WO2010098292A1 - 高強度高靱性薄肉鋼の製造方法及び熱処理装置 - Google Patents

高強度高靱性薄肉鋼の製造方法及び熱処理装置 Download PDF

Info

Publication number
WO2010098292A1
WO2010098292A1 PCT/JP2010/052651 JP2010052651W WO2010098292A1 WO 2010098292 A1 WO2010098292 A1 WO 2010098292A1 JP 2010052651 W JP2010052651 W JP 2010052651W WO 2010098292 A1 WO2010098292 A1 WO 2010098292A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
heating
steel
cooling
rapid
Prior art date
Application number
PCT/JP2010/052651
Other languages
English (en)
French (fr)
Inventor
藤田 悦則
小倉 由美
川崎 誠司
小島 重行
聡一 巻田
前田 茂
山根 秀之
誠也 吉田
Original Assignee
株式会社デルタツーリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デルタツーリング filed Critical 株式会社デルタツーリング
Priority to US13/202,991 priority Critical patent/US20120042994A1/en
Priority to EP10746173.3A priority patent/EP2402466B1/en
Publication of WO2010098292A1 publication Critical patent/WO2010098292A1/ja
Priority to US13/918,403 priority patent/US20140008847A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • C21D1/785Thermocycling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a manufacturing method and a heat treatment apparatus for high-strength, high-toughness thin steel, in which thin-walled low-carbon steel is heat-treated to produce high-strength, high-toughness thin-walled steel.
  • seat frames for transportation equipment such as automobiles and airplanes are strongly required to be lighter from the viewpoints of improving fuel efficiency and regulating carbon dioxide emissions. For this reason, it is necessary to increase the strength of steel materials forming the seat frame. ing.
  • the seat frame is required to have high toughness (including ductility) from the viewpoint of not only high strength but also shock absorption due to deformation.
  • high strength steel sheets disclosed in Patent Documents 1 to 3 are known as techniques that meet such requirements.
  • the high-strength steel sheets disclosed in these are all premised on controlling the addition amount of alloying elements other than carbon.
  • Mn, Mo, Cr, etc. are contained in a predetermined amount or more to obtain a predetermined hardness. To ensure ductility.
  • the heat treatment performed in the process before cold-rolling is hot-rolling the steel slab to a thickness of 3.2 mm. To do.
  • a steel sheet having a thickness of several millimeters or more is obtained, it is necessary to make the microstructure uniform in the steel sheet including the thickness direction in the heat treatment. Is an important element.
  • Patent Documents 4 to 5 disclose techniques for increasing the strength of ordinary low carbon steel.
  • Patent Document 4 since the hardenability of ordinary low carbon steel is poor in the previous technology, when martensite is used as the starting structure, a heterogeneous mixed grain structure is generated during annealing, and a predetermined high strength and high ductility are obtained. It was made in order to solve the problem that a steel material could not be obtained. For this reason, in Patent Document 4, after a normal low carbon steel is quenched to obtain a martensite phase of 90% or more, cold rolling and annealing with a total reduction of 20% or more and less than 80% are performed. An ultrafine grain ferrite structure of 0 ⁇ m or less is obtained.
  • Patent Document 5 is a technique proposed by the present applicant, and performs processing that increases internal stress such as press molding, and by heat treatment, the metal structure of the low-carbon steel is refined and mixed to increase the grain size. It is strengthened.
  • Patent Document 4 is a technique for obtaining desired strength and ductility by using ordinary low carbon steel as an acceptor for heat treatment. After the whole steel material is martensitic, it is cold-rolled and homogenized. It is necessary to make it finer. Accordingly, equipment having a rolling function is required, and there are problems in terms of equipment cost and manufacturing cost. As is clear from the fact that an ordinary low carbon steel material having a thickness of 2 mm is exemplified in the example of Patent Document 4, in order to increase the strength and ductility of a steel having a certain thickness, This is because uniform refinement in the sheet thickness direction is necessary, and therefore a cold rolling process under a predetermined condition after the martensite formation is essential.
  • thin-walled cold-rolled steel sheets having thicknesses of 1.2 mm and 1.0 mm and hot-rolled steel sheets are heat-treated to be refined and strengthened, but in terms of toughness. There is room for further improvement.
  • the present invention has been made in view of the above, and provides a technique suitable for increasing the strength and toughness of thin-walled low-carbon steel, which is ordinary steel on the processing manufacturer side, while being low cost and excellent in recyclability. Let it be an issue.
  • the present inventor has a high heat capacity because it is a thin-walled low-carbon steel, which is a normal steel having a thickness of 1.2 mm or less, and is easy to be rapidly heated and cooled rapidly.
  • the mixed grain structure in which crystal grains having different particle diameters formed by rapid heating and rapid cooling are mixed preferably contains a hard phase structure having a hardness higher than those in addition to such a mixed grain structure.
  • strength and toughness are balanced at a high level even if they do not contain fine crystal grains of 1 ⁇ m or less at a high rate like thick steel, or even if they are not homogenized in the thickness direction. We paid attention to the fact that steel was obtained.
  • the present inventor in thin-walled low carbon steel, in order to obtain a mixed grain structure having different crystal grain diameters as described above, rapid heating and rapid cooling are performed without requiring a cold rolling step after heat treatment. It was noticed that it is effective to carry out the accompanying heat treatment step a plurality of times.
  • the manufacturing method of the high strength and high toughness thin steel of the present invention is a method of manufacturing a high strength and high toughness thin steel by heat-treating a steel material, and has a thickness of 1 as the steel material that is a heat treatment receiving material.
  • a thin low carbon steel which is a normal steel processed to be 2 mm or less
  • the thin low carbon steel is rapidly heated and then rapidly cooled to obtain a martensite structure, and the thin wall shape obtained through the first step.
  • the thin-walled low carbon steel is heated to 1000 ° C. at a rate of 300 ° C./second or more.
  • the process of rapid heating to above and 900 ° C or higher Followed by a rapid cooling at a rate of 300 ° C./second or higher after being held within 10 seconds, and in the second step, after the cooling in the first step, rapid heating to 700 ° C. or higher at a rate of 300 ° C./second or higher. And a step of holding at 600 ° C. or higher for 10 seconds or less and then rapidly cooling at a rate of 300 ° C./second or higher.
  • the rapid heating in the first step and the rapid heating in the second step are preferably performed by high frequency induction heating.
  • the rapid heating in the first step and the rapid heating in the second step can be performed by laser heating.
  • the processing in the first step and the second step can be performed a plurality of times.
  • the thin low-carbon steel preferably has a C content of 0.01 to 0.12% by mass, with the balance being iron and inevitable impurities.
  • rapid heating is performed until reaching a temperature in a range of 1000 ° C. to 1250 ° C.
  • a temperature ranging from 750 ° C. to 1050 ° C. is achieved. Rapid heating is preferred.
  • the heat treatment apparatus for processing the thin-walled carbon steel includes a first heating unit that performs a rapid heating process in the first step, a first cooling unit that performs a rapid cooling process in the first step, and a rapid heating in the second step. And a second cooling unit that performs a rapid cooling process in the second step, and the thin-walled low carbon steel includes the first heating unit, the first cooling unit, and the first cooling unit. It is preferable that the two heating units and the second cooling unit sequentially process.
  • the first heating unit and the second heating unit are combined with one heating unit having a predetermined length in the moving direction, and the cooling process in the first step and the cooling process in the second step Can be applied to the thin-walled low-carbon steel to be treated from opposite sides.
  • the thin low carbon steel is pipe-shaped, it is preferable to perform the treatment while rotating the thin low carbon steel.
  • the steel material that is a heat treatment receiving material is a thin low carbon steel having a thickness of 1.0 mm or less, and the steel material that is a heat treatment receiving material is a thin low carbon steel having a thickness of 0.8 mm or less.
  • the steel material as a heat-receiving material is a thin low-carbon steel having a thickness of 0.5 mm or less.
  • the heat treatment apparatus of the present invention uses a thin low carbon steel, which is a normal steel processed to a thickness of 1.2 mm or less, as the steel material that is a heat treatment receiving material, and rapidly cools the thin low carbon steel after rapid heating. Then, a first step of obtaining a martensite structure, and a second step of rapidly cooling the thin-walled low-carbon steel that has undergone the first step again to a temperature lower than the temperature at the time of rapid heating in the first step, followed by rapid cooling.
  • the cooling part is arranged in order Said first heating portion, the first cooling unit, the second heating unit and the second cooling unit, characterized in that is provided to be moved relative to the workpiece support.
  • the heat treatment apparatus of the present invention includes one heating unit having a predetermined length in the moving direction, a first cooling unit disposed on the opposite side of the heating unit across the workpiece, and the workpiece interposed And a second cooling unit disposed on the same side as the heating unit or the same side as the first cooling unit with a predetermined interval rearward in the movement direction with respect to the heating unit or the first cooling unit.
  • the heating part has a length in which the vicinity of the front part corresponds to the first cooling part and the vicinity of the rear part extends rearward in the movement direction with respect to the first cooling part.
  • the vicinity of the part combines the function of the first heating unit that performs the rapid heating of the first step and the function of the second heating unit that performs the rapid heating of the second step near the rear of the heating unit. It is characterized by being.
  • the second cooling unit is disposed on the same side as the heating unit.
  • it can be set as the structure with which the said workpiece
  • each said heating part is provided with the coil which performs high frequency induction heating, and it can also be set as the structure which comprises each said heating part with the laser which performs laser heating.
  • the thin-walled low-carbon steel which is a normal steel having a thickness of 1.2 mm or less, is subjected to rapid heating and rapid cooling so that the microstructure is homogeneous. Rather, a mixed grain structure in which crystal grains having different particle sizes are mixed is obtained, and preferably, a mixed grain structure is included in addition to the mixed grain structure, resulting in a thin, low strength, high strength, high toughness Carbon steel is obtained.
  • FIG. 1A is a diagram illustrating an example of a schematic configuration of a high-frequency induction heating device
  • FIG. 1B is a diagram illustrating a schematic configuration of a preferable example of the high-frequency induction heating device
  • FIG. ) Is a diagram showing a schematic configuration of a high-frequency induction heating apparatus that has one heating section that performs rapid heating in the first step and the second step, and that performs rapid cooling treatment from both surfaces of the workpiece.
  • FIG. 2 is a diagram showing the temperature conditions of the processing conditions (A) and (B) in Test Example 1.
  • 3A to 3C are electron micrographs of the microstructures of Samples 1 to 3 processed under the processing conditions (A) and (B) of Test Example 1.
  • FIG. 4 is a diagram showing the temperature condition of the processing condition (C) in Test Example 2.
  • FIG. 5 is an electron micrograph of the microstructure of Sample 1 processed under the processing conditions (C) in Test Example 2.
  • 6A is an electron micrograph of the microstructure of the material of Sample 1 and Sample 2
  • FIGS. 6B and 6C are Sample 1 processed in Comparative Example 1 (Comparative Sample 1).
  • 2 is an electron micrograph of each microstructure of Sample 2 (Comparative Sample 2).
  • FIG. 7 is a graph showing the relationship between the hardness (Hv) and the fractal dimension of Samples 1 to 3 processed in Test Example 1, Test Example 2, and Comparative Example 1.
  • FIG. 8 is a graph showing the relationship between the elongation at break and the fractal dimension of Samples 1 and 2 processed in Test Example 1, Test Example 2, and Comparative Example 1.
  • 9A and 9B are diagrams for explaining a measurement method of a bending test of Test Example 3.
  • FIG. 10 is a diagram showing the measurement results of the bending test of Test Example 3.
  • FIG. 11 is a diagram showing the measurement results of the tensile test of Test Example 4.
  • FIG. 12 is a diagram showing the measurement results of the tensile test of the pipe-shaped steel of Test Example 5.
  • the steel material used as a receiving material at the time of heat treatment is a commercially available ordinary steel, which is thin and low carbon (hereinafter referred to as “thin low carbon steel”). ).
  • thin low carbon steel an inexpensive and highly workable rolled steel plate used for an automobile seat frame or the like is suitable, and includes both a cold-rolled steel plate and a hot-rolled steel plate.
  • the thickness is 1.2 mm or less.
  • thicker steel in order to increase the strength and toughness, a large heat source and a large-scale cooling facility are required for rapid heating / cooling, and the homogeneity of crystal grains in the plate thickness direction.
  • a thin low carbon steel having a thickness of 1.0 mm or less is preferable.
  • a thin-walled low carbon steel having a thickness of 0.8 mm or less is more preferable, and a thin-walled low-carbon steel having a thickness of 0.5 mm or less is more preferable.
  • the thin-walled low-carbon steel may be a low-carbon steel having a carbon content of 0.01 to 0.3% and the balance being iron and inevitable impurities, but the carbon content is 0.01 to 0.12%. It is preferable to use an ultra-low carbon steel whose balance is iron and inevitable impurities. By using a cheaper material having a lower carbon content, the manufacturing cost of a seat frame or the like can be reduced. In addition, the present invention is limited to a thin wall, so that the strength can be increased even if the carbon content is low, and the balance with toughness can be achieved. Therefore, addition of an alloy element other than carbon is performed. It is not necessary and has excellent recyclability.
  • the thin low-carbon steel to be processed includes both plate-like and pipe-like ones.
  • the heat treatment of the thin-walled low carbon steel is preferably performed in the following two steps. That is, the first step of rapidly heating the thin-walled low-carbon steel and then rapidly cooling it to obtain a martensite structure, and the thin-walled low-carbon steel that has undergone the first step are rapidly abrupt again to a temperature that is lower than the temperature during the rapid heating in the first step. And a second step of rapid cooling after heating. In addition, it is also possible to repeat the process by the 1st process and 2nd process of thin wall low carbon steel in multiple times.
  • the thin low carbon steel is rapidly heated at a rate of 300 ° C./sec to 1000 ° C. or higher, preferably 1000 ° C. to 1250 ° C., and after the rapid heating, 900 ° C.
  • a step of holding within 10 seconds, preferably within 5 seconds, until the temperature is lowered to a temperature in the range of 1000 ° C. to 1100 ° C., and then rapidly cooling at a rate of 300 ° C./second or more. have.
  • rapid heating to the above temperature the metal structure of the thin-walled low-carbon steel is austenitized and a martensite structure is formed by rapid cooling, but the thin-walled low-carbon steel to be treated in the present invention has a thickness of 1.2 mm or less.
  • the so-called ultra-rapid heating and ultra-rapid cooling of 300 ° C./second or more can form a homogeneous martensite structure that is relatively free from coarsening.
  • the rapid heating rate and the rapid cooling rate are more preferably 500 ° C./second or more.
  • the second step after the cooling in the first step, rapid heating to a temperature of 700 ° C. or more, preferably to a temperature in the range of 750 ° C. to 1050 ° C. at a rate of 300 ° C./second or more; A step of holding within 10 seconds, preferably within 5 seconds, and then rapidly cooling at a rate of 300 ° C./second or more until the temperature is lowered to the above predetermined temperature, preferably 700 ° C. to 950 ° C. have.
  • the thin-walled low-carbon steel subjected to the first step is heat-treated again in the second step, it is preferably performed after the temperature is lowered to 200 ° C. or less by the rapid cooling in the first step. You may perform the heat processing in a 2nd process by another line, after lowering to lower temperature, for example, room temperature.
  • the rapid heating rate and the rapid cooling rate in the second step are more preferably 500 ° C./second or more, as in the first step.
  • the martensite structure is changed, and finally a different particle size of 1 ⁇ m or more and 30 ⁇ m or less (in this specification, “particle size” is “circle”
  • particle size is “circle”
  • the average grain size of the martensite obtained when the heat treatment for forming martensite is performed that is, the first grain size
  • a mixed grain structure in which crystal grains having different particle diameters smaller than the average grain diameter of martensite obtained when the heat treatment in the process is performed is obtained.
  • the mixed grain structure is preferably a structure formed by mixing crystal grains having a grain size of 1 ⁇ m or more and less than 5 ⁇ m and crystal grains having a grain size of 5 ⁇ m to 30 ⁇ m, and further, crystal grains having a grain size of 1 ⁇ m or more and less than 5 ⁇ m and 5 ⁇ m It is preferable that the crystal grains of ⁇ 20 ⁇ m are mixed.
  • partial elongation occurs due to the fact that the steel after the heat treatment has a mixed grain structure with different particle diameters instead of a homogeneous particle diameter, and thus has a high toughness. Steel is obtained.
  • a hard phase structure having a higher hardness than the mixed grain structure is dispersed in the mixed grain structure.
  • the mixed grain structure is a ferrite structure having a different particle diameter
  • island-shaped martensite having a particle diameter of 30 ⁇ m or less, preferably 20 ⁇ m or less is dispersed in the mixed grain structure.
  • the elongation at break is 1.5 times higher than the elongation at break when the thin low-carbon steel is subjected to heat treatment for forming martensite, that is, when heat treatment is performed in the first step.
  • a thin low-carbon steel having a strength and toughness of 5 times or more can be obtained.
  • the high-strength, high-toughness thin-walled steel obtained by the present invention is a mixed-grain structure of crystal grains having different particle sizes as described above, preferably a hard phase structure such as martensite in the mixed-grain structure. It is a distributed organization.
  • the present invention has obtained a thin-walled low carbon steel having high strength and toughness by such a structure control, the present inventor is able to define this microstructure from the viewpoint of the fractal dimension of the particle size. I found it.
  • the microstructure of the thin-walled low-carbon steel controlled by the heat treatment as in the present invention is the grain in the martensite obtained only by the heat treatment of the first step when the heat treatment for forming martensite is performed. It was higher than the fractal dimension of the diameter.
  • the “fractal dimension” is a scale representing the degree of complexity.
  • a high-frequency induction heating device as the heat treatment apparatus for performing the heat treatment in the first step and the second step.
  • the heating section of the high-frequency induction heating apparatus in the case of the induction heating apparatus, the coil constituting the induction heating section
  • the cooling section cooling water supply section for supplying cooling water
  • the moving speed of the heating section of the high-frequency induction heating apparatus (in the case of the induction heating apparatus, the coil constituting the induction heating section) and the cooling section are preferably set within a range of 30 mm / second, and more preferably 18 mm / second. It is more preferable to set within the range.
  • work titanium-wall low carbon steel
  • work support part when a workpiece
  • the workpiece support section has a gripping section that can grip the pipe-shaped workpiece, and the gripping section can be rotated. It is preferable that the configuration is as follows.
  • a device provided with a heating unit and a cooling water supply unit in order can be used.
  • the heating unit and the cooling water supply unit are only one set.
  • the heating unit is controlled to a predetermined temperature to function as the first heating unit (coil).
  • the cooling water supply unit is caused to function as a first cooling unit (cooling water supply unit).
  • the process of a 2nd process is again performed with the high frequency induction heating apparatus shown to Fig.1 (a).
  • the heating unit is controlled to a temperature lower than the processing in the first step to function as the second heating unit (coil), and the cooling unit is functioned as the second cooling unit (cooling water supply unit). It is something to process.
  • the high-frequency induction heating apparatus is not limited to the one provided with only one set of the heating unit and the cooling water supply unit, and the first step of performing the first process as shown in FIG. 1 heating part (coil) and 1st cooling part (1st cooling water supply part), 2nd heating part (coil) and 2nd cooling part (2nd cooling water supply part) which perform processing of the 2nd process It is preferable to adopt a configuration provided in order. According to the apparatus shown in FIG. 1B, the first process and the second process can be performed continuously, and the processing speed of the workpiece is improved.
  • the length of the heating unit (coil) along the moving direction is not less than a predetermined length, for example, a length of about 5 to 10 cm is used. It can be set as the structure which combined the 1st heating part in a process, and the 2nd heating part in a 2nd process. That is, this heating part is arranged on one side of the work (thin low carbon steel), and on the opposite side of the work, a cooling part (first cooling water) corresponding to the vicinity of the front part in the moving direction of the heating part. Supply section).
  • the vicinity of the front portion in the moving direction of the heating unit performs the rapid heating process of the first process, and the corresponding first cooling water supply unit performs the rapid cooling process of the first process.
  • the heating unit and the first cooling water supply unit move as a set.
  • the part where the rapid heating and the rapid cooling process of the first process are performed is rapidly heated again near the rear part of the heating part.
  • the rapid heating process of a 2nd process is performed.
  • the cooling unit (second cooling water supply unit) arranged at a predetermined interval behind the moving direction of the heating unit rapidly cools the portion rapidly heated by the vicinity of the rear part of the heating unit, and the rapid cooling process in the second step Is given. Therefore, when the long heating unit (coil) shown in FIG.
  • the rapid heating in the first step and the second step can be performed by one heating unit (coil).
  • a high-frequency induction heating device having an inexpensive structure can be obtained.
  • the 2nd cooling water supply part is arrange
  • the heating unit and the cooling water supply unit shown in FIG. 1 (a) use a set of high frequency induction heating devices, and after performing the first process by the heating unit and the cooling water supply unit, The sample was left to room temperature, and then the second process was performed using the same high-frequency induction heating apparatus.
  • the processing conditions were the following two conditions (A) and (B).
  • Processing conditions (A) ⁇ First step: (1) Moving speed of heating unit and cooling water supply unit: 800 mm / min (2) The coil of the heating unit was adjusted to 120A. When the heating part relatively approached, the sample gradually increased in temperature and preheated, but was rapidly heated from 400 ° C. to 1200 ° C. in about 1 second. Thereafter, the temperature is maintained for about 2.5 seconds until the temperature decreases to 1050 ° C., and then cooling water is supplied from the cooling water supply unit to rapidly cool down to about 200 ° C. in about 0.5 seconds (the solid line in the first step of FIG. 2). ).
  • Second step (1) Moving speed of heating unit and cooling water supply unit: 800 mm / min (2) After the sample was lowered to room temperature, it was set in the high frequency induction heating device again. The current passed through the coil of the heating unit was adjusted to 100 A, and after preheating and reaching 400 ° C., it was rapidly heated to 900 ° C. in about 0.5 seconds. The temperature is maintained for about 2.5 seconds until the temperature falls to 800 ° C., then cooling water is supplied from the cooling water supply unit to rapidly cool to 200 ° C. or less in about 0.5 seconds, and then left to reach room temperature (FIG. 2). Solid line in the first step).
  • Processing conditions (B) ⁇ First step: (1) Moving speed of heating unit and cooling water supply unit: 800 mm / min (2) The coil of the heating unit was adjusted to 120A. When the heating part relatively approached, the sample gradually increased in temperature and preheated, but was rapidly heated from 400 ° C. to 1200 ° C. in about 1 second. Thereafter, the temperature is maintained for about 2.5 seconds until the temperature decreases to 1050 ° C., and then cooling water is supplied from the cooling water supply unit to rapidly cool down to about 200 ° C. in about 0.5 seconds (the solid line in the first step of FIG. 2). ).
  • Second step (1) Moving speed of heating unit and cooling water supply unit: 1000 mm / min (2) After the sample had dropped to room temperature, it was set in the high frequency induction heating device again. The current passed through the coil of the heating unit was adjusted to 100 A, and after preheating and reaching 400 ° C., it was rapidly heated to 800 ° C. in about 0.5 seconds. The temperature is maintained for about 2.5 seconds until the temperature falls to 700 ° C., then cooling water is supplied from the cooling water supply unit to rapidly cool to 200 ° C. or less in about 0.5 seconds, and then left to reach room temperature (FIG. 2). Broken line in the second step).
  • FIG. 3A is an electron micrograph of the microstructure observed by cutting the vicinity of the center in the length direction of the sample 1 according to the processing conditions (A) and (B), and FIG. It is an electron micrograph of the microstructure observed by cutting the vicinity of the center in the length direction of the sample 2 according to (A) and (B) (Note that the microstructure of the material state of the samples 1 and 2 is shown in FIG. ) (See “Material” column)).
  • FIG. 3C is an electron micrograph of the microstructure observed by cutting near the center in the length direction of the sample 3 according to the processing conditions (A) and (B).
  • the sample 1 processed under the processing condition (A) has a mixed grain structure of a fine ferrite structure having a particle diameter of 1 ⁇ m or more and less than 5 ⁇ m and a ferrite structure having a particle diameter of 5 to 30 ⁇ m.
  • the mixed grain structure contained less than 5% of island martensite having a particle size of 30 ⁇ m or less.
  • the processing condition (B) in which the moving speed is faster than that in the processing condition (A) and the heating temperature in the second step is low, the fine ferrite structure and the particle diameter of 1 ⁇ m or more and less than 5 ⁇ m are used. It was a mixed grain structure with a ferrite structure of 5 to 20 ⁇ m, and the crystal grains were larger in the case of treatment condition (A).
  • the sample 2 treated under the treatment condition (A) is added to a mixed grain structure of a fine ferrite structure having a particle diameter of 1 ⁇ m or more and less than 5 ⁇ m and a ferrite structure having a particle diameter of 5 to 30 ⁇ m.
  • About 20% of island martensite having a particle size of 30 ⁇ m or less was contained.
  • the treatment condition (B) it was a mixed grain structure of a fine ferrite structure having a particle diameter of 1 ⁇ m or more and less than 5 ⁇ m and a ferrite structure having a particle diameter of 5 to 20 ⁇ m.
  • both of the processing conditions (A) and (B) have a mixed grain structure of a fine ferrite structure having a particle size of 1 ⁇ m or more and less than 5 ⁇ m and a ferrite structure having a particle size of 5 to 30 ⁇ m.
  • island martensite having a particle size of 30 ⁇ m or less was contained, but about 50 to 60% of island martensite was contained.
  • Test Example 2 The sample 1 was heat-treated by a high-frequency induction heating apparatus provided with a heating unit composed of a long coil having a length of 6 cm shown in FIG. 1C and first and second cooling water supply units.
  • the processing conditions are as shown in (C) below.
  • Processing conditions (C) ⁇ First step: (1) Movement speed of heating unit, first and second cooling water supply units: 800 mm / min (2) The coil of the heating unit was adjusted to 120A. When the heating part relatively approached, the sample gradually increased in temperature and preheated, but was rapidly heated from 400 ° C. to 1200 ° C. in about 1 second. Thereafter, the temperature is maintained for about 2.5 seconds until the temperature decreases to 1050 ° C., and then cooling water is supplied from the cooling water supply unit to rapidly cool down to about 200 ° C. in about 0.5 seconds (the solid line of the first step in FIG. 4). ).
  • Second step (1) The moving speed of the heating unit, first and second cooling water supply units: 1000 mm / min (2) The current flowing through the coil of the heating unit is adjusted to 90 A, and the sample 1 that has become approximately 200 ° C. is heated to the heating unit The rear part was rapidly heated to 800 ° C. in about 0.5 seconds. The temperature is maintained for about 2.5 seconds until the temperature falls to 700 ° C., then cooling water is supplied from the second cooling water supply unit to rapidly cool to 200 ° C. or less in about 0.5 seconds, and then left to reach room temperature (FIG. 4 solid line of the second step).
  • FIG. 5 is an electron micrograph of the microstructure observed by cutting near the center in the length direction of the sample 1 under the processing condition (C).
  • FIG. 5 shows that the sample 1 treated under the treatment condition (C) has a grain size of 5 to 5 in addition to a mixed grain structure of a fine ferrite structure having a grain size of 1 ⁇ m or more and less than 5 ⁇ m and a ferrite structure having a grain size of 5 to 20 ⁇ m. About 20% of island-like martensite of about 10 ⁇ m was formed.
  • the treatment conditions are as follows: rapid heating to 1200 ° C. by the heating unit (coil) and then rapid cooling by the cooling water supply unit (heat treatment 1); rapid heating to 900 ° C. by the heating unit (coil); Was tested for the case of rapid cooling (heat treatment 2).
  • the condition of the heat treatment 1 is aimed at making a martensite structure
  • the condition of the heat treatment 2 is aimed at making a mixed grain structure or a mixed grain structure containing island martensite.
  • FIG. 6 shows an electron micrograph of the microstructure observed by cutting the vicinity of the center in the length direction of each sample.
  • “material” is the microstructure of Sample 1 and Sample 2 before heat treatment.
  • both the sample 1 and the sample 2 have a substantially uniform ferrite structure with a particle size of 10 ⁇ m or less.
  • both the comparative sample 1 and the comparative sample 2 have a coarse martensitic structure with a particle size of 20 to 100 ⁇ m.
  • the comparative sample 2 has a mixed grain structure of a fine ferrite structure having a particle diameter of 1 ⁇ m or more and less than 5 ⁇ m and a ferrite structure having a particle diameter of 5 to 30 ⁇ m. .
  • an island martensite having a particle size of about 5 to 10 ⁇ m is formed.
  • a mixed grain structure of a fine ferrite structure having a particle size of 1 ⁇ m or more and less than 5 ⁇ m and a ferrite structure having a particle size of 5 to 30 ⁇ m an island martensite having a particle size of about 5 to 10 ⁇ m is formed.
  • the sample 3 of Test Example 1 has a very high hardness. This is because the dispersion ratio of the island-like martensite is large, and in terms of toughness, it is inferior to those obtained by the sample 1,2-A treatment and the sample 1,2-B treatment.
  • the fractal dimension is high while maintaining hardness not inferior to that in the case of FIG. It can be seen that the toughness can be increased with higher hardness than Samples 1 and 2 (heat treatment 1).
  • the toughness may be inferior, so the C content is more preferably 0.12% or less.
  • the fractal dimension is greatly increased, in the case of the method of the present invention of super rapid heating and super rapid cooling, it does not depend on the refinement of crystal grains, and the increase rate of the value of the fractal dimension tends to be small. I understand that.
  • FIG. 8 shows each value of each of Samples 1 and 2 of Test Example 1 and Test Example 2 and Comparative Samples 1 and 2 of Comparative Example 1 with the elongation at break (%) on the horizontal axis and the fractal dimension of the particle size on the vertical axis.
  • Sample 1-A treatment is one in which less than 5% of island-like martensite is contained in the above mixed grain structure, and the elongation at break is 18.16%.
  • “Treatment” is composed of the mixed grain structure described above, and the elongation at break is 20.44%.
  • the sample was set on a support that supports the vicinity of both ends of each sample, and the center in the length direction of the heat-treated range was loaded with a crosshead at a load speed of 10 mm / min. The load was applied. None of the samples were subjected to heat treatment (indicated as “raw material” in FIG. 10) and those subjected to heat treatment (indicated as “heat treatment” in FIG. 10). The result is shown in FIG.
  • the reaction force due to the deflection of the beam due to the bending moment when entering the plastic region from the elastic region is about twice that of the sample after the heat treatment with a thickness of 0.5 mm before the heat treatment.
  • the samples after the heat treatment with a thickness of 0.8 mm and a thickness of 1.0 mm are both about 2.5 times that before the heat treatment. Accordingly, a sample after heat treatment having a thickness of 0.5 mm is used instead of the raw material having a thickness of 0.8 mm, or a sample after heat treatment having a thickness of 0.8 mm is used instead of the raw material having a thickness of 1.0 mm. This contributes to weight reduction of seat frames and the like.
  • Test Example 4 (Tensile test) The test was conducted by holding the end in the length direction of a sample having a length of 150 mm and a width of 30 mm on a chuck.
  • the samples are those of the sample 1 used in the bending test described above having a thickness of 0.5 mm and 0.8 mm, and the sample 2 having a thickness of 0.5 mm.
  • the results are shown in FIG.
  • “heat treatment-A (sample 1)” and “heat treatment-A (sample 2)” are heat-treated according to the treatment conditions (A) of Test Example 1 described above, and the microstructure is a mixed grain structure or Insular martensite is formed in the mixed grain structure.
  • “Heat treatment 1” is heat-treated in accordance with the conditions of “heat treatment 1” of Comparative Example 1 described above, and has a martensitic structure.
  • the one in which the martensitic structure of heat treatment 1 was formed in Comparative Example 1 has a high yield point (yield strength) but small elongation at break.
  • “heat treatment-A (sample 1)” and “heat treatment-A (sample 2)” had a yield point (yield strength) of about twice that of the material before heat treatment when the thickness was 0.5 mm.
  • the elongation at break was three times or more that in which the martensite structure was formed.
  • the yield point (yield strength) is about 2.5 times that of the material before heat treatment, but the breaking elongation is about twice that of the material with the martensite structure formed. It was.
  • Test Example 5 A carbon steel pipe for machine structure (STKM-13C) having a diameter of 12 mm, a thickness of 1.0 mm, and a C content of 0.08% was heat-treated while rotating at 400 rpm.
  • the heat treatment of the first step and the second step is performed by the high-frequency induction heating apparatus of FIG. 1A (shown as “two-step heat treatment” in FIG. 12), and when only the heat treatment of the first step is performed (FIG. 12, labeled “one-step heat treatment”), a tensile test was performed for comparison.
  • FIG. 12 shows the result.
  • the material subjected to the two-stage heat treatment of the present invention has a yield point (proof strength) of about twice or more that of the material, and has a breaking elongation of about twice or more compared to the one-stage heat treatment.
  • the “material” does not have an extensometer, so that the rising of the graph is different from that of the other heat-treated, but the elongation at break was corrected from the actually measured value.
  • the load was lowered in the middle because the measuring machine was stopped and removed in the middle because it was not possible to measure until breakage with the extensometer attached.
  • the microstructure subjected to the heat treatment of the present invention is a mixed grain structure or a structure in which island-like martensite is formed in the mixed grain structure, that is, rapid heating and rapid cooling treatment in the first step and the second step.
  • What was done was a high-level of hardness, yield point (yield strength), tensile strength, reaction force due to bending of the beam due to bending moment, and elongation at break.
  • yield strength yield strength
  • tensile strength reaction force due to bending of the beam due to bending moment
  • elongation at break it was found that high strength and high toughness (high ductility) can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 薄肉低炭素鋼の強度、靭性を高めるのに適した技術を提供する。 厚さ1.2mm以下の普通鋼である薄肉低炭素鋼について、急加熱及び急冷を行うことにより、ミクロ組織が、均質ではなく、粒径の異なる結晶粒が混合された混粒組織になり、好ましくは、この混粒組織に加えて硬質相組織が含まれているものが得られ、高強度、高靱性の薄肉低炭素鋼が得られる。また、急加熱及び急冷を伴う熱処理工程を複数回実施することにより、粒径のより小さな結晶粒の混粒組織あるいはそれに含まれる硬質相組織が得られ、より高強度、高靱性の薄肉低炭素鋼が得られる。

Description

高強度高靱性薄肉鋼の製造方法及び熱処理装置
 本発明は、薄肉低炭素鋼を受入材として熱処理を行って高強度高靱性薄肉鋼を製造する高強度高靱性薄肉鋼の製造方法及び熱処理装置に関する。
 例えば、自動車、航空機等の輸送機器用のシートフレームは、燃費改善や二酸化炭素排出規制等の観点から軽量化が強く求められており、そのためにシートフレームを形成する鋼材の高強度化が求められている。一方、シートフレームは、高強度化だけでなく、変形による衝撃吸収性等の観点から靭性(延性も含む)が高いことも求められる。このような要求に応える技術として、例えば特許文献1~3に開示の高強度鋼板が知られている。
 これらに開示の高強度鋼板は、いずれも、炭素以外の合金元素の添加量を制御することを前提としたものであり、例えば、Mn、Mo、Crなどを所定量以上含有させて所定の硬度、延性を確保するなどとしている。そして、自動車用の鋼材等として使用するため、最終的に1.2mmに冷間圧延しているが、冷間圧延前の工程において行う熱処理は、鋼スラブを厚さ3.2mmに熱間圧延するものである。つまり、厚さ数mm以上の鋼板を得るものであるため、熱処理においては、鋼板における板厚方向を含めてのミクロ組織の均一化を図ることが必要であり、そのため、合金元素の添加量制御が重要な要素となっている技術である。
 一方、特許文献4~5では、普通低炭素鋼の高強度化を図った技術が開示されている。特許文献4は、それ以前の技術において、普通低炭素鋼の焼入れ性が悪いことから、マルテンサイトを出発組織とすると、焼鈍時に不均一な混粒組織が生成されて所定の高強度、高延性鋼材を得ることができなかった、という課題を解決するためになされたものである。このため、特許文献4では、普通低炭素鋼を焼入れしてマルテンサイト相を90%以上とした後、全圧下率20%以上80%未満の冷間圧延と焼鈍を行うことによって粒径1.0μm以下の超微細結晶粒フェライト組織を得ている。特許文献5は、本出願人が提案した技術であるが、プレス成形などの内部応力を高める加工処理を行って、熱処理により、低炭素鋼の金属組織の微細化、混粒化を図って高強度化したものである。
特許第4005517号公報 特開2005-213640号公報 特開2008-297609号公報 特許第4189133号公報 特開2008-13835号公報
 自動車のシートフレーム等は、省エネルギー化、環境問題への対応等のから、今後益々コストの削減や資源のリサイクル性への要請が高くなる。従って、特許文献1~3の技術のように、合金化による高強度化、高靱性化よりも、リサイクル性が高くなる普通低炭素鋼を用いて達成できることが望まれる。また、これらは、主として鉄鋼材料メーカーが、鋼スラブから所定の高強度高靱性鋼を作り出すために実施されている手法であり、市販の鋼を用いてシートフレーム等を加工する加工メーカーにおいて利用できる技術ではない。加工メーカーとしては、このように鉄鋼材料メーカーが高強度高靱性鋼として販売しているものを購入して使用するのではなく、鉄鋼材料メーカーから安価で成形が容易な普通鋼を購入した上で、必要な場合に必要な箇所にその普通鋼の高強度化高靱性化を図ることができれば、シートフレームのコストの低減につながる。
 特許文献4の技術は、普通低炭素鋼を熱処理の受入材として用いて、所望の強度、延性を得ようとする技術であるが、鋼材全体をマルテンサイト化した後に冷間圧延して均質に微細化することが必要である。従って、圧延機能を備えた設備が必要となり、設備コスト、製造コストの点で課題がある。これは、特許文献4の実施例において厚さ2mmの普通低炭素鋼材が例示されていることからも明らかなように、ある程度の厚さの鋼を高強度化、高延性化するためには、板厚方向にも均質な微細化が必要であり、そのためマルテンサイト化後における所定条件下での冷間圧延工程が必須だからである。
 特許文献5の技術の場合、実施例において、厚さ1.2mm、1.0mmの薄肉の冷間圧延鋼板、熱間圧延鋼板を熱処理して微細化し高強度化しているが、靭性の点ではさらに改善の余地がある。
 本発明は上記に鑑みなされたものであり、低コストでリサイクル性にも優れると共に、加工メーカーサイドで普通鋼である薄肉低炭素鋼の強度、靭性を高めるのに適した技術を提供することを課題とする。
 本発明者は上記課題を解決するため鋭意検討した結果、厚さ1.2mm以下の普通鋼である薄肉低炭素鋼の場合、薄肉であることから、熱容量が高く、急加熱、急冷しやすい。そして、急加熱、急冷によって形成される粒径の異なる結晶粒が混合された混粒組織により、好ましくは、このような混粒組織に加えてそれらよりも高い硬度の硬質相組織が含まれた組織により、肉厚の鋼のように1μm以下の微細結晶粒が高率で含まれたものでなくても、また板厚方向に均質化させなくても、強度と靭性を高いレベルでバランスさせた鋼が得られることに着目した。また、本発明者は、薄肉の低炭素鋼において、このように結晶粒の粒径の異なる混粒組織を得るに当たっては、熱処理後の冷間圧延工程などを要することなく、急加熱及び急冷を伴う熱処理工程を複数回実施することが有効であることに着目した。
 すなわち、本発明の高強度高靱性薄肉鋼の製造方法は、鋼素材を熱処理して高強度高靱性薄肉鋼を製造する方法であって、熱処理の受入材である前記鋼素材として、厚さ1.2mm以下に加工された普通鋼である薄肉低炭素鋼を使用し、前記薄肉低炭素鋼を急加熱後急冷し、マルテンサイト組織を得る第1工程と、前記第1工程を経た前記薄肉状低炭素鋼を、前記第1工程における急加熱時の温度よりも低い温度まで再度急加熱した後急冷する第2工程とを具備し、前記薄肉低炭素鋼を、前記第1工程及び第2工程における急加熱及び急冷処理を行う各加熱部及び各冷却部に対して、相対移動させながら実施し、前記第1工程においては、前記薄肉低炭素鋼を、300℃/秒以上の速度で1000℃以上まで急加熱する工程と、900℃以上で10秒以内保持した後300℃/秒以上の速度で急冷する工程とを有し、前記第2工程においては、第1工程における冷却後300℃/秒以上の速度で700℃以上まで急加熱する工程と、600℃以上で10秒以内保持した後300℃/秒以上の速度で急冷する工程とを有することを特徴とする。
 前記第1工程における急加熱及び前記第2工程における急加熱を、高周波誘導加熱により実施することが好ましい。また、前記第1工程における急加熱及び前記第2工程における急加熱を、レーザ加熱により実施することができる。前記第1工程及び第2工程における処理を複数回施すこともできる。
 前記薄肉低炭素鋼は、Cの含有量が質量%で0.01~0.12%であり、残部が鉄及び不可避不純物であることが好ましい。前記第1工程における前記急加熱工程では、1000℃~1250℃の範囲の温度に至るまで急加熱し、前記第2工程における前記急加熱工程では、750℃~1050℃の範囲の温度に至るまで急加熱することが好ましい。前記第1工程における前記急加熱後急冷前の保持時間を5秒以内とし、前記第2工程における前記急加熱後急冷前の保持時間を5秒以内とすることが好ましい。
 前記薄肉炭素鋼を処理する熱処理装置が、前記第1工程における急加熱処理を行う第1加熱部と、前記第1工程における急冷却処理を行う第1冷却部と、前記第2工程における急加熱処理を行う第2加熱部と、前記第2工程における急冷却処理を行う第2冷却部とを備えてなり、前記薄肉低炭素鋼が、前記第1加熱部、前記第1冷却部、前記第2加熱部及び前記第2冷却部によって順に処理されるようにすることが好ましい。また、前記第1加熱部と第2加熱部とが、移動方向に所定の長さを備えた一つの加熱部により兼用され、かつ、前記第1工程における冷却処理及び前記第2工程における冷却処理を、処理対象の前記薄肉状低炭素鋼に対し、互いに反対面側から施すようにすることができる。
 前記薄肉低炭素鋼がパイプ状の場合には、該薄肉低炭素鋼を回転させながら処理を行うことが好ましい。また、熱処理の受入材である前記鋼素材が厚さ1.0mm以下の薄肉低炭素鋼であることが好ましく、熱処理の受入材である前記鋼素材が厚さ0.8mm以下の薄肉低炭素鋼であることがより好ましく、熱処理の受入材である前記鋼素材が厚さ0.5mm以下の薄肉低炭素鋼であることがさらに好ましい。
 本発明の熱処理装置は、熱処理の受入材である前記鋼素材として、厚さ1.2mm以下に加工された普通鋼である薄肉低炭素鋼を使用し、前記薄肉低炭素鋼を急加熱後急冷し、マルテンサイト組織を得る第1工程と、前記第1工程を経た前記薄肉状低炭素鋼を、前記第1工程における急加熱時の温度よりも低い温度まで再度急加熱した後急冷する第2工程とにより、高強度高靱性薄肉鋼を製造するために用いられる熱処理装置であって、処理対象である前記薄肉低炭素鋼を支持するワーク支持部と、前記第1工程における急加熱処理を行う第1加熱部と、前記第1工程における急冷却処理を行う第1冷却部と、前記第2工程における急加熱処理を行う第2加熱部と、前記第2工程における急冷却処理を行う第2冷却部とが順に配置されてなり、前記第1加熱部、前記第1冷却部、前記第2加熱部及び前記第2冷却部が、前記ワーク支持部に対して相対移動可能に設けられていることを特徴とする。
 また、本発明の熱処理装置は、移動方向に所定の長さを備えた一つの加熱部と、前記ワークを挟んで前記加熱部と反対側に配置された第1冷却部と、前記ワークを挟んで前記加熱部と同じ側又は前記第1冷却部と同じ側に、前記加熱部又は前記第1冷却部に対して移動方向後方に所定間隔をおいて配置された第2冷却部とを備えると共に、前記加熱部は、その前部付近が前記第1冷却部に対応し、後部付近が前記第1冷却部よりも移動方向後方に延在している長さを有し、前記加熱部の前部付近が前記第1工程の急加熱を行う前記第1加熱部の機能と、前記加熱部の後部付近が前記第2工程の急加熱を行う前記第2加熱部の機能とを兼用した構成であることを特徴とする。この場合、前記第2冷却部は、前記加熱部と同じ側に配置されていることが好ましい。
 また、前記ワーク支持部が前記薄肉低炭素鋼を支持した状態で回転可能に設けられた構成とすることができる。また、前記各加熱部が高周波誘導加熱を行うコイルを備えて構成されることが好ましく、前記各加熱部がレーザ加熱を行うレーザを備えてなる構成とすることもできる。
 本発明の高強度高靱性薄肉鋼の製造方法及び熱処理装置によれば、 厚さ1.2mm以下の普通鋼である薄肉低炭素鋼について、急加熱及び急冷を行うことにより、ミクロ組織が、均質ではなく、粒径の異なる結晶粒が混合された混粒組織になり、好ましくは、この混粒組織に加えて硬質相組織が含まれているものが得られ、高強度、高靱性の薄肉低炭素鋼が得られる。また、急加熱及び急冷を伴う熱処理工程を複数回実施することにより、粒径のより小さな結晶粒の混粒組織あるいはそれに含まれる硬質相組織が得られ、より高強度、高靱性の薄肉低炭素鋼が得られる。また、2つの加熱部と2つの冷却部を所定の順に備えた熱処理装置を用いることにより、上記の複数回の急加熱及び急冷処理を効率的に実施できる。さらには、所定長の加熱部を一つ用いると共に、第1冷却部を、ワークを挟んで該加熱部の反対側に配置することで、より簡易な装置とすることができ、高強度高靱性薄肉鋼の製造コストの低減に寄与する。
図1(a)は、高周波誘導加熱装置の概略構成の一例を示す図であり、図1(b)は、高周波誘導加熱装置の好ましい例の概略構成を示した図であり、図1(c)は、第1工程及び第2工程における急加熱を行う加熱部が一つであって、かつ、ワークの両面から急冷処理行う高周波誘導加熱装置の概略構成を示す図である。 図2は、試験例1における処理条件(A),(B)の温度条件を示した図である。 図3(a)~(c)は、試験例1の処理条件(A),(B)で処理した試料1~3のミクロ組織の電子顕微鏡写真である。 図4は、試験例2における処理条件(C)の温度条件を示した図である。 図5は、試験例2の処理条件(C)で処理した試料1のミクロ組織の電子顕微鏡写真である。 図6(a)は、試料1及び試料2の素材の状態のミクロ組織の電子顕微鏡写真であり、図6(b),(c)は、比較例1で処理した試料1(比較試料1)及び試料2(比較試料2)の各ミクロ組織の電子顕微鏡写真である。 図7は、試験例1、試験例2及び比較例1で処理した試料1~試料3の硬度(Hv)とフラクタル次元との関係を示した図である。 図8は、試験例1、試験例2及び比較例1で処理した試料1~試料2の破断伸びとフラクタル次元との関係を示した図である。 図9(a),(b)は、試験例3の曲げ試験の測定方法を説明するための図である。 図10は、試験例3の曲げ試験の測定結果を示した図である。 図11は、試験例4の引張試験の測定結果を示した図である。 図12は、試験例5のパイプ状の鋼の引張試験の測定結果を示した図である。
 本発明の高強度高靱性薄肉鋼を製造する方法において、熱処理する際の受入材となる鋼素材は市販の普通鋼であって、薄肉かつ低炭素のもの(以下、「薄肉低炭素鋼」という)である。薄肉低炭素鋼としては、自動車のシートフレームなどに用いられる安価で加工性のよい圧延鋼板が適し、冷間圧延鋼板と熱間圧延鋼板のいずれも含む。厚さは、1.2mm以下である。これより厚い鋼の場合、高強度化、高靱性化を図るには、急加熱・急冷を行うに当たって、大きな熱源と大規模な冷却設備が必要となり、また、板厚方向で結晶粒の均質性が必要となるため制御が難しく、本発明の処理対象の鋼素材としては適さない。圧延工程を伴わず、急加熱、急冷の熱処理工程のみによって高強度化、高靱性化を図る本発明の処理対象鋼素材としては、厚さ1.0mm以下の薄肉低炭素鋼が好ましく、厚さ0.8mm以下の薄肉低炭素鋼がより好ましく、厚さ0.5mm以下の薄肉低炭素鋼がさらに好ましい。
 上記薄肉低炭素鋼は、炭素含有量が0.01~0.3%で残部が鉄及び不可避不純物である低炭素鋼を用いることもできるが、炭素含有量が0.01~0.12%で残部が鉄及び不可避不純物である極低炭素鋼を用いることが好ましい。炭素含有量がより低い、より安価な材料を用いることで、シートフレーム等の製造コストの低減を図ることができる。また、本発明は、薄肉に限定することにより、炭素含有量が低くても強度を上げるとことができる共に、靭性とのバランスも図ることができるため、炭素以外の合金元素の添加等を行う必要はなく、リサイクル性に優れている。一方、上記の炭素含有量以外については成分の制限がないため、例えば、普通鋼として使用されたものを混ぜ合わせたリサイクル鋼材で、炭素以外の成分が種々混入しているものであっても使用可能である。なお、加工処理対象の薄肉低炭素鋼は、板状のもの、パイプ状のもののいずれも含む。
 上記薄肉低炭素鋼を熱処理する工程は、次のような2工程で行うことが好ましい。すなわち、薄肉低炭素鋼を急加熱後急冷し、マルテンサイト組織を得る第1工程と、第1工程を経た薄肉低炭素鋼を、第1工程における急加熱時の温度よりも低い温度まで再度急加熱した後急冷する第2工程とを備えている。なお、薄肉低炭素鋼の第1工程及び第2工程による処理を複数回繰り返して施すことも可能である。
 第1工程においては、薄肉低炭素鋼を、300℃/秒以上の速度で1000℃以上まで、好ましくは1000℃~1250℃の範囲の温度に至るまで急加熱する工程と、急加熱後900℃以上の所定の温度に低下するまで、好ましくは1000℃~1100℃の範囲の温度に低下するまで10秒以内、好ましくは5秒以内保持し、その後300℃/秒以上の速度で急冷する工程とを有している。上記温度まで急加熱することにより、薄肉低炭素鋼の金属組織がオーステナイト化され、急冷によってマルテンサイト組織が形成されるが、本発明の処理対象である薄肉低炭素鋼は厚さ1.2mm以下であるため、このような300℃/秒以上という、いわば超急速加熱と超急速冷却により、比較的粗大化を免れた均質なマルテンサイト組織を形成できる。なお、急加熱速度及び急冷速度は、500℃/秒以上とすることがより好ましい。
 第2工程においては、第1工程における冷却後300℃/秒以上の速度で700℃以上まで、好ましくは750℃~1050℃の範囲の温度に至るまで急加熱する工程と、急加熱後600℃以上の所定の温度に低下するまで、好ましくは700℃~950℃の範囲の温度に低下するまで10秒以内、好ましくは5秒以内保持し、その後300℃/秒以上の速度で急冷する工程とを有している。第1工程を経た薄肉低炭素鋼を第2工程において再度熱処理する場合、第1工程による急冷によって、200℃以下まで下がってから行うことが好ましい。より低い温度、例えば、室温まで下がった後に別ラインで第2工程における熱処理を行ってもよい。なお、第2工程における急加熱速度及び急冷速度も、第1工程と同様に、500℃/秒以上とすることがより好ましい。
 第2工程における上記の超急速加熱と超急速冷却を行うことにより、マルテンサイト組織が変化し、最終的には、1μm以上30μm以下の異なる粒径(本明細書において「粒径」は「円相等粒径」のことをいう)の結晶粒の混粒組織を有し、平均粒径が、マルテンサイトを形成する熱処理を行った場合に得られる該マルテンサイトの平均粒径、すなわち、第1工程における熱処理を行った際に得られたマルテンサイトの平均粒径よりも小さい、粒径の異なる結晶粒が集まった混粒組織が得られる。
 混粒組織は、粒径1μm以上5μm未満の結晶粒と5μm~30μmの結晶粒とが混合されて構成された組織であることが好ましく、さらには、粒径1μm以上5μm未満の結晶粒と5μm~20μmの結晶粒とが混合されて構成されていることが好ましい。熱処理後の鋼が、このように均質な粒径ではなく、粒径の異なる混粒組織を有していることにより、薄肉低炭素鋼の場合には、部分伸びが生じ、それにより高い靭性の鋼が得られる。より高い強度を得るためには、混粒組織中に、該混粒組織よりも硬度の高い硬質相組織が分散されていることが好ましい。例えば、混粒組織が、粒径の異なるフェライト組織の場合に、その混粒組織に、粒径30μm以下、好ましくは20μm以下の島状マルテンサイトが分散されていることが好ましい。これにより、曲げ特性において、弾性域から塑性域に入ったところでの曲げモーメントによるはりのたわみによる反力が熱処理前と比較して1.5倍以上、引張特性における降伏点が熱処理前と比較して1.5倍以上の強度を有し、破断伸びが、薄肉低炭素鋼をマルテンサイトを形成する熱処理を行った状態すなわち第1工程における熱処理を行った際の破断伸びと比較して1.5倍以上の高強度高靱性の薄肉低炭素鋼が得られる。
 本発明によって得られる高強度高靱性薄肉鋼は、ミクロ組織が、上記したように粒径の異なる結晶粒の混粒組織であり、好ましくは、混粒組織中にマルテンサイト等の硬質相組織が分散された組織である。本発明は、このような組織制御により高い強度と靭性を備えた薄肉低炭素鋼を得ているが、本発明者は、このミクロ組織を粒径のフラクタル次元という観点から規定可能であることを見出した。詳細は後述するが、本発明のように熱処理によって制御された薄肉低炭素鋼のミクロ組織は、マルテンサイトを形成する熱処理を行った場合、すなわち第1工程の熱処理のみで得られるマルテンサイトにおける粒径のフラクタル次元よりも高くなっていた。
 なお、「フラクタル次元」とは、複雑さの程度を表す尺度で、自己相似性のある図形において、図形を1/nに縮小した相似形m個によって構成されるとき、フラクタル次元(相似性次元)Dは、D=log(m)/log(n)=log(元の図形と相似な同じ図形の数)/log(等分割した数)で表される。従って、本明細書の「粒径のフラクタル次元」は、結晶粒が細かくなるほど高くなる。
 上記した第1工程及び第2工程の各熱処理を行う熱処理装置としては、高周波誘導加熱装置を用いることが好ましい。また、高周波誘導加熱装置の加熱部(誘導加熱装置の場合には、誘導加熱部を構成するコイル)及び冷却部(冷却水を供給する冷却水供給部)が、熱処理対象の上記薄肉低炭素鋼及びワーク支持部に対し、相対的に所定の速度で移動するものが好ましい。これにより、規模が小さな設備であっても、上記した極めて短い時間での急加熱、急冷処理を実現できる。高周波誘導加熱装置の加熱部(誘導加熱装置の場合には、誘導加熱部を構成するコイル)及び冷却部の移動速度は、30mm/秒以内の範囲に設定することが好ましく、さらには18mm/秒以内の範囲に設定することがより好ましい。なお、ワーク(薄肉低炭素鋼)は、ワーク支持部によって支持され、ワークが板状の場合には、該ワーク支持部として板状のワークを載置可能な平板状のテーブルやワークの端部を把持する把持部(図1(a)~(c)参照)から構成することができる。また、ワークがパイプ状のものの場合には、ワークを回転させながら処理することが好ましいことから、該ワーク支持部は、パイプ状のものを把持できる把持部を有し、この把持部が回転可能になっている構成とすることが好ましい。
 高周波誘導加熱装置は、図1(a)に示したように、加熱部と冷却水供給部が順に備えられたものを用いることができる。この加熱部と冷却水供給部は1セットのみであり、第1工程の処理を行う場合には、該加熱部を、所定の温度に制御して第1加熱部(コイル)として機能させて処理し、同様に、冷却水供給部を第1冷却部(冷却水供給部)として機能させる。そして、第1工程の処理を行った後、再び、図1(a)に示した高周波誘導加熱装置によって第2工程の処理を行う。この場合には、加熱部を、第1工程の処理よりも低い温度に制御して第2加熱部(コイル)として機能させ、冷却部を第2冷却部(冷却水供給部)として機能させて処理するものである。なお、高周波誘導加熱装置は、このように、加熱部と冷却水供給部が1セットのみ備えられたものに限らず、図1(b)に示したように、第1工程の処理を行う第1加熱部(コイル)及び第1冷却部(第1冷却水供給部)と、第2工程の処理を行う第2加熱部(コイル)及び第2冷却部(第2冷却水供給部)とが順に備えられた構成とすることが好ましい。図1(b)に示した装置によれば、第1工程及び第2工程を連続して施すことができ、ワークの処理速度が向上する。
 また、図1(c)に示したように、加熱部(コイル)の移動方向に沿った長さが所定以上のもの、例えば、5~10cm程度の長尺のものを用いることにより、第1工程における第1加熱部と第2工程における第2加熱部とを兼用させた構成とすることができる。すなわち、この加熱部は、ワーク(薄肉低炭素鋼)の一面側に配置されており、ワークの反対側においては、該加熱部の移動方向前部付近に対応して冷却部(第1冷却水供給部)が設けられている。これにより、加熱部の移動方向前部付近が第1工程の急加熱処理を行い、それに対応する第1冷却水供給部が第1工程の急冷処理を行う。この加熱部と第1冷却水供給部とは、セットになって移動していく。すると、加熱部の後部付近により、第1工程の急加熱及び急冷処理が行われた部位が再度急加熱される。これにより、第2工程の急加熱処理が実行される。その後、加熱部の移動方向後方に所定間隔をおいて配置された冷却部(第2冷却水供給部)が、加熱部の後部付近によって急加熱された部位を急冷し、第2工程の急冷処理が施される。従って、図1(c)に示した長尺の加熱部(コイル)を用いた場合には、第1工程及び第2工程における急加熱を一つの加熱部(コイル)で実施できるため、簡易かつ安価な構造の高周波誘導加熱装置とすることができる。なお、図1(c)においては、第2冷却水供給部を、ワークを境として加熱部と同じ側に配置しているが、第1冷却水供給部と同じ側に配置することも可能である。但し、より効率のよい急冷処理を行うためには、図1(c)に示したように、加熱部と同じ側に配置することが好ましい。
 なお、第1工程及び第2工程における第1加熱部及び第2加熱部としてレーザを装着し、各急加熱処理をレーザ加熱により行うことも可能である。
(試験例1)
 次の各試料について、熱処理を施した。
(1)試料1:普通鋼冷延鋼板(SPCC)
   ・化学成分(%):C=0.04、Si=0.02、Mn=0.26、P=0.011、S=0.006
   ・厚さ:0.5mm、幅:100mm、長さ:200mm
(2)試料2:普通鋼冷延鋼板(SPCC)
   ・化学成分(%):C=0.037、Si=0.004、Mn=0.19、P=0.013、S=0.012、solAl=0.015、Cu=0.02、Ni=0.02、B=14(PPM)
   ・厚さ:0.5mm、幅:100mm、長さ:200mm
(3)試料3:普通鋼冷延鋼板(JSC440)
   ・化学成分(%):C=0.12、Si=0.06、Mn=1.06、P=0.022、S=0.005
   ・厚さ:0.6mm、幅:100mm、長さ:200mm
 熱処理装置としては、図1(a)に示した加熱部と冷却水供給部が1セットの高周波誘導加熱装置を用い、加熱部及び冷却水供給部により第1工程の処理を行った後、各試料を室温まで放置し、その後、同じ高周波誘導加熱装置により第2工程の処理を行った。処理条件は、次の(A)、(B)2つの条件で行った。
・処理条件(A)
 ・第1工程:
  (1)加熱部及び冷却水供給部の移動速度:800mm/分
  (2)加熱部のコイルを120Aに調節した。相対的に加熱部が近づいてくると試料は徐々に温度が上がって予備加熱されるが、400℃から約1秒間で1200℃まで急加熱した。その後、1050℃に下がるまで約2.5秒間保持し、次いで冷却水供給部から冷却水を供給して200℃以下に至るまで約0.5秒で急冷した(図2の第1工程における実線)。
 ・第2工程:
  (1)加熱部及び冷却水供給部の移動速度:800mm/分
  (2)試料が室温まで低下した後、再び高周波誘導加熱装置にセットした。加熱部のコイルに流す電流を100Aに調節し、予備加熱されて400℃に至った以降約0.5秒で900℃まで急加熱した。800℃に下がるまで約2.5秒間保持し、次いで冷却水供給部から冷却水を供給して200℃以下まで約0.5秒で急冷し、その後、室温になるまで放置した(図2の第1工程における実線)。
・処理条件(B)
 ・第1工程:
  (1)加熱部及び冷却水供給部の移動速度:800mm/分
  (2)加熱部のコイルを120Aに調節した。相対的に加熱部が近づいてくると試料は徐々に温度が上がって予備加熱されるが、400℃から約1秒間で1200℃まで急加熱した。その後、1050℃に下がるまで約2.5秒間保持し、次いで冷却水供給部から冷却水を供給して200℃以下に至るまで約0.5秒で急冷した(図2の第1工程における実線)。
 ・第2工程:
  (1)加熱部及び冷却水供給部の移動速度:1000mm/分
  (2)試料が室温まで低下した後、再び高周波誘導加熱装置にセットした。加熱部のコイルに流す電流を100Aに調節し、予備加熱されて400℃に至った以降約0.5秒で800℃まで急加熱した。700℃に下がるまで約2.5秒間保持し、次いで冷却水供給部から冷却水を供給して200℃以下まで約0.5秒で急冷し、その後、室温になるまで放置した(図2の第2工程における破線)。
 図3(a)は、処理条件(A),(B)による試料1の長さ方向の中央付近を切断して観察したミクロ組織の電子顕微鏡写真であり、図3(b)は、処理条件(A),(B)による試料2の長さ方向の中央付近を切断して観察したミクロ組織の電子顕微鏡写真である(なお、試料1、試料2の素材状態のミクロ組織は図6(a)の「素材」の欄参照)。図3(c)は、処理条件(A),(B)による試料3の長さ方向の中央付近を切断して観察したミクロ組織の電子顕微鏡写真である
 図3(a)から、処理条件(A)により処理された試料1は、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~30μmのフェライト組織との混粒組織となっており、混粒組織中に粒径30μm以下の島状マルテンサイトが5%未満であるが含まれていた。これに対し、処理条件(A)よりも、移動速度が速く、第2工程における加熱温度の低い処理条件(B)の場合には、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~20μmのフェライト組織との混粒組織になっており、処理条件(A)によるものの方が、結晶粒が大きめであった。
 図3(b)の場合、処理条件(A)により処理された試料2は、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~30μmのフェライト組織との混粒組織に加えて粒径30μ以下の島状マルテンサイトが約20%含まれていた。処理条件(B)の場合には、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~20μmのフェライト組織との混粒組織になっていた。
 試料3は、Cの含有量が0.12%と試料1及び試料2よりも多い。従って、3(c)に示したように、処理条件(A),(B)共に、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~30μmのフェライト組織との混粒組織に加えて粒径30μ以下の島状マルテンサイトが含まれていたが、島状マルテンサイトが約50~60%の含まれていた。
(試験例2)
 上記の試料1を、図1(c)に示した長さ6cmの長尺なコイルからなる加熱部と、第1及び第2冷却水供給部とを備えた高周波誘導加熱装置により熱処理した。処理条件は、次の(C)のとおりである。
・処理条件(C)
 ・第1工程:
  (1)加熱部、第1及び第2冷却水供給部の移動速度:800mm/分
  (2)加熱部のコイルを120Aに調節した。相対的に加熱部が近づいてくると試料は徐々に温度が上がって予備加熱されるが、400℃から約1秒間で1200℃まで急加熱した。その後、1050℃に下がるまで約2.5秒間保持し、次いで冷却水供給部から冷却水を供給して200℃以下に至るまで約0.5秒で急冷した(図4の第1工程の実線)。
 ・第2工程:
  (1)加熱部、第1及び第2冷却水供給部の移動速度:1000mm/分
  (2)加熱部のコイルに流す電流を90Aに調節し、約200℃になっていた試料1を加熱部の後部によって、約0.5秒で800℃まで急加熱した。700℃に下がるまで約2.5秒間保持し、次いで第2冷却水供給部から冷却水を供給して200℃以下まで約0.5秒で急冷し、その後、室温になるまで放置した(図4の第2工程の実線)。
 図5は、処理条件(C)による試料1の長さ方向の中央付近を切断して観察したミクロ組織の電子顕微鏡写真である。図5から、処理条件(C)により処理された試料1は、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~20μmのフェライト組織との混粒組織に加え、粒径5~10μm前後の島状マルテンサイトが約20%形成されていた。
(比較例1)
 熱処理装置として、図1(a)に示した加熱部と冷却水供給部が1セットの高周波誘導加熱装置を用い、試料1(比較試料1)及び試料2(比較試料2)について、急加熱及び急冷を1回のみ行う熱処理を行った。
 処理条件は、加熱部(コイル)によって1200℃まで急加熱した後、冷却水供給部により急冷した場合(熱処理1)と、加熱部(コイル)によって900℃まで急加熱した後、冷却水供給部により急冷した場合(熱処理2)について試験した。熱処理1の条件は、マルテンサイト組織にすることをねらったものであり、熱処理2の条件は、混粒組織又は島状マルテンサイトを含んだ混粒組織にすることをねらったものである。各試料の長さ方向中央付近を切断して観察したミクロ組織の電子顕微鏡写真を図6に示す。なお、図中、「素材」は熱処理を行う前の試料1及び試料2のミクロ組織である。
 図6(a)から、「素材」の状態では、試料1及び試料2共に、粒径10μm以下のほぼ均等なフェライト組織になっている。図6(b)の「熱処理1」の状態では、比較試料1及び比較試料2共に、粒径20~100μmの粗大なマルテンサイト組織になっている。図6(c)の「熱処理2」の状態では、比較試料2は、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~30μmのフェライト組織との混粒組織となってはいる。比較試料1の場合は、粒径1μm以上5μm未満の細粒のフェライト組織と粒径5~30μmのフェライト組織との混粒組織に加えて、粒径5~10μm前後の島状マルテンサイトが形成されている。
 図7は、平均硬度(Hv)を横軸に、粒径のフラクタル次元を縦軸にとって、試験例1及び試験例2の各試料1,2,3及び比較例1の比較試料1,2の各値をプロットした図である。この図から明らかなように、試料1及び試料2の場合、試験例1,2のいずれも、混粒組織又は混粒組織に島状マルテンサイトを形成したものは、比較例1においてマルテンサイト組織を形成した比較試料1,2(熱処理1)よりもフラクタル次元が高かった。また、図7に示した最小二乗法により求めた傾きが、比較例1よりも試験例1の方が全体としてフラクタル次元の高い傾向を示しており、試験例1のように複数回の急加熱処理、急冷処理を行うことにより、同じ混粒組織又は混粒組織に島状マルテンサイトを形成したものであっても、比較試料1,2(熱処理2)より、試料1,2-A処理(処理条件(A)による処理)及び試料1,2-B処理(処理条件(B)による処理)の方が、細粒化が図られ、靭性を高めることができることがわかった。また、試験例2の試料1-C処理(処理条件(C)による処理)の場合も、硬度が高くなっているにも拘わらず、比較試料1(熱処理2)の混粒組織を形成した場合と同程度のフラクタル次元であった。
 また、試験例1の試料3は非常に高い硬度が得られている。これは、島状マルテンサイトの分散割合が多いためであり、靭性の点では、試料1,2-A処理及び試料1,2-B処理によるものよりも劣っている。但し、比較試料1,2(熱処理1)と比べた場合には、マルテンサイト組織となっている図6(b)の場合に劣らない硬度を維持しながら、フラクタル次元が高くなっており、比較試料1,2(熱処理1)よりは高い硬度で靭性も高めることができることがわかる。しかし、Cの含有量がこれ以上の場合には、靭性がより劣るおそれがあることから、Cの含有量としては0.12%以下とすることがより望ましい。
 なお、金属組織の結晶粒の微細化により高強度化を図った場合、図7の素材の状態と比較して、ホール-ペッチ(Hall-Petch)の法則に従って、矢印Xで示したように、フラクタル次元が大きく上昇するが、超急加熱及び超急冷却の本発明の手法の場合には、結晶粒の微細化によらないことが、フラクタル次元の値の上昇割合が小さい傾向を示していたことからもわかる。
 図8は、破断伸び(%)を横軸に、粒径のフラクタル次元を縦軸にとって、試験例1及び試験例2の各試料1,2及び比較例1の比較試料1,2の各値をプロットした図である。例えば、「試料1-A処理」は、上記した混粒組織中に島状マルテンサイトが5%未満含まれているものであって、破断伸びは18.16%であり、「試料2-A処理」は、上記した混粒組織からなるものであり、破断伸びは20.44%である。フラクタル次元の高くなるほど、靭性の指標の一つである破断伸びが大きくなる傾向にあり、上記したフラクタル次元と靭性との相関が明らかになった。そして、この図8からも、急加熱処理及び急冷処理を1回だけ行った比較試料1,2と比べて、本発明の複数回の急加熱処理、急冷処理を行った試料1,2の方が、靭性を高めることができることがわかった。
(試験例3)
(曲げ試験)
 上記した試料1の普通鋼冷延鋼板と同じ化学成分であって、厚さ0.5mm、0.8mm、1.0mmの3種類の試料を、幅30mm、長さ100mmの範囲が含まれるように熱処理した(図9(a)参照)。熱処理は、上記した「処理条件(A)」に従って、第1工程、第2工程の各処理を行った。
 図9(b)に示したように、上記した各試料の両端部付近を支持する支持台上にセットし、熱処理を施した範囲の長さ方向中央部をクロスヘッドにより負荷速度:10mm/分で荷重をかけた。いずれの試料も熱処理を施していないもの(図10中、「生材」と表示)と熱処理を施したもの(図10中、「熱処理」と表示)のそれぞれについて試験した。その結果を図10に示す。
 図10から明らかなように、曲げ特性において、弾性域から塑性域に入ったところでの曲げモーメントによるはりのたわみによる反力は、厚さ0.5mmの熱処理後の試料は熱処理前の約2倍になっており、厚さ0.8mm及び厚さ1.0mmの熱処理後の試料はいずれも熱処理前の約2.5倍になっている。従って、厚さ0.8mmの生材に代えて厚さ0.5mmの熱処理後の試料を使用し、あるいは、厚さ1.0mmの生材に代えて厚さ0.8mmの熱処理後の試料を使用することにより、シートフレーム等の軽量化に寄与する。
(試験例4)
(引張試験)
 長さ150mm、幅30mmの試料の長さ方向端部をチャックに把持して試験した。試料は、上記した曲げ試験で使用した試料1の厚さ0.5mm、0.8mmのものと、試料2の厚さ0.5mmのものである。結果を図11に示す。図11中、「熱処理-A(試料1)」及び「熱処理-A(試料2)」は、上記した試験例1の処理条件(A)に従って熱処理したもので、ミクロ組織が混粒組織か又は混粒組織に島状マルテンサイトが形成されたものである。「熱処理1」は、上記した比較例1の「熱処理1」の条件に従って熱処理したもので、マルテンサイト組織になっているものである。
 この結果、比較例1において熱処理1のマルテンサイト組織が形成されたものは、降伏点(耐力)は高いが、破断伸びが小さい。これに対し、「熱処理-A(試料1)」及び「熱処理-A(試料2)」は、厚さ0.5mmの場合、降伏点(耐力)は熱処理前の素材の約2倍で、マルテンサイト組織が形成されたものよりも低いが、破断伸びは、マルテンサイト組織が形成されたものの3倍以上であった。厚さ0.8mmのものも、降伏点(耐力)は熱処理前の素材の約2.5倍でありながら、破断伸びは、マルテンサイト組織が形成されたものと比較して約2倍であった。
(試験例5)
 直径12mm、厚さ1.0mm、C含有量:0.08%の機械構造用炭素鋼鋼管(STKM-13C)を400rpmで回転させながら熱処理した。図1(a)の高周波誘導加熱装置によって第1工程及び第2工程の熱処理を行った場合(図12において「2段熱処理」と表示)と、第1工程の熱処理のみを行った場合(図12において「1段熱処理」と表示)について、引張試験を行って比較した。図12にその結果を示す。
 図12から明らかなように、本発明の2段熱処理を行ったものは、降伏点(耐力)が素材の約2倍以上となり、1段熱処理と比較して約2倍以上の破断伸びを有していた。なお、図12において「素材」は、伸び計をつけていないためグラフの立ち上がり方が他の熱処理したものと異なっているが、破断伸びは実測値から補正した。また、熱処理したもののグラフにおいて、いずれも途中で荷重が下がっているのは、伸び計を装着したままだと破断まで測定できないために、途中で測定機械を止めて取り外したためである。
 以上のことから、本発明の熱処理を施したミクロ組織が混粒組織か又は混粒組織に島状マルテンサイトが形成されたもの、すなわち、第1工程及び第2工程における急加熱及び急冷処理を行ったものは、硬度、降伏点(耐力)、引張強さ、曲げモーメントによるはりのたわみによる反力、破断伸びが、いずれも高いレベルで保たれており、市販の普通鋼を熱処理したものでありながら、高強度高靱性(高延性)のものが得られることがわかった。

Claims (19)

  1.  鋼素材を熱処理して高強度高靱性薄肉鋼を製造する方法であって、
     熱処理の受入材である前記鋼素材として、厚さ1.2mm以下に加工された普通鋼である薄肉低炭素鋼を使用し、
     前記薄肉低炭素鋼を急加熱後急冷し、マルテンサイト組織を得る第1工程と、
     前記第1工程を経た前記薄肉状低炭素鋼を、前記第1工程における急加熱時の温度よりも低い温度まで再度急加熱した後急冷する第2工程と
    を具備し、
     前記薄肉低炭素鋼を、前記第1工程及び第2工程における急加熱及び急冷処理を行う各加熱部及び各冷却部に対して、相対移動させながら実施し、
     前記第1工程においては、前記薄肉低炭素鋼を、300℃/秒以上の速度で1000℃以上まで急加熱する工程と、900℃以上で10秒以内保持した後300℃/秒以上の速度で急冷する工程とを有し、
     前記第2工程においては、第1工程における冷却後300℃/秒以上の速度で700℃以上まで急加熱する工程と、600℃以上で10秒以内保持した後300℃/秒以上の速度で急冷する工程とを有することを特徴とする高強度高靱性薄肉鋼の製造方法。
  2.  前記第1工程における急加熱及び前記第2工程における急加熱を、高周波誘導加熱により実施することを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  3.  前記第1工程における急加熱及び前記第2工程における急加熱を、レーザ加熱により実施することを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  4.  前記第1工程及び第2工程における処理を複数回施すことを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  5.  前記薄肉低炭素鋼は、Cの含有量が質量%で0.01~0.12%であり、残部が鉄及び不可避不純物であることを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  6.  前記第1工程における前記急加熱工程では、1000℃~1250℃の範囲の温度に至るまで急加熱し、
     前記第2工程における前記急加熱工程では、750℃~1050℃の範囲の温度に至るまで急加熱することを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  7.  前記第1工程における前記急加熱後急冷前の保持時間を5秒以内とし、前記第2工程における前記急加熱後急冷前の保持時間を5秒以内としたことを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  8.  前記薄肉炭素鋼を処理する熱処理装置が、前記第1工程における急加熱処理を行う第1加熱部と、前記第1工程における急冷却処理を行う第1冷却部と、前記第2工程における急加熱処理を行う第2加熱部と、前記第2工程における急冷却処理を行う第2冷却部とを備えてなり、
     前記薄肉低炭素鋼が、前記第1加熱部、前記第1冷却部、前記第2加熱部及び前記第2冷却部によって順に処理されることを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  9.  前記第1加熱部と第2加熱部とが、移動方向に所定の長さを備えた一つの加熱部により兼用され、かつ、前記第1工程における冷却処理及び前記第2工程における冷却処理を、処理対象の前記薄肉状低炭素鋼に対し、互いに反対面側から施すことを特徴とする請求項8記載の高強度高靱性薄肉鋼の製造方法。
  10.  前記薄肉低炭素鋼がパイプ状の場合に、該薄肉低炭素鋼を回転させながら処理を行うことを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  11.  熱処理の受入材である前記鋼素材が厚さ1.0mm以下の薄肉低炭素鋼であることを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  12.  熱処理の受入材である前記鋼素材が厚さ0.8mm以下の薄肉低炭素鋼であることを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  13.  熱処理の受入材である前記鋼素材が厚さ0.5mm以下の薄肉低炭素鋼であることを特徴とする請求項1記載の高強度高靱性薄肉鋼の製造方法。
  14.  熱処理の受入材である前記鋼素材として、厚さ1.2mm以下に加工された普通鋼である薄肉低炭素鋼を使用し、前記薄肉低炭素鋼を急加熱後急冷し、マルテンサイト組織を得る第1工程と、前記第1工程を経た前記薄肉状低炭素鋼を、前記第1工程における急加熱時の温度よりも低い温度まで再度急加熱した後急冷する第2工程とにより、高強度高靱性薄肉鋼を製造するために用いられる熱処理装置であって、
     処理対象である前記薄肉低炭素鋼を支持するワーク支持部と、
     前記第1工程における急加熱処理を行う第1加熱部と、前記第1工程における急冷却処理を行う第1冷却部と、前記第2工程における急加熱処理を行う第2加熱部と、前記第2工程における急冷却処理を行う第2冷却部とが順に配置されてなり、
     前記第1加熱部、前記第1冷却部、前記第2加熱部及び前記第2冷却部が、前記ワーク支持部に対して相対移動可能に設けられていることを特徴とする熱処理装置。
  15.  移動方向に所定の長さを備えた一つの加熱部と、前記ワークを挟んで前記加熱部と反対側に配置された第1冷却部と、前記ワークを挟んで前記加熱部と同じ側又は前記第1冷却部と同じ側に、前記加熱部又は前記第1冷却部に対して移動方向後方に所定間隔をおいて配置された第2冷却部とを備えると共に、前記加熱部は、その前部付近が前記第1冷却部に対応し、後部付近が前記第1冷却部よりも移動方向後方に延在している長さを有し、
     前記加熱部の前部付近が前記第1工程の急加熱を行う前記第1加熱部の機能と、前記加熱部の後部付近が前記第2工程の急加熱を行う前記第2加熱部の機能とを兼用した構成であることを特徴とする請求項14記載の熱処理装置。
  16.  前記第2冷却部が、前記加熱部と同じ側に配置されていることを特徴とする請求項15記載の熱処理装置。
  17.  前記ワーク支持部が前記薄肉低炭素鋼を支持した状態で回転可能に設けられていることを特徴とする請求項14記載の熱処理装置。
  18.  前記各加熱部が高周波誘導加熱を行うコイルを備えてなることを特徴とする請求項14記載の熱処理装置。
  19.  前記各加熱部がレーザ加熱を行うレーザを備えてなることを特徴とする請求項14記載の熱処理装置。
PCT/JP2010/052651 2009-02-24 2010-02-22 高強度高靱性薄肉鋼の製造方法及び熱処理装置 WO2010098292A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/202,991 US20120042994A1 (en) 2009-02-24 2010-02-22 Manufacturing method of high-strength and high-toughness thin steel and heat treatment apparatus
EP10746173.3A EP2402466B1 (en) 2009-02-24 2010-02-22 Manufacturing method and heat-treatment device for high-strength, highly-tough thin steel
US13/918,403 US20140008847A1 (en) 2009-02-24 2013-06-14 Manufacturing method of high-strength and high-toughness thin steel and heat treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-041571 2009-02-24
JP2009041571A JP5382421B2 (ja) 2009-02-24 2009-02-24 高強度高靱性薄肉鋼の製造方法及び熱処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/918,403 Division US20140008847A1 (en) 2009-02-24 2013-06-14 Manufacturing method of high-strength and high-toughness thin steel and heat treatment apparatus

Publications (1)

Publication Number Publication Date
WO2010098292A1 true WO2010098292A1 (ja) 2010-09-02

Family

ID=42665499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052651 WO2010098292A1 (ja) 2009-02-24 2010-02-22 高強度高靱性薄肉鋼の製造方法及び熱処理装置

Country Status (4)

Country Link
US (2) US20120042994A1 (ja)
EP (1) EP2402466B1 (ja)
JP (1) JP5382421B2 (ja)
WO (1) WO2010098292A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017469A1 (en) * 2011-12-22 2015-01-15 Thyssenkrupp Rasselstein Gmbh Sheet steel for use as packaging steel and method for producing packaging steel

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382421B2 (ja) * 2009-02-24 2014-01-08 株式会社デルタツーリング 高強度高靱性薄肉鋼の製造方法及び熱処理装置
JP6010730B2 (ja) * 2009-05-29 2016-10-19 日産自動車株式会社 高延性ダイクエンチによる高強度成形品及びその製造方法
DE102011056846B4 (de) * 2011-12-22 2014-05-28 Thyssenkrupp Rasselstein Gmbh Verfahren zur Herstellung eines Aufreißdeckels sowie Verwendung eines mit einer Schutzschicht versehenen Stahlblechs zur Herstellung eines Aufreißdeckels
RU2564196C2 (ru) * 2013-08-09 2015-09-27 Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") Способ термической обработки изделий из комплексно-легированной стали
KR101568511B1 (ko) 2013-12-23 2015-11-11 주식회사 포스코 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
CN104611531A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化45号钢奥氏体晶粒的加热方法
CN104611528A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化70号钢奥氏体晶粒的加热方法
CN104611533A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化35号钢奥氏体晶粒的加热方法
CN104611517A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化60号钢奥氏体晶粒的加热方法
CN104611529A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化75号钢奥氏体晶粒的加热方法
CN104611532A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化55号钢奥氏体晶粒的加热方法
CN104611526A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化50号钢奥氏体晶粒的加热方法
CN104611527A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化65号钢奥氏体晶粒的加热方法
CN104611525A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化30号钢奥氏体晶粒的加热方法
CN104611530A (zh) * 2015-02-06 2015-05-13 桂林理工大学 一种细化40号钢奥氏体晶粒的加热方法
BE1027475B1 (fr) * 2020-01-22 2021-02-26 Laser Eng Applications Procédé de traitement thermique en volume et système associé

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045517B2 (ja) 1983-09-30 1992-01-31
JPH05148546A (ja) * 1991-11-22 1993-06-15 Nippon Steel Corp 鋼管の熱処理方法
JP2002256335A (ja) * 2001-03-02 2002-09-11 Kitakiyuushiyuu Techno Center:Kk レーザ照射による金属組織の微細化方法及び装置
JP2002371315A (ja) * 2001-06-19 2002-12-26 Mazda Motor Corp 金属部材の製造方法及びその方法で製造された金属部材
JP2005194614A (ja) * 2003-01-17 2005-07-21 Jfe Steel Kk 疲労特性に優れた鋼材およびその製造方法
JP2005213640A (ja) 2004-02-02 2005-08-11 Kobe Steel Ltd 伸び及び伸びフランジ性に優れた高強度冷延鋼板とその製法
JP2007231323A (ja) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology 鉄合金製機構部品の表面改質法
JP2008013835A (ja) 2006-07-08 2008-01-24 Delta Tooling Co Ltd 高強度金属部材及びその製造方法
JP4189133B2 (ja) 2001-03-27 2008-12-03 独立行政法人科学技術振興機構 普通低炭素鋼を低ひずみ加工・焼鈍して得られる超微細結晶粒組織を有する高強度・高延性鋼板およびその製造方法
JP2008297609A (ja) 2007-05-31 2008-12-11 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れた高強度鋼板およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198926A (en) * 1961-09-07 1965-08-03 Ford Motor Co Method for upsetting elongated articles
US3278345A (en) * 1963-05-28 1966-10-11 United States Steel Corp Method of producing fine grained steel
US4142713A (en) * 1974-11-26 1979-03-06 Nippon Steel Corporation Method of heat-treatment of welded pipe and apparatus therefor
US4067756A (en) * 1976-11-02 1978-01-10 The United States Of America As Represented By The United States Department Of Energy High strength, high ductility low carbon steel
JPS57123917A (en) * 1981-01-22 1982-08-02 Dai Ichi High Frequency Co Ltd Induction heating method for metallic bar material having different wall thickness
US4613385A (en) * 1984-08-06 1986-09-23 Regents Of The University Of California High strength, low carbon, dual phase steel rods and wires and process for making same
JP3305952B2 (ja) * 1996-06-28 2002-07-24 トヨタ自動車株式会社 センターピラーリーンフォースの高周波焼入れ強化方法
FI971625A (fi) * 1997-04-17 1998-10-18 Aspector Oy Teräksen lämpökäsittely
KR100513991B1 (ko) * 2001-02-07 2005-09-09 제이에프이 스틸 가부시키가이샤 박강판의 제조방법
DE10238972B4 (de) * 2002-08-20 2004-07-15 C.D. Wälzholz Produktionsgesellschaft mbH Verfahren und Vorrichtung zur Durchlaufvergütung von Bandstahl sowie entsprechend hergestellter Bandstahl
ITTO20070263A1 (it) * 2007-04-13 2008-10-14 Saet Spa Dispositivo e metodo per effettuare un trattamento di tempra ad induzione localizzata su componenti meccanici, in particolare ralle per cuscinetti di rotolamento di grandi dimensioni
JP5382421B2 (ja) * 2009-02-24 2014-01-08 株式会社デルタツーリング 高強度高靱性薄肉鋼の製造方法及び熱処理装置
JP5565785B2 (ja) * 2009-03-05 2014-08-06 株式会社デルタツーリング 構造材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045517B2 (ja) 1983-09-30 1992-01-31
JPH05148546A (ja) * 1991-11-22 1993-06-15 Nippon Steel Corp 鋼管の熱処理方法
JP2002256335A (ja) * 2001-03-02 2002-09-11 Kitakiyuushiyuu Techno Center:Kk レーザ照射による金属組織の微細化方法及び装置
JP4189133B2 (ja) 2001-03-27 2008-12-03 独立行政法人科学技術振興機構 普通低炭素鋼を低ひずみ加工・焼鈍して得られる超微細結晶粒組織を有する高強度・高延性鋼板およびその製造方法
JP2002371315A (ja) * 2001-06-19 2002-12-26 Mazda Motor Corp 金属部材の製造方法及びその方法で製造された金属部材
JP2005194614A (ja) * 2003-01-17 2005-07-21 Jfe Steel Kk 疲労特性に優れた鋼材およびその製造方法
JP2005213640A (ja) 2004-02-02 2005-08-11 Kobe Steel Ltd 伸び及び伸びフランジ性に優れた高強度冷延鋼板とその製法
JP2007231323A (ja) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology 鉄合金製機構部品の表面改質法
JP2008013835A (ja) 2006-07-08 2008-01-24 Delta Tooling Co Ltd 高強度金属部材及びその製造方法
JP2008297609A (ja) 2007-05-31 2008-12-11 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れた高強度鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2402466A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150017469A1 (en) * 2011-12-22 2015-01-15 Thyssenkrupp Rasselstein Gmbh Sheet steel for use as packaging steel and method for producing packaging steel

Also Published As

Publication number Publication date
JP5382421B2 (ja) 2014-01-08
US20120042994A1 (en) 2012-02-23
JP2010196106A (ja) 2010-09-09
EP2402466A1 (en) 2012-01-04
US20140008847A1 (en) 2014-01-09
EP2402466B1 (en) 2019-01-02
EP2402466A4 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5382421B2 (ja) 高強度高靱性薄肉鋼の製造方法及び熱処理装置
JP5565785B2 (ja) 構造材
JP5292698B2 (ja) 極軟質高炭素熱延鋼板およびその製造方法
JP4735211B2 (ja) 自動車用部材およびその製造方法
JP5906324B2 (ja) 自動車用衝突エネルギー吸収部材およびその製造方法
JP4682822B2 (ja) 高強度熱延鋼板
WO2007043318A1 (ja) 極軟質高炭素熱延鋼板およびその製造方法
WO2010137619A1 (ja) 高強度成形品及びその製造方法
CN102822375A (zh) 超高强度冷轧钢板及其制造方法
Etesami et al. Austenite formation and mechanical properties of a cold rolled ferrite-martensite structure during intercritical annealing
Mazaheri et al. Microstructures, mechanical properties, and strain hardening behavior of an ultrahigh strength dual phase steel developed by intercritical annealing of cold-rolled ferrite/martensite
JP2002285278A (ja) 普通低炭素鋼を低ひずみ加工・焼鈍して得られる超微細結晶粒組織を有する高強度・高延性鋼板およびその製造方法
JP2019524995A (ja) 高降伏強度鋼
Ormsuptave et al. Effect of fine grained dual phase steel on bake hardening properties
JP4730070B2 (ja) 薄鋼板の製造方法
CA2636287A1 (en) Method and device adjusting targeted combinations of properties of polyphase steel
JP5321571B2 (ja) 高強度熱延鋼板の製造方法
JP4392324B2 (ja) 冷間鍛造用肌焼鋼の製造方法
JP2011074497A (ja) 薄鋼板
WO2013102987A1 (ja) 高炭素熱延鋼板およびその製造方法
JP5377832B2 (ja) 熱延鋼板およびその製造方法
WO2023190200A1 (ja) 高強度鋼板およびその製造方法
JP2006283043A (ja) 固相変態を有しない金属材料の表面改質法および表面改質された固相変態を有しない金属材料
JP2004300476A (ja) 超高強度冷延鋼板およびその製造方法
Pan et al. Processing and stability of ultrafine grained structures in some microalloy steels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010746173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13202991

Country of ref document: US