WO2010097894A1 - インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法 - Google Patents

インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法 Download PDF

Info

Publication number
WO2010097894A1
WO2010097894A1 PCT/JP2009/053291 JP2009053291W WO2010097894A1 WO 2010097894 A1 WO2010097894 A1 WO 2010097894A1 JP 2009053291 W JP2009053291 W JP 2009053291W WO 2010097894 A1 WO2010097894 A1 WO 2010097894A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
signal source
measurement
electrode
main body
Prior art date
Application number
PCT/JP2009/053291
Other languages
English (en)
French (fr)
Inventor
方昭 牧川
雄太 伊藤
Original Assignee
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人立命館 filed Critical 学校法人立命館
Priority to PCT/JP2009/053291 priority Critical patent/WO2010097894A1/ja
Priority to JP2011501376A priority patent/JP5178909B2/ja
Publication of WO2010097894A1 publication Critical patent/WO2010097894A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/304Switching circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Definitions

  • the present invention relates to an apparatus and method for estimating electric activity inside a living body, and more particularly to an apparatus and method for estimating an electric potential inside a living body.
  • in-vivo electrical activity is generally measured using skin electrodes such as electroencephalogram measurement associated with intracerebral activity and electrocardiogram associated with heart pulsation.
  • skin electrodes such as electroencephalogram measurement associated with intracerebral activity and electrocardiogram associated with heart pulsation.
  • bioelectric activity is also known from measurement data, such as estimating the voltage distribution on the surface of the cerebrum.
  • Patent Document 1 Although it is possible to determine the potential distribution inside the living body, it is necessary to place and measure a large number of electrodes on the living body without any gaps, which places a burden on the living body. large. If the number of electrodes is small, the burden on the living body is reduced, but only a potential distribution with low resolution can be obtained.
  • an object of the present invention is to provide an in-vivo potential estimation apparatus and method capable of measuring an electromyogram inside a living body, for example, an inner muscle, using a surface electrode that can be easily measured.
  • a first in-vivo potential estimation apparatus is an in-vivo potential estimation apparatus including a main body (1), a measurement unit (2), a measurement electrode (EM), and a ground electrode (EG).
  • the measurement electrode and the ground electrode are arranged at different positions on the surface of the living body (5)
  • the measurement unit is disposed between the measurement electrode and the ground electrode, and has an impedance switching device capable of changing impedance, Each time the main body unit sets the impedance of the impedance switching device to a predetermined value, the potential of the measurement electrode is measured via the measurement unit, and recorded as a measurement potential.
  • the main body uses the measured potential to determine the position and potential of the signal source inside the living body.
  • the second in-vivo potential estimation apparatus is the first in-vivo potential estimation apparatus described above, wherein the main body portion is arranged at the position where the measurement electrode is disposed when determining the position and potential of the signal source.
  • the tomographic image of the living body including the above is divided into a grid, and an admittance corresponding to the tissue is arranged around each grid point, and a circuit network including the impedance of the impedance switching device is used, The position and potential of the signal source are obtained under the condition that the signal source is arranged between any grid point of the circuit network and the ground.
  • the third in-vivo potential estimation apparatus may be configured such that when the second in-vivo potential estimation apparatus determines the position and potential of the signal source, A unit signal source that outputs a voltage of 1 V is disposed between one of the lattice points and the ground, and using the network, a voltage transfer coefficient is obtained for each position of the unit signal source and each position of the measurement electrode, Specifying the temporary position of the signal source, using the voltage transfer coefficient corresponding to the temporary position and the measured potential, the potential of the signal source is obtained as an estimated potential, Using the estimated potential of the signal source and the voltage transfer coefficient corresponding to the temporary position of the signal source, calculate the potential of the electrode, The temporary position at which the difference between the calculated potential of the electrode and the measured potential is minimized is determined as the position of the signal source.
  • a fourth in-vivo potential estimation apparatus is the second in-vivo potential estimation apparatus described above,
  • the tomographic image is a three-dimensional image;
  • the main body divides the tomographic image into a three-dimensional grid.
  • a first in vivo potential estimation method includes a main body (1), a measurement unit (2), a measurement electrode (EM), and a ground electrode (EG), The measurement electrode and the ground electrode are arranged at different positions on the surface of the living body (5), The measurement unit is disposed between the measurement electrode and the ground electrode, and is a method for estimating an in vivo potential using a device having an impedance switching device (VR) capable of changing impedance, A first step in which the main body sets the impedance of the impedance switching device to a predetermined value; A second step in which the main body measures the potential of the measurement electrode via the measurement unit in a state where the impedance is set to the predetermined value, and records it as a measurement potential; The main body includes a third step of determining the position and potential of a signal source inside the living body using the measurement potential; The main body repeatedly executes the first step and the second step.
  • VR impedance switching device
  • the second in vivo potential estimation method is the first in vivo potential estimation method described above.
  • the third step includes The body section divides the tomographic image of the living body including the position where the measurement electrode is disposed into a lattice shape, and admittance corresponding to the tissue is disposed around each lattice point, and the impedance switching device A fourth step of generating a network including impedance; And a fifth step of obtaining a position and a potential of the signal source under a condition that the main body is arranged between any grid point of the circuit network and the ground.
  • the third in vivo potential estimation method is the second in vivo potential estimation method described above,
  • the fifth step includes The main body unit places a unit signal source that outputs a voltage of 1 V between one of the lattice points and the ground, and uses the circuit network to apply a voltage for each position of the unit signal source and each position of the measurement electrode.
  • a sixth step for determining a transfer coefficient A seventh step in which the main body portion designates a temporary position of the signal source, obtains the potential of the signal source using the voltage transfer coefficient and the measured potential corresponding to the temporary position, and sets the estimated potential as the potential; , An eighth step in which the main body calculates the potential of the electrode using the estimated potential of the signal source and the voltage transfer coefficient corresponding to the temporary position of the signal source; An eighth step in which the main body determines the provisional position where the difference between the calculated potential of the electrode and the measured potential is minimum as the position of the signal source;
  • the fourth in vivo potential estimation method is the second in vivo potential estimation method described above,
  • the tomographic image is a three-dimensional image;
  • the main body divides the tomographic image into a three-dimensional grid.
  • a sufficient number of surface potential data that can be used to estimate the potential distribution inside the living body can be measured even with relatively few surface electrodes. Is possible.
  • the position of the signal source inside the living body and its potential can be estimated by using the circuit network determined using the tomographic image. Therefore, a two-dimensional or three-dimensional potential distribution inside the living body can be obtained. Furthermore, by using the potential data measured in time series, it is possible to estimate the time change of the potential distribution inside the living body.
  • the potential distribution of the inner muscle can be obtained, if the surface potential is measured while the living body is in motion, whether or not the inner muscle is used during exercise, It becomes possible to judge the degree.
  • the burden on the living body can be reduced.
  • FIG. 3 is a block diagram illustrating an outline of an internal configuration of a measurement unit 2.
  • FIG. It is a flowchart which shows operation
  • It is a tomographic image of the human chest. It is a figure for demonstrating the mesh division
  • FIG. 1 is a block diagram showing a schematic configuration of an in-vivo potential estimation apparatus (hereinafter also simply referred to as “estimation apparatus”) according to an embodiment of the present invention.
  • the estimation apparatus includes a main body unit 1, a measurement unit 2, an operation unit 3, and a display unit 4.
  • the main body unit 1 is, for example, a computer, an arithmetic processing unit (hereinafter referred to as a CPU) 11, a temporary storage unit (hereinafter referred to as a RAM) 12, a recording unit (for example, a hard disk drive) 13, a communication interface unit (hereinafter referred to as a CPU). , Communication IF section) 14, measurement interface section (hereinafter referred to as measurement IF section) 15, input / output interface section (hereinafter referred to as input / output IF section) 16, and internal bus 17.
  • a CPU arithmetic processing unit
  • RAM temporary storage unit
  • a recording unit for example, a hard disk drive
  • a communication interface unit hereinafter referred to as a CPU
  • Communication IF section 14
  • measurement interface section hereinafter referred to as measurement IF section
  • input / output interface section hereinafter referred to as input / output IF section
  • the CPU 11 receives image data from the imaging device 6 via the communication IF unit 14. Even if the communication IF unit 14 is directly connected to the imaging device 6 in the form of a serial or parallel interface (RS-232C, GPIB, etc.), the communication IF unit 14 is connected to the imaging device 6 via a network (LAN, intranet, Internet, etc.). It may be connected.
  • a network LAN, intranet, Internet, etc.
  • the CPU 11 controls the measurement unit 2 via the measurement IF unit 15 and receives measurement data. In addition, the CPU 11 acquires information according to a situation in which the operation unit 3 is operated via the input / output IF unit 16, and displays a processing result or the like on the display unit 4.
  • the operation unit 3 is, for example, a computer keyboard or mouse, and is a means for inputting instructions and data to the CPU 11.
  • the display unit 4 is, for example, a liquid crystal display or a CRT display.
  • the input / output IF unit 16 includes a video memory and a DA converter, and displays a predetermined image on the display unit 4 by outputting an analog signal corresponding to the video system of the display unit 4. Data exchange between the respective parts constituting the main body 1 is performed via the internal bus 17.
  • the measuring unit 2 is a device that measures the potential of the skin surface of the living body 5 such as an electrocardiogram and an electromyogram, and includes an impedance switching device connected to the living body 5.
  • An outline of the internal configuration of the measurement unit 2 is shown in FIG. In FIG. 2, a measurement electrode EM and a ground electrode EG are disposed on the skin surface of the living body 5.
  • the number of measurement electrodes EM is not limited to one and may be plural.
  • An impedance switching device VR is disposed between the measurement electrode EM and the ground.
  • the impedance switching device VR is supplied with a control signal from the measurement IF unit 15 via the control line, and can change the impedance according to the control signal. As an example, in FIG.
  • a plurality of resistance elements Z1 to Zn (including the case where the resistance value of the resistance element is infinite, that is, the resistance element is not connected) are arranged in parallel.
  • the switch SW is switched according to the control signal, and one of the plurality of resistance elements Z1 to Zn is selected, and the selected resistance element is connected between the measurement line and the ground line.
  • a signal from the measurement electrode EM is input to the measurement IF unit via the biological measurement amplifier A on the measurement line.
  • the switch SW needs to be switched in a sufficiently short time (about 1 ⁇ s or less, preferably about 0.1 ⁇ s or less considering the change of the bioelectric potential) so that the time change of the measurement voltage can be ignored.
  • a multiplexer or the like can be used.
  • each measurement electrode EM includes an impedance switching device VR, a measurement line, and an amplifier A, and the configuration of each impedance switching device VR is the same or different. Good. For example, the number of resistance elements and the value of resistance elements in each impedance switching device VR may be different.
  • the imaging device 6 is a device that can generate a two-dimensional tomographic image of the living body 5, and is, for example, a device such as MRI, X-ray CT, or ultrasonic CT.
  • the captured image data is transmitted from the imaging device 6 and recorded in the recording unit 13 via the communication IF unit 14.
  • the estimation apparatus configured as described above measures the surface potential of the living body 5 by the measuring unit 2 and measures the measured potential data and the tomographic image separately captured by the imaging apparatus 6 (measures the surface potential of the living body 5). And the potential inside the living body 5 is estimated.
  • FIG. 3 is a flowchart showing an in vivo potential estimation function by the estimation apparatus.
  • the function of estimating the in-vivo potential will be described more specifically with reference to FIG.
  • the CPU 11 acquires data via the communication IF unit 14, the measurement IF unit 15, and the input / output IF unit 16 and records the data in the recording unit 13. Then, the CPU 11 appropriately reads data from the recording unit 13 to the RAM 12, performs a predetermined process, and records the result in the recording unit 13. Further, the CPU 11 generates screen data for prompting the operation of the operation unit 3 and screen data for displaying the processing result, and displays these images on the display unit 4 via the input / output IF unit 16.
  • the cross-sectional image data (MRI data) captured by the imaging device 6 is recorded in the recording unit 13.
  • the recorded image data is a cross-sectional image passing through the position where the measurement electrode is disposed.
  • the number of measurement electrodes and their positions are determined in advance, and the resistance value that can be selected by the impedance switching device is also determined in advance.
  • step S 1 the surface potential of the living body 5 is measured using the measuring unit 2 and recorded in the recording unit 13. Specifically, after setting a resistance value by transmitting a control signal to each impedance switching device VR via the measurement IF unit 15, the signal of each measurement line is AD converted, and the obtained digital data is converted to time t Is recorded in the recording unit 13. After that, while the measurement signal does not change, a new control signal is transmitted to each impedance switching device VR and a resistance value is newly set, and then a signal is similarly obtained from each measurement line and recorded as data at time t. To do. Thus, before the measurement signal is changed, the control signal is changed, the combination of the resistance values of the plurality of impedance switching devices VR is changed, and the potential measurement is repeated.
  • measurement data at time t can be obtained for each set (i, Zj) of the electrode EMi and the resistance value Zj of the impedance switching device VRi.
  • the number of electrodes is ns and the number of resistance values that can be set for each impedance switching device is nr
  • ns ⁇ nr measurement data at time t can be obtained.
  • a predetermined time is obtained for each pair (i, Zj) of the resistance value of the electrode and the impedance switching device.
  • Time series data of the time interval ⁇ t over T can be obtained.
  • step S2 image data is read from the recording unit 13.
  • the image data is MRI image data and is a tomographic image of the human chest shown in FIG.
  • each tissue is displayed with a different luminance, and thus is displayed with a luminance according to the conductivity.
  • the darkest part near the center is the blood in the heart, with the heart muscle around it, the lungs on the left and right, and the skeletal muscles around them.
  • the bones are displayed in white. A color image may be used.
  • step S3 the image acquired in step S2 is divided into a grid pattern, a circuit network in which admittances corresponding to each tissue are arranged around the grid points is determined, and an admittance matrix representing the circuit network is determined.
  • the entire image is divided into M parts at equal intervals in the vertical direction and divided into N parts in the horizontal direction (for example, 50 vertical parts and 75 horizontal parts). Split).
  • FIG. 6 partially enlarged view of FIG. 5
  • a circuit network is created in which each lattice point is connected with the admittance of the organization corresponding to the positions of the four sides around it.
  • FIG. 6 is an enlarged view of the boundary between the myocardium and the lung, and one admittance Y_heart corresponding to the myocardium and three admittances Y_lung corresponding to the lung are connected around the central lattice point. .
  • the admittance of each tissue can be determined from the conductivity of a known living body.
  • the conductivity (S / m) of skeletal muscle, lung, bone, fat, blood, and myocardium is 0.12, 0.08, 0.21, 0.01, 0.5, and 0.1, respectively.
  • Each admittance can be obtained from the length of the mesh using these electrical conductivities.
  • the electrical conductivity outside the living body is, for example, 0 (resistance value is infinite, admittance is 0). Accordingly, it is possible to obtain the admittance of each mesh portion by assigning the same conductivity to the portion of the MRI image read out in step S2 with the same luminance and multiplying it by the length of the mesh.
  • the admittance of each mesh location can be determined, and this is recorded in the recording unit 13 as a matrix (admittance matrix). For example, when the vertical is divided into M and the horizontal is divided into N, an admittance matrix of M-1 rows and N-1 columns is obtained. Note that the admittance is a real number without considering the capacitance component.
  • step S4 a grid point where one signal source with a voltage of 1 V is arranged inside the living body 5 is designated.
  • FIG. 7 shows that the signal source is arranged at the position (xs, ys).
  • the voltage Vs of the signal source is 1 (V).
  • the number of measurement electrodes and their positions (xe, ye) are determined in advance.
  • step S5 the transfer coefficient matrix C is determined under the condition (see FIG. 6) that the signal source of 1V is arranged at the position (xs, ys) specified in step S4, and the position of the signal source specified in step S4.
  • the information is recorded in the recording unit 13 in association with the information representing (xs, ys). At this time, it is assumed that all grid points other than the grid point where the signal source is arranged in step S4 are grounded.
  • the potential Ve at the position (xe, ye) where each measurement electrode is disposed is It can be expressed as Equation 1.
  • the equivalent network analysis method (corrected contact equation) is well-known and will not be described.
  • Ve (xe, ye) C (Y) * Vs (Formula 1)
  • Ve is a potential at the position (xe, ye) of the measurement electrode
  • C (Y) is a voltage transfer coefficient due to admittance Y.
  • C (Y) Ve (xe, ye), and the voltage transfer coefficient related to the electrode position (xe, ye) when the signal source is arranged at the position (xs, ys).
  • C (Y) can be obtained. This means that when there is one signal source and one measurement electrode, the signal source potential Vs can be estimated by Equation 1 from the potential Ve of the measurement electrode.
  • C (Y) also takes into account a resistance value (resistance value of the impedance switching device) connected to the outside.
  • step S5 is to obtain the transfer coefficient matrix C in Equation 3.
  • step S6 it is determined whether or not there is a grid point in the living body 5 other than the grid point specified in step S4. If there is a grid point, the process returns to step S4 and has already been specified. A grid point other than the grid point is designated as a grid point where the signal source is arranged, and the process of step S5 is executed again. Therefore, steps S4 to S6 are repeated until there are no lattice points in the living body 5 where the signal source can be arranged.
  • step S8 the transfer coefficient Cij (value obtained in step S5) corresponding to the positions of the m signal sources arranged in step S7 and the n measurement data Vei are read from the recording unit, and these are expressed by the following equations. 4 is used to determine the potential of each unknown signal source.
  • step S10 it is determined whether there is a set of lattice points that can place the signal source inside the living body 5 in addition to the set of m lattice points specified in step S7.
  • a set of grid points other than the set of m grid points that have already been specified is specified and specified, and the processes of steps S8 to S9 are executed again. Therefore, steps S7 to S10 are repeated until there are no more lattice point pairs in which the signal source can be placed inside the living body 5.
  • the value of the evaluation function is obtained for each set of m lattice points (xsi, ysi) in which the signal source is arranged inside the living body 5.
  • step S10 the process proceeds to step S11, the value of the evaluation function recorded in step S9 is read from the recording unit, and the minimum value is obtained. Then, a set of m signal source positions corresponding to the obtained minimum value is determined as a final signal source position.
  • the position of the signal source and its potential can be obtained using the measurement data at the predetermined time t.
  • steps S7 to S11 are repeated using the measurement data at each time, and the potential of each signal source is obtained as time-series data. be able to.
  • the position of the signal source may change if steps S7 to S11 are repeated. In that case, the position and potential of the signal source are estimated at each time t.
  • the processing in steps S9 and S11 for obtaining the position of the signal source may be omitted.
  • the potential at each position inside the living body that is, the potential distribution can be obtained from the circuit network determined based on the tomographic image.
  • one feature of the present invention is that an impedance switching device is arranged outside the living body, and the potential on the living body surface is measured with relatively few measurement electrodes while changing the impedance.
  • the second feature is that the position and potential of the signal source inside the living body are estimated using the surface potential data thus obtained.
  • FIG. 2 illustrates the case where the impedance switching device VR includes a plurality of resistance elements, but the present invention is not limited to this. As long as the impedance can be changed, a capacitive element or an element including both a resistor and a capacitor may be used.
  • Steps S7 to S11 the evaluation function is obtained for all possible positions of the m signal sources, and then the minimum value of the evaluation function is obtained.
  • the present invention is not limited to this. For example, by changing only one of the positions of the plurality of signal sources (signal source j1), the position of the signal source j1 that minimizes the value of the evaluation function is determined and fixed, and then another signal source The process of determining and fixing the position of the signal source j2 that minimizes the value of the evaluation function by changing j2 (j2 ⁇ j1) in the same manner may be repeated to determine the position of each signal source. . In that case, the calculation time is shorter than when processing is performed for all possible sets of m signal sources. Note that the position of the obtained signal source is assumed to be a temporary position, changed again in the vicinity thereof, the value of the evaluation function is obtained, the minimum value thereof is obtained, and the position of the signal source is finally determined. Also good.
  • the image division method is arbitrary and may be determined in relation to the processing time. For example, some parts may be divided more finely than other parts, not at equal intervals. Further, the dividing lines (adjacent sides of the cells) may not be orthogonal, and may be divided in an oblique direction.
  • the part of the living body to be measured may be any part capable of measuring the surface potential of the living body, such as the head, chest, arms, and legs.
  • a predetermined two-dimensional plane in the living body is an object to be estimated, but if a three-dimensional circuit network is created, a three-dimensional potential distribution can be obtained.
  • the three-dimensional MRI image is divided into a lattice shape in the three-axis direction, and admittances obtained from the conductivity corresponding to the tissue at each position are arranged around the lattice points (six).
  • a three-dimensional admittance matrix can be determined. If the signal source is arranged at a predetermined lattice point in the three-dimensional space and the same processing as described above is performed, the position and potential of the signal source can be obtained, and thus the three-dimensional potential distribution can be obtained. it can.
  • the present invention is not limited to the case where the impedance switching device is disposed outside the living body, but instead or in addition, the potential may be measured by changing the position of the ground electrode of the living body.
  • FIG. 8 shows time series data (horizontal axis is time and vertical axis is potential) obtained by arranging measurement electrodes at four points around the trunk and from each measurement electrode.
  • the measurement data arranged on the top, bottom, left, and right of the central tomographic image is data obtained from measurement electrodes arranged on the chest, back, left side, and right side, respectively.
  • FIG. 9 shows the results of estimating the potentials of the four signal sources according to the processing described with reference to FIG. 3 using the measurement data of FIG.
  • the positions of the four signal sources were fixed (open circles in the tomographic image in FIG. 9), and the potentials of the signal sources were obtained. Therefore, the process of changing the position of the signal source is not performed.
  • the positions of these signal sources were determined from the fact that a peak value called an R wave of the electrocardiogram was greatly measured on the front surface of the body (thesis assuming similar positions is also known). Since it is known that the firing position (signal source position) in the heart actually moves, it is desirable to obtain the signal source position as an unknown quantity.
  • the obtained graph is shown around the tomographic image.
  • a graph of the potential of each signal source is shown by a lead line from the electrode.
  • the graph on the right side of the tomographic image is a graph obtained by enlarging the lower right graph in the vertical axis direction.
  • FIG. 10 shows the three-dimensional display of the potential distribution inside the living body, using the result of FIG. 9 (signal source potential) and the premised circuit network.
  • the coordinate axes are shown in the right figure.
  • the potential of the signal source inside the living body could be estimated from the surface potential measurement data, and the potential distribution could be obtained. From the graph on the right side of the tomographic image in FIG. 9, an electromyogram with little influence from the heart beat was obtained. Although the position of the signal source is fixed in advance, the estimated potential is determined so that the error is minimized because the position may not be accurate.
  • FIG. 11 shows time series data (horizontal axis is time and vertical axis is potential) obtained by arranging measurement electrodes (ch1 to ch8) at eight points around the trunk.
  • the measurement data arranged on the left and right of the central tomographic image is the measurement data of ch1 to ch4 in order from the upper left to the lower left, and the measurement data of ch5 to ch8 in order from the upper right to the lower right.
  • FIG. 12 shows the result of estimating the potentials of the four signal sources (positions are fixed) in the same manner as in Example 1 using the measurement data of FIG.
  • the meaning of the graph arranged around the tomographic image is the same as in FIG.
  • the potential of the signal source inside the living body could be estimated from the surface potential measurement data, and the potential distribution could be obtained.
  • the electromyogram having less influence from the heart beat was obtained in the graph on the right side of the tomographic image in FIG.
  • Example 2 an experiment was performed with eight electrodes arranged. However, using data measured by arranging four electrodes in the same manner as in Example 1 and connecting different resistors to the outside, FIG. A highly reliable estimation result can be obtained similarly to the above.
  • the present invention by changing the external resistance value, a sufficient number of surface potential data that can be used to estimate the potential distribution inside the living body can be measured even with relatively few surface electrodes. Is possible. Further, according to the present invention, the position of the signal source inside the living body and its potential can be estimated by using the circuit network determined using the tomographic image.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

生体内電位の推定装置は、本体部(1)、測定部(2)、測定電極(EM)および接地電極(EG)を備えた装置であって、 前記測定電極および前記接地電極が、生体(5)の表面の異なる位置に配置され、 前記測定部が、前記測定電極および前記接地電極の間に配置され、且つ抵抗値を変更可能なインピーダンス切り替え装置(VR)を有し、 前記本体部が、前記インピーダンス切り替え装置のインピーダンスを所定値に設定する毎に、前記測定部を介して、前記測定電極の電位を測定して記録し、 前記本体部が、記録された前記電位を用いて、前記生体内部の信号源の位置および電位を求める。

Description

インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法
 本発明は、生体内部の電気活動を推定する装置およびその方法に関し、特に、生体内部の電位の推定装置およびその方法に関する。
 生体医工学、人間工学などでは脳内活動に伴う脳波計測、心臓拍動に伴う心電図など、皮膚電極を用いて生体内電気活動を計測することが一般的に行われている。また、大脳表面における電圧分布の推定など、計測データから生体電気活動の生体内分布を知ろうとする試みも多い。
 一方、生体と所定平面との交線(閉曲線)上の各点において、表面電位を測定することができれば、その平面を通る生体の断面内の電位分布を一意に求めることができることが知られている(下記特許文献1、非特許文献1参照)。
 また、生体(筋肉)に針を刺して、これを電極としてインナーマッスルの電位を測定する方法が知られている。
特開H11-113867号公報 体内組織の非線形性を考慮した心電図逆問題の解法,電子通信学会論文誌,Vol.J68-C,pp.1038-1093,1985
 しかし、脳幹部の電位変化、インナーマッスルの筋電図推定など、奥行き方向(断面方向)の電圧分布を容易に推定することはまだ実現されていない。
 特許文献1または非特許文献1によれば、生体内部の電位分布を求めることは可能ではあるが、生体に多数の電極を隙間無く配置して測定することが必要であり、生体への負担が大きい。電極数が少なければ、生体への負担は軽減されるが、解像度の低い電位分布しか得ることができない。
 また、内在筋(生体内部の筋肉)の電位を測定するために、生体(筋肉)に針を刺す方法でも、電位分布を得るには多くの針を刺すことが必要となり、生体の負担が多大であった。
 従って、本発明の目的は、手軽に計測できる表面電極を用いて、生体内部、例えばインナーマッスルの筋電図計測を可能とする生体内電位の推定装置およびその方法を提供することにある。
 本発明の目的は、以下の手段によって達成される。なお、以下において括弧を付して図面の符号を記載するが、これは、本発明の理解をより容易にするためのものであって、本発明を限定するものでは無い。
 本発明に係る第1の生体内電位の推定装置は、本体部(1)、測定部(2)、測定電極(EM)および接地電極(EG)を備えた生体内電位の推定装置であって、
 前記測定電極および前記接地電極が、生体(5)の表面の異なる位置に配置され、
 前記測定部が、前記測定電極および前記接地電極の間に配置され、且つインピーダンスを変更可能なインピーダンス切り替え装置を有し、
 前記本体部が、前記インピーダンス切り替え装置のインピーダンスを所定値に設定する毎に、前記測定部を介して、前記測定電極の電位を測定し、測定電位として記録し、
 前記本体部が、前記測定電位を用いて、前記生体内部の信号源の位置および電位を求める。
 また、第2の生体内電位の推定装置は、上記の第1の生体内電位の推定装置において、前記信号源の位置および電位を求める際に、前記本体部が、前記測定電極を配置した位置を含む前記生体の断層画像を格子状に分割し、各格子点の周りに、該当するに組織に対応するアドミッタンスを配置し、且つ、前記インピーダンス切り替え装置のインピーダンスを含めた回路網を用い、該回路網の何れかの格子点と接地との間に信号源を配置した条件で、前記信号源の位置および電位を求める。
 また、第3の生体内電位の推定装置は、上記の第2の生体内電位の推定装置において、前記信号源の位置および電位を求める際に、前記本体部が、
 1Vの電圧を出力する単位信号源を前記格子点の1つと接地と間に配置し、前記回路網を用いて、前記単位信号源の位置および前記測定電極の位置毎に電圧伝達係数を求め、
 信号源の仮の位置を指定し、該仮の位置に対応する前記電圧伝達係数および前記測定電位を用いて、該信号源の電位を求めて推定電位とし、
 前記信号源の推定電位、および、前記信号源の仮の位置に対応する前記電圧伝達係数を用いて、前記電極の電位を計算し、
 計算された前記電極の電位と前記測定電位との差が最小となる前記仮の位置を、信号源の位置として決定する。
 また、第4の生体内電位の推定装置は、上記の第2の生体内電位の推定装置において、
 前記断層画像が、3次元画像であり、
 前記本体部が、前記断層画像を3次元の格子状に分割する。
 本発明に係る第1の生体内電位の推定方法は、本体部(1)、測定部(2)、測定電極(EM)および接地電極(EG)を備え、
 前記測定電極および前記接地電極が、生体(5)の表面の異なる位置に配置され、
 前記測定部が、前記測定電極および前記接地電極の間に配置され、且つインピーダンスを変更可能なインピーダンス切り替え装置(VR)を有する装置を用いて生体内電位を推定する方法であって、
 前記本体部が、前記インピーダンス切り替え装置のインピーダンスを所定値に設定する第1ステップと、
 前記本体部が、前記インピーダンスが前記所定値に設定された状態で、前記測定部を介して、前記測定電極の電位を測定し、測定電位として記録する第2ステップと、
 前記本体部が、前記測定電位を用いて、前記生体内部の信号源の位置および電位を求める第3ステップとを含み、
 前記本体部が、前記第1ステップおよび第2ステップを繰り返し実行する。
 また、第2の生体内電位の推定方法は、上記の第1の生体内電位の推定方法において、
 前記第3ステップが、
 前記本体部が、前記測定電極を配置した位置を含む前記生体の断層画像を格子状に分割し、各格子点の周りに、該当するに組織に対応するアドミッタンスを配置し、前記インピーダンス切り替え装置のインピーダンスを含む回路網を生成する第4ステップと、
 前記本体部が、前記回路網の何れかの格子点と接地との間に信号源を配置した条件で、前記信号源の位置および電位を求める第5ステップとを含む。
 また、第3の生体内電位の推定方法は、上記の第2の生体内電位の推定方法において、
 前記第5ステップが、
 前記本体部が、1Vの電圧を出力する単位信号源を前記格子点の1つと接地と間に配置し、前記回路網を用いて、前記単位信号源の位置および前記測定電極の位置毎に電圧伝達係数を求める第6ステップと、
 前記本体部が、信号源の仮の位置を指定し、該仮の位置に対応する前記電圧伝達係数および前記測定電位を用いて、該信号源の電位を求めて推定電位とする第7ステップと、
 前記本体部が、前記信号源の推定電位、および、前記信号源の仮の位置に対応する前記電圧伝達係数を用いて、前記電極の電位を計算する第8ステップと、
 前記本体部が、計算された前記電極の電位と前記測定電位との差が最小となる前記仮の位置を、信号源の位置として決定する第8ステップとを含む。
 また、第4の生体内電位の推定方法は、上記の第2の生体内電位の推定方法において、
 前記断層画像が、3次元画像であり、
 前記第4ステップにおいて、前記本体部が、前記断層画像を3次元の格子状に分割する。
 本発明によれば、外部の抵抗値を変更することによって、比較的少ない表面電極を用いても、生体内部の電位分布の推定に使用することができる十分な数の表面電位データを測定することが可能となる。
 また、本発明によれば、断層画像を用いて決定した回路網を使用することによって、生体内部の信号源の位置およびその電位を推定することができる。従って、生体内部の2次元的または3次元的な電位分布を得ることができる。さらに、時系列に測定した電位データを使用することによって、生体内部の電位分布の時間変化を推定することができる。
 例えば、インナーマッスルの電位分布を得ることができるので、生体が運動している状態で、表面電位を測定すれば、運動中にインナーマッスルが使用されているか否か、使用されている場合には、その程度を判断することが可能になる。
 また、本発明によれば、使用する表面電極の数を、従来よりも少なくすることができるので、生体への負担を軽減することができる。
本発明の実施の形態に係る生体内電位の推定装置の概略構成を示すブロック図である。 測定部2の内部構成の概要を示すブロック図である。 本発明の実施の形態に係る生体内電位の推定装置の動作を示すフローチャートである。 人体胸部の断層撮像画像である。 断層撮像画像のメッシュ分割を説明するための図である。 図5の部分拡大図にアドミッタンスを配置した図である。 信号源および測定電極の位置を説明する図である。 体幹周囲4点に測定電極を配置して得られた電位データを示す図である。 図8の測定データを用いて4つの信号源の電位を推定した結果を示す図である。 図9の結果を用いて求めた生体内部の電位分布を3次元的に表示した図である。 体幹周囲8点に測定電極を配置して得られた電位データを示す図である。 図11の測定データを用いて4つの信号源の電位を推定した結果を示す図である。
符号の説明
1  本体部
11 演算処理部(CPU)
12 一時記憶部(RAM)
13 記録部
14 通信IF部
15 測定IF部
16 入出力IF部
17 内部バス
2  測定部
3  操作部
4  表示部
5  生体
6  イメージング装置
VR インピーダンス切り替え装置
EM 測定電極
EG 接地電極
A  アンプ
SW スイッチ
Z1~Zn 抵抗素子
 以下、添付の図面を参照して、本発明の実施の形態に関して詳細に説明する。
図1は、本発明の実施の形態に係る生体内電位の推定装置(以下、単に「推定装置」とも記す)の概略構成を示すブロック図である。本推定装置は、本体部1、測定部2と、操作部3、および、表示部4を備えている。
 本体部1は、例えば、コンピュータであり、演算処理部(以下、CPUと記す)11、一時記憶部(以下、RAMと記す)12、記録部(例えば、ハードディスクドライブ)13、通信インタフェース部(以下、通信IF部と記す)14、測定インタフェース部(以下、測定IF部と記す)15、入出力インタフェース部(以下、入出力IF部と記す)16、及び、内部バス17を備えている。
 CPU11は、通信IF部14を介して、イメージング装置6から画像データを受信する。通信IF部14は、シリアル又はパラレルインタフェース(RS-232C、GPIBなど)の形態で、イメージング装置6に直接接続されていても、ネットワーク(LAN、イントラネット、インターネットなど)を介して、イメージング装置6に接続されていてもよい。
 また、CPU11は、測定IF部15を介して、測定部2を制御し、測定データを受信する。また、CPU11は、入出力IF部16を介して、操作部3が操作される状況に応じた情報を取得し、処理結果などを表示部4に表示する。操作部3は、例えば、コンピュータ用のキーボード、マウスなどであり、CPU11に対する指示やデータを入力するための手段である。表示部4は、例えば、液晶ディスプレイやCRTディスプレイである。入出力IF部16は、ビデオメモリおよびDA変換器を備え、表示部4のビデオ方式に応じたアナログ信号を出力することによって、所定の映像を表示部4に表示する。本体部1を構成する各部間でのデータ交換は、内部バス17を介して行われる。
 測定部2は、心電図、筋電図などの、生体5の皮膚表面の電位を測定する装置であり、生体5に接続されるインピーダンス切り替え装置を備えている。測定部2の内部構成の概要を、図2に示す。図2において、生体5の皮膚表面には、測定電極EMと接地電極EGとが配置されている。測定電極EMは1つに限らず複数であってもよい。測定電極EMと接地との間には、インピーダンス切り替え装置VRが配置されている。インピーダンス切り替え装置VRは、制御ラインを介して、測定IF部15から制御信号を供給され、制御信号に応じてインピーダンスを変更することができる。一例として、図2には、複数の抵抗素子Z1~Zn(抵抗素子の抵抗値が無限大、即ち抵抗素子が接続されていない場合も含む)が並列に配置されている。制御信号に応じてスイッチSWが切り替えられ、複数の抵抗素子Z1~Znのうちの1つが選択されて、選択された抵抗素子が測定ラインと接地ラインとの間に接続される。測定電極EMからの信号は、測定ライン上の生体計測用アンプAを介して、測定IF部に入力される。スイッチSWは、測定電圧の時間変化を無視できる程度に十分短い時間(生体電位の変化を考慮すれば、約1μs以下、望ましくは約0.1μs以下)で切り替えられることが必要であり、高速のマルチプレクサなどを使用することができる。なお、複数の測定電極EMを使用する場合、測定電極EM毎にインピーダンス切り替え装置VR、測定ラインおよびアンプAを備えており、各インピーダンス切り替え装置VRの構成は同じであっても、異なっていてもよい。例えば、各インピーダンス切り替え装置VRの内部の抵抗素子の数や抵抗素子の値が異なっていてもよい。
 イメージング装置6は、生体5の2次元断層画像を生成することができる装置であり、例えば、MRI、X線CT、超音波CTなどの装置である。撮像された画像データは、イメージング装置6から伝送され、通信IF部14を介して記録部13に記録される。
 このように構成された本推定装置は、生体5の表面電位を測定部2によって測定し、測定された電位データと、別途にイメージング装置6によって撮像された断層画像(生体5の表面電位を測定する位置を含む)とを用いて、生体5内部の電位を推定する。
 図3は、本推定装置による生体内電位の推定機能を示すフローチャートである。以下、図3に従って、生体内電位を推定する機能を、より具体的に説明する。
 なお、以下においては、特に断らない限り、CPU11が行う処理として説明する。CPU11は、通信IF部14、測定IF部15、入出力IF部16を介してデータを取得して記録部13に記録する。そして、CPU11は、適宜記録部13からデータをRAM12に読み出し、所定の処理を行った後、その結果を記録部13に記録する。また、CPU11は、操作部3の操作を促す画面データや処理結果を表示する画面データを生成し、入出力IF部16を介して、これらの画像を表示部4に表示する。
 また、上記したように、イメージング装置6によって撮像された断面画像データ(MRIデータ)が、記録部13に記録されているとする。記録されている画像データは、測定電極が配置される位置を通る断面画像である。また、測定電極の数及びその位置は予め決定されており、インピーダンス切り替え装置の選択可能な抵抗値も予め決定されている。
 ステップS1において、測定部2を使用して、生体5の表面電位を測定し、記録部13に記録する。具体的には、測定IF部15を介して、各インピーダンス切り替え装置VRに制御信号を送信して抵抗値を設定した後に、各測定ラインの信号をAD変換し、得られたデジタルデータを時刻tのデータとして、記録部13に記録する。その後、測定信号が変化しないうちに、新たに制御信号を各インピーダンス切り替え装置VRに送信して抵抗値を新たに設定した後に、同様に各測定ラインから信号を取得し、時刻tのデータとして記録する。このように、測定信号が変化しないうちに、制御信号を変更して、複数のインピーダンス切り替え装置VRの抵抗値の組合せを変更し、電位の測定を繰り返す。これによって、電極EMiとインピーダンス切り替え装置VRiの抵抗値Zjとの組(i,Zj)毎に、時刻tにおける測定データを得ることができる。例えば、電極の数をns、各インピーダンス切り替え装置の設定可能な抵抗値の数をnrとすると、ns×nr個の時刻tにおける測定データを得ることができる。
 さらに、測定信号が変化する時間(Δt)間隔で、上記と同様の測定を所定時間(T)繰り返すことによって、電極とインピーダンス切り替え装置の抵抗値との組(i,Zj)毎に、所定時間Tにわたる時間間隔Δtの時系列データを得ることができる。なお、後述の説明から分かるように、インピーダンス切り替え装置VRを備えることによって、少ない測定電極EMでも生体内部の電位を求めることができるのが本発明の特徴である。
 ステップS2において、記録部13から、画像データを読み出す。ここでは、画像データがMRI画像データであり、図4に示す人体胸部の断層撮像画像であるとする。図4では、各組織が異なる輝度で表示されており、従って導電率に応じた輝度で表示されている。中央付近の最も黒い部分が心臓中の血液であり、その周囲に心筋があり、左右に肺があり、それらの周囲に骨格筋がある。骨は白色で表示されている。なお、カラー画像を使用してもよい。
 ステップS3において、ステップS2で取得した画像を格子状に分割し、格子点の周りに各組織に対応するアドミッタンスが配置された回路網を決定し、その回路網を表すアドミッタンス行列を決定する。例えば、図5(楕円は生体の外周を概念的に表す)に示すように、画像全体を等間隔に、縦方向にM分割し、横方向にN分割する(例えば、縦50分割、横75分割)。そして、図6(図5の部分拡大図)に示すように、各格子点に、その周りの4辺の位置に対応する組織のアドミッタンスが接続された回路網を作成する。図6は、心筋と肺との境界部分を拡大した図であり、中央の格子点の周りに、心筋に対応する1つのアドミッタンスY_heartと、肺に対応する3つのアドミッタンスY_lungとが接続されている。
 各組織のアドミッタンスは、公知の生体の導電率から求めることができる。例えば、骨格筋、肺、骨、脂肪、血液、心筋の導電率(S/m)として、それぞれ0.12、0.08、0.21、0.01、0.5、0.1が公知であり、これらの導電率を用いて、メッシュの長さから各アドミッタンスを求めることができる。なお、生体外部の導電率は、例えば0(抵抗値が無限大、アドミッタンスは0)とする。従って、ステップS2で読み出したMRI画像の同じ輝度で表された部分に、同じ導電率を割当てて、メッシュの長さと乗算して、各メッシュ部分のアドミッタンスを得ることができる。よって、各メッシュの場所のアドミッタンスを決定することができ、これを、行列(アドミッタンス行列)として記録部13に記録する。例えば、縦をM分割し、横をN分割する場合、M-1行N-1列のアドミッタンス行列が得られる。なお、容量成分は考慮せず、アドミッタンスは実数である。
 ステップS4において、生体5の内部に、電圧1Vの1つの信号源を配置する格子点を指定する。図7は、位置(xs,ys)に信号源が配置されていることを示す。ここでは、信号源の電圧Vs=1(V)である。なお、上記したように、測定電極の数およびその位置(xe,ye)は、予め決定されている。
 ステップS5において、ステップS4で指定された位置(xs,ys)に1Vの信号源が配置された条件(図6参照)で伝達係数行列Cを決定し、ステップS4で指定された信号源の位置(xs,ys)を表す情報と対応させて記録部13に記録する。このとき、ステップS4で信号源を配置した格子点以外の格子点は、全て接地されているとする。
 所定の位置(xs,ys)に電位Vsの信号源を配置し、等価回路網解析法(修正接点方程式)を解くことによって、各測定電極が配置される位置(xe,ye)における電位Veは式1のように表現できる。なお、等価回路網解析法(修正接点方程式)は公知であるので説明を省略する。
Ve(xe,ye)=C(Y)×Vs   (式1)
ここで、Veは測定電極の位置(xe,ye)における電位、C(Y)はアドミッタンスYによる電圧伝達係数である。
 従って、Vs=1とすることにより、C(Y)=Ve(xe,ye)となり、位置(xs,ys)に信号源を配置したときの、電極の位置(xe,ye)に関する電圧伝達係数C(Y)を求めることができる。このことは、信号源が1つ、且つ測定電極が1つの場合、測定電極の電位Veから、式1によって信号源電位Vsを推定できることを意味する。ここで、C(Y)は、外部に接続される抵抗値(インピーダンス切り替え装置の抵抗値)も考慮されている。
 信号源が複数(n個)あり、測定電極が1つの場合、位置(xsi,ysi)に配置されるi番目(i=1~n)の信号源の電位をVsiとすると、重ね合わせの原理により、測定電極の電位Veは式2で表される。
Ve=C1×Vs1+C2×Vs2+・・・+Cn×Vsn    (式2)
これは、未知数(Vsi)がn個なのに対して、条件式が1つなので解くことができない。
信号源電位Vsiを求めるためにはn箇所で電位を計測する、即ち、異なる位置に配置されたn個の測定電極で電位を計測する必要がある。
 一般に、計測電極の数をne、信号源の数をnsとすると、ne=ns=nであれば、各信号源の電位Vsiは一意に決まり、式3で与えられる。ステップS5の処理は、式3中の伝達係数行列Cを求めることである。
Figure JPOXMLDOC01-appb-M000001
 なお、ne<nsとなると各信号源の電位Vsiを推定することは不可能である。従って、従来では、必要な数の電極を使用して測定が成されていた。これに対して、本発明では、インピーダンス切り替え装置VRを備えることによって、電極の数を増やすことなく、条件式を増やすことが可能である。
 ステップS6において、ステップS4で指定された格子点以外に、生体5の内部に信号源を配置できる格子点が存在するか否かを判断し、存在すれば、ステップS4に戻り、既に指定された格子点以外の格子点を、信号源を配置する格子点として指定し、再びステップS5の処理を実行する。従って、生体5の内部に信号源を配置できる格子点がなくなるまで、ステップS4~S6が繰り返される。その結果、生体5の内部に1つの信号源を配置した格子点(xsi,ysi)、電極の位置(xej,yej)、および、抵抗部VRkの抵抗値の組(セット)毎に、伝達係数行列Cが求められる。
 ステップS6の条件を満たす場合、ステップS7に移行し、生体5の内部に、複数の信号源(m個、各電圧Vsj(j=1~m)は未知)の各々を配置する格子点の位置(m個)の組を指定する。
 ステップS8において、ステップS7で配置されたm個の信号源の位置に対応する伝達係数Cij(ステップS5で得られた値)と、n個の測定データVeiとを記録部から読み出し、これらと式4を用いて、未知である各信号源の電位を求める。
Figure JPOXMLDOC01-appb-M000002
このとき、測定データは、同時刻における、測定電極とインピーダンス切り替え装置の抵抗値との組毎のデータである。即ち、上記の式4において、測定データVe1~Venの数nは、測定電極の数をneとし、抵抗値の数をnrとすれば、n=ne×nrの関係がある。また、信号源の数mは、n>mであるとする。つまり、未知数である信号源の電位の数よりも、測定データの数が多い。従って、ステップS7で位置が指定された信号源の電位Vsj(j=1~m)の推定値は、最小二乗法を用いて決定する。決定された推定値は、m個の信号源の位置の組と対応させて、記録部13に記録される。
 ステップS9において、ステップS8で得られた各信号源の電位の推定値を用いて、評価関数の値を求める。即ち、式4から各測定電極の測定電位Vei(i=1~n)を計算し、計算値と実測値との差ΔVi(i=1~n)を求め、差の二乗を全ての測定電極について加算(ΣiΔVi2)する。得られた評価関数の値は、ステップS7で指定されたm個の信号源の位置の組と対応させて、記録部13に記録される。
 ステップS10において、ステップS7で指定されたm個の格子点の組以外に、生体5の内部に信号源を配置できる格子点の組が存在するか否かを判断し、存在すれば、ステップS7に戻り、既に指定されたm個の格子点の組以外の格子点の組を指定して指定し、再びステップS8~S9の処理を実行する。従って、生体5の内部に信号源を配置できる格子点の組がなくなるまで、ステップS7~S10が繰り返される。その結果、生体5の内部に信号源を配置したm個の格子点(xsi,ysi)の組毎に、評価関数の値が求められる。
 ステップS10の条件を満たす場合、ステップS11に移行して、ステップS9で記録した評価関数の値を記録部から読み出し、その中の最小値を求める。そして得られた最小値に対応するm個の信号源の位置の組を、最終的な信号源の位置として決定する。
 以上の処理によって、所定の時刻tでの測定データを用いて、信号源の位置およびその電位を求めることができる。
 従って、所定期間にわたって時系列の電位データが測定されている場合、各時刻毎の測定データを用いて、上記のステップS7~S11の処理を繰り返せば、各信号源の電位を時系列データとして求めることができる。なお、このとき、異なる時刻の測定データを使用した場合、ステップS7~S11を繰り返せば、信号源の位置が変化する可能性がある。その場合には、時刻t毎に信号源の位置及び電位が推定される。しかし、計算時間を短縮するには、例えば、所定時刻の測定データ(例えば、測定開始時の測定データ)を用いて決定された信号源の位置を固定して、その後の測定データを使用するときには、信号源の位置を求めるためのステップS9、S11の処理を省略すればよい。
 このように、信号源の位置およびその電位を求めることができれば、断層画像を元に決定した回路網から、生体内部の各位置の電位、即ち電位分布を求めることができる。
 上記したように、本発明の1つの特徴は、生体外部にインピーダンス切り替え装置を配置し、このインピーダンスを変更しながら、比較的少ない測定電極で生体表面の電位を測定することにある。そして、第2の特徴は、そのようにして得られた表面電位データを用いて、生体内部の信号源の位置および電位を推定することにある。
 従って、上記では図2の測定部2および図3のフローチャートを用いて、本発明の実施の形態を説明したが、本発明はこれらに限定されず、種々変更して実施することが可能である。
 例えば、図2では、インピーダンス切り替え装置VRが複数の抵抗素子を備える場合を説明したが、これに限定されない。インピーダンスを変更することができればよく、容量性素子や、抵抗及び容量の両者を含む素子を使用してもよい。
 また、本発明によって多数の生体表面の電位を得ることができれば、生体内部の信号源の位置および電位を推定する方法は、種々の方法が可能である。
 また、上記では、ステップS7~S11において、m個の信号源の可能な全ての位置の組について評価関数を求めた後、評価関数の値の最小値を求めたが、これに限定されない。例えば、複数の信号源の位置のうちの1つだけ(信号源j1)を変化させて、評価関数の値が最小となる信号源j1の位置を決定して固定し、次に別の信号源j2(j2≠j1)を同様に変化させて、評価関数の値が最小となる信号源j2の位置を決定して固定するという処理を、繰り返して、各信号源の位置を決定してもよい。その場合、m個の信号源の可能な全ての組について処理する場合よりも、計算時間が短くなる。なお、得られた信号源の位置を仮の位置として、それらの近傍範囲で再度変化させて、評価関数の値を求め、その最小値を求めて、信号源の位置を最終的に決定してもよい。
 また、画像の分割方法は任意であり、処理時間との関係で決定すればよい。例えば、等間隔ではなく、一部の部位を他の部位よりも細かく分割してもよい。また、分割線(セルの隣接する辺)が直交していなくてもよく、斜め方向に分割してもよい。
 また、測定対象の生体の部位は、頭部、胸部、腕、脚など、生体の表面電位を測定可能なあらゆる部位であってよい。
 また、上記では、生体内の所定の2次元平面を推定の対象としたが、3次元の回路網を作成すれば、3次元の電位分布を求めることができる。その場合、上記と同様に、3次元MRI画像を3軸方向に格子状に分割して、各位置の組織に対応する導電率から得られるアドミッタンスを、格子点の周りに(6個)配置することによって、3次元アドミッタンス行列を決定することができる。そして、3次元空間中の所定の格子点に信号源を配置して、上記と同様の処理を行えば、信号源の位置および電位を求めることができ、従って3次元の電位分布を求めることができる。
 また、生体の外部にインピーダンス切り替え装置を配置する場合に限定されず、その代わりに、または、それに加えて、生体の接地電極の位置を変化させて電位を測定してもよい。
 以下に実施例を示し、本発明の特徴をより明確に示す。図8に、体幹周囲4点に測定電極を配置して、各測定電極から得られた時系列データ(横軸が時間、縦軸が電位)を示す。中央の断層画像の上下左右に配置した測定データは、それぞれ胸、背中、左脇、右脇に配置した測定電極から得られたデータである。
 図8の測定データを用いて、上記の図3を用いて説明した処理に従って、4つの信号源の電位を推定した結果を図9に示す。なお、ここでは計算時間を短くするために、4つの信号源の位置を固定(図9の断層画像の白抜きの丸印)して、信号源の電位を求めた。従って、信号源の位置を変更する処理は行っていない。なお、これらの信号源の位置は、心電図のR波と呼ばれるピーク値が体前面部において大きく計測されることから決定した(同じような位置に仮定している論文も知られている)。実際には心臓における発火位置(信号源の位置)は移動することが知られているので、信号源の位置も未知数として求めることが望ましい。
 得られたグラフを断層画像の周囲に配置して示す。各信号源の電位のグラフを、電極からの引き出し線で示す。なお、断層画像の右側のグラフは、右下のグラフを縦軸方向に拡大したグラフである。
 図10は、図9の結果(信号源の電位)およびその前提とした回路網を用いて、生体内部の電位分布を求め、3次元的に表示したものである。座標軸は右側の図に示す。
 このように、表面電位の測定データから、生体内部の信号源の電位を推定することができ、電位分布を求めることができた。図9の断層画像の右側のグラフからは、心臓の拍動による影響が少ない筋電図が得られた。なお、信号源の位置を予め固定したが、その位置が正確でない可能性があるので、誤差が最小になるように推定電位を決定した。
 図11に、体幹周囲8点に測定電極(ch1~ch8)を配置して、各測定電極から得られた時系列データ(横軸が時間、縦軸が電位)を示す。中央の断層画像の左右に配置した測定データは、左上から左下までが、順にch1~ch4の測定データであり、右上から右下までが、順にch5~ch8の測定データである。
 図11の測定データを用いて、実施例1と同様に、4つの信号源(位置は固定)の電位を推定した結果を図12に示す。断層画像の周囲に配置されたグラフの意味は、図9と同様である。
 このように、表面電位の測定データから、生体内部の信号源の電位を推定することができ、電位分布を求めることができた。図12の断層画像の右側のグラフは、図9の断層画像の右側のグラフと比較すると、心臓の拍動による影響がより少ない筋電図が得られた。
 なお、実施例2では、8個の電極を配置して実験したが、実施例1と同様に4個の電極を配置し、外部に異なる抵抗を接続して測定したデータを用いれば、図12と同様に信頼性の高い推定結果を得ることができる。
 本発明によれば、外部の抵抗値を変更することによって、比較的少ない表面電極を用いても、生体内部の電位分布の推定に使用することができる十分な数の表面電位データを測定することが可能となる。また、本発明によれば、断層画像を用いて決定した回路網を使用することによって、生体内部の信号源の位置およびその電位を推定することができる。

Claims (8)

  1.  本体部、測定部、測定電極および接地電極を備えた生体内電位の推定装置であって、
     前記測定電極および前記接地電極が、生体の表面の異なる位置に配置され、
     前記測定部が、前記測定電極および前記接地電極の間に配置され、且つインピーダンスを変更可能なインピーダンス切り替え装置を有し、
     前記本体部が、前記インピーダンス切り替え装置のインピーダンスを所定値に設定する毎に、前記測定部を介して、前記測定電極の電位を測定し、測定電位として記録し、
     前記本体部が、前記測定電位を用いて、前記生体内部の信号源の位置および電位を求める生体内電位の推定装置。
  2.  前記信号源の位置および電位を求める際に、前記本体部が、前記測定電極を配置した位置を含む前記生体の断層画像を格子状に分割し、各格子点の周りに、該当するに組織に対応するアドミッタンスを配置し、且つ、前記インピーダンス切り替え装置のインピーダンスを含めた回路網を用い、該回路網の何れかの格子点と接地との間に信号源を配置した条件で、前記信号源の位置および電位を求める請求項1記載の生体内電位の推定装置。
  3.  前記信号源の位置および電位を求める際に、前記本体部が、
     1Vの電圧を出力する単位信号源を前記格子点の1つと接地と間に配置し、前記回路網を用いて、前記単位信号源の位置および前記測定電極の位置毎に電圧伝達係数を求め、
     信号源の仮の位置を指定し、該仮の位置に対応する前記電圧伝達係数および前記測定電位を用いて、該信号源の電位を求めて推定電位とし、
     前記信号源の推定電位、および、前記信号源の仮の位置に対応する前記電圧伝達係数を用いて、前記電極の電位を計算し、
     計算された前記電極の電位と前記測定電位との差が最小となる前記仮の位置を、信号源の位置として決定する請求項2記載の生体内電位の推定装置。
  4.  前記断層画像が、3次元画像であり、
     前記本体部が、前記断層画像を3次元の格子状に分割する請求項2記載の生体内電位の推定装置。
  5.  本体部、測定部、測定電極および接地電極を備え、
     前記測定電極および前記接地電極が、生体の表面の異なる位置に配置され、
     前記測定部が、前記測定電極および前記接地電極の間に配置され、且つインピーダンスを変更可能なインピーダンス切り替え装置を有する装置を用いて生体内電位を推定する方法であって、
     前記本体部が、前記インピーダンス切り替え装置のインピーダンスを所定値に設定する第1ステップと、
     前記本体部が、前記インピーダンスが前記所定値に設定された状態で、前記測定部を介して、前記測定電極の電位を測定し、測定電位として記録する第2ステップと、
     前記本体部が、前記測定電位を用いて、前記生体内部の信号源の位置および電位を求める第3ステップとを含み、
     前記本体部が、前記第1ステップおよび第2ステップを繰り返し実行する生体内電位の推定方法。
  6.  前記第3ステップが、
     前記本体部が、前記測定電極を配置した位置を含む前記生体の断層画像を格子状に分割し、各格子点の周りに、該当するに組織に対応するアドミッタンスを配置し、前記インピーダンス切り替え装置のインピーダンスを含む回路網を生成する第4ステップと、
     前記本体部が、前記回路網の何れかの格子点と接地との間に信号源を配置した条件で、前記信号源の位置および電位を求める第5ステップとを含む請求項5記載の生体内電位の推定方法。
  7.  前記第5ステップが、
     前記本体部が、1Vの電圧を出力する単位信号源を前記格子点の1つと接地と間に配置し、前記回路網を用いて、前記単位信号源の位置および前記測定電極の位置毎に電圧伝達係数を求める第6ステップと、
     前記本体部が、信号源の仮の位置を指定し、該仮の位置に対応する前記電圧伝達係数および前記測定電位を用いて、該信号源の電位を求めて推定電位とする第7ステップと、
     前記本体部が、前記信号源の推定電位、および、前記信号源の仮の位置に対応する前記電圧伝達係数を用いて、前記電極の電位を計算する第8ステップと、
     前記本体部が、計算された前記電極の電位と前記測定電位との差が最小となる前記仮の位置を、信号源の位置として決定する第8ステップとを含む請求項6記載の生体内電位の推定方法。
  8.  前記断層画像が、3次元画像であり、
     前記第4ステップにおいて、前記本体部が、前記断層画像を3次元の格子状に分割する請求項6記載の生体内電位の推定方法。
PCT/JP2009/053291 2009-02-24 2009-02-24 インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法 WO2010097894A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/053291 WO2010097894A1 (ja) 2009-02-24 2009-02-24 インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法
JP2011501376A JP5178909B2 (ja) 2009-02-24 2009-02-24 インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053291 WO2010097894A1 (ja) 2009-02-24 2009-02-24 インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法

Publications (1)

Publication Number Publication Date
WO2010097894A1 true WO2010097894A1 (ja) 2010-09-02

Family

ID=42665120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053291 WO2010097894A1 (ja) 2009-02-24 2009-02-24 インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法

Country Status (2)

Country Link
JP (1) JP5178909B2 (ja)
WO (1) WO2010097894A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208420A (ja) * 2012-03-02 2013-10-10 Nippon Koden Corp 心電図解析レポート、心電図解析装置及び心電図解析プログラム
WO2016075726A1 (ja) * 2014-11-14 2016-05-19 東レエンジニアリング株式会社 生体内信号源位置検出方法及び生体内信号源位置検出装置
JP2016159090A (ja) * 2015-03-05 2016-09-05 東レエンジニアリング株式会社 生体内信号源位置検装置及び生体内信号源位置検出方法
JP2017217540A (ja) * 2012-03-02 2017-12-14 日本光電工業株式会社 心電図解析装置及び心電図解析プログラム
JP2018027199A (ja) * 2016-08-18 2018-02-22 東レエンジニアリング株式会社 生体内信号源検出方法及び生体内信号源検出装置
JP2018149056A (ja) * 2017-03-13 2018-09-27 東レエンジニアリング株式会社 生体内信号強度検出方法及び生体内信号強度検出装置
JP2019030732A (ja) * 2018-10-30 2019-02-28 東レエンジニアリング株式会社 生体内信号源位置検出方法及び生体内信号源位置検出装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125885A (ja) * 1992-10-15 1994-05-10 Chuo Denshi Kk 信号源の推定方法
JP2007268034A (ja) * 2006-03-31 2007-10-18 Ritsumeikan 生体信号計測方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125885A (ja) * 1992-10-15 1994-05-10 Chuo Denshi Kk 信号源の推定方法
JP2007268034A (ja) * 2006-03-31 2007-10-18 Ritsumeikan 生体信号計測方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NORIO AKAMATSU: "Tainai Soshiki no Hi Senkeisei o Koryo shita Shindenzu Gyaku Mondai no Kaiho", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J68-C, no. 12, 20 December 1985 (1985-12-20), pages 1083 - 1093 *
TOSHIHIRO MARUYAMA ET AL.: "Multi Seiden Yoryo Ketsugogata Denkyoku o Mochiita Shindenzu no Danso Keisoku", ANNUAL CONFERENCE OF JAPANESE SOCIETY FOR MEDICAL AND BIOLOGICAL ENGINEERING PROGRAM, vol. 45TH, 15 May 2006 (2006-05-15), RONBUNSHU, pages 498 *
YASUTOMI KINOSADA ET AL.: "Yugen Yosoho o Mochiita 3 Jigen Shindenzu Gyaku Mondai Kaiho", DENSHI TSUSHIN GAKKAI RONBUNSHI, vol. J65-C, no. 4, 1982, pages 277 - 284 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208420A (ja) * 2012-03-02 2013-10-10 Nippon Koden Corp 心電図解析レポート、心電図解析装置及び心電図解析プログラム
JP2017217540A (ja) * 2012-03-02 2017-12-14 日本光電工業株式会社 心電図解析装置及び心電図解析プログラム
WO2016075726A1 (ja) * 2014-11-14 2016-05-19 東レエンジニアリング株式会社 生体内信号源位置検出方法及び生体内信号源位置検出装置
CN106999086A (zh) * 2014-11-14 2017-08-01 东丽工程株式会社 活体内信号源位置检测方法及活体内信号源位置检测装置
JPWO2016075726A1 (ja) * 2014-11-14 2017-08-31 東レエンジニアリング株式会社 生体内信号源位置検出方法及び生体内信号源位置検出装置
JP2016159090A (ja) * 2015-03-05 2016-09-05 東レエンジニアリング株式会社 生体内信号源位置検装置及び生体内信号源位置検出方法
JP2018027199A (ja) * 2016-08-18 2018-02-22 東レエンジニアリング株式会社 生体内信号源検出方法及び生体内信号源検出装置
WO2018034058A1 (ja) * 2016-08-18 2018-02-22 東レエンジニアリング株式会社 生体内信号源検出方法及び生体内信号源検出装置
JP2018149056A (ja) * 2017-03-13 2018-09-27 東レエンジニアリング株式会社 生体内信号強度検出方法及び生体内信号強度検出装置
JP6991498B2 (ja) 2017-03-13 2022-01-12 東レエンジニアリング株式会社 生体内信号強度検出装置
JP2019030732A (ja) * 2018-10-30 2019-02-28 東レエンジニアリング株式会社 生体内信号源位置検出方法及び生体内信号源位置検出装置

Also Published As

Publication number Publication date
JPWO2010097894A1 (ja) 2012-08-30
JP5178909B2 (ja) 2013-04-10

Similar Documents

Publication Publication Date Title
US11931157B2 (en) Cardiac analysis user interface system and method
JP5178909B2 (ja) インピーダンス切替型多点表面電極を用いた生体内電位の推定装置及びその方法
RU2409313C2 (ru) Способ неинвазивного электрофизиологического исследования сердца
US9125581B2 (en) Continuous modeling for dipole localization from 2D MCG images with unknown depth
JP2012179352A (ja) 電流双極子を構築するシステムおよび電流双極子を構築する方法
US11182911B2 (en) Ultrasound-based geometry determination for electrophysiological mapping
US20220287614A1 (en) System and method for electrophysiological mapping
JP6620229B2 (ja) 心臓回復をマッピングするための方法及びシステム
JPH10323335A (ja) 心臓内電気現象の診断装置およびその診断方法
US20220183610A1 (en) System and method for cardiac mapping
CN107374610B (zh) 心磁图生成方法及生成系统
US20240057887A1 (en) Three-dimensional ventilation image generation method, and controller and apparatus
US20220192577A1 (en) System and method for cardiac mapping
US20040034309A1 (en) Method and system of defining a model of one or more organs
Dossel et al. Optimization of electrode positions for multichannel electrocardiography with respect to electrical imaging of the heart
US11344236B2 (en) System and method for generating electrophysiology maps
RU2358646C2 (ru) Способ моделирования и визуализации распространения возбуждения в миокарде
Malony et al. Computational modeling of human head electromagnetics for source localization of milliscale brain dynamics
JP2016159090A (ja) 生体内信号源位置検装置及び生体内信号源位置検出方法
Trobec et al. Lead theory of differential leads and synthesis of the standard 12-lead ECG
RU2489083C2 (ru) Способ неинвазивного определения электрофизиологических характеристик сердца
US20220409156A1 (en) Biometric information display apparatus, method, and program
Tikhomirov et al. Evaluation of Three Dimensional Motion of Mass Center of the Heart by Electrical Impedance Mapping
Rodriguez-Rivera Biomagnetic and Bioelectric Imaging
Matsukawa et al. Development of health monitoring system based on three-dimensional imaging using bio-signals and motion data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501376

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840747

Country of ref document: EP

Kind code of ref document: A1