステップにおけるシラノール基を介した上記ケイ素化合物の重合は、加熱により促進され、加熱温度としては、熱可塑性樹脂製器材の耐熱性の観点から、50~150℃が好ましく、70~120℃がより好ましい。
 上記のコーティング剤等の吸着抑制効果を評価するための分析対象化合物としては、水への溶解度が1mg/mLを超える親水性化合物(例えば、メトトレキセート及びクロロキン)や水への溶解度が0.1mg/mL未満でLogP(o/w)が3を超える疎水性化合物(例えば、タキソール、プロプラノロール及びベラパミル)が挙げられる。
 以下、本発明の熱可塑性樹脂製器材用のコーティング剤について、実験例により具体的に説明する。
(実施例1)
 3-グリシドキシプロピルトリメトキシシラン(KBM-403;信越化学工業株式会社)0.5mL及び酢酸49.5mL(3-グリシドキシプロピルトリメトキシシラン濃度は1%(v/v))を室温で1時間攪拌して3-グリシドキシプロピルトリメトキシシランを加水分解したコーティング剤を、市販の96 wellポリスチレン製細胞培養用マイクロプレート(3860-096;IWAKI)の各ウエルに400μLずつ入れて室温で1分放置して、その後コーティング剤を排出した。コーティング剤排出後の96 wellポリスチレン製細胞培養用マイクロプレートは60℃で1時間乾燥し、さらに室温で1日乾燥して、被検サンプルAを得た。
(比較例1)
 何ら処理をしていない市販のガラスバイアル(500-7965;TOMSIC)を、被検サンプルBとした。
(比較例2)
 何ら処理をしていない上記の96 wellポリスチレン製細胞培養用マイクロプレートを、被検サンプルCとした。
(比較例3)
 3-グリシドキシプロピルトリメトキシシランに代えてビニルトリメトキシシラン(KBM-1003;信越化学工業株式会社)を用いた以外は、実施例1と同様の操作を行い、被検サンプルDを得た。
(比較例4)
 3-グリシドキシプロピルトリメトキシシランに代えてN-2-(アミノメチル)-3-アミノプロピルトリメトキシシラン(KBM-603;信越化学工業株式会社)を用いた以外は、実施例1と同様の操作を行い、被検サンプルEを得た。
(被検サンプルA~Eの吸着特性評価)
 被検サンプルA、C、D及びEの5つのウエル又は5本の被検サンプルBに、予め冷蔵庫内で冷却しておいたメトトレキセート、タキソール、プロプラノロール、ベラパミル、クロロキンの各分析対象化合物水溶液(いずれも濃度は2μmol/L)をそれぞれ200μLずつ入れて、10℃に設定したオートサンプラー内で保存し、全ての分析対象化合物水溶液について保存開始時及び保存開始から1時間毎に、計5回のHPLC分析をした。HPLC分析条件は、以下の通りである。なお、検出UV波長とグラジエントタイムプログラムについては分析対象化合物により異なるため、それらを表1にまとめた。
・カラム:Capcell PAK MG-II、5μm、2.0×50mm(資生堂)
・カラム温度:40℃
・移動相A:0.08 vol%トリフルオロ酢酸水溶液
・移動相B:アセトニトリル
・流速:0.6mL/min
・注入量:40μL
Figure JPOXMLDOC01-appb-T000004
 各回の分析における分析対象化合物のピーク面積値から、下式に基づき分析対象化合物の吸着率を算出した。
 
分析対象化合物の吸着率(%)=各回分析の分析対象化合物ピーク面積値/保存開始時分析の分析対象化合物ピーク面積値×100
 
 被検サンプルCに対する、各分析対象化合物の吸着率の経時変化を図1に示す。保存開始時から2時間後には、各分析対象化合物の吸着率がほぼ平衡に達していると判断可能であり、他の被検サンプルについても被検サンプルCと同様の吸着率の経時変化が観察されたことから、保存開始後2時間目、3時間目及び4時間目の3つの吸着率の平均値を求め、この値を平均吸着率(%)とすることにした。
 各分析対象化合物について、被検サンプルA~Eそれぞれに対する平均吸着率を図2に示す。
 被検サンプルBは、クロロキンのみに高い平均吸着率を示した。これは、親水性で負電荷を有するガラス表面に対し、親水性で正電荷を有するクロロキンが強く吸着したためであると推定される。
 被検サンプルCは、メトトレキセート以外の化合物全てに高い平均吸着率を示した。ポリスチレン製細胞培養用マイクロプレートは、細胞の付着を容易にする目的で、その表面に親水性で負電荷を有する水酸基又はカルボン酸基が導入されているため、ガラスと同様にクロロキンを吸着したと推定される。その一方で、これら親水基は表面全体に導入されたものではないため、ポリスチレンとの疎水的相互作用により、疎水性化合物のタキソールが吸着したと推定される。さらには、上記親水基の導入及び上記疎水的相互作用の相乗効果により、プロプラノロール及びベラパミルも高い平均吸着率を示したと推定される。
 被検サンプルDは、タキソール、プロプラノロール及びベラパミルについて高い平均吸着率を示した。これは、ポリスチレン製細胞培養用マイクロプレート表面に導入された親水基と、ビニルトリメトキシシランの加水分解により生じたシラノール基が縮合することによって、上記親水基の吸着能が抑制されたものの、ビニル基が露出して疎水的相互作用が増加したポリスチレン表面に対し、タキソール等が強く吸着したためであると推定される。
 被検サンプルEは、メトトレキセートのみに高い平均吸着率を示した。これは、被検サンプルDと同様の親水基の吸着能抑制に加え、正電荷を有するアミノ基の作用により正電荷を有する分析対象化合物の吸着をも抑制した一方で、負電荷を持つメトトレキセートが強く吸着することになったものと推定される。
 上記の被検サンプルB~Eに対し、被検サンプルAは、疎水性化合物又は親水性化合物の別に関わらず全ての分析対象化合物の平均吸着率が10%未満であって、低濃度分析対象化合物の高精度な定量分析を達成する手段として好適であることは明らかである。これは、ポリスチレン表面に親水基であるグリシド基が露出して疎水的相互作用を減少させる一方で、グリシド基は水中で容易にイオン化せず、かつ負電荷も弱いため、電荷を有する化合物を含む、親水性化合物の吸着をも抑制するためと推定される。
(比較例5)
 何ら処理をしていない市販の低吸着分析器材(Plate+;TOMSIC)を、被検サンプルFとした。
(比較例6)
 何ら処理をしていない市販の低吸着分析器材(スミロンプロテオセーブ(登録商標);住友ベークライト)を、被検サンプルGとした。
(比較例7)
 何ら処理をしていない市販の低吸着分析器材(Multichem;Whatman)を、被検サンプルHとした。
(比較例8)
 何ら処理をしていない市販の低吸着分析器材(Gentest Enhanced Recovery Plate;BD)を、被検サンプルIとした。
(比較例9)
 何ら処理をしていない市販の低吸着分析器材(NoBinding Plate;グライナー・ジャパン)を、被検サンプルJとした。
(被検サンプルA及びF~Jの吸着特性評価)
 被検サンプルA及びF~Jについて、上記(被検サンプルA~Eの吸着特性評価)と同様の評価を行った。結果を図3に示す。
 市販の低吸着分析器材の中で、全ての分析対象化合物の平均吸着率が10%未満であるものはなかった。これは、市販の低吸着分析器材の多くは、プラスチック表面に親水基が導入されているものの、これら親水基は表面全体に導入されたものではないため、プラスチックとの疎水的相互作用による疎水性化合物の吸着を効果的に抑制できないためであると推定される。
 一方で、被検サンプルAは上述のように疎水性化合物又は親水性化合物の別に関わらず全ての分析対象化合物の平均吸着率が10%未満であって、低濃度分析対象化合物の高精度な定量分析を達成する手段として好適であることは明らかである。
(比較例10)
 表面処理を施していない市販の96 wellポリスチレン製マイクロプレート(3860-096;グライナー・ジャパン)を、被検サンプルKとした。
(実施例2)
 96 wellポリスチレン製細胞培養用マイクロプレートに代えて表面処理を施していない96 wellポリスチレン製マイクロプレートを用いた以外は、実施例1と同様の操作を行い、被検サンプルLを得た。
(実施例3)
 コーティング剤を各ウエルに入れた後の放置時間を1分から60分に延長した以外は、実施例2と同様の操作を行い、被検サンプルMを得た。
(実施例4)
 コーティング剤を各ウエルに入れた後の放置時間を1分から90分に延長した以外は、実施例2と同様の操作を行い、被検サンプルNを得た。
(実施例5)
 コーティング剤を各ウエルに入れた後の放置時間を1分から120分に延長した以外は、実施例2と同様の操作を行い、被検サンプルOを得た。
(被検サンプルK~Oの吸着特性評価)
 被検サンプルK及びLについて、上記(被検サンプルA~Eの吸着特性評価)と同様の評価を行った。結果を図4に示す。
 また、被検サンプルF及び被検サンプルL~Oについて、上記(被検サンプルA~Eの吸着特性評価)と同様の評価を行い、分析対象化合物がタキソール又はベラパミルの場合のコーティング時間と平均吸着率との関係を調査した。結果を図5に示す。
 被検サンプルKは、タキソールに極めて高い平均吸着率を示し、ベラパミルにも一定の平均吸着率を示した。これは、疎水性が強いポリスチレン表面に対し、疎水性のタキソール及びベラパミルが吸着し、中でも電荷を有しないタキソールが特に強く吸着したためであると推定される。
 実施例1と同様のコーティングをした被検サンプルLは、ベラパミルに一定の平均吸着率を示した。これは、表面処理を施していないポリスチレン表面にもある程度の親水基が存在するものの、表面処理を施したポリスチレンに比べてその数が少ないことから、3-グリシドキシプロピルトリメトキシシランの加水分解の結果生じたシラノール基が、親水基と反応することなく露出しているためであると推定される。
 一方で、コーティング時間を延長した被検サンプルM~Oは、タキソール及びベラパミルのいずれについても平均吸着率が10%未満であって、中でもタキソールについては、各分析対象化合物の平均吸着率が総合的に低かった市販の低吸着分析器材である被検サンプルFを下回る平均吸着率を示した。これらの結果から、本発明はコーティング時間を適宜調節することにより表面処理を施していない熱可塑性樹脂製器材についても疎水性化合物及び親水性化合物の双方の吸着を抑制することが可能であり、低濃度分析対象化合物の高精度な定量分析を達成する手段として好適であることは明らかである。
 本発明は、分析分野、特に器材表面に対する分析対象化合物の吸着が問題視される低濃度試料分析におけるピペット、チップ、保存容器、希釈容器、反応容器又は送液チューブ等に使用することができる。

Claims (7)

  1.  エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物を含み、熱可塑性樹脂器材の表面をコーティングすることにより該熱可塑性樹脂器材への疎水性化合物及び親水性化合物の双方の吸着を抑制する、熱可塑性樹脂製器材用のコーティング剤。
  2.  前記ケイ素化合物は、下記の一般式(I)で示される化合物である、請求項1記載のコーティング剤。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R及びRは、それぞれ独立して水素原子、メチル、エチル又はアセチルを表し、Rは、グリシドキシプロピル、3,4-エポキシシクロヘキシルエチル、メタクリロキシプロピル又はアクリロキシプロピルを表し、xは、0~2の整数を表す。]
  3.  前記熱可塑性樹脂製器材は、ポリスチレン製器材である、請求項1又は2記載のコーティング剤。
  4.  前記熱可塑性樹脂製器材は、細胞培養用プレート又はコニカルチューブである、請求項1~3のいずれか一項記載のコーティング剤。
  5.  請求項1~4のいずれか一項記載のコーティング剤で表面がコーティングされた、熱可塑性樹脂製器材。
  6.  請求項1~4のいずれか一項記載のコーティング剤で表面をコーティングする、熱可塑性樹脂器材への疎水性化合物及び親水性化合物の双方の吸着を抑制する方法。
  7.  エポキシ基、エーテル基、メタクリレート基又はアクリレート基を有する両親媒性のケイ素化合物を加水分解して、シラノール基を有するケイ素化合物を得る加水分解ステップと、
     熱可塑性樹脂製器材の熱可塑性樹脂に水酸基又はカルボキシル基を導入する導入ステップと、
     前記ケイ素化合物のシラノール基を前記熱可塑性樹脂の水酸基又はカルボキシル基と反応させ、かつ、前記ケイ素化合物を相互に重合させて、該熱可塑性樹脂器材の表面をコーティングするコーティングステップと、
    を備える、熱可塑性樹脂製器材のコーティング方法。
PCT/JP2010/053064 2009-02-27 2010-02-26 熱可塑性樹脂製器材用のコーティング剤 WO2010098436A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010509610A JPWO2010098436A1 (ja) 2009-02-27 2010-02-26 熱可塑性樹脂製器材用のコーティング剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-045559 2009-02-27
JP2009045559 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098436A1 true WO2010098436A1 (ja) 2010-09-02

Family

ID=42665640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053064 WO2010098436A1 (ja) 2009-02-27 2010-02-26 熱可塑性樹脂製器材用のコーティング剤

Country Status (2)

Country Link
JP (1) JPWO2010098436A1 (ja)
WO (1) WO2010098436A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069426A (ja) * 2000-08-28 2002-03-08 Toppan Printing Co Ltd 低屈折率組成物およびその組成物からなる光学多層膜
JP2007003755A (ja) * 2005-06-23 2007-01-11 Dainippon Printing Co Ltd パターン形成体およびその製造方法
WO2007046357A1 (ja) * 2005-10-18 2007-04-26 Catalysts & Chemicals Industries Co., Ltd. ハードコート層形成用組成物および光学レンズ
JP2007312736A (ja) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd 細胞培養用基板
JP2008098583A (ja) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
WO2008060321A2 (en) * 2006-04-06 2008-05-22 Ppg Industries Ohio, Inc. Abrasion resistant coating compositions and coated articles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069426A (ja) * 2000-08-28 2002-03-08 Toppan Printing Co Ltd 低屈折率組成物およびその組成物からなる光学多層膜
JP2007003755A (ja) * 2005-06-23 2007-01-11 Dainippon Printing Co Ltd パターン形成体およびその製造方法
WO2007046357A1 (ja) * 2005-10-18 2007-04-26 Catalysts & Chemicals Industries Co., Ltd. ハードコート層形成用組成物および光学レンズ
WO2008060321A2 (en) * 2006-04-06 2008-05-22 Ppg Industries Ohio, Inc. Abrasion resistant coating compositions and coated articles
JP2007312736A (ja) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd 細胞培養用基板
JP2008098583A (ja) * 2006-10-16 2008-04-24 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法

Also Published As

Publication number Publication date
JPWO2010098436A1 (ja) 2012-09-06

Similar Documents

Publication Publication Date Title
Bertolla et al. Solvent-responsive molecularly imprinted nanogels for targeted protein analysis in MALDI-TOF mass spectrometry
Hosseini et al. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices
JP6982023B2 (ja) ポリマー基板にコーティングを適用するための方法
JP4821444B2 (ja) バイオアッセイ用高分子化合物およびこれを用いたバイオアッセイ用基材
Yang et al. Construction of MoS 2 field effect transistor sensor array for the detection of bladder cancer biomarkers
Fukazawa et al. Reduction of non-specific adsorption of drugs to plastic containers used in bioassays or analyses
JP5365623B2 (ja) 生理活性物質の固定化方法
JP6108805B2 (ja) レーザー脱離イオン化質量分析法
Sidiropoulou et al. Combination of fabric phase sorptive extraction with UHPLC-ESI-MS/MS for the determination of adamantine analogues in human urine
CN102788833B (zh) 一种检测低丰度低分子量蛋白谱的试剂盒
Nacham et al. Analysis of bacterial plasmid DNA by solid-phase microextraction
Kostelic et al. Surface modified nano-electrospray needles improve sensitivity for native mass spectrometry
US20220280909A1 (en) Sorbent particles for sample treatment
WO2010098436A1 (ja) 熱可塑性樹脂製器材用のコーティング剤
Dou et al. Self-assembly of super-hydrophobic PMMA microspheres on silicon wafer as MALDI-MS chip for rapid quantification of peptides
Chen et al. A radiate microstructure MALDI chip for sample concentration and detection
EP3193171B1 (en) Use of a protein adsorption inhibitor and method for inhibiting protein adsorption
Liu et al. Enhancement of proteolysis through the silica‐gel‐derived microfluidic reactor
Wu et al. Liquid‐phase microextraction for rapid AP‐MALDI and quantitation of nortriptyline in biological matrices
CN104726559A (zh) 一种检测生物分子的方法
CN103554544B (zh) 一种生物功能化尼龙及其制备方法与应用
WO2012015029A1 (ja) 糖鎖アレイ
JP2008101928A (ja) アミノシラン被覆基材の製造方法およびアミノシラン被覆基材
JP2007155387A (ja) バイオチップおよびその使用方法
Choi et al. A Graphene-Coated Silicon Wafer Plate Improves the Sensitivity and Reproducibility of MALDI-TOF MS Analysis of Proteins

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010509610

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746315

Country of ref document: EP

Kind code of ref document: A1