WO2010095350A1 - 無線通信装置、無線通信方法及び無線通信システム - Google Patents

無線通信装置、無線通信方法及び無線通信システム Download PDF

Info

Publication number
WO2010095350A1
WO2010095350A1 PCT/JP2010/000298 JP2010000298W WO2010095350A1 WO 2010095350 A1 WO2010095350 A1 WO 2010095350A1 JP 2010000298 W JP2010000298 W JP 2010000298W WO 2010095350 A1 WO2010095350 A1 WO 2010095350A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
signals
signal
fading
transmission
Prior art date
Application number
PCT/JP2010/000298
Other languages
English (en)
French (fr)
Inventor
村井孝行
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/148,900 priority Critical patent/US8457583B2/en
Priority to EP10743483.9A priority patent/EP2400670B1/en
Publication of WO2010095350A1 publication Critical patent/WO2010095350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity

Definitions

  • the present invention relates to a radio communication device, a radio communication method, and a radio communication system, and more particularly, to a radio communication device, a radio communication method, and a radio communication system that perform frequency transmission and reception with frequency diversity and space diversity.
  • Patent Document 1 There is known a wireless communication system that performs frequency transmission and reception with frequency diversity and space diversity (for example, see Patent Documents 1 and 2).
  • Patent Document 1 in a wireless communication system equipped with frequency diversity and space diversity, if the reception side determines that the state of radio wave propagation (line quality) is good based on the received electric field, the diversity operation is stopped. A configuration that doubles the amount of data by effectively using the frequency band is disclosed.
  • Patent Document 2 receives a radio signal modulated to at least two different frequencies, and at the receiving side that realizes frequency diversity and spatial diversity, sets of receivers corresponding to the respective frequencies are defined as frequencies. The same number of sets are provided, the receiver level of all receivers is compared, the receiver with the highest reception level is selected, and the highest reception level among the plurality of receivers that receive the same reception frequency with that receiver.
  • a wireless communication device configured to select a large receiver is disclosed.
  • JP 2005-277910 A Japanese Patent Laid-Open No. 9-307490
  • the diversity order is determined so that the line quality can be maintained even at the time when fading is most severe. Since fading has fluctuations in a short cycle and a long cycle (seasonal units, etc.), the determined diversity order may be excessive in a time when the influence of fading is reduced.
  • Patent Document 2 discloses a wireless communication system that effectively uses a frequency band and doubles the amount of data when radio wave propagation characteristics are good. However, when radio wave propagation characteristics are good, diversity is disclosed. In order to stop the operation, it is necessary to repeatedly stop and restart the diversity operation with respect to fading that varies in a short cycle, and stable communication may not be performed.
  • the present invention has been made in view of the above points, and by switching to a method in which frequency diversity is assigned as an independent signal sequence during a time when the influence of fading is small, stable wireless communication can be adaptively accommodated to increase and decrease of fading.
  • An object of the present invention is to provide a wireless communication apparatus, a wireless communication method, and a wireless communication system that effectively use frequency resources.
  • a wireless communication apparatus monitors a radio wave propagation state based on a first wireless communication means using frequency diversity, a second wireless communication means using spatial diversity, and a received signal.
  • wireless by double diversity is performed by the second wireless communication unit to transmit and receive a plurality of transmission data separately.
  • switching means for performing communication is performed.
  • the wireless communication method of the present invention performs the first wireless communication by frequency diversity, performs the second wireless communication by spatial diversity, and monitors the radio wave propagation status based on the received signal. Then, it is determined whether or not the influence of fading is large. During the period when the influence of fading is determined to be large by the monitoring, one transmission data is transmitted and received by the first and second wireless communication.
  • Wireless communication using dual diversity in which a plurality of transmission data is separately transmitted and received by the second wireless communication during a period in which the wireless communication is performed by the four wireless diversity and the influence of fading is determined to be small by the monitoring. It is characterized by making it carry out.
  • a wireless communication system of the present invention is a wireless communication system that performs wireless communication between opposing wireless communication devices, and each of the opposing wireless communication devices is a first based on frequency diversity.
  • the first and second wireless communication means perform wireless communication by quadruple diversity in which one transmission data is transmitted and received, and the influence of fading is small by the monitoring means.
  • wireless communication is performed by double diversity in which the second wireless communication means transmits and receives a plurality of transmission data separately. And having a switching means for.
  • the present invention when performing radio communication by frequency diversity and space diversity, during a period when the influence of fading is large, a state where communication is possible by both frequency diversity and space diversity is maintained, and the influence of fading is maintained.
  • the communication capacity is increased by not using frequency diversity, thereby effectively utilizing frequency resources to stabilize efficient communication. Can be done.
  • FIG. 1 is a block diagram of an embodiment of a wireless communication device, a wireless communication method, and a wireless communication system of the present invention. It is a block diagram of an example of an adaptive matched filter.
  • FIG. 2 is a block diagram of a main part of the wireless communication system in FIG. 1 when the influence of fading is large. It is a block diagram of the principal part of the radio
  • FIG. 1 shows a block diagram of an embodiment of a wireless communication apparatus, a wireless communication method, and a wireless communication system according to the present invention.
  • the radio communication system according to the present embodiment includes two radio communication apparatuses facing each other.
  • FIG. 1 shows a radio transmission apparatus 100 in one radio communication apparatus and radio reception in the other radio communication apparatus.
  • Device 200 is shown.
  • One radio communication apparatus includes a radio reception apparatus having the same configuration as that of the radio reception apparatus 200.
  • the other radio communication apparatus includes a radio transmission apparatus having the same configuration as that of the radio transmission apparatus 100. Yes.
  • the wireless transmission device and the wireless reception device in the same wireless communication device may be connected to a transmission / reception separation circulator so that the two antennas 109 and 110, 201 and 202 can be shared for transmission and reception.
  • the radio communication system according to the present embodiment is a quadruple diversity composed of spatial diversity using two uncorrelated antennas and frequency diversity using two waves of frequencies f1 and f2, or a duplex of only spatial diversity. It is a structural example performed by selecting diversity.
  • the wireless transmission device 100 includes a transmission interface 101, modulators (MOD: Modulator) 102 and 103, a changeover switch 104, transmitters (TX) 105 and 106, power amplifiers (HPA: High Power Amplifier) 107 and 108, an antenna (antenna) ) 109 and 110.
  • the changeover switch 104 selects one of the output signals of the modulators 102 and 103 and inputs the selected signal to the transmitter 106.
  • radio receiving apparatus 200 includes antennas (antennas) 201 and 202, receivers (RX) 203 to 205, adaptive matched filters (AMF) 207 to 210, matched filter 211, and adders 212 to 214. , A changeover switch 215, demodulators (DEMs) 216 and 217, and a reception interface 218.
  • the adder 212 adds the signals output from the adaptive matched filters 207 and 209.
  • the adder 213 adds the signals output from the adaptive matched filters 208 and 210.
  • the changeover switch 215 outputs the signal output from the adder 213 to the adder 214 or the demodulator 217.
  • Adaptive matched filters 207 to 210 are known adaptive filters that estimate transmission path impulses that change with time, convolve the time-reversed complex conjugate of the impulse response with the received signal, and synthesize the S / N maximum ratio.
  • the transversal filter is configured.
  • FIG. 2 shows a configuration diagram of an example of an adaptive matched filter.
  • the adaptive matched filter includes delay elements 301 and 302 connected in cascade to delay the input signal by time ⁇ , and the correlation between the signal at each tap (R1, R2, R3) and the demodulated signal.
  • Correlators 303, 305, and 307 that calculate and output tap coefficients (wa, wb, wc), multiplication circuits 304, 306, and 308 that multiply the signal on each tap by the tap coefficient,
  • a synthesizer 309 that synthesizes the output signals of 306 and 308 and a tap detection unit 310 are provided.
  • the delay time ⁇ of the delay elements 301 and 302 is set to a value that is 1 ⁇ 2 times the symbol period T, for example.
  • Correlators 303, 305, and 307 perform correlation operations between the signals on the taps R1, R2, and R3 and the demodulated signals demodulated by the demodulator 216 or 217, respectively, and calculate the results as tap coefficients wa, wb, and wc.
  • the demodulated signal from demodulator 216 is input to adaptive matched filters 207 and 209 to which a signal obtained by converting the received signal of frequency f1 into a predetermined frequency is input, and the reception of frequency f2 is received.
  • a demodulated signal from demodulator 217 is input to adaptive matched filters 208 and 210 to which a signal obtained by converting the signal to a predetermined frequency is input.
  • the demodulated signal from the demodulator 216 is input to all the adaptive matched filters 207 to 210 during the operation of quadruple diversity described later.
  • Multiplication circuits 304, 306, and 308 multiply the signals on the taps R1, R2, and R3 by tap coefficients wa, wb, and wc, respectively, and tap the signals on the taps R1, R2, and R3, respectively, with tap coefficients wa, wb, and wc.
  • a weighted signal is generated.
  • the synthesizer 309 synthesizes the signals output from the multiplication circuits 304, 306, and 308 and outputs them to the adder 212 or 213 at the subsequent stage.
  • the tap detection unit 310 compares the tap coefficients wa, wb, and wc and outputs, for example, the maximum tap coefficient as the tap information W to the matched filter 211 in FIG.
  • the transmission interface 101 supplies the input transmission data to the modulators 102 and 103, respectively.
  • the modulator 102 modulates the input first transmission data by a predetermined modulation method, and supplies the obtained first modulated signal to the transmitter 105 and the first input terminal of the changeover switch 104.
  • the modulator 103 modulates the input second transmission data by the same predetermined modulation method as that of the modulator 102, and supplies the obtained second modulated signal to the second input terminal of the changeover switch 104. .
  • the changeover switch 104 is switched as described later depending on whether fading is large, and selects the first modulated signal or the second modulated signal and supplies the selected signal to the transmitter 106.
  • the transmitter 105 converts the frequency of the input first modulated signal into a first transmission signal having a frequency f1 in a high frequency band such as a microwave band, and supplies the first transmission signal to the power amplifier 107.
  • the transmitter 106 converts the frequency of the input first or second modulated signal into a second transmission signal having a frequency f2 in a high frequency band such as a microwave band and supplies the second transmission signal to the power amplifier 108. To do.
  • the power amplifier 107 amplifies the input first transmission signal to a required level, and then transmits it from the antenna 109 to the space.
  • the power amplifier 108 amplifies the input second transmission signal to a required level, and then transmits it from the antenna 110 to the space.
  • the two transmission signals transmitted from the antennas 109 and 110 respectively propagate through two different propagation paths, and are transmitted by the two antennas 201 and 202 of the wireless reception device 200 installed so as to be spatially uncorrelated. Received.
  • the signal received by the antenna 201 is branched into frequencies f 1 and f 2, the received signal of frequency f 1 is supplied to the receiver 203, and the received signal of frequency f 2 is supplied to the receiver 204.
  • the signal received by the antenna 202 is branched into frequencies f 1 and f 2, the received signal having the frequency f 1 is supplied to the receiver 205, and the received signal having the frequency f 2 is supplied to the receiver 206.
  • Each of the receivers 203, 204, 205, and 206 amplifies the input received signal and converts the frequency into a signal of the same predetermined frequency band (for example, an intermediate frequency signal in the intermediate frequency band), and then is provided correspondingly.
  • the adaptive matched filters 207, 208, 209 and 210 perform S / N maximum ratio synthesis by the known adaptive matched filtering processing described with reference to FIG. 2 on the input signal, and the maximum value of the used tap coefficients.
  • Tap information W 1, W 2, W 3 and W 4 which are tap coefficients are supplied to the matched filter 211.
  • the adder 212 adds signals S / N maximum ratio synthesized by the adaptive matched filters 207 and 209 to the received signals of the same frequency f1 received by the different antennas 201 and 202.
  • the adder 213 adds signals S / N maximum ratio synthesized by the adaptive matched filters 208 and 210 to the received signals of the same frequency f2 received by the different antennas 201 and 202.
  • the adder 214 outputs only the first addition signal output from the adder 212, or the first addition signal when the second addition signal from the adder 213 is input through the changeover switch 215. A third addition signal obtained by adding the second addition signal to is generated and output.
  • the demodulator 216 demodulates the first addition signal or the third addition signal supplied from the adder 214, supplies the demodulated signal to the reception interface 218, and the adaptive matched filters 207 and 209 or the adaptive matched filter 207. To ⁇ 210.
  • the demodulator 217 demodulates the second addition signal input through the changeover switch 215 and supplies the demodulated signal to the reception interface 218 and also to the adaptive matched filters 208 and 210.
  • the reception interface 218 receives the first demodulated signal output from the demodulator 216 and the second demodulated signal output from the demodulator 217 as input signals, synthesizes them, and outputs them. Note that when only the first demodulated signal is input, the reception interface 218 outputs only the first demodulated signal.
  • the diversity order is switched automatically by monitoring the radio wave propagation status. That is, in this embodiment, the matched filter 211 monitors the tap information W1 to W4 input from the adaptive matched filters 207 to 210, and the tap information W1 to W4 are all equal to or higher than a predetermined threshold value. It is determined whether there is little influence of fading depending on whether or not there is, and the operation is performed with quadruple diversity or double diversity.
  • the matched filter 211 controls the changeover switch 215 to supply the second addition signal from the adder 213 to the adder 214.
  • a wireless reception device having the same configuration as the wireless reception device 200 (not shown) provided in the same wireless communication device as the wireless transmission device 100 is a wireless transmission provided in the same wireless communication device as the wireless reception device 200.
  • a two-wave transmission signal having frequencies f3 and f4 is received from a radio transmission apparatus having the same configuration as that of apparatus 100, and it is determined that the influence of fading is large during the same operation as radio reception apparatus 200, switching is performed.
  • the switch 104 is controlled to supply the first modulated signal from the modulator 102 to the transmitter 106.
  • the wireless transmission device 100 when it is determined that the period is greatly affected by fading, as shown in FIG. 3, in the wireless transmission device 100, the first modulated signal from the modulator 102 supplied to the transmitter 105 is The modulator 103 is not used because the changeover switch 104 selects and supplies it to the transmitter 106 as well. In radio receiving apparatus 200, as shown in FIG. 3, demodulator 217 is not used because second switch signal 215 is selected from adder 213 and supplied to adder 214. Therefore, when it is determined that the period is greatly affected by fading, communication with quadruple diversity is performed to maintain the channel quality.
  • the transmission interface 101 supplies transmission data to be transmitted only to the modulator 102.
  • the modulated signals modulated by the transmission data output from the modulator 102 are amplified by the transmitters 105 and 106 and frequency-converted to transmission signals of the radio frequencies f1 and f2, respectively, and then passed through the power amplifiers 107 and 108. Then, the antennas 109 and 110 transmit to the space.
  • the two-wave transmission signals propagate through two different propagation paths and are received by the antennas 201 and 202 of the wireless reception device 200.
  • the reception signal of the frequency f1 received by the antennas 201 and 202 is supplied to the adder 212 via the receivers 203 and 205 and the adaptive matched filters 207 and 209, and is predetermined.
  • the first addition signal in the frequency band is used.
  • the received signal having the frequency f2 is supplied to the adder 213 via the receivers 204 and 206 and the adaptive matched filters 208 and 210, and is used as the second added signal having the same predetermined frequency band as described above.
  • the third addition signal is a signal generated from the two reception signals received by the antenna 201 and the two reception signals received by the antenna 202, and these four reception signals are diversity combined.
  • the demodulator 216 demodulates a third addition signal that is a signal obtained by diversity combining the received signals of the four waves. In this way, when it is determined that the period is greatly affected by fading, communication with quadruple diversity is performed in order to maintain the channel quality.
  • the matching filter 211 determines that the influence is small, and controls the changeover switch 215 to supply the second addition signal from the adder 213 to the demodulator 217.
  • a wireless reception device having the same configuration as the wireless reception device 200 (not shown) provided in the same wireless communication device as the wireless transmission device 100 is a wireless transmission provided in the same wireless communication device as the wireless reception device 200.
  • Switching is performed when it is determined that the period of influence of fading is small by receiving two transmission signals of frequencies f3 and f4 from a wireless transmission device having the same configuration as the device 100 and performing the same operation as the wireless reception device 200
  • the switch 104 is controlled to supply the second modulated signal from the modulator 103 to the transmitter 106.
  • changeover switch 104 selects the second modulated signal from modulator 103. This is supplied to the transmitter 106.
  • the changeover switch 215 selects the second addition signal from adder 213 and supplies the second addition signal to demodulator 217, and the adder 214 does not perform the addition operation. . Therefore, when it is determined that the period is less influenced by fading, it is determined that the period is not affected by channel quality even if the diversity order is lowered, and communication with double diversity is performed. At this time, the transmission capacity is doubled by using two frequency waves for transmitting different data.
  • the transmission interface 101 supplies the first transmission data to be transmitted to the modulator 102 and also supplies the second transmission data to be transmitted to the modulator 103.
  • the first and second modulated signals output from the modulators 102 and 103 are amplified by the transmitters 105 and 106, respectively, and frequency-converted to transmission signals of the radio frequencies f1 and f2, respectively.
  • the power amplifiers 107 and 108 Are transmitted from the antennas 109 and 110 to the space via.
  • the two-wave transmission signals propagate through two different propagation paths and are received by the antennas 201 and 202 of the wireless reception device 200.
  • the reception signal of the frequency f1 received by the antennas 201 and 202 is supplied to the adder 212 via the receivers 203 and 205 and the adaptive matched filters 207 and 209, and is predetermined.
  • the first addition signal in the frequency band is used.
  • the received signal having the frequency f2 is supplied to the adder 213 via the receivers 204 and 206 and the adaptive matched filters 208 and 210, and is used as the second added signal having the same predetermined frequency band as described above.
  • the first addition signal is supplied to the demodulator 216 via the adder 214 as shown in FIG. 4 to demodulate the first transmission data.
  • the second addition signal is supplied to the demodulator 217 by the changeover switch 215 to demodulate the second transmission data.
  • the wireless communication system of the present embodiment 2 between the modulator 102 and the demodulator 216 and between the modulator 103 and the demodulator 217. Since double diversity communication is performed by separate space diversity in the path, the transmission capacity can be doubled compared to the case of quadruple diversity communication.
  • DESCRIPTION OF SYMBOLS 100 Wireless transmission apparatus 101 Transmission interface 102, 103 Modulator (MOD) 104, 215 Changeover switch 105, 106 Transmitter (TX) 107, 108 Power amplifier (HPA) 109, 110, 201, 202 Antenna 200 Radio receiver 203-206 Receiver (RX) 207-210 Adaptive matched filter (AMF) 211 Matching filters 212 to 214 Adders 216 and 217 Demodulator (DEM) 218 Reception interface 301, 302 Delay element 303, 305, 307 Correlator 304, 306, 308 Multiplication circuit 309 Synthesizer 310 Tap detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)

Abstract

 フェージングの影響が少ない時間は周波数ダイバーシチを独立した信号列として割り当てる方式に切り替えることにより、フェージングの増減に適応的に対応して安定な無線通信を行い、周波数リソースを有効に活用する。無線通信システムは、無相関の空中線2つを用いた空間ダイバーシチと周波数f1、f2の2波を用いた周波数ダイバーシチとにより構成される4重ダイバーシチ、又は空間ダイバーシチのみの2重ダイバーシチを選択して行う。整合ろ波器211は、適応整合フィルタ207~210からのタップ情報の全てが閾値以上の値を示しているときは、フェージングの影響が少ないと判断し、切り替えスイッチ104、215を切り替えて、空間ダイバーシチのみで動作させると共に、変調器102、103でそれぞれ変調される独立した2つの送信データを送受信する。

Description

無線通信装置、無線通信方法及び無線通信システム
 本発明は無線通信装置、無線通信方法及び無線通信システムに係り、特に周波数ダイバーシチと空間ダイバーシチとを備えてダイバーシチ送受信を行う無線通信装置、無線通信方法及び無線通信システムに関する。
 周波数ダイバーシチと空間ダイバーシチとを備えてダイバーシチ送受信を行う無線通信システムが知られている(例えば、特許文献1、2参照)。特許文献1には、周波数ダイバーシチと空間ダイバーシチとを備えた無線通信システムにおいて、受信側では受信電界に基づいて、電波伝搬の状況(回線品質)が良好と判断した場合は、ダイバーシチ動作を停止し、周波数帯域を有効利用してデータ量を2倍にする構成が開示されている。
 また、特許文献2には、互いに異なる少なくとも2つの周波数に変調された無線信号を受信し、周波数ダイバーシチと空間ダイバーシチとを実現する受信側において、各周波数にそれぞれ対応する受信機の組を周波数と同数組備えており、全ての受信機の受信レベルを比較して受信レベルの最も大きい受信機を選択し、更にその受信機との同一の受信周波数を受信する複数の受信機中から最も受信レベルの大きい受信機を選択する構成の無線通信装置が開示されている。
特開2005-277910号公報 特開平9-307490号公報
 しかしながら、特許文献1、2記載の周波数ダイバーシチと空間ダイバーシチとを備えた無線通信システムや無線通信装置では、フェージングが最も激しい時点においても回線品質を維持できるようにダイバーシチ次数を決定しているが、フェージングには短周期及び長周期(季節単位など)での変動があるため、フェージングの影響が少なくなる時間においては、決定したダイバーシチ次数が過剰となる場合がある。
 また、特許文献2では、電波伝搬特性が良好な場合は、周波数帯域を有効利用してデータ量を2倍にする無線通信システムが開示されているが、電波伝搬特性が良好な場合は、ダイバーシチ動作を停止するため、短周期で変動するフェージングに対してダイバーシチ動作の停止、再開などを繰り返す必要があり、安定な通信が行えない可能性がある。
 本発明は以上の点に鑑みなされたもので、フェージングの影響が少ない時間は周波数ダイバーシチを独立した信号列として割り当てる方式に切り替えることにより、フェージングの増減に適応的に対応して安定な無線通信を行い、周波数リソースを有効に活用する無線通信装置、無線通信方法及び無線通信システムを提供することを目的とする。
 上記の目的を達成するため、本発明の無線通信装置は、周波数ダイバーシチによる第1の無線通信手段と、空間ダイバーシチによる第2の無線通信手段と、受信信号に基づいて、電波伝搬状況を監視してフェージングの影響が大であるか否かを判定する監視手段と、監視手段によりフェージングの影響が大であると判定された期間は、第1及び第2の無線通信手段により一の送信データを送受信させる4重ダイバーシチによる無線通信を行わせ、監視手段によりフェージングの影響が小であると判定された期間は、第2の無線通信手段により複数の送信データを別々に送受信させる2重ダイバーシチによる無線通信を行わせる切り替え手段とを有することを特徴とする。
 また、上記の目的を達成するため、本発明の無線通信方法は、周波数ダイバーシチによる第1の無線通信を行い、空間ダイバーシチによる第2の無線通信を行い、受信信号に基づいて電波伝搬状況を監視して、フェージングの影響が大であるか否かを判定し、前記監視によりフェージングの影響が大であると判定された期間は、前記第1及び第2の無線通信により一の送信データを送受信させる4重ダイバーシチによる無線通信を行わせ、前記監視によりフェージングの影響が小であると判定された期間は、前記第2の無線通信により複数の送信データを別々に送受信させる2重ダイバーシチによる無線通信を行わせることを特徴とする。
 更に、上記の目的を達成するため、本発明の無線通信システムは、対向する無線通信装置間で無線通信を行う無線通信システムであって、対向する無線通信装置のそれぞれは、周波数ダイバーシチによる第1の無線通信手段と、空間ダイバーシチによる第2の無線通信手段と、受信信号に基づいて、電波伝搬状況を監視してフェージングの影響が大であるか否かを判定する監視手段と、監視手段によりフェージングの影響が大であると判定された期間は、第1及び第2の無線通信手段により一の送信データを送受信させる4重ダイバーシチによる無線通信を行わせ、監視手段によりフェージングの影響が小であると判定された期間は、第2の無線通信手段により複数の送信データを別々に送受信させる2重ダイバーシチによる無線通信を行わせる切り替え手段とを有することを特徴とする。
 本発明によれば、周波数ダイバーシチと空間ダイバーシチとによる無線通信を行うときに、フェージングの影響が大である期間は、周波数ダイバーシチと空間ダイバーシチの両方により通信が可能な状態を維持し、フェージングの影響が小である期間は、空間ダイバーシチのみにより通信が可能な状態を維持しつつ、周波数ダイバーシチを行わない分の通信容量を増加させることで、周波数リソースを有効に活用して効率の良い通信を安定して行うことができる。
本発明の無線通信装置、無線通信方法及び無線通信システムの一実施の形態のブロック図である。 適応整合フィルタの一例の構成図である。 フェージングの影響が大きい期間であるときの図1の無線通信システムの要部のブロック図である。 フェージングの影響が小さい期間であるときの図1の無線通信システムの要部のブロック図である。
 次に、本発明の実施の形態について図面を参照して説明する。
 図1は、本発明になる無線通信装置、無線通信方法及び無線通信システムの一実施の形態のブロック図を示す。本実施の形態の無線通信システムは、対向する2つの無線通信装置からなり、便宜上、図1には、そのうち一方の無線通信装置内の無線送信装置100と、他方の無線通信装置内の無線受信装置200とを示す。一方の無線通信装置内には無線受信装置200と同じ構成の無線受信装置も備えられており、同様に他方の無線通信装置内には無線送信装置100と同じ構成の無線送信装置も備えられている。
 同じ無線通信装置内の無線送信装置と無線受信装置とは、例えば送受信分離用サーキュレータに接続されて2本の空中線109及び110、201及び202を送受信に共用できるようになされていてよい。本実施の形態の無線通信システムは、無相関の空中線2つを用いた空間ダイバーシチと周波数f1、f2の2波を用いた周波数ダイバーシチとにより構成される4重ダイバーシチ、又は空間ダイバーシチのみの2重ダイバーシチを選択して行う構成例である。
 無線送信装置100は、送信インタフェース101、変調器(MOD:Modulator)102及び103、切り替えスイッチ104、送信器(TX)105及び106、電力増幅器(HPA:High Power Amplifier)107及び108、空中線(アンテナ)109及び110を有する。切り替えスイッチ104は、変調器102及び103の各出力信号のうちの一方を選択して送信器106に入力する。
 一方、無線受信装置200は、空中線(アンテナ)201及び202、受信器(RX)203~205、適応整合フィルタ(AMF:Adaptive Matched Filter)207~210、整合ろ波器211、加算器212~214、切り替えスイッチ215、復調器(DEM:Demodulator)216及び217、及び受信インタフェース218を有する。加算器212は、適応整合フィルタ207及び209から出力された信号を加算する。加算器213は、適応整合フィルタ208及び210から出力された信号を加算する。切り替えスイッチ215は、加算器213から出力される信号を、加算器214又は復調器217へ出力する。
 適応整合フィルタ207~210は、それぞれ時間変化する伝送路インパルスを推定し、そのインパルス応答の時間反転複素共役を受信信号に畳み込み、S/N最大比合成する公知の適応フィルタであって、通常はトランスバーサルフィルタの構成とされている。
 図2は、適応整合フィルタの一例の構成図を示す。同図に示すように、適応整合フィルタは、入力信号をそれぞれ時間τずつ遅延する縦続接続された遅延素子301及び302と、各タップ(R1,R2,R3)での信号と復調信号との相関を演算してタップ係数(wa,wb,wc)として出力する相関器303、305及び307と、各タップ上の信号とタップ係数とを乗算する乗算回路304、306及び308と、乗算回路304、306及び308の各出力信号を合成する合成器309と、タップ検出部310とを有する構成とされている。
 遅延素子301及び302の遅延時間τは、例えばシンボル周期Tの1/2倍の値に設定されている。相関器303、305及び307は、各タップR1、R2、R3上の信号と復調器216又は217により復調された復調信号との相関演算をそれぞれ行い、その演算結果をタップ係数wa,wb及びwcとして乗算回路304、306及び308へ供給する。タップ係数wa,wb及びwcの値が大きい場合は、復調信号との相関性が高いことを示している。
 なお、図1において、周波数f1の受信信号を所定周波数に変換して得られた信号が入力される適応整合フィルタ207及び209には、復調器216からの復調信号が入力され、周波数f2の受信信号を所定周波数に変換して得られた信号が入力される適応整合フィルタ208及び210には、復調器217からの復調信号が入力される。ただし、後述する4重ダイバーシチの動作時には、すべての適応整合フィルタ207~210に復調器216からの復調信号が入力される。
 乗算回路304、306及び308は、各タップR1、R2、R3上の信号にタップ係数wa,wb及びwcをそれぞれ乗算し、各タップR1、R2、R3上の信号にタップ係数wa,wb及びwcを重み付けした信号を生成する。合成器309は、乗算回路304、306及び308から出力された信号を合成し、後段の加算器212又は213へ出力する。また、タップ検出部310は、タップ係数wa,wb及びwcを比較して、例えば最大のタップ係数をタップ情報Wとして図1の整合ろ波器211へ出力する。
 次に、図1に示す本実施の形態の動作について説明する。送信インタフェース101は入力された送信データを変調器102及び103にそれぞれ供給する。変調器102は、入力された第1の送信データを所定の変調方式で変調し、得られた第1の変調後の信号を送信器105及び切り替えスイッチ104の第1の入力端子に供給する。変調器103は、入力された第2の送信データを変調器102と同じ所定の変調方式で変調し、得られた第2の変調後の信号を切り替えスイッチ104の第2の入力端子に供給する。
 切り替えスイッチ104は、フェージングが大きいか否かに応じて後述するように切り替えられ、第1の変調後の信号又は第2の変調後の信号を選択して送信器106に供給する。送信器105は、入力された第1の変調後の信号を、例えばマイクロ波帯等の高周波数帯の周波数f1の第1の送信信号に周波数変換して電力増幅器107に供給する。一方、送信器106は、入力された第1又は第2の変調後の信号を、例えばマイクロ波帯等の高周波数帯の周波数f2の第2の送信信号に周波数変換して電力増幅器108に供給する。
 電力増幅器107は、入力された第1の送信信号を所要のレベルに電力増幅した後、空中線109から空間へ送信する。同様に、電力増幅器108は、入力された第2の送信信号を所要のレベルに電力増幅した後、空中線110から空間へ送信する。空中線109及び110からそれぞれ送信された2波の送信信号は、それぞれ異なる2つの伝搬路を伝搬し、空間的に無相関になるように設置された無線受信装置200の2つの空中線201及び202で受信される。
 空中線201で受信された信号は周波数f1とf2とに分岐され、周波数f1の受信信号は受信器203に供給され、周波数f2の受信信号は受信器204に供給される。同様に、空中線202で受信された信号は周波数f1とf2とに分岐され、周波数f1の受信信号は受信器205に供給され、周波数f2の受信信号は受信器206に供給される。
 受信器203、204、205及び206は、それぞれ入力された受信信号を増幅すると共に、同一の所定周波数帯の信号(例えば、中間周波数帯の中間周波信号)に周波数変換した後、対応して設けられた適応整合フィルタ207、208、209及び210へ供給する。適応整合フィルタ207、208、209及び210は、それぞれ入力信号に対して図2と共に説明した公知の適応整合フィルタリング処理によるS/N最大比合成を行うと共に、使用したタップ係数のうちの最大値のタップ係数であるタップ情報W1、W2、W3及びW4を整合ろ波器211へ供給する。
 加算器212は、異なる空中線201及び202で受信された、同じ周波数f1の受信信号に対して適応整合フィルタ207及び209によりS/N最大比合成した信号同士を加算する。また、加算器213は、異なる空中線201及び202で受信された、同じ周波数f2の受信信号に対して適応整合フィルタ208及び210によりS/N最大比合成した信号同士を加算する。
 加算器214は、加算器212から出力された第1の加算信号のみを出力するか、又は切り替えスイッチ215を通して加算器213からの第2の加算信号が入力されるときは、第1の加算信号に第2の加算信号を加算した第3の加算信号を生成して出力する。
 復調器216は、加算器214から供給される第1の加算信号又は第3の加算信号を復調し、その復調信号を受信インタフェース218へ供給すると共に、適応整合フィルタ207及び209又は適応整合フィルタ207~210へ供給する。復調器217は、切り替えスイッチ215を通して入力された第2の加算信号を復調し、その復調信号を受信インタフェース218へ供給すると共に、適応整合フィルタ208及び210へ供給する。受信インタフェース218は、復調器216から出力された第1の復調信号と、復調器217から出力された第2の復調信号とを入力信号として受け、それらを合成して出力する。なお、第1の復調信号のみが入力されるときには、受信インタフェース218は、第1の復調信号のみを出力する。
 ここで、本実施の形態では、ダイバーシチ次数の切り替えを、電波伝搬状況を監視し、自動的に行う。すなわち、本実施の形態では、整合ろ波器211により、適応整合フィルタ207~210から入力されたタップ情報W1~W4を監視し、それらタップ情報W1~W4が全て予め設定した所定の閾値以上であるか否かにより、フェージングの影響が少ないか否かを判定し、4重ダイバーシチ又は2重ダイバーシチで動作する。
 まず、整合ろ波器211により、AMF207~210から入力された4つのタップ情報W1~W4のうちいずれか一以上のタップ情報の値が、予め設定した所定の閾値未満の値を示していると判定した期間では、フェージングの影響が大きい期間であると判断し、整合ろ波器211は、切り替えスイッチ215を加算器213からの第2の加算信号を加算器214へ供給するように制御する。
 同様に、無線送信装置100と同じ無線通信装置内に設けられた、図示しない無線受信装置200と同一の構成の無線受信装置は、無線受信装置200と同じ無線通信装置内に設けられた無線送信装置100と同一構成の無線送信装置から、周波数f3とf4の2波の送信信号を受信し、無線受信装置200と同様の動作により、フェージングの影響が大きい期間であると判断したときは、切り替えスイッチ104を変調器102からの第1の変調後の信号を送信器106へ供給するように制御する。
 すなわち、フェージングの影響が大きい期間であると判断したときは、図3に示すように、無線送信装置100では、送信器105に供給される変調器102からの第1の変調後の信号を、切り替えスイッチ104が選択して送信器106にも供給するため、変調器103は使用されない。また、無線受信装置200では、図3に示すように、加算器213からの第2の加算信号を切り替えスイッチ215が選択して加算器214に供給するため、復調器217は使用されない。従って、フェージングの影響が大きい期間であると判断したときは、回線品質維持のために4重ダイバーシチでの通信が行われる。
 この場合、無線送信装置100では送信インタフェース101は送信すべき送信データを変調器102のみに供給する。変調器102から出力された送信データで変調された変調後の信号が、それぞれ送信器105、106で増幅及び無線周波数f1、f2の送信信号に周波数変換された後、電力増幅器107、108を経由して空中線109、110から空間へ送信される。この2波の送信信号は、それぞれ異なる2つの伝搬路を伝搬し、無線受信装置200の空中線201及び202で受信される。
 無線受信装置200では、前述したように、空中線201及び202で受信された周波数f1の受信信号は、受信器203及び205、適応整合フィルタ207及び209を経由して加算器212に供給されて所定周波数帯の第1の加算信号とされる。また、周波数f2の受信信号は、受信器204及び206、適応整合フィルタ208及び210を経由して加算器213に供給されて上記と同じ所定周波数帯の第2の加算信号とされる。
 これら第1及び第2の加算信号は、図3に示したように加算器214で加算されて第3の加算信号とされた後、復調器216に供給される。第3の加算信号は、空中線201で受信された2波の受信信号と、空中線202で受信された2波の受信信号とから生成された信号であり、これら4波の受信信号をダイバーシチ合成した信号である。復調器216は、この4波の受信信号をダイバーシチ合成した信号である第3の加算信号を復調する。このようにして、フェージングの影響が大きい期間であると判断したときは、回線品質維持のために4重ダイバーシチでの通信が行われる。
 他方、整合ろ波器211により、適応整合フィルタ207~210から入力された4つのタップ情報W1~W4の全ての値が、予め設定した所定の閾値以上の値を示している期間では、フェージングの影響が小さい期間であると判断し、整合ろ波器211は、切り替えスイッチ215を加算器213からの第2の加算信号を復調器217へ供給するように制御する。
 同様に、無線送信装置100と同じ無線通信装置内に設けられた、図示しない無線受信装置200と同一の構成の無線受信装置は、無線受信装置200と同じ無線通信装置内に設けられた無線送信装置100と同一構成の無線送信装置から、周波数f3とf4の2波の送信信号を受信し、無線受信装置200と同様の動作により、フェージングの影響が小さい期間であると判断したときは、切り替えスイッチ104を変調器103からの第2の変調後の信号を送信器106へ供給するように制御する。
 すなわち、フェージングの影響が小さい期間であると判断したときは、図4に示すように、無線送信装置100では、変調器103からの第2の変調後の信号を、切り替えスイッチ104が選択して送信器106に供給する。また、無線受信装置200では、図4に示すように、加算器213からの第2の加算信号を切り替えスイッチ215が選択して復調器217に供給し、加算器214での加算動作は行わない。従って、フェージングの影響が小さい期間であると判断したときは、ダイバーシチ次数を下げても回線品質の影響がない期間であると判断し、2重ダイバーシチでの通信が行われる。このときには、周波数2波を別々のデータの送信に用いて伝送容量を2倍にする。
 この場合、無線送信装置100では送信インタフェース101は送信すべき第1の送信データを変調器102に供給すると共に、送信すべき第2の送信データを変調器103に供給する。変調器102、103から出力された第1、第2の変調後の信号が、それぞれ送信器105、106で増幅及び無線周波数f1、f2の送信信号に周波数変換された後、電力増幅器107、108を経由して空中線109、110から空間へ送信される。この2波の送信信号は、それぞれ異なる2つの伝搬路を伝搬し、無線受信装置200の空中線201及び202で受信される。
 無線受信装置200では、前述したように、空中線201及び202で受信された周波数f1の受信信号は、受信器203及び205、適応整合フィルタ207及び209を経由して加算器212に供給されて所定周波数帯の第1の加算信号とされる。また、周波数f2の受信信号は、受信器204及び206、適応整合フィルタ208及び210を経由して加算器213に供給されて上記と同じ所定周波数帯の第2の加算信号とされる。
 これら第1及び第2の加算信号のうち、第1の加算信号は、図4に示したように加算器214を経由して復調器216に供給されて第1の送信データが復調される。第2の加算信号は、図4に示したように切り替えスイッチ215により復調器217に供給されて第2の送信データが復調される。
 このように、フェージングの影響が小さい期間であると判断したときは、本実施形態の無線通信システムによれば、変調器102-復調器216間と、変調器103-復調器217間との2経路で別個の空間ダイバーシチによる2重ダイバーシチ通信を行うため、4重ダイバーシチ通信の時よりも伝送容量を2倍にすることができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2009年2月19日に出願された日本出願特願2009-035988を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 無線送信装置
101 送信インタフェース
102、103 変調器(MOD)
104、215 切り替えスイッチ
105、106 送信器(TX)
107、108 電力増幅器(HPA)
109、110、201、202 空中線
200 無線受信装置
203~206 受信器(RX)
207~210 適応整合フィルタ(AMF)
211 整合ろ波器
212~214 加算器
216、217 復調器(DEM)
218 受信インタフェース
301、302 遅延素子
303、305、307 相関器
304、306、308 乗算回路
309 合成器
310 タップ検出部

Claims (11)

  1.  周波数ダイバーシチによる第1の無線通信手段と、
     空間ダイバーシチによる第2の無線通信手段と、
     受信信号に基づいて、電波伝搬状況を監視してフェージングの影響が大であるか否かを判定する監視手段と、
     前記監視手段によりフェージングの影響が大であると判定された期間は、前記第1及び第2の無線通信手段により一の送信データを送受信させる4重ダイバーシチによる無線通信を行わせ、前記監視手段によりフェージングの影響が小であると判定された期間は、前記第2の無線通信手段により複数の送信データを別々に送受信させる2重ダイバーシチによる無線通信を行わせる切り替え手段と
     を有することを特徴とする無線通信装置。
  2.  送信データをそれぞれ変調する複数の変調手段と、
     入力された変調後の送信データを、互いに異なる送信周波数の複数の送信信号に変換する送信信号生成手段と、
     前記複数の変調手段からそれぞれ出力された複数の変調後の送信データ、又は前記複数の変調手段のうち所定の一の変調手段から出力された変調後の送信データを選択して前記送信信号生成手段へ供給する第1のスイッチ手段と、
     前記複数の送信信号をそれぞれ別々に空間に送信する複数の送信用空中線と
     を備えた送信側装置と、
     空間的に無相関になるように設置された複数の受信用空中線により複数の送信信号を受信して、その受信信号を周波数別に分岐する受信手段と、
     前記周波数別に分岐された各受信信号に対して、別々に同一の所定の周波数帯の信号に変換して複数の変換後の受信信号を出力する変換後受信信号生成手段と、
     前記複数の受信信号に基づいて電波伝搬状況を監視し、フェージングの影響が大であるか小であるかを判定する監視手段と、
     前記複数の変換後の受信信号のうち、変換前の周波数が同じである変換後の受信信号同士を加算して複数の第1の加算信号を生成する合成手段と、
     複数の復調手段と、
     前記複数の第1の加算信号を前記複数の復調手段によりそれぞれ復調させるか、又は前記複数の第1の加算信号を加算して第2の加算信号を生成し、その第2の加算信号を所定の一の復調手段により復調させるように、前記複数の第1の加算信号を選択する第2のスイッチ手段と
     を備えた受信側装置とを有し、
     前記監視手段によりフェージングの影響が大であると判定された期間は、前記第1のスイッチ手段により前記複数の変調手段のうち所定の一の変調手段から出力された変調後の送信データを選択させて前記送信信号生成手段へ供給すると共に、前記第2のスイッチ手段により前記第2の加算信号を所定の一の復調手段により復調させるように前記複数の第1の加算信号を選択させ、前記監視手段によりフェージングの影響が大であると判定された期間は、前記第1のスイッチ手段により前記複数の変調手段からそれぞれ出力された複数の変調後の送信データを選択させて前記送信信号生成手段へ供給すると共に、前記第2のスイッチ手段により前記複数の第1の加算信号を前記複数の復調手段によりそれぞれ復調させることを特徴とする無線通信装置。
  3.  前記監視手段は、
     前記複数の受信信号に対して別々にS/N最大比合成する複数の適応整合フィルタ手段と、
     前記複数の適応整合フィルタ手段から出力される複数のタップ情報に基づいて電波伝搬状況を監視し、前記複数のタップ情報の全てが所定の閾値以上の値を示しているときはフェージングの影響が小であると判定し、前記複数のタップ情報のどれか一以上のタップ情報が前記閾値未満の値を示しているときはフェージングの影響が大であると判定する整合ろ波手段と
     よりなることを特徴とする請求項2記載の無線通信装置。
  4.  前記第2のスイッチ手段は、
     前記複数の第1の加算信号のうち、所定の一の第1の加算信号をそのまま通過させるか、又は前記所定の一の第1の加算信号とその所定の一の第1の加算信号以外の他の第1の加算信号とを加算して前記第2の加算信号を生成する加算器と、
     前記所定の一の第1の加算信号以外の他の第1の加算信号を、前記加算器又は前記所定の一の第1の加算信号以外の他の第1の加算信号をそれぞれ復調する復調手段へ選択して供給する切り替えスイッチと
     よりなることを特徴とする請求項2又は3記載の無線通信装置。
  5.  周波数ダイバーシチによる第1の無線通信を行い、
     空間ダイバーシチによる第2の無線通信を行い、
     受信信号に基づいて電波伝搬状況を監視して、フェージングの影響が大であるか否かを判定し、
     前記監視によりフェージングの影響が大であると判定された期間は、前記第1及び第2の無線通信により一の送信データを送受信させる4重ダイバーシチによる無線通信を行わせ、前記監視によりフェージングの影響が小であると判定された期間は、前記第2の無線通信により複数の送信データを別々に送受信させる2重ダイバーシチによる無線通信を行わせることを特徴とする無線通信方法。
  6.  送信データをそれぞれ変調して複数の変調後の送信データを生成し、
     前記複数の変調後の送信データ、又は前記複数の変調後の送信データのうち所定の一の変調後の送信データを選択し、
     前記選択された変調後の送信データを、互いに異なる送信周波数の複数の送信信号に変換し、
     前記複数の送信信号をそれぞれ複数の送信用空中線を用いて別々に空間に送信し、
     空間的に無相関になるように設置された複数の受信用空中線により複数の送信信号を受信して、その受信信号を周波数別に分岐し、
     前記周波数別に分岐された各受信信号に対して、別々に同一の所定の周波数帯の信号に変換して複数の変換後の受信信号を出力し、
     前記複数の受信信号に基づいて電波伝搬状況を監視し、フェージングの影響が大であるか小であるかを判定し、
     前記複数の変換後の受信信号のうち、変換前の周波数が同じである変換後の受信信号同士を加算して複数の第1の加算信号を生成し、
     前記監視によりフェージングの影響が大であると判定された期間は、前記所定の一の変調後の送信データを選択させると共に、前記複数の第1の加算信号を加算して得た第2の加算信号を所定の一の復調手段により復調させるように前記複数の第1の加算信号を選択させ、前記監視ステップによりフェージングの影響が小であると判定された期間は、前記複数の変調後の送信データを選択させると共に、前記複数の第1の加算信号を前記複数の復調手段にそれぞれ供給することを特徴とする無線通信方法。
  7.  前記監視において、
     複数の適応整合フィルタにより前記複数の受信信号に対して別々にS/N最大比合成し、
     前記複数の適応整合フィルタから出力される複数のタップ情報に基づいて電波伝搬状況を監視し、前記複数のタップ情報の全てが所定の閾値以上の値を示しているときはフェージングの影響が小であると判定し、前記複数のタップ情報のどれか一以上のタップ情報が前記閾値未満の値を示しているときはフェージングの影響が大であると判定することを特徴とする請求項6記載の無線通信方法。
  8.  対向する無線通信装置間で無線通信を行う無線通信システムであって、
     前記対向する無線通信装置のそれぞれは、
     周波数ダイバーシチによる第1の無線通信手段と、
     空間ダイバーシチによる第2の無線通信手段と、
     受信信号に基づいて、電波伝搬状況を監視してフェージングの影響が大であるか否かを判定する監視手段と、
     前記監視手段によりフェージングの影響が大であると判定された期間は、前記第1及び第2の無線通信手段により一の送信データを送受信させる4重ダイバーシチによる無線通信を行わせ、前記監視手段によりフェージングの影響が小であると判定された期間は、前記第2の無線通信手段により複数の送信データを別々に送受信させる2重ダイバーシチによる無線通信を行わせる切り替え手段と
     を有することを特徴とする無線通信システム。
  9.  対向する無線通信装置間で無線通信を行う無線通信システムであって、
     前記対向する無線通信装置のそれぞれは、
     送信データをそれぞれ変調する複数の変調手段と、
     入力された変調後の送信データを、互いに異なる送信周波数の複数の送信信号に変換する送信信号生成手段と、
     前記複数の変調手段からそれぞれ出力された複数の変調後の送信データ、又は前記複数の変調手段のうち所定の一の変調手段から出力された変調後の送信データを選択して前記送信信号生成手段へ供給する第1のスイッチ手段と、
     前記複数の送信信号をそれぞれ別々に空間に送信する複数の送信用空中線と
     を備えた送信側装置と、
     空間的に無相関になるように設置された複数の受信用空中線により複数の送信信号を受信して、その受信信号を周波数別に分岐する受信手段と、
     前記周波数別に分岐された各受信信号に対して、別々に同一の所定の周波数帯の信号に変換して複数の変換後の受信信号を出力する変換後受信信号生成手段と、
     前記複数の受信信号に基づいて電波伝搬状況を監視し、フェージングの影響が大であるか小であるかを判定する監視手段と、
     前記複数の変換後の受信信号のうち、変換前の周波数が同じである変換後の受信信号同士を加算して複数の第1の加算信号を生成する合成手段と、
     複数の復調手段と、
     前記複数の第1の加算信号を前記複数の復調手段によりそれぞれ復調させるか、又は前記複数の第1の加算信号を加算して第2の加算信号を生成し、その第2の加算信号を所定の一の復調手段により復調させるように、前記複数の第1の加算信号を選択する第2のスイッチ手段と
     を備えた受信側装置とを有し、
     前記監視手段によりフェージングの影響が大であると判定された期間は、前記第1のスイッチ手段により前記複数の変調手段のうち所定の一の変調手段から出力された変調後の送信データを選択させて前記送信信号生成手段へ供給すると共に、前記第2のスイッチ手段により前記第2の加算信号を所定の一の復調手段により復調させるように前記複数の第1の加算信号を選択させ、前記監視手段によりフェージングの影響が大であると判定された期間は、前記第1のスイッチ手段により前記複数の変調手段からそれぞれ出力された複数の変調後の送信データを選択させて前記送信信号生成手段へ供給すると共に、前記第2のスイッチ手段により前記複数の第1の加算信号を前記複数の復調手段によりそれぞれ復調させることを特徴とする無線通信システム。
  10.  前記監視手段は、
     前記複数の受信信号に対して別々にS/N最大比合成する複数の適応整合フィルタ手段と、
     前記複数の適応整合フィルタ手段から出力される複数のタップ情報に基づいて電波伝搬状況を監視し、前記複数のタップ情報の全てが所定の閾値以上の値を示しているときはフェージングの影響が小であると判定し、前記複数のタップ情報のどれか一以上のタップ情報が前記閾値未満の値を示しているときはフェージングの影響が大であると判定する整合ろ波手段と
     よりなることを特徴とする請求項9記載の無線通信システム。
  11.  前記第2のスイッチ手段は、
     前記複数の第1の加算信号のうち、所定の一の第1の加算信号をそのまま通過させるか、又は前記所定の一の第1の加算信号とその所定の一の第1の加算信号以外の他の第1の加算信号とを加算して前記第2の加算信号を生成する加算器と、
     前記所定の一の第1の加算信号以外の他の第1の加算信号を、前記加算器又は前記所定の一の第1の加算信号以外の他の第1の加算信号をそれぞれ復調する復調手段へ選択して供給する切り替えスイッチと
     よりなることを特徴とする請求項9又は10記載の無線通信システム。
PCT/JP2010/000298 2009-02-19 2010-01-20 無線通信装置、無線通信方法及び無線通信システム WO2010095350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/148,900 US8457583B2 (en) 2009-02-19 2010-01-20 Wireless communication device, wireless communication method, and wireless communication system
EP10743483.9A EP2400670B1 (en) 2009-02-19 2010-01-20 Wireless communication apparatus, wireless communication method, and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009035988A JP5310070B2 (ja) 2009-02-19 2009-02-19 無線通信装置、無線通信方法及び無線通信システム
JP2009-035988 2009-02-19

Publications (1)

Publication Number Publication Date
WO2010095350A1 true WO2010095350A1 (ja) 2010-08-26

Family

ID=42633642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000298 WO2010095350A1 (ja) 2009-02-19 2010-01-20 無線通信装置、無線通信方法及び無線通信システム

Country Status (4)

Country Link
US (1) US8457583B2 (ja)
EP (1) EP2400670B1 (ja)
JP (1) JP5310070B2 (ja)
WO (1) WO2010095350A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597746A (en) * 1979-01-20 1980-07-25 Nec Corp Diversity system of communication beyond horizon
JPH09191234A (ja) * 1996-01-10 1997-07-22 Nec Corp 回線切替装置
JPH09307490A (ja) 1996-05-09 1997-11-28 Nec Corp 高速移動通信における高速データ伝送システムのダイバーシチ受信方法とその装置
JP2000269830A (ja) * 1999-03-16 2000-09-29 Nec Wireless Networks Ltd 無線通信装置及び送信出力制御方法
JP2002077094A (ja) * 2000-08-25 2002-03-15 Nec Corp 交差偏波干渉除去システム
JP2005277910A (ja) 2004-03-25 2005-10-06 Nec Corp 無線通信装置、無線通信方法及び無線通信システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243565B1 (en) * 1996-06-18 2001-06-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting communication signals using frequency and polarization diversity
US6006075A (en) * 1996-06-18 1999-12-21 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for transmitting communication signals using transmission space diversity and frequency diversity
US6385464B1 (en) * 1996-11-26 2002-05-07 Sanyo Electric Co., Ltd. Base station for mobile communication system
JPH10163936A (ja) * 1996-12-05 1998-06-19 Toshiba Corp 無線通信装置
DE19847887A1 (de) * 1998-10-18 2000-04-20 Heinz Lindenmeier Scanning-Antennen-Diversity-System für Fahrzeuge
DE60029303T2 (de) * 2000-04-28 2007-07-05 Siemens Ag Empfänger mit Antennendiversity
TW545003B (en) * 2001-01-16 2003-08-01 Matsushita Electric Ind Co Ltd Antenna diversity communications device
AU2003203650A1 (en) * 2002-01-18 2003-08-07 Raytheon Company Combining signals exhibiting multiple types of diversity
FR2835369B1 (fr) * 2002-01-31 2005-09-30 Evolium Sas Station de base pour systeme de telecommunication
EP1608083B1 (en) * 2004-06-17 2017-03-15 Harman Becker Automotive Systems GmbH Diversity with identification of specific antenna properties and evaluation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597746A (en) * 1979-01-20 1980-07-25 Nec Corp Diversity system of communication beyond horizon
JPH09191234A (ja) * 1996-01-10 1997-07-22 Nec Corp 回線切替装置
JPH09307490A (ja) 1996-05-09 1997-11-28 Nec Corp 高速移動通信における高速データ伝送システムのダイバーシチ受信方法とその装置
JP2000269830A (ja) * 1999-03-16 2000-09-29 Nec Wireless Networks Ltd 無線通信装置及び送信出力制御方法
JP2002077094A (ja) * 2000-08-25 2002-03-15 Nec Corp 交差偏波干渉除去システム
JP2005277910A (ja) 2004-03-25 2005-10-06 Nec Corp 無線通信装置、無線通信方法及び無線通信システム

Also Published As

Publication number Publication date
EP2400670B1 (en) 2017-10-25
EP2400670A1 (en) 2011-12-28
EP2400670A4 (en) 2016-09-07
US8457583B2 (en) 2013-06-04
US20110319026A1 (en) 2011-12-29
JP2010193222A (ja) 2010-09-02
JP5310070B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
CN1918809B (zh) 移动通信系统和用于该系统的无线设备
JP3338747B2 (ja) 干渉波除去装置
KR100814155B1 (ko) 시간 역전 시공 블록 송신기 다이버시티 인코딩을 하는코드 분할 다중 접속 무선 시스템
EP1949558B1 (en) Method and system for multiple antenna communications, related apparatus and corresponding computer program product
EP0771084A1 (en) Time diversity transmission-reception system
JPH08265236A (ja) ダイバーシチ送受信方法及び送受信機
GB2311702A (en) Spread spectrum communication system
JPH07283779A (ja) 移動体通信装置
JP2980053B2 (ja) 干渉波除去装置
KR20140091434A (ko) 대역확산 혼합신호 수신을 위한 장치 및 방법
JP2001177452A (ja) ダイバーシチ送受信方法および装置
US9197302B2 (en) MIMO communication method
JP3925279B2 (ja) 交差偏波干渉除去システム
JP3411150B2 (ja) Cdmaセルラ無線通信装置
JP2007166459A (ja) 無線通信装置及び無線通信方式
KR20060108343A (ko) 이동용 무선통신시스템에서 동일주파수 채널에 적용되는이중편파의 간섭제거방법 및 그 시스템
WO2000030276A1 (fr) Dispositif de radiocommunication et procede de commutation pour antenne d'emission
WO2000027042A1 (fr) Technique de reception pour station mobile et recepteur de station mobile
JP5310070B2 (ja) 無線通信装置、無線通信方法及び無線通信システム
RU2233032C2 (ru) Устройство и способ разнесения передачи с использованием более двух антенн
WO2015129195A1 (ja) 無線送信装置、無線受信装置、無線通信システムおよび無線通信方法
KR100580090B1 (ko) 송신 안테나 다이버서티를 사용하는 코드분할다중접속 시스템을 위한 모드 선택형 복조장치
JP4470798B2 (ja) 無線通信装置及び方法
JPH09233007A (ja) 無線伝送装置
WO2006100767A1 (ja) 無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743483

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010743483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010743483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE