WO2010093223A2 - 압타머를 이용한 타겟물질의 검출 방법 - Google Patents

압타머를 이용한 타겟물질의 검출 방법 Download PDF

Info

Publication number
WO2010093223A2
WO2010093223A2 PCT/KR2010/000952 KR2010000952W WO2010093223A2 WO 2010093223 A2 WO2010093223 A2 WO 2010093223A2 KR 2010000952 W KR2010000952 W KR 2010000952W WO 2010093223 A2 WO2010093223 A2 WO 2010093223A2
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
target material
sensor
bisphenol
specifically binding
Prior art date
Application number
PCT/KR2010/000952
Other languages
English (en)
French (fr)
Other versions
WO2010093223A3 (ko
Inventor
김소연
Original Assignee
동국대학교산합협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090012288A external-priority patent/KR101437616B1/ko
Application filed by 동국대학교산합협력단 filed Critical 동국대학교산합협력단
Priority to US13/201,764 priority Critical patent/US9075053B2/en
Priority to EP18208862.5A priority patent/EP3495501B1/en
Priority to CN201080016373.8A priority patent/CN102395684B/zh
Priority to EP17157804.0A priority patent/EP3192881B1/en
Priority to EP10741440.1A priority patent/EP2397562B1/en
Publication of WO2010093223A2 publication Critical patent/WO2010093223A2/ko
Publication of WO2010093223A3 publication Critical patent/WO2010093223A3/ko
Priority to US14/683,660 priority patent/US9329178B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 압타머를 이용한 타겟물질의 검출방법 및 검출용 키트에 관한 것으로, 보다 구체적으로는 고체상에 고정된 제1 압타머에 시료 및 제2 압타머를 첨가하여, 제1 압타머, 타겟물질 및 제2 압타머간 샌드위치 결합이 형성되도록 하는 것을 특징으로 하는 타겟물질의 검출방법 및 검출용 키트와, FET 센서 기반 타겟물질의 검출방법 및 검출용 키트, 그리고 AAO 센서 기반 타겟물질의 검출방법 및 검출용 키트에 관한 것이다. 본 발명에 따른 검출방법은, 종래 검출이 어려웠던 저분자량 물질도 검출해 낼 수 있게 함으로써, 용액 상에 존재하는 질병과 관련된 대사물질, 환경 오염물 및 식품 독소 등의 검출이 가능하게 하였으며, 일관성있는 재생산이 가능하며 낮은 비용으로 생산이 가능한 압타머를 이용함으로써 경제성도 높인바, 매우 유용하다.

Description

압타머를 이용한 타겟물질의 검출 방법
본 발명은 압타머를 이용한 타겟물질의 검출방법 및 검출용 키트에 관한 것으로, 보다 구체적으로는 고체상에 고정된 제1 압타머에 시료 및 제2 압타머를 첨가하여, 제1 압타머, 타겟물질 및 제2 압타머간 샌드위치 결합이 형성되도록 하는 것을 특징으로 하는 타겟물질의 검출방법 및 검출용 키트와, FET 센서 기반 타겟물질의 검출방법 및 검출용 키트, 그리고 AAO 센서 기반 타겟물질의 검출방법 및 검출용 키트에 관한 것이다.
용액 중에 있는 작은 분자를 민감하고 특이적으로 검출하기 위한 신규한 센서 플랫폼을 개발하는 것은 질병과 관련된 대사물질, 환경 오염물 및 식품 독소의 모니터닝에 매우 중요한 일이다. 최근까지 대사물질, 환경 오염물 및 독소와 같은 저분자량을 갖는 분석물의 분석은 일반적으로 GC/MS 또는 HPLC와 같은 복잡한 실험으로 진행되어 왔는데, 이는 숙련된 작업자조차도 오랜 시간이 걸리고 온-사이트 분석(on-site analysis)에 적용할 수 없는 문제점이 있었다 (Stales, C.A. et al, Environ. Toxicol. Chem., 20:2450, 2001). 이에 현지에서의(on-site) 리얼-타임 검출에 성공하기 위해서는 작은 스케일의 장치 및 특이적으로 결합하는 시약이 요구되었다.
이에 작은 물질을 검출하기 위한 휴대용 플랫폼으로서, 표면 플라즈몬 공명 (surface plasmon resonance) 등과 같은 검출 플랫폼이 알려져 있으나, 이는 그 원리상 분자량 400 이하의 극저분자량의 물질의 검출은 어려운 것으로 알려져 있으며, 더욱이 17 베타-에스트라디올 (β-estradiol, MW: 272) 결합 특이적인 압타머를 사용한 1μM (272ppb) 농도분석을 수행한 결과, 도 1과 같이 상기와 같은 저분자량의 물질의 농도 분석은 불가능한 것으로 보고되었다 (Kim et al., Biosens. Bioelecrtron., 22:2525, 2007). 따라서, 저분자량의 물질도 특이적이고 민감하게 검출해낼 수 있는 새로운 플랫폼의 개발이 요청되었다.
또한, 분석물의 특이적이고 민감한 검출을 위해서는 항체와 같은 분석물에 특이적으로 결합하는 시약이 요구된다. 그러나, 저분자량의 작은 물질의 경우 통상 동물에서 항체를 발생시키기에는 너무 작거나 너무 독성이 강하여 항체를 생성할 수 없기 때문에, 작은 분자를 타겟팅하는 새로운 특이적으로 결합하는 시약이 요청되었다.
한편, 압타머는 단일 사슬 DNA 또는 RNA분자로서, 높은 친화성으로 타겟물질을 특이적으로 인지할 수 있는 작은 단일가닥 올리고핵산을 말한다. 압타머는 검출분석 시스템에서 분자를 인식할 수 있는 바이오센서의 일 요소로 이용될 수 있어 항체의 대체물질로 인식되어 오고 있다. 특히, 압타머는 항체와 달리 독소를 비롯한 다양한 유기물 및 무기물의 표적 분자로 이용될 수 있고, 일단 특정 물질에 특이적으로 결합하는 압타머를 분리해내면 자동화된 올리고머 합성 방법으로 낮은 비용과 일관성으로 재생산이 가능한 바 경제적이었다. 이에 1996년 처음으로 형광표지된 앱타머를 이용하여 표적 단백질을 측정한 압타머 기반의 바이오센서가 개발된 이후로 이와 같은 압타머의 장점과 구조적 특성을 기반으로 하여 다양한 압타머 바이오센서들이 개발되고 있다 (김연석&구만복, NICE, 26(6): 690, 2008).
그러나, 종래 압타머를 이용한 분석방법들은 특정물질에 부착되어 있던 압타머를 떼어내거나 다른 물질로 결합하게 하는 등 경쟁 분석방법이 사용되어져 온 바, 더 직접적이고 간편한 방법으로 압타머를 이용하여 물질을 검출해 내는 방법의 개발이 요청되어져 왔다.
한편, 탄소나노튜브(CNT) 기반 센서는 작은 물질을 검출하기 위한 휴대용 장치로 매우 매력적인 플랫폼이다. 쿼츠-크리스탈 마이크로밸런스 (quarts-crystal microbalance), 전기화학적 임피던스 분석기 (electrochemical impedance spectrometry), 표면 플라즈몬 공명(surface plasmon resonance) 및 광지시형 전위차식 센서 (light-addressable potentiometric sensor: LAPS)과 같은 다른 검출 플랫폼과 비교하여, 단일벽 탄소나노튜브(swCNT)-전계 효과 트랜지스터(FETs)는 작은 스케일의 장치로서 매우 민감하게 화학물질을 검출하는 센서로서 유용하였다(Kim, T.K. et al., Advanced Materials, 20:1, 2008; Kong, J. et al., Science, 287:622, 2000; Snow, E.S. & Perkins, F.K., Nano. Lett., 5:2414, 2005).
그러나, 최근 작은 분자 검출을 위한 swCNT-FET는 대부분의 중요한 생물학적 대사물질이나 독소가 포함된 액체상이 아닌, 오직 기체 또는 증기상으로 한정되는 문제점이 있었다. 또한, 용액 중의 무극성 작은 분자의 검출은 FET 기반 센서의 검출 범위 내가 아니었기 때문에, 용액 중 작은 분자의 검출이 어려웠다 (Heller, I. et al, Nano. Lett., 8:591, 2008).
분석물의 특이적이고 민감한 검출은 또한, swCNT-FET 화학 센서가 항체와 같은 특이적으로 결합하는 시약을 기능기로 가질 것이 요구되는데, 작은 분자는 통상 동물에서 항체를 발생시키기에는 너무 작거나 너무 독성이 강하여 항체를 생성할 수 없었다.
이에 본 발명자들은 작은 분자, 특히 용액 중에 존재하는 작은 분자도 검출해낼 수 있는 새로운 검출방법을 제공하고자 예의 노력한 결과, 고체상에 고정되어 있는 제1 압타머에 시료 및 제2 압타머를 첨가하여, 제1 압타머, 타겟물질 및 제2 압타머간 샌드위치 결합을 형성시킨 다음, 비스페놀 A와 같은 무극성의 저분자량의 물질도 검출해 낼 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명자들은 또한, FET 센서에 제1 압타머를 프로브로서 고정하고, 이에 시료 및 제2 압타머를 첨가한 후 전류변화를 측정함으로써 pM 수준의 무극성 저분자물질도 검출해 낼 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명자들은 또한, AAO 센서에 압타머를 프로브로서 고정하고, 이에 시료를 첨가한 후 정전용량의 변화를 측정함으로써 무극성 저분자물질도 검출해 낼 수 있음을 확인하고, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 용액 상에 존재하는 저분자 물질도 검출해 낼 수 있는 새로운 타겟물질의 검출방법을 제공하는 것이다.
본 발명의 다른 목적은 용액 상에 존재하는 저분자 물질도 검출해 낼 수 있는 타겟물질 검출용 키트를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 다음의 단계를 포함하는, 압타머를 이용한 타겟물질의 검출방법을 제공한다:
(a) 고체상에 고정되어 있고 타겟물질에 특이적으로 결합하는 제1 압타머에, 타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하며 표지물질이 부착되어 있는 제2 압타머를 첨가하여 반응시키는 단계; 및
(b) 상기 표지물질을 분석하여 타겟물질을 검출하는 단계.
본 발명은 또한, 다음의 단계를 포함하는, 압타머를 이용한 타겟물질의 검출방법을 제공한다:
(a) 고체상에 고정되어 있고 타겟물질에 특이적으로 결합하는 제1 압타머에, 타겟물질을 함유하는 시료 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 첨가하여 반응시키는 단계;
(b) 상기 제2 압타머에 표지물질을 결합시키는 단계; 및
(c) 상기 표지물질을 분석하여 타겟물질을 검출하는 단계.
본 발명은 또한, 타겟물질에 특이적으로 결합하는 제1 압타머가 고정되어 있는 고체상, 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하는 타겟물질 검출용 키트를 제공한다.
본 발명은 또한, 비스페놀 A에 특이적으로 결합하는 제1 압타머가 고정되어 있는 고체상, 및 표지물질이 부착되어 있는 비스페놀 A에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 함유하고, 상기 제1압타머 또는 제2 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 비스페놀 A 검출용 키트를 제공한다.
본 발명은 또한, 표지물질이 부착되어 있고 압타머 말단에 상보적으로 결합할 수 있는 것을 특징으로 하는 압타머 표지용 핵산 단편을 제공한다.
본 발명은 또한, 다음의 단계를 포함하는, 압타머를 이용한 전계 효과 트랜지스터(FET) 센서기반 타겟물질의 검출방법을 제공한다:
(a) 기판; 상기 기판의 양측에 서로 분리되어 형성되는 소스 금속 전극 및 드레인 금속 전극; 및 상기 소스 및 드레인 금속 전극들과 접촉하며 기판 상에 형성되는 게이트를 포함하며, 타겟물질에 특이적으로 결합하는 제1 압타머가 상기 소스 금속 전극 표면, 게이트 표면 및 드레인 금속 전극 표면 중 어느 하나 이상에 프로브로서 고정되어 있는 FET 센서에,
타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 첨가하는 단계; 및
(b) 상기 타겟물질과 제2 압타머가 상기 FET 센서에 고정되어 있는 제1 압타머에 결합하는 경우 발생하는 상기 FET 센서의 소스 금속 전극 및 드레인 금속 전극 사이에 흐르는 전류 변화를 측정하여 타겟물질을 검출하는 단계.
본 발명은 또한, 기판; 상기 기판의 양측에 서로 분리되어 형성되는 소스 금속 전극 및 드레인 금속 전극; 및 상기 소스 및 드레인 금속 전극들과 접촉하며 기판 상에 형성되는 게이트를 포함하는 FET 센서로서, 타겟물질에 특이적으로 결합하는 제1 압타머가 상기 소스 금속 전극 표면, 게이트 표면 및 드레인 금속 전극 표면 중 어느 하나 이상에 프로브로서 고정되어 있는 것을 특징으로 하는 FET 센서와, 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하는 타겟물질 검출용 키트를 제공한다.
본 발명은 또한, 기판; 상기 기판의 양측에 서로 분리되어 형성되는 Au 전극들; 및 상기 Au 전극들과 접촉하고 상기 기판상에 구비되어 채널을 형성하는 단일벽 탄소나노튜브를 포함하는 채널 영역을 포함하는 FET 센서로서, 비스페놀 A에 특이적으로 결합하는 제1 압타머가 상기 Au 전극 표면에 프로브로서 고정되어 있는 것을 특징으로 하는 FET 센서와, 비스페놀 A에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하되, 여기서, 상기 제1 압타머 또는 제2 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 비스페놀 A 검출용 키트를 제공한다.
본 발명은 또한, 다음 단계를 포함하는, 압타머를 이용한 양극산화 알루미늄 (AAO, Anodic aluminum oxide) 센서 기반 타겟물질의 검출방법을 제공한다:
(a) 기판; 상기 기판상에 형성되고 나노크기의 구멍을 가지는 양극산화 알루미늄; 및 상기 양극산화 알루미늄의 표면을 코팅하는 금속을 포함하며, 타겟물질에 특이적으로 결합하는 압타머가 상기 금속 표면에 프로브로서 고정되어 있는 AAO 센서에, 타겟물질을 함유하는 시료를 첨가하는 단계; 및
(b) 상기 타겟물질과 압타머가 결합하는 경우 발생하는 상기 AAO 센서의 정전용량의 변화를 측정하여 타겟물질을 검출하는 단계.
본 발명은 또한, 기판; 상기 기판상에 형성되고 나노크기의 구멍을 가지는 양극산화 알루미늄; 및 상기 양극산화알루미늄의 표면을 코팅하는 금속을 포함하는 양극산화 알루미늄(AAO) 센서와, 타겟물질에 특이적으로 결합하는 압타머를 포함하는 타겟물질 검출용 키트를 제공한다.
본 발명의 다른 특징 및 구현예는 다음의 상세한 설명 및 첨부한 특허청구범위로부터 더욱 명백해 질 것이다.
도 1은 종래 SPR을 이용한 방법에 따라 압타머를 이용하여 17 베타-에스트라디올 검출을 수행한 결과이다.
도 2는 본 발명에 따른 방법에 따라 고정된 압타머에 비스페놀 A 및 표지된 압타머를 결합시키는 과정의 개략도이다.
도 3은 본 발명에 따른 방법에 따라 샌드위치 결합을 통하여 비스페놀 A 검출을 수행한 결과이다.
도 4는 swCNT-FET 센서 및 이에 본 발명에 따른 방법을 적용하여 비스페놀 A(BPA)를 검출하는 과정의 개략도이다.
도 5는 BPA 용액 (a), BPA와 항-BPA 압타머 혼합용액 (b) 및 항-BPA 압타머 용액(c)을 각각 swCNT-FET 센서에 첨가하여 전류변화를 측정한 그래프들과, BPA, BPB, 6F 및 BP의 각 용액과 항-BPA 압타머 용액의 혼합용액을 swCNT-FET 센서에 첨가하여 전류변화를 측정한 그래프(d)이다.
도 6은 다중채널 AAO 센서의 개략도이다.
도 7은 주파수를 0에서 100 헤르츠로 변화시켜 가면서 압타머를 센서에 결합시켰을 때와 비스페놀 A를 흘려넣었을 때의 정전용량을 비교한 결과이다.
도 8은 AAO 센서를 이용한 비스페놀 A의 검출결과를 나타내는 그래프로, (a)는 압타머를 결합시키지 않은 AAO 센서에서의 실험결과이고, (b)는 압타머를 결합시킨 AAO 센서에서의 정전용량 변화 결과를 나타낸다.
도 9는 압타머가 결합되어 있는 AAO 센서에 비스페놀 A를 1nm, 10nM, 및 100nM의 농도로 흘려보냈을 때 정전용량의 변화를 나타낸 그래프이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 및 이하에 기술하는 실험 방법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.
본원에서 “압타머”란, 높은 친화성으로 타겟물질을 특이적으로 인지할 수 있는 작은 단일가닥 올리고핵산을 말한다.
본원에서 “시료”란, 관심있는 타겟물질을 함유하거나 함유하고 있는 것으로 추정되어 분석이 행해질 조성물로, 액체, 토양, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 채취된 시료로부터 검출되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. 이때, 액체는 물, 혈액, 소변, 눈물, 땀, 타액, 림프 및 뇌척수액 등임을 특징으로 할 수 있으며, 상기 물은 강수(江水), 해수(海水), 호수(湖水) 및 우수(雨水) 등을 포함하고, 폐기물은 하수, 폐수 등을 포함하며, 상기 동식물은 인체를 포함한다. 또한, 상기 동식물 조직으로는 점막, 피부, 외피, 털, 비늘, 안구, 혀, 뺨, 발굽, 부리, 주둥이, 발, 손, 입, 유두, 귀, 코 등의 조직을 포함한다.
본원에서 “전계 효과 트랜지스터(FET) 센서”란 기판의 양 측부에 기판과 반대되는 극성으로 도핑된 소스 금속 전극 및 드레인 금속 전극이 형성되어 있으며, 소스 및 드레인 금속전극들과 접촉하며 기판 상에 형성되는 게이트를 포함하며, 게이트 표면 또는 상기 금속전극의 표면에 프로브가 고정되어 있어, 프로브에 타겟물질이 결합하는 경우, 결합 시 생기는 전류변화를 전기적인 방법으로 측정하여 프로브와 타겟물질간의 결합여부를 검출하는 센서를 의미한다.
본원에서 “탄소나노튜브”란 하나의 탄소가 다른 탄소원자와 육각형 벌집 무늬로 결합되어 있는 튜브 형태를 이루고 있는 물질로, 튜브의 직경이 나노미터 수준으로 극히 작은 물질을 의미한다. 흑연면의 결합수에 따라서 단일 벽 나노튜브(single-walled nanotube), 다중벽 나노튜브(multi-walled nanotube) 및 다발형 나노튜브(rope nanotube)로 분류될 수 있다.
본원에서 “양극산화 알루미늄 (AAO, Anodic aluminum oxide)”이란 알루미늄을 전기화학적으로 산화시키는 양극산화(anodization)을 이용하여 표면에 균일한 규칙성을 가지는 나노 크기의 다공성 알루미나를 말한다.
본 발명은 일 관점에서 다음의 단계를 포함하는, 압타머를 이용한 타겟물질의 검출방법에 관한 것이다:
(a) 고체상에 고정되어 있고 타겟물질에 특이적으로 결합하는 제1 압타머에, 타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하며 표지물질이 부착되어 있는 제2 압타머를 첨가하여 반응시키는 단계; 및
(b) 상기 표지물질을 분석하여 타겟물질을 검출하는 단계.
본원에서, “고체상”은 압타머가 고정되는 고체상태의 지지체로서, 압타머가 고정될 수 있는 한 그 모양이나 물질이 제한되지 않는다. 분석방법 수행의 편의를 위하여 멀티 웰 타입의 마이크로 플레이트가 일반적으로 사용될 수 있으나, 센서 칩, 플라스틱, 폴리프로필렌, 또는 세파로즈나 아가로스와 같은 비드로 채워진 컬럼과 같이, 다른 형상도 사용될 수 있다.
제1 압타머는 상기 고체상에 일반적인 방법에 의하여 고정될 수 있다. 본 발명의 일 실시예에서는 졸-겔 분주법에 의하여 고정되었으나, 이에 한정되지 않음은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 자명하다.
본 발명에 있어서, 상기 (a) 단계는 상기의 고정된 제1 압타머에 시료와 제2 압타머를 첨가하여 반응시키는 단계로서, 여기서 "반응"이란 제1 압타머에 시료 및 제2 압타머를 첨가하고 배양하여 시료 중 존재하는 타겟물질은 고정되어 있는 제1 압타머에 결합하고, 제2 압타머는 타겟물질에 결합하도록 반응시키는 것을 의미한다. 이때 시료와 제2 압타머를 먼저 혼합한 다음, 상기 제1 압타머에 첨가하는 것을 특징으로 할 수 있다. 즉, 시료와 제2 압타머를 혼합하여 시료 중 타겟물질과 제2 압타머간의 특이적인 결합이 이루어지도록 한 후 결합된 타겟물질-제2 압타머를 고정되어 있는 제1 압타머에 첨가하여 제1 압타머와 결합이 이루어지도록 할 수 있다.
또한, 상기 (a) 단계는 시료를 먼저 첨가한 다음, 제2 압타머를 첨가하는 것을 특징으로 할 수 있다. 즉, 시료 중 타겟물질이 먼저 고체상에 고정되어 있는 제1 압타머와 결합하도록 한 다음, 순차적으로 제2 압타머를 가하여 결합시킴으로써 순차적인 결합반응이 이루어지도록 할 수 있다.
상기 제2 압타머에 부착되어 있는 표지물질은 간접적 또는 직접적인 방법으로 부착될 수 있으며, 표지물질로서 형광물질, 방사성 동위원소 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. 이때, 형광물질의 종류는 특별히 한정되지 않으나, 예를 들면 Cy3 또는 Cy5와 같은 형광색소나, 루시퍼라아제(luciferase), GFP와 같은 형광 단백질과 같은 공지의 형광물질이 사용될 수 있다.
본 발명에서, 상기 (b) 단계는 상기 표지물질을 분석하여 타겟물질을 검출하는 단계로서, 고체상에 고정된 제1 압타머에, 타겟물질과 제2 압타머가 결합하는 경우 발생하는 표지물질의 변화를 분석하여 타겟물질을 검출하게 된다. 이때, 표지물질의 분석은 일반적으로 알려진 표지물질 분석방법에 의하여 이루어질 수 있다. 예컨대 형광물질을 표지물질로서 사용한 경우 타겟물질의 존재 시 발광 또는 색변화가 발생하는바, 이를 측정함으로써 타겟물질을 검출할 수 있다. 예시적으로 형광염료를 탐지할 수 있는 이미지 스캐너 등을 통하여 반응을 일으킨 웰을 스캔하여 타겟물질의 검출여부를 확인할 수 있고, 이미지를 소프트웨어를 통해 진하기 정도를 측정함으로써 검출량을 측정할 수 있다.
한편, 상기 제2 압타머에 표지물질을 부착하여 사용하는 것 이외에 상기 (a) 단계에서 제1 압타머에 시료와 제2 압타머를 결합시킨 다음, 표지물질을 제2 압타머에 결합시킴으로써 타겟물질을 검출할 수 있으며, 이에 본 발명은 다른 관점에서, 다음의 단계를 포함하는, 압타머를 이용한 타겟물질의 검출방법에 관한 것이다:
(a) 고체상에 고정되어 있고 타겟물질에 특이적으로 결합하는 제1 압타머에, 타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 첨가하여 반응시키는 단계;
(b) 상기 제2 압타머에 표지물질을 결합시키는 단계; 및
(c) 상기 표지물질을 분석하여 타겟물질을 검출하는 단계.
본 발명에 있어서, 상기 (b) 단계의 표지물질의 결합은, 상기 제2 압타머에 상보적으로 결합하는 핵산 단편을 상기 제2 압타머와 상보적으로 결합시킴으로써 수행되는 것을 특징으로 할 수 있다.
이때, “상보적으로 결합”이란 합성된 핵산 단편의 서열이 상기 제2 압타머에 대하여 약 80~90% 이상, 보다 바람직하게는 약 90~95% 이상, 보다 더 바람직하게는 약 95~99% 이상 서열이 서로 상보적이거나 완전히 상보적으로 혼성화 될 수 있음을 의미한다. 상기 핵산단편은 바람직하게는 제2 압타머의 말단과 상보적으로 결합하는 것을 특징으로 할 수 있으며, 이때, 제2 압타머는 상기 결합을 위하여 말단에 부가적인 서열을 포함할 수 있다.
본 발명의 일 실시예에서는 본 발명에 따른 검출방법이 용액 중 저분자량의 물질을 검출해 낼 수 있는지 확인하기 위하여, 환경호르몬으로 잘 알려져 있으나 검출이 극히 어려운 것으로 알려져 온 비스페놀 A의 검출여부를 실험하였다. 그 결과, 저분자량의 비스페놀 A도 특이적으로 검출함을 확인하였다. 이는 본 발명에 따른 검출방법이 종래 용액 중 대사물질, 독소 등의 검출이 매우 어려웠던 것과 달리 본 발명에 따른 방법을 이용함으로써 용액 중의 대사물질, 독소 등의 검출을 가능하게 함을 의미한다.
상기 실시예의 비스페놀 A를 검출하기 위하여 사용되는 압타머는 바람직하게는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택될 수 있다. 이때, 핵산 압타머는 단일가닥 DNA 또는 RNA로서 제공되는 것인 바, 상기 핵산이 RNA인 경우에는 상기 핵산서열에서 T는 U로 표시되며, 이러한 서열이 본 발명의 범위에 포함됨은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 자명한 사항이라 할 것이다.
본 발명은 다른 관점에서 다음의 단계를 포함하는, 압타머를 이용한 전계 효과 트랜지스터(FET) 센서기반 타겟물질의 검출방법에 관한 것이다:
(a) 기판; 상기 기판의 양측에 서로 분리되어 형성되는 소스 금속 전극 및 드레인 금속 전극; 및 상기 소스 및 드레인 금속 전극들과 접촉하며 기판 상에 형성되는 게이트를 포함하며, 타겟물질에 특이적으로 결합하는 제1 압타머가 상기 소스 금속 전극 표면, 게이트 표면 및 드레인 금속 전극 표면 중 어느 하나 이상에 프로브로서 고정되어 있는 FET 센서에,
타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 첨가하는 단계; 및
(b) 상기 타겟물질과 제2 압타머가 상기 FET 센서에 고정되어 있는 제1 압타머에 결합하는 경우 발생하는 상기 FET 센서의 소스 금속 전극 및 드레인 금속 전극 사이에 흐르는 전류 변화를 측정하여 타겟물질을 검출하는 단계.
본 발명에 따른 방법은 전계 효과 트랜지스터(FET) 원리에 기반한 것으로서, 소스 금속 전극 표면, 게이트 표면 및 드레인 금속 전극 표면 중 어느 하나 이상에 프로브로서 압타머를 고정하여 사용하는 것을 특징으로 한다. 본 발명을 제공하기 위하여 사용되는 FET 센서로는 종래 알려진 어떠한 형태의 FET 센서도 활용할 수 있다. 또한, 기판의 양 측부에 기판과 반대되는 극성으로 도핑된 소스 및 드레인과, 상기 소스 및 드레인과 접촉하며 기판 상에 형성되는 게이트를 포함하고, 게이트 표면 또는 소스 및 드레인 금속 전극들에 고정된 프로브에 타겟물질이 결합 시 생기는 전류변화를 전기적인 방법으로 측정하는 것으로서, 이러한 원리를 이용하는 센서라면 본 발명을 위한 방법을 수행하기 위하여 사용할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 자명할 것이다. 또한, 본 발명에 있어서, 상기 금속 전극은 금, 백금, 크롬, 구리, 알루미늄, 니켈, 팔라듐 및 티타늄으로 구성된 군에서 선택되는 어느 하나 이상으로 형성되는 것을 특징으로 할 수 있다.
이때, 바람직하게는 검출활성을 높이기 위하여 상기 FET 센서는 탄소나노튜브가 기판 상에 증착되어 상기 소스 및 드레인 금속 전극들과 접촉하여 채널을 형성하는 채널 영역을 형성하는 FET 센서인 것을 특징으로 할 수 있다. 탄소나노튜브의 증착은 화학기상증착법, 레이저 어블레이션법, 전기방전법, 플라즈마강화화학기상증착법, 열화학기상증착법, 기상합성법, 전기분해법, 플레임 합성법 등 통상적인 방법에 의하여 수행될 수 있다. 이러한 탄소나노튜브 FET 센서의 경우 바람직하게는 상기 제1 압타머는 상기 금속 전극 표면에 고정되는 것을 특징으로 할 수 있다.
아울러, 본 발명에 있어서, 상기 (a) 단계는 FET 센서에 시료와 제2 압타머를 첨가하는 단계로서, 이때 시료와 제2 압타머를 먼저 혼합한 다음, 상기 FET 센서에 첨가하는 것을 특징으로 할 수 있다. 즉, 시료와 제2 압타머를 혼합하여 시료 중 타겟물질과 제2 압타머간의 특이적인 결합이 이루어지도록 한 후 결합된 타겟물질-제2 압타머를 FET 센서에 첨가하여 프로브인 제1 압타머와 결합이 이루어지도록 할 수 있다.
또한, 상기 (a) 단계는 시료를 먼저 첨가한 다음, 제2 압타머를 첨가하는 것을 특징으로 할 수 있다. 즉, 시료 중 타겟물질이 먼저 FET 센서의 제1 압타머와 결합하도록 한 다음, 순차적으로 제2 압타머를 가하여 결합시킴으로써 순차적인 결합반응이 이루어지도록 할 수 있다.
본 발명에서, 상기 시료는 관심있는 타겟물질을 함유하거나 함유하고 있는 것으로 추정되어 분석이 행해질 조성물로, 토양, 액체, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 채취된 시료로부터 검출되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. 이때, 액체는 물, 혈액, 소변, 눈물, 땀, 타액, 림프 및 뇌척수액 등임을 특징으로 할 수 있으며, 상기 물은 강수(江水), 해수(海水), 호수(湖水) 및 우수(雨水) 등을 포함하고, 폐기물은 하수, 폐수 등을 포함하며, 상기 동식물은 인체를 포함한다. 또한, 상기 동식물 조직으로는 점막, 피부, 외피, 털, 비늘, 안구, 혀, 뺨, 발굽, 부리, 주둥이, 발, 손, 입, 유두, 귀, 코 등의 조직을 포함한다.
본 발명의 일 실시예에서는 본 발명에 따른 검출방법이 용액 중의 저분자량의 무극성 물질도 검출해 낼 수 있는지 확인하기 위하여, 환경호르몬으로 잘 알려져 있으나 검출이 극히 어려운 것으로 알려져 온 비스페놀 A의 검출여부를 실험하였다. 그 결과, 용액 중의 비스페놀 A를 pM 수준에서도 검출할 수 있을 뿐만 아니라, 비스페놀 A와 극히 유사한 구조를 가지는 BPB, 6F와 같은 다른 비스페놀 족에 대한 반응을 일으키지 않고 비스페놀 A만을 특이적으로 검출함을 확인하였다. 이는 본 발명에 따른 검출방법이 종래 용액 중 대사물질, 독소 등의 검출이 매우 어려웠던 것과 달리 본 발명에 따른 방법을 이용함으로써 용액 중의 대사물질, 독소 등의 검출을 가능하게 함을 의미한다.
상기 실시예의 비스페놀 A를 검출하기 위한 FET 센서에 사용되는 압타머는 바람직하게는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택될 수 있다. 이때, 핵산 압타머는 단일가닥 DNA 또는 RNA로서 제공되는 것인 바, 상기 핵산이 RNA인 경우에는 상기 핵산서열에서 T는 U로 표시되며, 이러한 서열이 본 발명의 범위에 포함됨은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 자명한 사항이라 할 것이다.
본 발명은 또 다른 관점에서, 다음의 단계를 포함하는 압타머를 이용한 양극산화 알루미늄 (AAO, Anodic aluminum oxide) 센서 기반 타겟물질의 검출방법에 관한 것이다:
(a)기판; 상기 기판상에 형성되고 나노크기의 구멍을 가지는 양극산화 알루미늄; 및 상기 양극산화 알루미늄의 표면을 코팅하는 금속을 포함하며, 타겟물질에 특이적으로 결합하는 압타머가 상기 금속 표면에 프로브로서 고정되어 있는 AAO 센서에, 타겟물질을 함유하는 시료를 첨가하는 단계; 및
(b) 타겟물질과 압타머가 결합한 경우 발생하는 상기 AAO 센서의 정전용량의 변화를 측정하여 타겟물질을 검출하는 단계.
양극산화 알루미늄 (AAO, Anodic aluminum oxide) 이란 전기적 방법을 이용해 산화하는 알루미늄을 말한다. 알루미늄은 수직방향으로 규칙적인 정렬을 이룬 미세 나노기공을 가지는데 이는 전기적 산화과정을 거치면서 크기를 조절할 수 있다. 이러한 양극산화 알루미늄 표면에 금속 입자를 입힌 후 압타머를 결합시켜 여기에 선택적으로 비스페놀 A 와 같은 타겟물질이 반응하면 전압과 전류의 변화가 생기게 되고 이는 결국 정전용량의 변화를 일으켜 미량의 물질도 감지 가능한 나노바이오센서를 구현 할 수 있다. 본 발명을 제공하기 위하여 사용되는 AAO 센서로는 종래 알려진 어떠한 형태의 AAO 센서도 활용될 수 있다.
이때, 상기 양극 산화알루미늄 표면에 코팅되는 금속은 금인 것을 특징으로 하나, 이로 제한되는 것은 아니다.
한편, 상기 AAO 센서에의 압타머의 고정은 압타머의 일 말단에 결합된 기능기를 수행될 수 있는데, 본 발명의 일 실시예에서는 압타머의 3’말단에 결합된 티올기가 양극산화 알루미늄 표면의 금과 공유결합을 이루어 AAO 센서의 표면에 결합되도록 하였다.
이때, 바람직하게는 상기 AAO 센서는 동시에 여러 물질의 검출이 가능하도록 도 6에 나타난 바와 같이, 다중채널로 이용하는 것을 특징으로 할 수 있다. 즉, 각 채널에 서로 다른 압타머를 고정시켜 동시에 여러 물질을 검출하게 할 수 있다. 또는 각 채널에 서로 다른 시료를 흘러보냄으로써 동시에 여러 시료의 조사가 가능하도록 하는 장점이 있다.
본 발명의 일 실시예에서는 AAO 센서에 기반한 본 발명에 따른 검출방법이 용액 중의 저분자량의 무극성 물질도 검출해 낼 수 있는지 확인하기 위하여, 환경호르몬으로 잘 알려져 있으나 검출이 극히 어려운 것으로 알려져 온 비스페놀 A의 검출여부를 실험하였다. 그 결과, 용액 중의 비스페놀 A를 검출함을 확인하였다. 이는 본 발명에 따른 검출방법이 종래 용액 중 대사물질, 독소 등의 검출이 매우 어려웠던 것과 달리 본 발명에 따른 방법을 이용함으로써 용액 중의 대사물질, 독소 등의 검출을 가능하게 함을 의미한다.
상기 실시예의 비스페놀 A를 검출하기 위한 AAO 센서에 사용되는 압타머는 바람직하게는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택될 수 있다. 이때, 핵산 압타머는 단일가닥 DNA 또는 RNA로서 제공되는 것인 바, 상기 핵산이 RNA인 경우에는 상기 핵산서열에서 T는 U로 표시되며, 이러한 서열이 본 발명의 범위에 포함됨은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 자명한 사항이라 할 것이다.
한편, 본 발명에 따른 방법은 휴대성을 높이기 위하여, 키트의 형태로 제공될 수 있다. 즉, 본 발명은 다른 관점에서, 타겟물질에 특이적으로 결합하는 제1 압타머가 고체상에 고정되어 있는 고체상, 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하는 타겟물질 검출용 키트에 관한 것이다. 이때, 상기 제2 압타머를 함유하는 검출시약은 별도의 용기에 담기어 제공되거나 샌드위치 결합을 수행할 반응부에 담기어 제공될 수 있다. 상기에 더하여 상기 검출키트는 검출용 완충용액 등을 포함할 수 있으며, 아울러 바람직하게는 상기 검출시약과 검출하고자 하는 시료액을 혼합시킬 수 있는 도구를 추가로 포함할 수 있다.
본 발명은 또한 다른 관점에서, 기판; 상기 기판의 양측에 서로 분리되어 형성되는 소스 금속 전극 및 드레인 금속 전극; 및 상기 소스 및 드레인 금속 전극들과 접촉하며 기판 상에 형성되는 게이트를 포함하는 FET 센서로서, 타겟물질에 특이적으로 결합하는 제1 압타머가 상기 소스 금속 전극 표면, 게이트 표면 및 드레인 금속 전극 표면 중 어느 하나 이상에 프로브로서 고정되어 있는 것을 특징으로 하는 FET 센서와, 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하는 타겟물질 검출용 키트에 관한 것이다. 이때, 상기 제2 압타머를 함유하는 검출시약은 별도의 용기에 담기어 제공되거나 타겟물질과 압타머간 결합을 수행할 반응부에 담기어 제공될 수 있다. 상기에 더하여 상기 검출키트는 검출용 완충용액 등을 포함할 수 있으며, 아울러 바람직하게는 상기 검출시약과 검출하고자 하는 시료액을 혼합시킬 수 있는 도구를 추가로 포함할 수 있다.
본 발명은 또한 다른 관점에서, 기판; 상기 기판상에 형성되고 나노크기의 구멍을 가지는 양극산화 알루미늄; 및 상기 양극산화알루미늄의 표면을 코팅하는 금속을 포함하는 양극산화 알루미늄(AAO) 센서와, 타겟물질에 특이적으로 결합하는 압타머를 포함하는 타겟물질 검출용 키트에 관한 것이다. 이때, 바람직하게는 상기 금속은 금인 것을 특징으로 할 수 있으나, 이에 제한되지 않으며, 이후의 수행단계에서 상기 압타머는 압타머의 말단에 결합된 기능기를 이용하여 AAO 센서에 고정되는 것을 특징으로 할 수 있는데 이때 상기 기능기는 티올기일 수 있고, 흡착에 의한 결합이나 링커(linker)에 의한 결합도 가능하다는 것을 특징으로 할 수 있다. 아울러 상기 키트는 추가로 플로우시스템을 포함하는 것을 특징으로 할 수 있는데, 이때 플로우시스템이란 상기 AAO 센서로 시료 또는 압타머를 포함하는 결합버퍼를 흘려 보낼 수 있는 시스템을 의미한다.
상기 타겟물질 검출용 키트는 병, 통(tub), 작은 봉지(sachet), 봉투(envelope), 튜브, 앰플(ampoule) 등과 같은 형태를 취할 수 있으며 이들은 부분적으로 또는 전체적으로 플라스틱, 유리, 종이, 호일, 왁스 등으로부터 형성될 수 있다. 용기는, 처음에는 용기의 일부이거나 또는 기계적, 접착성, 또는 기타 수단에 의해 용기에 부착될 수 있는, 완전히 또는 부분적으로 분리가 가능한 마개를 장착할 수 있다. 용기는 또한 주사바늘에 의해 내용물에 접근할 수 있는, 스토퍼가 장착될 수 있다. 상기 키트는 외부 패키지를 포함할 수 있으며, 외부 패키지는 구성 요소들의 사용에 관한 사용설명서를 포함할 수 있다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
특히, 하기 실시예에서는 비스페놀 A에 특이적으로 결합하는 압타머를 이용하여 비스페놀 A의 검출효과를 확인하였으나, 다른 타겟물질에 특이적으로 결합하는 압타머를 이용하여 본 발명에 따른 방법을 다른 타겟물질의 검출에도 적용할 수 있음은 당업계에서 통상의 지식을 가진 자에게 자명한 사항이라 할 것이다.
실시예 1: 비스페놀 A에 특이적으로 결합하는 압타머의 분리 및 이를 고정한 졸-겔 칩의 제조
1-1: 비스페놀 A에 특이적으로 결합하는 압타머의 분리
먼저, 다음의 서열을 가지는 랜덤한 ssDNA 라이브러리를 화학적으로 합성하고 PAGE(Genotech Inc., Korea)로 분리하였다.
5’-GGGCCGTTCGAACACGAGCATG-N60-GGACAGTACTCAGGTCATCCTAGG-3’ (서열번호 1)
상기 ssDNA 풀에 대하여, 비스페놀 A-아가로스 친화성 컬럼을 이용하여 SELEX의 선별과 증폭과정을 12회 수행하여, 다음의 총 27개의 비스페놀 A 특이적인 압타머를 선별하였다.
#31 5’-CGGCCCTAGG ATGACCTGAG TACTGTCCCT CACCCCTACT TCCGCCACTG GCCCAACAGC-3’ (서열번호 2)
#23 5’-TGCCTAGGAT GACCTGAGTA CTGTCCAGGC TCCGACCTTG TCCCTGCCGC CACTCTCCCA-3’ (서열번호 3)
#47 5’-GCGGACGGGC TCGGCTCACC TAGGATGACC TGAGTACTGT CCCCGTGGCG CTAATTCGGG-3’ (서열번호 4)
#50 5’-CGGCCCGCCC CTAGGATGAC CTGAGTACTG TCCGCGGGAC GGTATCGCTG AGACAGGTGC-3’ (서열번호 5)
#41 5’-CGGCAGCCCT AGGATGACCT GAGTACTGTC CGCGAAAGAC TCCATGGTAC CCGGTGCTTA-3’ (서열번호 6)
#27 5’-GGGGGCGTCG NCCTAGGATG ACCTGAGTAC TGTCCGCACN CAGGGAGGAT GCATTGAC-3’ (서열번호 7)
#45 5’-GTGTCCCCAC GTCCTAGGAT GACCTGAGTA CTGTCCAATG CCGCTCCTCC CGATGCAGAC-3’ (서열번호 8)
#11 5’-CTCTTCNCTC CAATTCGTAA GATGACCTGA GGTCTGCCCA ACGGTGTTTA GAACCCCTTG-3’ (서열번호 9)
#12-3 5’-CGCAGCGCGC CCCTGAGTAC TGTCCGCCCA ACGGTGTGAC GGCCCTGCGA TCAACGATTG-3’ (서열번호 10)
#12-4 5’-GGGCCGTCCT AGGATGACCT GAGTACTGTC CGCCCAACGG TGTGACGGCC CTGCGATCAA-3’ (서열번호 11)
#22 5’-CCCTCGCCCT GAGTACTGTC CCCCGTCCGT CCGGTGAGGG CCACTATCGC TAACTGATCA-3’ (서열번호 12)
#4 5’-AGGCCGTTGG TGTGGTGGGC CTAGGGCCGG CGGCGCACAG CTGTTATAGA CGTCTCCAGC-3’ (서열번호 13)
#12-5 5’-CCGCCGTTGG TGTGGTGGGC CTAGGGCCGG CGGCGCACAG CTGTTATAGA CGTCTCCAGC-3’ (서열번호 14)
#6 5’-CCGCCGTTGG TGTGGTGGGC CTAGGGCCGG CGGCGCACAG CTGTTATAGA CGCCTCCAGC-3’ (서열번호 15)
#12-7 5’-CCGCCGTTGG TGTGGTGGGC CCAGGGCCGG CGGCGCACAG CTGTTATAGA CGCCTCCAGC-3’ (서열번호 16)
#12-2 5’-TGACGGTGGC GTGGAGGGCG CGTATCAATC GTTGATCGCA GGGCCGTCAT ACCGTTGGAG-3’ (서열번호 17)
#12-9 5'-TGACGGTGGC GTGGAGGGCG CGTATCAATC GTTGATCGCA GGGCCGTCAT ACCGTTGGGGG-3' (서열번호 18)
#12-6 5’-TGACGGTGGC GTGGAGGGCG CGTATCAATC GTTGATCGCA GGGCCGTCAT ACCGGTCGGG-3’ (서열번호 19)
#2 5’-GCCGACAGGG CATGGGACGC TATCAGCGGT GTCAATCGAA TTCCCGCGGC CGCCATGCGG-3’ (서열번호 20)
#14 5’-GGTCCCCGCA GCTCATACGG CGCTCCAGCG TAATCGAATT CCCGCGGCCG CCATGCGGCC-3’ (서열번호 21)
#46 5’-GCGAGTGGCC CATCAGCAGA GCGTAATCCC CACGCACATC GAGTGCCCCC GGCCGGTGCT-3’ (서열번호 22)
#12 5’-GTATTGTCAT TCATATCCTC GTGCTTGCTG TCCTCACCCC ACCCACCAGA ATGGAAA-3’ (서열번호 23)
#13 5’-CCTGGTATTG TCTTGCCAAT CCTCGCCCTG GCTGTCTTAC CCCTCCCCAC CCGCCTGAAG-3’ (서열번호 24)
#48 5’-GTCGACTCGC GGGTACCGTG CTCAATGTCC CAATCCGGGG AAGCGTTTAG ACCCGCAGCC CAC-3’ (서열번호 25)
#40 5’-GTCGCCACTG CGGGTACCGT GCTTGGGCNA CCGATGNACC NTGNNACCGT GTTTNGCC-3’ (서열번호 26)
#3 5’-CCGGTGGGTG GTCAGGTGGG ATAGCGTTCC GCGTATGGCC CAGCGCATCA CGGGTTCGCA CCA-3’ (서열번호 27)
#32 5’-GGGCGGTGGG TGGCGAGTTG TGAGACGCTG GAGGAGGTTG CTGCCCCCGG CACATTGGGA-3’(서열번호 28)
1-2: 졸-겔 칩의 제조
다음과 같이 제1 압타머를 고정한 센서 칩을 제조하였다. 즉, 졸-겔 스팟을 음성 대조군, 압타머들(압타머 #3 및 #12-5), 양성 대조군과 함께, 도 3에 나타난 바와 같은 순서로 양성대조군 (P), #12-5 압타머, #3 압타머 및 음성대조군(N) 순으로 OmniGrid Accent Microarrayer (DIGI LAB, USA)를 이용하여 PMMA 코팅된 96-웰 상에 고정화하여 졸-겔 칩을 제조하였다.
상기에서 사용된 졸-겔 스팟을 위한 졸 조성물은 다음과 같이 제조하였다. 먼저 테트라메틸 오르토실리케이트(tetramethyl orthosilicate, TMOS) 과 메틸트리메톡시실리케이트(methyltrimethoxysilicate, MTMS) 를 혼합하여 졸 조성물을 제조하였다. 그리고, 용액I으로는 100mM HCl을 준비하였다.
한편, 100mM SP 완충용액(pH 5.8) 및 2차 증류수(double distilled water, DDW) 20㎕를 섞은 다음, 상기 혼합물에 양성대조군의 경우 Cy3 항체(Santa Cruz, USA)를, 음성대조군의 경우 PBS 완충용액을, 실험군의 경우 선별한 압타머(압타머 #3 및 #12-5)을 10㎕씩 첨가하여 5초 동안 볼텍싱하고 스핀-다운하여 용액 II를 제조하였다.
그리고나서, 순차적으로 상기 졸 조성물, 용액 I 및 용액 II를 순차적으로 분주하고 졸-겔 스팟을 13~15시간동안 겔화시켜, 졸-겔 칩을 제조하였다.
실시예 2: 졸-겔 칩을 이용한 비스페놀 A의 검출
먼저, 압타머 #3 및 #12-5를 터미널 디옥시뉴클레오티딜 트랜스퍼라아제 (Terminal Deoxynucleotidyl Transferase; Fermentas, Canada)와 Cy3-dUTP (GeneChem, Korea)를 이용하여 라벨링하여 본 실험에서 사용하였다. 다만, 라벨링은, 제2 압타머로 사용되는 압타머 #3 및 #12-5의 말단에 각각 5’-GGGCCGTTCGAACACGAGCATG-3’ (서열번호 29)와 같은 단편을 연결한 다음, 이에 상보적으로 결합할 수 있는 서열 즉, 5’-CATGCTCGTGTTCGAACGGCCC-3’(서열번호 30)와 같은 핵산단편에 Cy3를 부착하여 상기 제2 압타머의 상기 말단 단편에 Cy3 표지된 상기 핵산단편이 상보적으로 결합하게 함으로써 이루어질 수도 있다.
그 다음 상기 실시예 1-2에서 제조한 졸-겔 칩의 각 웰에 50μM의 비스페놀 A와 2μM의 cy3-라벨된 압타머(제2 압타머)를 첨가하였다. 즉, 각 웰에 도 3에 나타난 바와 같이, 상단 우측 웰에는 비스페놀 A(BPA)와 압타머 #12-5를, 하단 좌측 웰에는 완충용액과 압타머 #3만을, 하단 우측 웰에는 BPA와 압타머 #3를 처리하고 배양하였다. 그 다음, 세척과정을 거쳐 Multi-Image 분석기 (FUJIFILM, Japan)으로 관찰하였다.
그 결과, 도 3에 나타난 바와 같이, 비스페놀 A가 존재하는 경우에만 #12-5 압타머 및 #3 압타머를 고정한 위치에 시그널이 나타나 (적색 원으로 표시), 본 발명에 따른 졸-겔 칩을 이용하여 비스페놀 A를 특이적으로 검출할 수 있음을 확인하였다. 즉, 종래 검출이 어려웠던 무극성 저분자량의 비스페놀 A도 본 발명에 따른 방법에 의하여 특이적으로 검출해 내는 것으로 나타났다.
실시예 3: 비스페놀 A 검출용 FET CNT 센서의 제조
상기 실시예 1에서 분리한 압타머를 이용하여, 단일벽 탄소나노튜브(swCNT)-FET 센서칩을 종래 알려진 방법(Lee, M. et al., Nat. Nanotechnol., 1:66, 2006)에 따라 제조하였다.
메틸-종결화된 옥타데실트리클로로실란 (octadecyltrichlorosilane: OTS) 자기-조립 단층 (self-assembled monolayer)을 무극성 패시베이션한(passivating) 분자 패턴을 제조하기 위하여, 종래의 포토리쏘그라피 법을 이용하여 SiO2 기판 위에 패턴화하였다. 이때, 기판을 단일벽 탄소나노튜브(swCNTs)의 용액 (ο-다이클로로벤젠에서 0.05mg/ml)에 침지하고, swCNTs를 직접 SiO2 부위에 조립하여 정열하였다. 그리고, 전극은 포토리쏘그라피를 패턴화하였고, 리프트-오프 공정 (lift-off process)에 따라 Pd 및 Au(10nm Pd 상에 30nm Au)으로 열적으로 증착하였다.
그리고나서, swCNT 기반 비스페놀 A 검출용 센서를 제공하기 위하여, 상기 swCNT-FET 센서칩의 Au 전극에 상기 수득한 27개의 비스페놀 A에 특이적으로 결합하는 압타머 중 #3 압타머 (서열번호 27)를 고정하였다. 고정을 위하여 먼저, 칩을 10nM MCH (mercaptohexanol) 용액(중성화된 물에서)에 밤새도록 담금으로써 MCH로 전처리하였다. 그리고나서, 칩을 완충용액 (10nM Tris-HCl)에서 1μM 압타머에 10시간동안 침지하여, 금 전극을 5’말단에 티올기(thiol group)을 가지는 비스페놀 A에 특이적으로 결합하는 ssDNA 압타머로 코팅하여 비스페놀 A 검출용 FET 센서를 제조하였다.
실시예 4: FET CNT 센서를 이용한 비스페놀 A의 검출
비스페놀 A(BPA)의 전기적인 검출은 BPA 또는 다른 분자의 도입에 의해 유도되는 소스(source)와 드레인(drain) 사이의 전류 변화 (소스-드레인 바이어스 ~0.1V)를 키슬리 4200 반도체 특성분석 장치(Keithley 4200 Semiconductor analyser, USA)로 모니터닝함으로써 수행되었다.
먼저, 대조군으로서 소스-드레인간 전류 변화(source-drain current change)를 모니터닝하면서, BPA 용액을 결합 완충용액 (100mM Tris-HCl, 200mM NaCl, 25mM KCl, 10mM MgCl2, 2.5ppm DMSO)상에서 다양한 농도로 (1pM~100nM)로 상기 실시예 3에서 제조한 센서로 첨가하였다. 그리고, 실험군으로서 비스페놀 A에 특이적으로 결합하는 압타머 #3 (서열번호 5), 즉 제2 압타머를 결합한 BPA를 역시 상기와 동일하게 다양한 농도로 (1pM~100nM)로 상기 실시예 3에서 제조한 센서로 첨가하였다 (도 4). 이때, 제2 압타머로 압타머 #3을 결합시킨 BPA는 다음과 같이 준비하였다. 즉, 먼저 BPA와 압타머 용액을 동일한 농도로 혼합한 후, 혼합된 용액을 95℃에서 5분간 가열하고 실온까지 1~2시간동안 냉각하였다. 추가적으로 또한, 대조군으로서 BPA 없이 압타머 #3을 함유한 압타머 용액만을 상기와 동일한 조건으로 상기 실시예 3에서 제조한 센서에 첨가하였다.
한편, 제조된 BPA 검출용 FET 센서가 BPA만을 특이적으로 검출하는지 확인하기 위하여, BPA와 유사한 구조를 가지는 다른 분자인 비스페놀 B(BPB), 4,4’-비스페놀(BP) 및 6F 비스페놀 A(6F)를 1nM로 도입하였다.
그 결과, 도 5a에 나타난 바와 같이, 비스페놀 A 용액만을 가한 경우에는 100nM의 농도로 가한 경우에서도 FET 센서 칩이 용액 중 무극성 분자인 비스페놀 A를 검출해내지 못하는 것으로 나타났다. 이는 BPA 자체가 어떠한 전하나 다이폴을 가지지 않기 때문이다. 이에 반하여, 본 발명에 따른 방법에 의하여 비스페놀 A를 포함하는 시료와 제2 압타머를 함께 가한 경우, 도 5b에 나타난 바와 같이, 백그라운드 시그널과 명확한 차이를 갖는 것으로 확인되었으며, 이에 무극성 분자인 비스페놀 A를 1pM부터 검출할 수 있는 것으로 나타났다. 또한, 도 5c에 나타난 바와 같이, 비스페놀 A 없이 제2 압타머만 센서에 첨가한 경우에도 도 5a와 같이 유의적인 변화를 일으키지 않았다.
또한, 도 5d에 나타난 바와 같이, 비스페놀 A(BPA)와 유사한 구조를 가지는 비스페놀 족인 비스페놀 B(BPB), 4,4’-비스페놀(BP) 및 6F 비스페놀 A(6F)를 도입한 경우 유의적인 전류변화를 일으키지 않는 것으로 나타났다.
상기 실험결과는 본 발명에 따른 검출방법은, 종래 FET 센서에서는 너무 낮은 전하 전달 때문에 검출될 수 없었던, 용액 중에 포함된 저분자량의 무극성 분자도 특이적으로 검출해 낼 수 있음을 의미한다.
실시예 5: 압타머를 이용한 다중채널 AAO(anodic aluminum oxide) 센서 기반 타겟물질의 검출
5-1: AAO 센서의 제조
본 실시예에서 사용한 AAO(양극산화 알루미늄) 센서는 다음과 같은 방법으로 제작되었다.
(1) 전자 빔 증발기를 이용하여 증착된 1.3 ㎛ 두께의 알루미늄, 5 두께의 금과 10 ㎚ 두께의 티타늄으로 이루어져 있는 금속 패턴은 200 ㎚ 두께의 이산화규소 층을 가지는 실리콘 기판 위에 일반적인 포토리소그래피 (photolithography) 와 lift-off 방법을 이용하여 만들어졌다.
(2) 양극산화 알루미늄의 나노 크기 다공은 직경이 약 75 ㎚ 이며 2단계 양극 산화 과정에 의해 만들어 졌다. (Masuda, H., Fukuda, K., 1995. Science 268 (5216), 1466?1468) 양극 산화의 1단계에서 증착된 알루미늄 필름은 상온에서 0.3 M 의 옥살산에 5분동안 40V 의 일정한 전압 항에서 처리함으로써 양극 처리되었다. 이 양극산화 알루미늄 막은 70 ?C 의 1.8 % (wt) 의 크롬산과 에담그어용해된후다시 5분간 양극 처리하였다. 양극산화 알루미늄의 경계층은 상온에서 6 % (wt) 의 인산 용액에 담그어 제거하였고, 양극 산화 알루미늄 구역 바깥쪽에 450 ㎚ 두께의 이산화규소를 증착하였다.
(3) 바닥 부분의 전극이 될 금나노선은 황산을 사용하여 pH 4 로 맞춘 1mM 의 사염화금산 (HAuCl4) 의 전해질 용액에서 1.1V 의 일정한 전압으로 나노선 내부에 전착하였다. 금전극의 윗부분 (0.3 X 5.5 ㎜) 은 포토리소그래피와 lift-off 방법을 이용하여 양극산화 알루미늄 구역 위에 만들어졌다.
(4) 그 다음, PDMA 미세유동 채널은 센서 어레이 위에 위치하도록 붙였다.
5-2: AAO 센서를 이용한 타겟물질의 검출
실시예 5-1에서 제조된 AAO 센서를 플로우 시스템에 연결한 후 3’ 말단에 티올기가 달려 있는 압타머(서열번호 27의 #3 압타머) 10nM 를 결합버퍼 (25mM Tris-HCl, 100mM NaCl, 25mM KCl, 10mM MgCl2, pH 8.0) 에 녹인 후 0.1ml/hr 의 속도로 흘려넣으면서 밤새 인큐베이션 하였다. AAO 센서의 표면에는 금 입자가 코팅되어 있기 때문에 금 입자와 압타머의 3’ 말단의 티올기가 공유결합을 이루어 압타머가 AAO 센서의 표면에 결합되게 된다. 대조군으로는 압타머 없이 결합 버퍼 만을 흘려넣어 인큐베이션한 센서를 사용하였다. 비스페놀 A 결합 버퍼를 0.5ml/hr 의 속도로 흘려넣으면서 1시간 동안 세척하고, 기준 완충 용액 레벨로 준비하였다. 1nM, 10nM, 100nM 농도의 비스페놀 A 를 흘려넣은 후 결합 버퍼로 세척한 후 센서의 정전용량 (capacitance, nF) 를 측정하였다. 정전용량을 측정할 주파수를 결정하기 위하여 주파수 스위프 실험을 실시하였다.
주파수를 0에서 1000 헤르츠로 변화시켜 가면서 압타머를 센서에 결합시켰을 때와 비스페놀 A를 흘려넣었을 때의 정전용량을 비교하였을 때 도 7 에 나타난 바와 같이, 100 헤르츠에서 가장 이상적인 결과가 나왔기 때문에 이후 실험에서는 100 헤르츠에서 정전용량을 측정하였다
한편, 대조군으로 압타머가 결합되어 있지 않은 AAO 센서를 이용하고 실험군으로 압타머가 결합된 AAO 센서를 이용하여 비스페놀 A의 검출 실험을 진행하였다.
그 결과, 도 8a에 나타난 바와 같이, 압타머가 결합되어 있지 않은 AAO 센서에서는 비스페놀 A 를 흘려넣었을 때 정전용량의 변화가 없었던 반면, 도 8b에 나타난 바와 같이, 압타머를 결합시킨 AAO 센서에서는 10nM 의 비스페놀 A 를 흘려넣었을 때 정전용량이 25% 감소하였고, 100nM 의 비스페놀 A 를 흘려넣었을 때는 36.1% 감소하였다.
아울러 비스페놀 A 를 1nM, 10nM, 100nM 의 농도로 흘려넣었을 때 정전용량의 변화를 그래프로 나타내었다. 그 결과, 도 9에 나타난 바와 같이, 1nM 의 농도까지는 약간의 오차는 있었으나 대체적으로 직선 모양의 그래프가 그려지는 것을 알 수 있었다.
상기 실험결과는 본 발명에 따른 AAO 센서에 기반한 검출방법은, 너무 낮은 전하 전달 때문에 검출될 수 없었던, 용액 중에 포함된 저분자량의 무극성 분자도 특이적으로 검출해 낼 수 있음을 의미한다.
이상 설명한 바와 같이, 본 발명에 따른 압타머를 이용한 타겟물질의 검출방법 및 검출용 키트는 종래 검출이 어려웠던 저분자량 물질도 검출해 낼 수 있게 함으로써 용액 상에 존재하는 질병과 관련된 대사물질, 환경 오염물 및 식품 독소 등의 검출이 가능하게 하였으며, 직접적이고 간편한 방법으로서 일관성있는 재생산이 가능하며 낮은 비용으로 생산이 가능한 압타머를 이용함으로써 경제성을 높이는 장점이 있으므로 매우 유용하다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
전자파일 첨부하였음.

Claims (42)

  1. 다음의 단계를 포함하는, 압타머를 이용한 타겟물질의 검출방법:
    (a) 고체상에 고정되어 있고 타겟물질에 특이적으로 결합하는 제1 압타머에, 타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하며 표지물질이 부착되어 있는 제2 압타머를 첨가하여 반응시키는 단계; 및
    (b) 상기 표지물질을 분석하여 타겟물질을 검출하는 단계.
  2. 제1항에 있어서, 상기 표지물질은 형광물질임을 특징으로 하는 방법.
  3. 제2항에 있어서, 상기 형광물질의 분석은 상기 형광물질의 발광 또는 색변화를 측정함으로써 수행되는 것을 특징으로 하는 방법.
  4. 제1항에 있어서, 상기 시료는 물, 혈액, 소변, 눈물, 땀, 타액, 림프액, 뇌척수액, 토양, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 채취된 것임을 특징으로 하는 방법.
  5. 제1항에 있어서, 상기 제1압타머 또는 제2 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 방법.
  6. 제1항에 있어서, 상기 타겟물질은 비스페놀 A 인 것을 특징으로 하는 방법.
  7. 다음의 단계를 포함하는, 압타머를 이용한 타겟물질의 검출방법:
    (a) 고체상에 고정되어 있고 타겟물질에 특이적으로 결합하는 제1 압타머에, 타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 첨가하여 반응시키는 단계;
    (b) 상기 제2 압타머에 표지물질을 결합시키는 단계; 및
    (c) 상기 표지물질을 분석하여 타겟물질을 검출하는 단계.
  8. 제7항에 있어서, 상기 (b) 단계는 표지물질이 부착되어 있고 상기 제2 압타머에 상보적으로 결합하는 핵산 단편을 상기 제2 압타머와 상보적으로 결합시킴으로써 수행되는 것을 특징으로 하는 방법.
  9. 제8항에 있어서, 상기 핵산 단편은 제2 압타머의 말단과 상보적으로 결합하는 것을 특징으로 하는 방법.
  10. 제7항에 있어서, 상기 표지물질은 형광물질임을 특징으로 하는 방법.
  11. 제10항에 있어서, 상기 형광물질의 분석은 상기 형광물질의 발광 또는 색변화를 측정함으로써 수행되는 것을 특징으로 하는 방법.
  12. 제7항에 있어서, 상기 제1압타머 또는 제2 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 방법.
  13. 제7항에 있어서, 상기 타겟물질은 비스페놀 A인 것을 특징으로 하는 방법.
  14. 타겟물질에 특이적으로 결합하는 제1 압타머가 고정되어 있는 고체상, 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하는 타겟물질 검출용 키트.
  15. 제14항에 있어서, 상기 제2 압타머는 표지물질이 결합된 것임을 특징으로 하는 타겟물질 검출용 키트.
  16. 제14항에 있어서, 표지물질이 부착되어 있고 상기 제2 압타머에 상보적으로 결합하는 핵산 단편을 추가로 함유하고 있는 것을 특징으로 하는 타겟물질 검출용 키트.
  17. 비스페놀 A에 특이적으로 결합하는 제1 압타머가 고정되어 있는 고체상, 및 표지물질이 부착되어 있는 비스페놀 A에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하고, 상기 제1압타머 또는 제2 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 비스페놀 A 검출용 키트.
  18. 표지물질이 부착되어 있고 압타머 말단에 상보적으로 결합할 수 있는 것을 특징으로 하는 압타머 표지용 핵산 단편.
  19. 다음의 단계를 포함하는, 압타머를 이용한 전계 효과 트랜지스터(FET) 센서기반 타겟물질의 검출방법:
    (a) 기판; 상기 기판의 양측에 서로 분리되어 형성되는 소스 금속 전극 및 드레인 금속 전극; 및 상기 소스 및 드레인 금속 전극들과 접촉하며 기판 상에 형성되는 게이트를 포함하며, 타겟물질에 특이적으로 결합하는 제1 압타머가 상기 소스 금속 전극 표면, 게이트 표면 및 드레인 금속 전극 표면 중 어느 하나 이상에 프로브로서 고정되어 있는 FET 센서에,
    타겟물질을 함유하는 시료; 및 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 첨가하는 단계; 및
    (b) 상기 타겟물질과 제2 압타머가 상기 FET 센서에 고정되어 있는 제1 압타머에 결합하는 경우 발생하는 상기 FET 센서의 소스 금속 전극 및 드레인 금속 전극 사이에 흐르는 전류 변화를 측정하여 타겟물질을 검출하는 단계.
  20. 제 19항에 있어서, 상기 금속 전극은 금, 백금, 크롬, 구리, 알루미늄, 니켈, 팔라듐 및 티타늄으로 구성된 군에서 선택되는 어느 하나 이상으로 형성되는 것을 특징으로 하는 방법.
  21. 제19항에 있어서, 탄소나노튜브가 기판 상에 증착되어 상기 소스 및 드레인 금속 전극들과 접촉하여 채널을 형성하는 채널 영역을 형성하고, 상기 제1 압타머는 상기 금속 전극 표면에 고정되는 것을 특징으로 하는 방법.
  22. 제19항에 있어서, 상기 시료는 물, 혈액, 소변, 눈물, 땀, 타액, 림프액, 뇌척수액, 토양, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 채취된 것임을 특징으로 하는 방법.
  23. 제19항에 있어서, 상기 제1압타머 또는 제2 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 방법.
  24. 제19항에 있어서, 상기 타겟물질은 비스페놀 A 인 것을 특징으로 하는 방법.
  25. 기판; 상기 기판의 양측에 서로 분리되어 형성되는 소스 금속 전극 및 드레인 금속 전극; 및 상기 소스 및 드레인 금속 전극들과 접촉하며 기판 상에 형성되는 게이트를 포함하는 FET 센서로서, 타겟물질에 특이적으로 결합하는 제1 압타머가 상기 소스 금속 전극 표면, 게이트 표면 및 드레인 금속 전극 표면 중 어느 하나 이상에 프로브로서 고정되어 있는 것을 특징으로 하는 FET 센서와, 상기 타겟물질에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하는 타겟물질 검출용 키트.
  26. 제25항에 있어서, 상기 금속 전극은 금, 백금, 크롬, 구리, 알루미늄, 니켈, 팔라듐 및 티타늄으로 구성된 군에서 선택되는 어느 하나 이상으로 형성되는 것을 특징으로 하는 타겟물질 검출용 키트.
  27. 제25항에 있어서, 탄소나노튜브가 기판 상에 증착되어 상기 소스 및 드레인 금속 전극들과 접촉하여 채널을 형성하는 채널 영역을 형성하고, 상기 제1 압타머는 상기 금속 전극 표면에 고정되는 것을 특징으로 하는 타겟물질 검출용 키트.
  28. 기판; 상기 기판의 양측에 서로 분리되어 형성되는 Au 전극들; 및 상기 Au 전극들과 접촉하고 상기 기판상에 구비되어 채널을 형성하는 단일벽 탄소나노튜브를 포함하는 채널 영역을 포함하는 FET 센서로서, 비스페놀 A에 특이적으로 결합하는 제1 압타머가 상기 Au 전극 표면에 프로브로서 고정되어 있는 것을 특징으로 하는 FET 센서와, 비스페놀 A에 특이적으로 결합하는 제2 압타머를 함유하는 검출시약을 포함하는 비스페놀 A 검출용 키트:
    여기서, 상기 제1 압타머 또는 제2 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 함.
  29. 다음 단계를 포함하는, 압타머를 이용한 양극산화 알루미늄 (AAO, Anodic aluminum oxide) 센서 기반 타겟물질의 검출방법:
    (a) 기판; 상기 기판상에 형성되고 나노크기의 구멍을 가지는 양극산화 알루미늄; 및 상기 양극산화 알루미늄의 표면을 코팅하는 금속을 포함하며, 타겟물질에 특이적으로 결합하는 압타머가 상기 금속 표면에 프로브로서 고정되어 있는 AAO 센서에, 타겟물질을 함유하는 시료를 첨가하는 단계; 및
    (b) 상기 타겟물질과 압타머가 결합한 경우 발생하는 상기 AAO 센서의 정전용량의 변화를 측정하여 타겟물질을 검출하는 단계.
  30. 제29항에 있어서, 상기 금속은 금인 것을 특징으로 하는 방법.
  31. 제29항에 있어서, 상기 상기 압타머의 AAO 센서로의 고정은 압타머의 일 말단에 결합된 기능기를 이용하여 수행되는 것을 특징으로 하는 방법.
  32. 제31항에 있어서, 상기 기능기는 티올기인 것을 특징으로 하는 방법.
  33. 제29항에 있어서, 상기 AAO 센서는 플로우시스템에 연결된 것을 특징으로 하는 방법.
  34. 제29항에 있어서, 상기 시료는 물, 혈액, 소변, 눈물, 땀, 타액, 림프액, 뇌척수액, 토양, 공기, 식품, 폐기물, 동식물 장내 및 동식물 조직 중 어느 하나 이상에서 채취된 것임을 특징으로 하는 방법.
  35. 제29항에 있어서, 상기 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 방법.
  36. 제29항에 있어서, 상기 타겟물질은 비스페놀 A 인 것을 특징으로 하는 방법.
  37. 기판; 상기 기판상에 형성되고 나노크기의 구멍을 가지는 양극산화 알루미늄; 및 상기 양극산화알루미늄의 표면을 코팅하는 금속을 포함하는 양극산화 알루미늄(AAO) 센서와, 타겟물질에 특이적으로 결합하는 압타머를 포함하는 타겟물질 검출용 키트.
  38. 제37항에 있어서, 상기 금속은 금인 것을 특징으로 하는 키트.
  39. 제37항에 있어서, 상기 압타머는 압타머의 말단에 결합된 기능기를 이용하여 AAO 센서에 고정되는 것을 특징으로 하는 키트.
  40. 제39항에 있어서, 상기 기능기는 티올기인 것을 특징으로 하는 키트.
  41. 제37항에 있어서, 추가로 플로우시스템을 포함하는 것을 특징으로 하는 키트.
  42. 제37항에 있어서, 상기 압타머는 서열번호 2 내지 28의 핵산서열로 표시되는 압타머들 중 선택되는 것을 특징으로 하는 키트.
PCT/KR2010/000952 2009-02-16 2010-02-16 압타머를 이용한 타겟물질의 검출 방법 WO2010093223A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/201,764 US9075053B2 (en) 2009-02-16 2010-02-16 Target substance detection method using aptamer
EP18208862.5A EP3495501B1 (en) 2009-02-16 2010-02-16 Bisphenol a detection method using aptamer
CN201080016373.8A CN102395684B (zh) 2009-02-16 2010-02-16 利用适体的靶物质检测方法
EP17157804.0A EP3192881B1 (en) 2009-02-16 2010-02-16 Target substance detection method using aptamer
EP10741440.1A EP2397562B1 (en) 2009-02-16 2010-02-16 Target substance detection method using aptamer
US14/683,660 US9329178B2 (en) 2009-02-16 2015-04-10 Target substance detection method using aptamer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0012288 2009-02-16
KR10-2009-0012287 2009-02-16
KR20090012287 2009-02-16
KR1020090012288A KR101437616B1 (ko) 2009-02-16 2009-02-16 압타머를 이용한 fet 센서 기반 타겟물질의 검출방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/201,764 A-371-Of-International US9075053B2 (en) 2009-02-16 2010-02-16 Target substance detection method using aptamer
US14/683,660 Division US9329178B2 (en) 2009-02-16 2015-04-10 Target substance detection method using aptamer

Publications (2)

Publication Number Publication Date
WO2010093223A2 true WO2010093223A2 (ko) 2010-08-19
WO2010093223A3 WO2010093223A3 (ko) 2011-02-24

Family

ID=42562220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000952 WO2010093223A2 (ko) 2009-02-16 2010-02-16 압타머를 이용한 타겟물질의 검출 방법

Country Status (6)

Country Link
US (1) US9075053B2 (ko)
EP (3) EP3192881B1 (ko)
CN (1) CN102395684B (ko)
ES (1) ES2730808T3 (ko)
TR (1) TR201907065T4 (ko)
WO (1) WO2010093223A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310357B2 (en) 2012-09-28 2016-04-12 Src, Inc. Detection of chemical and biological agents using oligonucleotide aptamers

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101892540B1 (ko) * 2012-05-10 2018-08-28 삼성전자주식회사 바이오 물질의 알에프 특성 측정 방법 및 장치
CN102980888A (zh) * 2012-12-18 2013-03-20 合肥工业大学 基于核酸适配体探针的一步法非标记型双酚a的快速比色检测法
DE102013211125A1 (de) * 2013-06-14 2014-12-18 Siemens Aktiengesellschaft Verfahren zur kombinierten Quantifizierung und Sequenzierung von mindestens einer Ziel-Nukleinsäure
WO2015066027A2 (en) 2013-10-28 2015-05-07 Dots Devices, Inc. Allergen detection
CA2983307C (en) 2015-04-29 2021-05-25 Dots Technology Corp. Compositions and methods for peanut allergen detection
WO2020131352A1 (en) * 2018-12-21 2020-06-25 Illumina, Inc. Sensing systems
AU2020359292A1 (en) * 2019-10-01 2022-04-21 WearOptimo Pty Ltd Analyte measurement system
US11488326B2 (en) 2019-12-11 2022-11-01 Ananya Achanta Estimation of bisphenol a using image analysis
CN112098487A (zh) * 2020-08-08 2020-12-18 青岛科技大学 一种纳米孔道光电化学dna传感器及其制备方法与应用
CN113960128B (zh) * 2020-12-15 2022-08-23 有研工程技术研究院有限公司 基于钾离子适配体修饰的硅纳米线场效应管生物传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001257091A1 (en) * 2000-04-18 2001-10-30 Gilead Sciences, Inc. Aptamer based two-site binding assay
CA2433674A1 (en) * 2001-01-05 2002-07-11 Invitrogen Corporation Method for relative quantification of attached nucleic acids
US20030064530A1 (en) * 2001-07-04 2003-04-03 Nitto Denko Corporation Aptamer capable of specifically adsorbing to bisphenol A and method for obtaining the aptamer
EP1660858A4 (en) * 2003-07-21 2007-10-24 Amplified Proteomics Inc MULTIPLEX analyte
KR100828481B1 (ko) * 2006-12-22 2008-05-13 고려대학교 산학협력단 환경호르몬에 특이적으로 결합하는 dna 앱타머를 이용한환경호르몬 제거방법
US20110065086A1 (en) * 2008-02-21 2011-03-17 Otc Biotechnologies, Llc Methods of producing homogeneous plastic-adherent aptamer-magnetic bead-fluorophore and other sandwich assays

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
HELLER, I. ET AL., NANO. LETT., vol. 8, 2008, pages 591
KIM ET AL., BIOSENS. BIOELECRTRON., vol. 22, 2007, pages 2525
KIM, T.K. ET AL., ADVANCED MATERIALS, vol. 20, 2008, pages 1
KONG, J. ET AL., SCIENCE, vol. 287, 2000, pages 622
MASUDA, H., FUKUDA, K., SCIENCE, vol. 268, no. 5216, 1995, pages 1466 - 1468
See also references of EP2397562A4
SNOW, E.S., PERKINS, F.K., NANO. LETT., vol. 5, 2005, pages 2414
STALES, C.A. ET AL., ENVIRON. TOXICOL. CHEM., vol. 20, 2001, pages 2450
YEON-SEOK KIM, MAN-BOCK GU, NICE, vol. 26, no. 6, 2008, pages 690

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310357B2 (en) 2012-09-28 2016-04-12 Src, Inc. Detection of chemical and biological agents using oligonucleotide aptamers

Also Published As

Publication number Publication date
CN102395684A (zh) 2012-03-28
EP3192881A1 (en) 2017-07-19
TR201907065T4 (tr) 2019-06-21
WO2010093223A3 (ko) 2011-02-24
EP2397562A4 (en) 2012-08-15
EP3192881B1 (en) 2019-04-17
EP2397562B1 (en) 2017-08-23
US9075053B2 (en) 2015-07-07
ES2730808T3 (es) 2019-11-12
EP2397562A2 (en) 2011-12-21
EP3495501A1 (en) 2019-06-12
EP3495501B1 (en) 2022-10-05
CN102395684B (zh) 2015-06-03
US20120040865A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
WO2010093223A2 (ko) 압타머를 이용한 타겟물질의 검출 방법
CN110325849B (zh) 传感器装置和方法
Jin et al. Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction
Kim et al. An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes
KR100746863B1 (ko) 전계 효과 트랜지스터 및 단일 전자 트랜지스터 그리고그것을 사용한 센서
KR101684620B1 (ko) 미각 수용체 기능화된 탄소 나노튜브 전계효과 트랜지스터 기반 미각센서 및 이를 포함한 고선택성 바이오 전자혀
Chiang et al. Nanowire transistor‐based ultrasensitive virus detection with reversible surface functionalization
KR20110104245A (ko) Fet 기반 바이오센서, 이의 제조방법, 및 이를 이용하는 표적 물질 검출방법
Sharma et al. A novel piezoelectric immunosensor for the detection of malarial Plasmodium falciparum histidine rich protein-2 antigen
Dutta et al. Polyaniline based electrochemical sensor for the detection of dengue virus infection
Rosenstein et al. Single‐molecule bioelectronics
Haguet et al. Combined nanogap nanoparticles nanosensor for electrical detection of biomolecular interactions between polypeptides
Liu et al. Ultrasensitive detection of thrombin based on MoS2-aptamer biosensors by resonance light scattering technique
Chen et al. A novel chemiluminescence immunoassay for highly sensitive and specific detection of protein using rolling circle amplification and the multiplex binding system
ATE383389T1 (de) Photo-pfropfungs-elektropolymere, ihre herstellung und deren verwendung als träger für erkennungssonden spezifisch in biosensorsystemen
KR20220054242A (ko) 바이오폴리머 확인을 위한 나노갭 디바이스
JP2005077237A (ja) バイオセンサ
KR20120083987A (ko) 후각 수용체 단백질을 코딩하는 유전자로 형질 전환된 동물세포로부터 후각 수용체 단백질을 포함하는 나노 베지클을 제조하는 방법, 이에 의하여 제조된 후각 수용체 단백질을 포함하는 나노 베지클, 상기 나노 베지클이 표면에 고정화된 단일벽 탄소나노튜브 전계 효과 트랜지스터 및 이를 이용하는 생체전자코
KR101437616B1 (ko) 압타머를 이용한 fet 센서 기반 타겟물질의 검출방법
US9329178B2 (en) Target substance detection method using aptamer
Kong et al. Ultrasensitive electrical detection of nucleic acids by hematin catalysed silver nanoparticle formation in sub-microgapped biosensors
Drobysh et al. Affinity Sensors for the Diagnosis of COVID-19. Micromachines. 2021; 12: 390
KR100746867B1 (ko) 전계 효과 트랜지스터 및 단일 전자 트랜지스터
KR20110128754A (ko) 극미량 시료 검출용 전기 바이오센서
Wen et al. The C-terminus of the mu opioid receptor is critical in G-protein interaction as demonstrated by a novel graphene biosensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016373.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741440

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010741440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010741440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13201764

Country of ref document: US