WO2010092666A1 - 高速光信号制御部、親局装置およびグラント割り当て方法 - Google Patents
高速光信号制御部、親局装置およびグラント割り当て方法 Download PDFInfo
- Publication number
- WO2010092666A1 WO2010092666A1 PCT/JP2009/052226 JP2009052226W WO2010092666A1 WO 2010092666 A1 WO2010092666 A1 WO 2010092666A1 JP 2009052226 W JP2009052226 W JP 2009052226W WO 2010092666 A1 WO2010092666 A1 WO 2010092666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical signal
- speed optical
- unit
- signal control
- grant
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0282—WDM tree architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0083—Testing; Monitoring
Definitions
- the present invention relates to a high-speed optical signal control unit in a PON system in which 1G / 10G coexists.
- Non-Patent Document 1 discloses a coexistence method using a TDMA (Time Division Multiple Access) system as a case where uplink wavelengths overlap at 1G / 10G. In this case, the existing OLT is replaced with a 1G / 10G dual rate OLT.
- Non-Patent Document 2 discloses a coexistence method based on a WDMA (Wave Division Multiple Access) method when uplink wavelengths do not overlap at 1G / 10G. In this case, 10G OLT and WDM (Wavelength Division Multiplexing) are added to the existing 1G OLT.
- TDMA Time Division Multiple Access
- Non-Patent Document 1 when making an OLT for 1G / 10G assuming TDMA, an optical signal control unit for 10G (OLTMAC: Optical Line Terminal Media Access Control) and 1G Therefore, an OLTMAC for 1G / 10G having both functions of OLTMAC is required. Therefore, when the coexistence state of 1G / 10G ends and all ONUs are switched to ONUs for 10G, the 1G / 10G OLT has an unnecessary 1G circuit, which is expensive and has low power consumption. There was a problem that it was not possible.
- the present invention has been made in view of the above. 10G-OLTMAC (high-speed optical signal control) that can coexist with the existing 1G OLT in the TDMA system while controlling the optical signal of the 10G PON system. Part).
- the present invention provides a PON in which a high-speed optical signal having a high transmission speed and a low-speed optical signal slower than the high-speed optical signal are mixed and an upstream signal is communicated by the TDMA method.
- the high-speed optical signal control device in a master station device comprising a high-speed optical signal control device that controls transmission / reception of a high-speed optical signal and a low-speed optical signal control device that controls transmission / reception of a low-speed optical signal
- a high-speed optical signal PON slave station device that is a slave station device that performs communication using a high-speed optical signal control message termination unit that receives a report frame and extracts report information from the frame, and a gate signal from the low-speed optical signal control device
- Low-speed optical signal control message termination means for receiving a frame and extracting Gate information from the frame; and the high-speed optical signal control message.
- the report information is acquired from the sage termination means, the report information is generated and output as the report information of the own master station device, and when the Gate information is acquired from the low-speed optical signal control message termination means, Based on the report information acquired from the high-speed optical signal control message termination unit, a grant allocation unit that allocates a grant allocated to the own master station device to the high-speed optical signal PON slave station device is acquired from the grant allocation unit.
- a report frame is generated based on the report information, a low-speed optical signal control message generation unit that outputs the report frame to the low-speed optical signal control device, and a gate frame is generated based on the grant allocated by the grant allocation unit.
- the concerned Characterized in that it comprises a high-speed optical signal control message generation means for outputting ate frame to the high-speed optical signal PON slave station apparatus.
- the 10G-OLTMAC high-speed optical signal control unit
- a configuration for 10G-OLT can be added easily and at low cost in the TDMA system, and power consumption can be reduced after the transition to the 10G-PON system.
- the common 10G-OLTMAC is used, and it is not expensive and increases power consumption. The effect that it can be avoided.
- FIG. 1 is a diagram illustrating a configuration example of a 1G / 10GOLT unit.
- FIG. 2 is a diagram showing the wavelength arrangement of signals.
- FIG. 3 is a time chart showing processing until data is transmitted.
- FIG. 4A is a diagram illustrating a configuration example of a TDMA system to which a 10G-PON system is added.
- FIG. 4B is a diagram illustrating a configuration example of a WDMA system to which a 10G-PON system is added.
- FIG. 5 is a diagram showing the state transition of the upgrade to the 10G-PON system.
- a master station device (OLT: Optical Line Terminal) including 10G-OLTMAC (Optical Line Terminal Media Access Control) of this embodiment is a slave station device (ONU: Optical Network Unit) of the 1G-PON system and a 10G-PON system.
- Each PON system controls a plurality of PON systems.
- FIG. 1 is a diagram illustrating a configuration example of a master station device (1G / 10G-OLT) including 10G-OLTMAC in the present embodiment.
- the 1G / 10G-OLT unit 100 controls communication with ONUs connected to the 1G-PON system, and also controls communication with ONUs connected to the 10G-PON system.
- the 1G / 10G-OLT unit 100 includes a WDM (Wavelength Division Multiplexing) unit 1, a splitter unit 2, a 10G-PHY (Physical Layer Device) unit 3, a 10G-OLTMAC unit 4, a WDM unit 5, and a 1G- An OLTMAC unit 6, a WDM unit 7, a WDM unit 8, and a 1G-PHY unit 9 are provided.
- WDM Widelength Division Multiplexing
- splitter unit 2 a 10G-PHY (Physical Layer Device) unit 3
- 10G-OLTMAC unit 4 a WDM unit 5
- 1G- An OLTMAC unit 6 a WDM unit 7, a WDM unit 8, and a 1G-PHY unit 9 are provided.
- the WDM unit 1 outputs the optical signal from each ONU received from the PON interface to the splitter unit 2.
- the combined optical signal received from the WDM unit 8 is output to each ONU via the PON interface.
- the splitter unit 2 is a splitter which branches 1: 2 and branches the received 1G / 10G mixed upstream optical signal and outputs it to the 10G-PHY unit 3 and the 1G-PHY unit 9.
- the 10G-PHY unit 3 transmits and receives 10G optical signals in the 10G-PON system. When an optical signal is received, it is converted into an electrical signal, and the electrical signal received from the 10G-OLTMAC unit 4 is converted into an optical signal.
- the 10G-PHY unit 3 includes a reception unit 31, a BCDR (Burst Clock and Data Recovery) unit 32, and a transmission unit 33.
- the receiving unit 31 converts the received optical signal into an electrical signal and outputs it.
- the BCDR unit 32 performs bit synchronization by separating the clock and data from the electric signal received in a burst manner.
- the transmitter 33 converts a signal to be transmitted from an electric signal to an optical signal.
- the 10G-OLTMAC unit 4 is an OLT MAC unit that controls the 10G-PON system.
- the 10G-OLTMAC unit 4 operates as an ONU with respect to the 1G-OLTMAC unit 6 when connected to the 1G-OLTMAC unit 6.
- the 10G-OLTMAC unit 4 includes a WDM unit 41, a 10G control message termination unit 42, a DBA (Dynamic Bandwidth Assignment) scheduler unit 43, a 1G control message generation unit 44, a 1G control message termination unit 45, and a 10G control message.
- a generation unit 46 and a WDM unit 47 are provided.
- the WDM unit 41 branches the signal from the 10G-PHY unit 3 and outputs it to the 10G control message generation unit 42 and the SNI (Service Node Interface).
- the 10G control message termination unit 42 extracts report information from the report frame from each ONU connected to the 10G-PON system, and outputs the report information to the DBA scheduler unit 43.
- the DBA scheduler unit 43 regenerates the report information of its own device and outputs it to the 1G control message unit 44. Further, based on the report information from each ONU connected to the 10G-PON system, control is performed to allocate the bandwidth (grant) allocated from the 1G-OLT MAC unit 6 to each ONU connected to the 10G-PON system. .
- the 1G control message generation unit 44 generates a report frame as the 10G-OLTMAC unit 4 (10G-PON system) based on the report information from the DBA scheduler unit 43 and outputs the report frame to the 1G-OLTMAC unit 6.
- the 1G control message termination unit 45 extracts Gate information from the Gate frame received from the 1G-OLTMAC unit 6 and outputs it to the DBA scheduler unit 43.
- the 10G control message generation unit 46 generates a Gate frame based on the grant assigned by the DBA scheduler unit 43 and outputs it to each ONU of the 10G-PON system.
- the WDM unit 47 combines the Gate frame from the 10G control message generation unit 46 and the signal from the SNI, and outputs the combined signal to the 10G-PHY unit 3.
- the WDM unit 5 multiplexes the MPCP (Multi-Point Control Protocol) control frame from the 10G-OLTMAC unit 4 and the received signal from the 1G-PHY unit 9 and outputs them to the 1G-OLTMAC unit 6.
- the MPCP control frame includes a Report frame and a Gate frame.
- the 1G-OLTMAC unit 6 is an OLT MAC unit that controls the 1G-PON system. Further, similar to the ONU in the 1G-PON system, a grant in TDMA is assigned to the 10G-OLTMAC unit 4.
- the 1G-OLTMAC unit 6 includes a WDM unit 61, a 1G control message termination unit 62, a DBA scheduler unit 63, a 1G control message generation unit 64, and a WDM unit 65.
- the WDM unit 61 branches the signal from the WDM unit 5 and outputs it to the 1G control message generation unit 62 and the SNI.
- the 1G control message termination unit 62 extracts report information from the report frames from each ONU and 10G-OLT MAC unit 4 connected to the 1G-PON system, and outputs the report information to the DBA scheduler unit 63.
- the DBA scheduler unit 63 performs control to allocate a grant to each ONU and 10G-OLTMAC unit 4 of the 1G-PON system based on the report information from each ONU and 10G-OLTMAC unit 4 of the 1G-PON system.
- the 1G control message generation unit 64 generates a Gate frame based on the grant assigned by the DBA scheduler unit 63 and outputs it to each ONU and 10G-OLTMAC unit 4 of the 1G-PON system.
- the WDM unit 65 combines the Gate frame from the 1G control message generation unit 64 and the signal from the SNI and outputs the combined signal to the WDM unit 7.
- the WDM unit 7 branches the signal from the 1G-OLTMAC unit 6 and outputs it to the 10G-OLTMAC unit 4 and the 1G-PHY unit 9.
- the WDM unit 8 combines the downstream 10G optical signal from the 10G-PHY unit 3 and the downstream 1G optical signal from the 1G-PHY unit 9 and outputs the combined signal to the WDM unit 1.
- the 1G-PHY unit 9 transmits and receives 1G optical signals in the 1G-PON system. When an optical signal is received, it is converted into an electrical signal, and the electrical signal received from the 1G-OLT MAC unit 6 is converted into an optical signal.
- the 1G-PHY unit 9 includes a reception unit 91, a BCDR unit 92, and a transmission unit 93.
- the receiving unit 91 converts the received optical signal into an electrical signal and outputs it.
- the BCDR unit 92 performs bit synchronization by separating the clock and data from the electrical signal received in a burst manner.
- the transmitter 93 converts a signal to be transmitted from an electric signal to an optical signal.
- FIG. 2 is a diagram showing the wavelength arrangement of each signal.
- the upstream signal is in the 1260-1360 nm band, and the downstream signal is in the 1480-1500 nm band.
- the upstream signal is in the 1260 to 1280 nm band, and the downstream signal is in the 1574 to 1580 nm band.
- an OLT MAC unit capable of assigning a grant in the TDMA scheme to both 1G and 10G PON systems is required.
- the 1G uplink signal is mainly of the reduced type (bandwidth is 1290 to 1330 nm), so that the band of signals to be used does not overlap. Therefore, coexistence by the WDMA system is possible.
- FIG. 3 is a time chart showing processing until the ONU of each PON system transmits data.
- two ONUs (10G-ONU # 1, 10G-ONU # 2) are connected to the 10G-PON system.
- a 10G-OLTMAC unit 4 is connected to the 1G-PON system as two ONUs (1G-ONU # 1, 1G-ONU # 2) and 1G-ONU # 3.
- a process when each ONU transmits a report frame and then transmits data according to the assigned grant will be described.
- the 10G-ONU # 1 transmits a report frame including report information to the 10G-OLTMAC unit 4 in order to transmit data.
- the 10G-PHY unit 3 After the report frame is received by the WDM unit 1, it is branched by the splitter unit 2 and output to the 10G-PHY unit 3.
- the receiving unit 31 converts the optical signal into an electric signal
- the BCDR unit 32 separates the clock and the data to perform bit synchronization, and then outputs the report frame to the 10G-OLTMAC unit 4.
- the 10G control message termination unit 42 receives the report frame via the WDM unit 41.
- the 10G control message termination unit 42 extracts report information from the report frame and outputs the report information to the DBA scheduler unit 43. After receiving the report information from the other ONUs (10G-ONU # 2), the DBA scheduler unit 43 uses the report information from each 10G-ONU as the report information of the 10G-OLTMAC unit 4 (1G-ONU # 3). Generate and output to the 1G control message generator 44.
- the 1G control message generation unit 44 generates a report frame as the 10G-OLTMAC unit 4 (1G-ONU # 3) based on each received report information, and passes the WDM unit 5 to the 1G-OLTMAC unit 6 Output.
- the 1G control message termination unit 62 receives the Report frame via the WDM unit 61.
- the 1G control message termination unit 62 extracts report information from the report frame and outputs the report information to the DBA scheduler unit 63.
- the DBA scheduler unit 63 After receiving the report information from other ONUs (1G-ONU # 1, 1G-ONU # 2), the DBA scheduler unit 63 sends the band (grant) in the cycle #n to each ONU based on each report information. ) Is assigned.
- the grant allocated to 1G-ONU # 3 (10G-OLTMAC unit 4) may be fixed by changing the DBA parameter, or may be variable based on the report information from 1G-ONU # 3.
- the grant allocated to each ONU is output to the 1G control message generator 64.
- the 1G control message generating unit 64 generates a Gate frame addressed to 1G-ONU # 3 (10G-OLTMAC unit 4) based on the grant assigned to 1G-ONU # 3 (10G-OLTMAC unit 4), and the WDM unit The data is output to the WDM unit 7 via 65.
- the WDM unit 7 outputs a Gate frame addressed to 1G-ONU # 3 (10G-OLTMAC unit 4) to 1G-ONU # 3 (10G-OLTMAC unit 4).
- the 1G control message termination unit 45 extracts Gate information from the Gate frame and outputs it to the DBA scheduler unit 43.
- the assigned grant (10G-PON grant starting from GS (Grant Starttime) 3) included in this Gate information is a grant assigned to 1G-ONU # 3 (10G-OLTMAC unit 4) and 10G- It is also a grant allocated to the PON system.
- the DBA scheduler unit 43 first synchronizes the time stamp with the 1G-OLT MAC unit 6 based on the received Gate information. As a result, the start time of the grant can be matched in the slot of Cycle #n that transmits data.
- control is further performed to allocate the grant allocated from the 1G-OLT MAC unit 6 to each 10G-ONU.
- the grant allocated to each ONU is output to the 10G control message generator 46.
- the 10G control message generation unit 46 generates a Gate frame addressed to 10G-ONU # 1 based on the grant assigned to 10G-ONU # 1, and outputs it to the 10G-PHY unit 3 via the WDM unit 47 .
- the transmission unit 33 converts the Gate frame from an electrical signal to an optical signal, and then outputs the converted signal to the WDM unit 8.
- the WDM unit 8 combines the optical signal (Gate frame) from the 10G-PHY unit 3 and the optical signal from the 1G-PHY unit 9 and outputs them to the WDM unit 1.
- the WDM unit 1 outputs the combined signal to the 10G-ONU # 1 via the PON interface.
- the 10G-ONU # 1 receives the Gate frame and transmits data according to the assigned grant start timing (GS3) and the grant length. Thereafter, the 10G-ONU # 1 transmits data according to the Gate frame from the 10G-OLTMAC unit 4. If there is data to be transmitted next, the 10G-ONU # 1 transmits a Report frame to the 10G-OLT MAC unit 4 together with the data transmission.
- the processing from when the 10G-ONU # 2 transmits the report frame to the 10G-OLT MAC unit 4 and when the data is transmitted after receiving the gate frame is the same as in the case of 10G-ONU # 1.
- the 10G-ONU # 2 transmits data according to the grant start timing (GS4) and the grant length assigned to the 10G-ONU # 2.
- the 10G-OLTMAC unit 4 transmits the report information from each 10G-ONU connected to the 10G-PON system to the 1G-OLTMAC unit 6 as the report information of 1G-ONU # 3.
- the 1G-OLTMAC unit 6 assigns a grant to 1G-ONU # 3 (10G-OLTMAC unit 4) in the same manner as other 1G-ONUs.
- the 1G-ONU # 3 (10G-OLTMAC unit 4) can control transmission / reception of data in the 10G-PON system by reassigning the grant assigned to the own device to each 10G-ONU. That is, the grant in Cycle #n can be used without the grant assigned for 1G-PON and the grant assigned for 10G-PON overlapping.
- the 10G-OLTMAC unit 4 behaves as a 1G-ONU with respect to the 1G-OLTMAC unit 6 so that the 1G-PON system and the 10G-PON system can coexist.
- the 10G-OLTMAC unit 4 operates as a master when the 1G-OLTMAC unit 6 is not provided (10G-PON system).
- the 1G-ONU # 1 transmits a report frame including report information to the 1G-OLTMAC unit 6 in order to transmit data.
- the 1G / 10G-OLT unit 100 after the report frame is received by the WDM unit 1, it is branched by the splitter unit 2 and output to the 1G-PHY unit 9.
- the optical signal is converted into an electrical signal by the receiving unit 91, the clock and data are separated by the BCDR unit 92, bit synchronization is performed, and then the Report frame is output to the WDM unit 5.
- the WDM unit 5 outputs the Report frame to the 1G-OLTMAC unit 6.
- the 1G control message termination unit 62 receives the report frame via the WDM unit 61.
- the 1G control message termination unit 62 extracts report information from the report frame and outputs the report information to the DBA scheduler unit 63.
- the DBA scheduler unit 63 After receiving the report information from other ONUs (1G-ONU # 2, 1G-ONU # 3 (10G-OLTMAC unit 4)), the DBA scheduler unit 63 sends a cycle to each ONU based on the respective report information. Control to assign a grant in #n is performed.
- the grant allocated to each ONU is output to the 1G control message generator 64.
- the 1G control message generator 64 generates a Gate frame addressed to 1G-ONU # 1 based on the grant assigned to 1G-ONU # 1, and outputs it to the WDM unit 7 via the WDM unit 65.
- the WDM unit 7 outputs a Gate frame addressed to 1G-ONU # 1 to the 1G-PHY unit 9.
- the transmission unit 93 converts the Gate frame from an electrical signal to an optical signal and outputs the converted signal to the WDM unit 8.
- the WDM unit 8 combines the optical signal (Gate frame) from the 1G-PHY unit 9 and the optical signal from the 10G-PHY unit 3 and outputs the combined signal to the WDM unit 1.
- the WDM unit 1 outputs the combined signal to 1G-OMU # 1 via the PON interface.
- the 1G-ONU # 1 receives the Gate frame and transmits data according to the assigned grant start timing (GS1) and the grant length.
- the 1G-ONU # 1 transmits data according to the Gate frame from the 1G-OLTMAC unit 6.
- 1G-ONU # 1 transmits a Report frame to the 1G-OLT MAC unit 6 together with data transmission.
- the processing from when the 1G-ONU # 2 transmits the report frame to the 1G-OLT MAC unit 6 until the data is transmitted after receiving the gate frame is the same as in the case of the 1G-ONU # 1.
- 1G-ONU # 2 transmits data according to the grant start timing (GS2) and grant length assigned to 1G-ONU # 2.
- FIGS. 4-1 and 4-2 show system configurations when a 10G-PON system is added in each method.
- a 1G / 10G-OLT is newly configured by using all the components used in the existing 1G-OLT.
- the PHY unit is a dual rate, it is possible to have one receiving unit.
- the existing 1G-OLT is used as it is as the WDMA system, and 10G-OLT and WDM are newly added.
- the 10G-OLTMAC according to the present embodiment, a PON system that can be used in common in both the TDMA system and the WDMA system and that 1G / 10G coexists without wasting existing configurations in both systems. Can be configured.
- the 10G-OLTMAC is implemented as an LSI, the circuit scale can be made smaller than when a 1G / 10G dual-rate OLTMAC is produced.
- FIG. 5 shows a specific example of upgrading to a 10G-PON system.
- Upgrade existing 10G-OLT by adding 10G-OLT to operators that cannot replace 1G-OLT while operating existing ODN (Optical Distribution Network).
- a 10G-OLT is added to the existing 1G-PON system (FIG. 5A) (FIG. 5B).
- the user sequentially switches from 1G-ONU to 10G-ONU (FIG. 5C).
- 1G-OLT is removed (FIG. 5D).
- the 10G-OLT to be added can be specially constructed for a new 10G service, and the 1G-OLT can be removed when it becomes unnecessary.
- the present invention can be applied to both the TDMA system and the WDMA system.
- 10G-OLTMAC when connecting with 1G-OLTMAC, 10G-OLTMAC is treated as ONU of 1G-PON system, and report information from each ONU connected to 10G-PON system is displayed.
- a single 1G-ONU is collectively transmitted to the 1G-OLTMAC, and a grant assigned to the own device is assigned to each ONU connected to the 10G-PON system.
- 10G-PON 10G-PON
- 10G-EPON 10 Gigabit-Ethernet (registered trademark) Passive Optical Network
- the 10G-OLTMAC according to the present invention is useful for the PON system, and particularly suitable for the upgrade from the 1G-PON system to the 10G-PON system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computing Systems (AREA)
- Small-Scale Networks (AREA)
- Optical Communication System (AREA)
Abstract
Description
2 スプリッタ部
3 10G-PHY部
4 10G-OLTMAC部
5 WDM部
6 1G-OLTMAC部
7 WDM部
8 WDM部
9 1G-PHY部
31 受信部
32 BCDR部
33 送信部
41 WDM部
42 10G制御メッセージ終端部
43 DBAスケジューラ部
44 1G制御メッセージ生成部
45 1G制御メッセージ終端部
46 10G制御メッセージ生成部
47 WDM部
61 WDM部
62 1G制御メッセージ終端部
63 DBAスケジューラ部
64 1G制御メッセージ生成部
65 WDM部
91 受信部
92 BCDR部
93 送信部
100 1G/10G-OLT部
本実施の形態の10G-OLTMAC(Optical Line Terminal Media Access Control)を含む親局装置(OLT:Optical Line Terminal)は、1G-PONシステムの子局装置(ONU:Optical Network Unit)と10G-PONシステムのONUがそれぞれ複数接続するPONシステムを制御する。図1は、本実施の形態における10G-OLTMACを含む親局装置(1G/10G-OLT)の構成例を示す図である。1G/10G-OLT部100は、1G-PONシステムに接続するONUとの通信を制御し、また、10G-PONシステムに接続するONUとの通信を制御する。1G/10G-OLT部100は、WDM(Wavelength Division Multiplexing)部1と、スプリッタ部2と、10G-PHY(Physical Layer Device)部3と、10G-OLTMAC部4と、WDM部5と、1G-OLTMAC部6と、WDM部7と、WDM部8と、1G-PHY部9と、を備える。
Claims (7)
- 伝送速度が速い高速光信号と当該高速光信号よりも遅い低速光信号が混在し、上り信号通信にTDMA方式を採用するPONシステムにおいて、高速光信号の送受信を制御する高速光信号制御装置と低速光信号の送受信を制御する低速光信号制御装置とを備える親局装置における前記高速光信号制御装置であって、
高速光信号を用いて通信を行う子局装置である高速光信号PON子局装置からReportフレームを受信し、当該フレームからReport情報を抽出する高速光信号制御メッセージ終端手段と、
前記低速光信号制御装置からGateフレームを受信し、当該フレームからGate情報を抽出する低速光信号制御メッセージ終端手段と、
前記高速光信号制御メッセージ終端手段からReport情報を取得した場合に、当該Report情報を自親局装置のReport情報として生成し直して出力し、また、前記低速光信号制御メッセージ終端手段からGate情報を取得した場合に、前記高速光信号制御メッセージ終端手段から取得したReport情報に基づいて、自親局装置に割り当てられたグラントを前記高速光信号PON子局装置に対して割り当てるグラント割り当て手段と、
前記グラント割り当て手段から取得したReport情報に基づいてReportフレームを生成し、当該Reportフレームを前記低速光信号制御装置へ出力する低速光信号制御メッセージ生成手段と、
前記グラント割り当て手段により割り当てられたグラントに基づいてGateフレームを生成し、当該Gateフレームを前記高速光信号PON子局装置へ出力する高速光信号制御メッセージ生成手段と、
を備えることを特徴とする高速光信号制御装置。 - 前記グラント割り当て手段は、
前記高速光信号制御メッセージ終端手段からGate情報を取得した場合に、前記低速光信号制御装置とタイムスタンプの同期を取ることを特徴とする請求項1に記載の高速光信号制御装置。 - 伝送速度が速い高速光信号と当該高速光信号よりも遅い低速光信号が混在し、上り信号の通信にWDMA方式を採用するPONシステムにおいて、前記高速光信号の送受信を制御する高速光信号制御装置を備える親局装置における前記高速光信号制御装置であって、
高速光信号を用いて通信を行う子局装置である高速光信号PON子局装置からReportフレームを受信し、当該フレームからReport情報を抽出する高速光信号制御メッセージ終端手段と、
前記高速光信号制御メッセージ終端手段からReport情報を取得した場合に、当該Report情報に基づいて、前記高速光信号PON子局装置に対してグラントを割り当てるグラント割り当て手段と、
前記グラント割り当て手段により割り当てられたグラントに基づいてGateフレームを生成し、当該Gateフレームを前記高速光信号PON子局装置へ出力する高速光信号制御メッセージ生成手段と、
を備えることを特徴とする高速光信号制御装置。 - 伝送速度が速い高速光信号と当該高速光信号よりも遅い低速光信号が混在し、上り信号の通信にTDMA方式を採用するPONシステムにおいて、高速光信号と低速光信号の送受信を制御する親局装置であって、
請求項1または2に記載の高速光信号制御装置と、
低速光信号を用いて通信を行う子局装置である低速光信号PON子局装置および前記高速光信号制御装置からReportフレームを受信し、当該Reportフレームに含まれるReport情報に基づいて前記低速光信号PON子局装置および前記高速光信号制御装置に対してグラントを割り当て、さらに、割り当てたグラントの情報を含むGateフレームを生成し、当該Gateフレームを前記低速光信号PON子局装置および前記高速光信号制御装置へ出力する低速光信号制御装置と、
を備えることを特徴とする親局装置。 - 前記低速光信号送受信装置は、
前記高速光信号制御装置へグラントを割り当てる場合に、固定されたグラント長を割り当てることを特徴とする請求項4に記載の親局装置。 - 前記低速光信号送受信装置は、
前記高速光信号制御装置へグラントを割り当てる場合に、前記高速光信号制御装置からのReport情報に基づいてグラント長を適宜変更して割り当てることを特徴とする請求項4に記載の親局装置。 - 伝送速度が速い高速光信号と当該高速光信号よりも遅い低速光信号が混在し、上り信号の通信にTDMA方式を採用するPONシステムにおけるグラント割り当て方法であって、
前記親局装置が、
高速光信号の送受信を制御する高速光信号制御装置と、
低速光信号の送受信を制御する低速光信号制御装置と、
を備える場合において、
高速光信号を用いて通信を行う子局装置である高速光信号PON子局装置が、前記高速光信号制御装置宛にReportフレームを送信する子局装置Report送信ステップと、
前記高速光信号制御装置が、前記高速光信号PON子局装置から受信したReportフレームを、自親局装置のReportフレームとして生成し直して前記低速光信号制御装置へ出力する制御装置Report送信ステップと、
前記低速光信号制御装置が、低速光信号を用いて通信を行う子局装置である低速光信号PON子局装置から受信したReportフレーム、および前記高速光信号制御装置から受信したReportフレーム、のそれぞれに含まれるReport情報に基づいてグラントを割り当てる低速光信号グラント割り当てステップと、
前記低速光信号制御装置が、割り当てたグラントに基づいてGateフレームを生成し、当該Gateフレームを前記高速光信号制御装置へ出力する低速光信号Gate送信ステップと、
前記高速光信号制御装置が、前記高速光信号PON子局装置から受信したReportフレームに含まれるReport情報に基づいて、自親局装置に割り当てられたグラントを前記高速光信号PON子局装置に対して割り当てる高速光信号グラント割り当てステップと、
前記高速光信号制御装置が、割り当てたグラントに基づいてGateフレームを生成し、当該Gateフレームを前記高速光信号PON子局装置へ出力する高速光信号Gate送信ステップと、
を含むことを特徴とするグラント割り当て方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980156453.0A CN102318279B (zh) | 2009-02-10 | 2009-02-10 | 高速光信号控制装置、主站装置以及权限分配方法 |
PCT/JP2009/052226 WO2010092666A1 (ja) | 2009-02-10 | 2009-02-10 | 高速光信号制御部、親局装置およびグラント割り当て方法 |
KR1020117018622A KR101283795B1 (ko) | 2009-02-10 | 2009-02-10 | 고속 광신호 제어부, 친국 장치 및 그랜트 할당 방법 |
JP2010550364A JP5111622B2 (ja) | 2009-02-10 | 2009-02-10 | 高速光信号制御部、親局装置およびグラント割り当て方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/052226 WO2010092666A1 (ja) | 2009-02-10 | 2009-02-10 | 高速光信号制御部、親局装置およびグラント割り当て方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010092666A1 true WO2010092666A1 (ja) | 2010-08-19 |
Family
ID=42561520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052226 WO2010092666A1 (ja) | 2009-02-10 | 2009-02-10 | 高速光信号制御部、親局装置およびグラント割り当て方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5111622B2 (ja) |
KR (1) | KR101283795B1 (ja) |
CN (1) | CN102318279B (ja) |
WO (1) | WO2010092666A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2645608A4 (en) * | 2010-12-29 | 2017-07-19 | ZTE Corporation | Optical line terminal, optical network unit and passive optical network system |
JP2020048171A (ja) * | 2018-09-21 | 2020-03-26 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | 制御装置、切り替えシステム、切り替え制御方法、及びプログラム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102377299B1 (ko) | 2019-09-24 | 2022-03-23 | 한국타이어앤테크놀로지 주식회사 | 분할조립이 가능하고 유연한 자동차 휠 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008072347A1 (ja) * | 2006-12-15 | 2008-06-19 | Mitsubishi Electric Corporation | Ponシステムおよびpon接続方法 |
JP2009010687A (ja) * | 2007-06-28 | 2009-01-15 | Sumitomo Electric Ind Ltd | Ponシステムとその局側装置、動的帯域割当方法、並びに、動的帯域割当サービスの提供方法及び享受方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100433672C (zh) * | 2002-11-11 | 2008-11-12 | 华为技术有限公司 | 一种多速率同步数字网汇聚解汇聚方法及其设备 |
CN100446448C (zh) * | 2005-06-10 | 2008-12-24 | 天津大学 | 高速光信号的串并转换方法及转换装置 |
US8855490B2 (en) * | 2007-08-31 | 2014-10-07 | Futurewei Technologies, Inc. | Backward compatible PON coexistence |
EP2117167B1 (en) | 2008-05-05 | 2012-02-15 | Nokia Siemens Networks Oy | Two and three-stroke discovery process for 10G-EPONs |
-
2009
- 2009-02-10 CN CN200980156453.0A patent/CN102318279B/zh not_active Expired - Fee Related
- 2009-02-10 JP JP2010550364A patent/JP5111622B2/ja not_active Expired - Fee Related
- 2009-02-10 KR KR1020117018622A patent/KR101283795B1/ko not_active IP Right Cessation
- 2009-02-10 WO PCT/JP2009/052226 patent/WO2010092666A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008072347A1 (ja) * | 2006-12-15 | 2008-06-19 | Mitsubishi Electric Corporation | Ponシステムおよびpon接続方法 |
JP2009010687A (ja) * | 2007-06-28 | 2009-01-15 | Sumitomo Electric Ind Ltd | Ponシステムとその局側装置、動的帯域割当方法、並びに、動的帯域割当サービスの提供方法及び享受方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2645608A4 (en) * | 2010-12-29 | 2017-07-19 | ZTE Corporation | Optical line terminal, optical network unit and passive optical network system |
JP2020048171A (ja) * | 2018-09-21 | 2020-03-26 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | 制御装置、切り替えシステム、切り替え制御方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
KR20110114635A (ko) | 2011-10-19 |
JPWO2010092666A1 (ja) | 2012-08-16 |
JP5111622B2 (ja) | 2013-01-09 |
CN102318279B (zh) | 2014-03-05 |
CN102318279A (zh) | 2012-01-11 |
KR101283795B1 (ko) | 2013-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100889899B1 (ko) | 비트 레이트 혼재 광통신 방법, 광가입자 장치 및 광국측장치 | |
JP4655610B2 (ja) | 光通信システム | |
JP4786720B2 (ja) | Ponシステムおよびpon接続方法 | |
CN101621452B (zh) | 一种无源光网络系统、光线路终端和光网络单元 | |
WO2010146658A1 (ja) | 光多重終端装置、波長多重受動光網システム、下り波長送信方法 | |
WO2011130986A1 (zh) | 光网络系统、光线路终端、光网络单元及光分配网装置 | |
CN1968062A (zh) | 用于无源光网络通信设备的改进的数据传输装置 | |
CN101436916B (zh) | 一种无源光网络的带宽处理方法、装置和系统 | |
KR20080063270A (ko) | 광 통신 네트워크 시스템, 친국 광 통신 장치 및 자국 광통신 장치 | |
JP2016523043A (ja) | 光ネットワークユニットの波長を再構成するための方法および装置 | |
JP5111622B2 (ja) | 高速光信号制御部、親局装置およびグラント割り当て方法 | |
CN108600127B (zh) | 一种基于脉冲交叠的超奈奎斯特的通信系统及方法 | |
JP6459588B2 (ja) | アクセス制御システム、アクセス制御方法、親局装置及び子局装置 | |
EP2777194A1 (en) | Data processing of an optical network element | |
US8824892B2 (en) | Optical line terminal for optoelectrically converting a signal and a method therefor | |
US11888581B2 (en) | Wavelength multiplexing communication system and wavelength multiplexing communication method | |
CN104901762A (zh) | 一种时分波分复用堆叠式光接入网络中最少调谐的动态波长分配方法 | |
US20100124420A1 (en) | Communication device and communication method | |
JP4725651B2 (ja) | 受動光ネットワーク通信システム | |
JP4842230B2 (ja) | アクセスシステムおよびチャネル割当方法 | |
CN104301809A (zh) | 无源光网络的上行用户信号接入系统和方法 | |
US9184844B2 (en) | Optical network system and method for controlling optical network system | |
KR101247477B1 (ko) | 유무선망을 통합하는 광전송 장치 및 방법 | |
JP2009005065A (ja) | 通信システム、通信方法および通信装置 | |
CN105792026A (zh) | 光线路终端的控制方法、光线路终端及光线路系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980156453.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09839988 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010550364 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117018622 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09839988 Country of ref document: EP Kind code of ref document: A1 |