WO2011130986A1 - 光网络系统、光线路终端、光网络单元及光分配网装置 - Google Patents

光网络系统、光线路终端、光网络单元及光分配网装置 Download PDF

Info

Publication number
WO2011130986A1
WO2011130986A1 PCT/CN2010/076318 CN2010076318W WO2011130986A1 WO 2011130986 A1 WO2011130986 A1 WO 2011130986A1 CN 2010076318 W CN2010076318 W CN 2010076318W WO 2011130986 A1 WO2011130986 A1 WO 2011130986A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
output
module
downlink
Prior art date
Application number
PCT/CN2010/076318
Other languages
English (en)
French (fr)
Inventor
陈彪
成亮
王大伟
朱松林
耿丹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/522,053 priority Critical patent/US8886043B2/en
Priority to EP10850118.0A priority patent/EP2518911A4/en
Publication of WO2011130986A1 publication Critical patent/WO2011130986A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • Optical network system optical line terminal, optical network unit and optical distribution network device
  • the present invention relates to the field of optical fiber communication technologies, and in particular, to a hybrid passive optical network system, an optical line terminal, an optical network unit, and an optical distribution network device. Background technique
  • the access network becomes the infrastructure of the communications network because it is the transport entity of the Service Node Interface (SNI) and the associated User Network Interface (U I ). Because of this feature, the access network should adopt a fair, flexible and secure multiple access technology.
  • SNI Service Node Interface
  • U I User Network Interface
  • the access network should adopt a fair, flexible and secure multiple access technology.
  • Passive Optical Network (PON) is a popular technology for optical access networks due to its wide frequency bandwidth, large capacity, convenient expansion, and suitable for high-speed data transmission. It is also the most widely used technology in optical access network technology. .
  • a typical passive optical network includes an Optical Line Terminal (OLT), an Optical Distribution Network (ODN), and an Optical Network Unit (ONU). It may also include an Optical Network Terminate (ONT), and one or more optical network terminals are connected to the optical network unit as a specific user of the optical network unit.
  • OLT Optical Line Terminal
  • ODN Optical Distribution Network
  • ONU Optical Network Unit
  • ONT Optical Network Terminate
  • one or more optical network terminals are connected to the optical network unit as a specific user of the optical network unit.
  • Optical line terminal mainly provides the optical interface between the network and the optical distribution network, and can separate the switched and non-switched services, manage the signaling and monitoring information from the ONU, and provide maintenance and supply functions for itself and the ONU.
  • Optical distribution network The OLT and the ONU are mainly connected by one or more optical splitters. They are responsible for distributing downlink data and concentrating uplink data, and completing functions such as power distribution and wavelength multiplexing of optical signals, and usually adopt a tree branch structure.
  • Optical network unit Provides an interface between user data, video, telephone network and optical network, converts the received optical signal into a signal required by the user, and cooperates with the optical network terminal to form a network terminal.
  • TDM-PON time-division multiplexed passive optical networks
  • WDM-PON wavelength division multiplexing based passive optical networks
  • OCDMA-PON Passive optical network
  • TDM-PON is the most mature PON technology.
  • EPON and GPON are widely used in TDM-PON technology.
  • the TDM-PON system uses time-division multiplexing technology for both uplink and downlink, but each uses one wavelength.
  • TDM-PON has the advantages of mature technology and low cost, the high-speed burst receiving technology based on electricity is difficult to implement when expanding higher bandwidth. It not only needs to add complex bandwidth management algorithms, but also synchronizes clocks. In terms of fast optical signal detection, it has imposed stringent requirements on the semiconductor and optoelectronic industries.
  • TDM-PON technology still has problems such as fragile security of the network system and difficulty in locating fiber faults.
  • WDM-PON is also a multi-user shared fiber, but different users allocate different wavelengths, which can provide bandwidth utilization.
  • Wavelength division multiplexing is divided into coarse wavelength division multiplexing (CWDM) and dense wavelength division multiplexing (DWDM).
  • CWDM coarse wavelength division multiplexing
  • DWDM dense wavelength division multiplexing
  • the channel spacing of CWDM is 20 nm
  • the DWDM channel spacing is 0.2 nm to 1.2 nm.
  • the ITU-T G1983 standard has only been applied to the 113 ⁇ m/115 ⁇ m WDM technology, which is coarse wavelength division multiplexing. The number of wavelengths that Dense Wavelength Division Multiplexing can provide is greatly increased.
  • WDM-PON Compared with other broadband access, WDM-PON has a large initial investment. Moreover, the various optoelectronic devices required for WDM-PON are still immature. For example, multi-frequency lasers, wide-tuned single-frequency lasers and LEDs with integrated amplifiers have not yet entered the large-scale commercialization segment, which will also be the market for WDM-PON. The key to change.
  • OCDMA is a multiple access multiplexing technology that combines the large bandwidth of fiber media with the flexibility of CDMA.
  • OCDMA is a concern because OCDMA can use relatively simple OLT and ONU designs that do not need to be synchronized. Existing PONs do not need to be upgraded too much for OCDMA.
  • OCDMA itself has some attractive technologies. For example, all-optical processing, true asynchronous transmission, soft capacity, protocol transparency, and flexible control of QoS also make the research benefits of OCDMA-PON attract people's attention.
  • OCDMA-PON optical code division multiple access multiplexed passive optical network
  • the optical encoder/decoder is the core component of the OCDMA system.
  • the optical encoder converts the data bits into a spreading sequence
  • the optical decoder at the receiving end uses the correlation decoding principle to restore the spreading sequence to data bits.
  • all users share the same frequency band and time of the same channel, and signals used by different users to transmit information are distinguished by different coding sequences, that is, each user is assigned a pseudo-random sequence.
  • each user's information generates a pseudo-random sequence through the optical encoder/decoder.
  • the pseudo-random sequence is also unique, and each information bit of the user is encoded into a series of pulses; At the receiving end, the user performs correlation operations with the encoder/decoder corresponding to the same pseudo-random sequence to recover the transmitted information.
  • These pseudo-random sequences are called the user's address code, and each coded pulse is called a chip.
  • the optical codec acts as an encryption and decryption for the optical signal, thereby enhancing the security of the network.
  • OCDMA encoder/decoder are: time domain encoding/decoding scheme based on fiber delay line, frequency domain encoding/decoding scheme based on diffraction grating and phase mask, encoding/decoding scheme based on fiber Bragg grating, array based The encoding/decoding scheme of the waveguide grating.
  • a hybrid PON is a PON that uses two or more of the above technologies.
  • an optical network system including:
  • the optical line terminal is configured to modulate and encode at least one downlink multiplexed downlink signal, and encode different downlink signals of different paths, and combine the encoded downlink signals into one channel and output Also used for receiving an uplink signal, and decoding and receiving the received uplink signal;
  • An optical distribution network configured to receive the downlink signal output by the optical line terminal, divide the received downlink signal into multiple channels, and directly output or decode the output signal; and further, receive the uplink signal, and receive the received signal
  • the uplink signals are combined and output to the optical line terminal, or the received multiple time division multiplexed uplink signals are encoded and combined into one output to the optical line terminal, and the time division multiplexed uplinks of different paths are used.
  • the code used for the signal is different;
  • each of the optical network units is configured to receive the downlink signal directly output by the optical distribution network, decode the received downlink signal, and output the optical distribution network to be received
  • the downlink signal output after decoding is further used to encode a time division multiplexed uplink signal, and the time division multiplexed uplink signal used in different paths is encoded differently, and the encoded uplink signal is used Outputting to the optical distribution network, or directly outputting the time division multiplexed uplink signal to the optical distribution network, encoding by the optical distribution network, and outputting to the optical line terminal.
  • the optical line terminal includes: at least one first processing module and a first optical coupler;
  • Each of the first processing modules includes: a first time division multiplexing processing module and a first optical codec module; wherein
  • the first time division multiplexing processing module is configured to adjust at least one time division multiplexed downlink signal After being applied to the optical carrier, transmitting the modulated downlink signal, and receiving the uplink signal, and outputting the received uplink signal;
  • the first optical codec module is connected to the first time division multiplexing processing module, and is configured to encode and output the downlink signal sent by the first time division multiplexing processing module, and receive the uplink signal. Decoding the received uplink signal and outputting to the connected first time division multiplexing processing module;
  • the first optical coupler is connected to the first optical codec module included in each of the at least one first processing module, and is configured to encode the first optical codec module of the at least one first processing module.
  • the output downlink signals are combined and outputted, and the uplink signals are received, and the received uplink signals are divided into multiple channels, and then output to the connected first optical codec module.
  • the first time division multiplexing processing module includes:
  • a downlink modulation module configured to: after modulating at least one time division multiplexed downlink signal to an optical carrier, send the modulated downlink signal to the connected first optical codec module;
  • the uplink receiving module is configured to receive an uplink signal output by the first optical codec module after decoding, and output the received uplink signal.
  • the first time division multiplexing processing module further includes:
  • the first circulator, the downlink modulation module and the uplink receiving module are connected to the first optical codec module by using the first circulator.
  • the optical network unit includes:
  • a second optical codec module configured to decode a downlink signal output by the optical distribution network, and encode the received time division multiplexed uplink signal
  • At least one second processing module is connected to the second optical codec module, and each of the second processing modules is configured to receive a downlink signal output by the second optical codec module after decoding, and time division The used uplink modulated signal is output to the second optical codec module according to a pre-allocated time slot;
  • the optical distribution network includes:
  • the second processing module :
  • a downlink receiving module configured to receive a downlink signal that is decoded by the second optical codec module
  • an uplink modulation module configured to: after modulating at least one uplink signal to an optical carrier, pre-allocating the modulated uplink signal The time slot is output to the second optical codec module
  • the second circulator, the downlink receiving module and the uplink modulation module are connected to the second optical codec module by the second circulator.
  • the optical distribution network includes:
  • a second optical coupler connected to the optical line terminal, configured to divide a downlink signal output by the optical line terminal into multiple channels, and combine the received multiple time division multiplexing uplink signals into one channel and output the same;
  • each of the second optical codec modules configured to decode one downlink signal output by the second optical coupler, and encode the time division multiplexed uplink signal output by the optical network unit And output to the second optical coupler;
  • the optical network unit includes:
  • At least one second processing module is connected to one of the plurality of second optical codec modules, and each of the second processing modules is configured to receive a downlink signal that is output after decoding by the second optical codec module And outputting the time division multiplexed uplink modulated signal to the second optical codec module according to a pre-allocated time slot.
  • An optical line terminal includes:
  • a signal processing module configured to modulate and encode at least one time-division multiplexed downlink signal, where the downlink signals of different paths are different in coding; and are also used for receiving an uplink signal, and decoding the received uplink signal and outputting
  • the uplink signal is: the optical network unit encodes an uplink signal that is encoded by at least one time division multiplexed uplink signal, and time division multiplexed uplink of different paths.
  • the code used for the signal is different;
  • a first optical coupler connected to the signal processing module, configured to combine the downlink signals encoded by the signal processing module into one channel and output the same; and receive the uplink signal, and divide the received uplink signal into multiple The road is output to the signal processing module.
  • the signal processing module includes: at least one first processing module and a first optical coupler;
  • Each of the first processing modules includes: a first time division multiplexing processing module and a first optical codec module; wherein
  • the first time division multiplexing processing module is configured to: after modulating at least one time division multiplexed downlink signal to an optical carrier, send the modulated downlink signal, and receive an uplink signal, and send the received uplink Signal output
  • the first optical codec module is connected to the first time division multiplexing processing module, and is configured to encode and output the downlink signal sent by the first time division multiplexing processing module, and receive the uplink signal. Decoding the received uplink signal and outputting it to the connected first time division multiplexing processing module;
  • the first optical coupler is further connected to the first optical codec module of each of the first processing modules, and is configured to synthesize the downlink signals output by the coding and decoding modules of the first processing modules after combining Outputting, and receiving an uplink signal, and dividing the received uplink signal into multiple channels, and outputting to the connected first optical codec module.
  • An optical network unit comprising: performing decoding, and encoding the received time division multiplexed uplink signal, and outputting to the optical line terminal through the optical distribution network, where the downlink signal output by the optical line terminal is at least one time division multiplexed downlink The signal that is modulated and encoded after the signal is output, and the code of the time-division multiplexed downlink signal of different paths is different; At least one second processing module is connected to the second optical codec module, and each of the second processing modules is configured to receive a downlink signal output by the second optical codec module after decoding, and time division The used upstream modulated signal is output to the second optical codec module.
  • An optical distribution network device comprising:
  • a second optical coupler configured to divide a downlink signal outputted by the optical line terminal into multiple channels, and combine the received multiple time division multiplexed uplink signals into one channel and output to the optical line terminal, where the optical line terminal outputs
  • the downlink signal is a signal that is modulated and encoded by at least one time-division multiplexed downlink signal, and different time-division multiplexed downlink signals are encoded differently;
  • each of the second optical codec modules configured to decode one downlink signal output by the second optical coupler, and encode the time division multiplexed uplink signal output by the optical network unit Then output to the second optical coupler.
  • At least one time-multiplexed downlink signal is modulated and encoded by the optical line terminal, and different downlink signals are used for different coding, and the encoded signals are output to the optical network through the optical distribution network.
  • at least one time-division multiplexed uplink signal is encoded by the optical network unit or the optical distribution network, and different time-multiplexed uplink signals are used with different codes, and the encoded signals are output to
  • the optical line terminal conveniently implements the hybrid passive optical network system based on TDM and OCDMA, and overcomes the defects of the network system in the TDM-PON, such as fragile security, bandwidth expansion, limited network upgradeability and OCDMA-PON access. A technical problem with a limited number of users, with high network security and large access user capacity.
  • FIG. 1 is a schematic structural diagram of a typical passive optical network of the prior art
  • FIG. 2 is a schematic structural diagram of an optical line terminal in a hybrid passive optical network system according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a hybrid passive optical network system according to an embodiment of the present invention
  • 4 is a schematic structural diagram of a hybrid passive optical network system according to an embodiment of the present invention
  • FIG. 5A is a schematic structural diagram of a first processing module in a hybrid passive optical network system according to an embodiment of the present invention
  • 5B is a schematic structural diagram of a first processing module in a hybrid passive optical network system according to another embodiment of the present invention.
  • 6A is a schematic diagram of a second processing module according to an embodiment of the present invention.
  • 6B is a schematic diagram of a second processing module according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a second processing module according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a hybrid passive optical network system according to another embodiment of the present invention. detailed description
  • the present invention provides a hybrid passive optical network system for implementing a hybrid of a time division multiplexed passive optical network and an optical code division multiple access passive optical network, including:
  • the optical line terminal is configured to modulate and encode at least one downlink multiplexed downlink signal, and encode different downlink signals of different paths, and combine the encoded downlink signals into one channel and output Also used for receiving an uplink signal, and decoding and receiving the received uplink signal;
  • the optical distribution network is configured to receive the downlink signal output by the optical line terminal, divide the received downlink signal into multiple channels, directly output or decode the output, and receive the uplink signal, and combine the received uplink signals into one channel and output the signal to the uplink signal.
  • the optical line terminal, or the received multi-channel time division multiplexed uplink signal is encoded and combined into one output to the optical line terminal, and the time-division multiplexed uplink signals of different paths are different in coding;
  • each of the optical network units is configured to receive a downlink signal directly output by the optical distribution network, decode the received downlink signal, and output, or receive the received downlink signal
  • the downlink signal output outputted by the optical distribution network is decoded; and the uplink modulation signal of one time division multiplexing is coded, and the codes of different time division multiplexing uplink signals are different, and the encoded uplink signals are output to the light.
  • the distribution network, or the time-division multiplexed uplink signal is directly output to the optical distribution network, encoded by the optical distribution network, and output to the optical line terminal.
  • the second optical codec module may be disposed on the optical network unit side, where the optical network unit can decode the downlink signal and encode the uplink signal.
  • the two optical codec module can be disposed on the optical distribution network side, and the optical distribution network is used to decode the downlink signal and encode the uplink signal.
  • the optical line terminal of this embodiment includes: at least one first processing module and a first optical coupler;
  • At least one first processing module in this example, a first processing module 1 to a first processing module n, each of the first processing modules includes: a first time division multiplexing processing module, configured to divide at least one time After the downlink signal is modulated to the optical carrier, the modulated downlink signal is sent out, and the uplink signal is received, and the received uplink signal is output; the first optical codec module is combined with the first time code Connected by the processing module, configured to encode and output the downlink signal sent by the first time division multiplexing processing module, and receive the uplink signal, decode the received uplink signal, and output the received uplink signal to the connected a first time division multiplexing processing module; in this example, the first optical codec modules in different first processing modules are different, so that different time division multiplexing downlink signals can have different encodings;
  • a first optical coupler connected to the first optical codec module included in each of the at least one first processing module, configured to encode the first optical codec module of each of the first processing modules and output the downlink
  • the signal is combined and outputted, and the uplink signal is received, and the received uplink signal is divided into multiple channels, and then output to the connected first optical codec module.
  • the optical network unit includes: performing decoding, and encoding the received time division multiplexed uplink signal and outputting to the optical line terminal through the optical distribution network;
  • a plurality of second processing modules are connected to the second optical codec module, and each of the second processing modules is configured to receive a downlink signal that is decoded by the second optical codec module, and uplink that is time division multiplexed
  • the modulated signal is output to the second optical codec module in accordance with a pre-assigned time slot.
  • a second optical codec module can be coupled to the plurality of processing modules through the coupler.
  • Each of the second processing modules sends the modulated uplink signal to the second optical codec module according to the pre-allocated time slot, and is encoded by the second optical codec module and sent to the OLT through the optical transmission network.
  • This implements a codec corresponding to a set of TDM signals.
  • the access user capacity of the system has been expanded.
  • a second processing module such as a TDM-PON ONU, can correspond to a specific user.
  • the optical distribution network of this embodiment includes: a second optical coupler coupled to the optical line termination and the at least one optical network unit.
  • the second optical codec module may be coupled to only one second processing module.
  • the first and second optical codec modules are used to encode or decode signals.
  • the first and second optical codec modules respectively implement optical coding and optical decoding functions through an encoder and a decoder, and may also pass The optical codec encodes when encoding is required and decodes when decoding is required.
  • the first time division multiplexing processing module can be used by the optical line terminal of the TDM-PON of the prior art, so that only the first connection with the optical line terminal of the TDM-PON is added.
  • the optical codec module and the first optical coupler connected to the first optical codec module can implement the optical line terminal of the embodiment of the present invention.
  • the second processing module can be used by the optical network unit of the TDM-PON of the prior art, so that only the TDM-PON is added to the optical network unit of the existing TDM-PON.
  • the optical network unit of the hybrid passive optical network in the embodiment of the present invention can be implemented by the second optical codec module connected to the ONU.
  • the OLT of the hybrid passive optical network system of this embodiment can be understood to be composed of a TDM-PON OLT based on TDM technology and a TCDMA-PON OLT based on OCDMA technology, that is, an OCDMA-PON OLT.
  • the ONU of the hybrid passive optical network system of this embodiment can be understood to be composed of two parts: an ONU part based on TDM technology and an ONU part based on optical code division multiple access technology.
  • the OLT of the embodiment of the present invention is composed of two OLTs of a TDM-PON and an OLT of one OCDMA-PON, and an optical codec of the OLT of each TDM-PON and an OLT of the OCDMA-PON (the first)
  • An optical codec is connected to form a data receiving and transmitting link structure to form a first processing module; the plurality of data transmitting and receiving links, that is, the plurality of first processing modules are combined into one path by the first optical coupler, and are transmitted.
  • the OLT is connected to one or more ONUs via an ODN.
  • each TDM-PON OLT is connected to one of the first optical codec 1 to the first optical codec n, respectively, in this example, different from The optical codecs connected to the TDM-PON OLT are different, so that different downlink signals of different TDM-PON OLTs are encoded differently.
  • the second optical decoder in the ONU is connected to the ONUs of the plurality of TDM-PONs, and the ONUs of each TDM-PON transmit the uplink signals according to the pre-assigned time slots.
  • the second optical codec and the plurality of TDM-PON ONUs can be connected by using a coupler.
  • the downlink data stream is decoded by the codec, and then sent to the ONU of each TDM-PON, and is received by the downlink receiving module of each TDM-PON ONU; when processing the uplink signal, the data stream is first followed. After the pre-allocated time slot of the system is transmitted, it is encoded by the second optical codec and transmitted to the ODN.
  • the number of first codecs and the number of second codecs and the ONU of the system corresponds to each, which is n, and n is a natural number.
  • FIG. 5A is a schematic structural diagram of a first processing module in a hybrid passive optical network system according to an embodiment of the present invention.
  • the first time division multiplexing processing module includes: a downlink modulation module, configured to: after modulating at least one time-division multiplexed downlink signal to an optical carrier, send the modulated downlink signal to a connected first
  • An optical codec module in this example, the first optical codec 1 is used as an example
  • an uplink receiving module is configured to receive an uplink signal output by the first optical codec module after decoding, and output the received uplink signal.
  • the first time division multiplexing processing module further includes: a first circulator, wherein the downlink modulation module and the uplink receiving module are connected to the first optical codec module by using the first circulator.
  • Port 1 of the first circulator is connected to the downstream modulation module, port 2 is connected to the optical codec 1, and port 3 is connected to the upstream receiving module.
  • the downlink modulation module is connected to the optical codec 1 through the first circulator to form a data encoding and transmission link structure;
  • the uplink receiving module is connected to the optical codec 1 through the first circulator to form a data decoding and receiving link. structure.
  • only the first link is taken as an example, and other links connected to other optical codecs are similar, and details are not described herein again.
  • the downlink data modulation module modulates and transmits the user data stream in the data core network, and inputs it to the port 1 of the first circulator, and outputs it from the port 2 of the first circulator.
  • the optical codec is encoded, it is finally input to the first optical coupler; it is transmitted to the ODN through the optical fiber, and finally transmitted to the ONU.
  • the encoded data stream transmitted by the 0DN is transmitted to each data receiving link in the OLT through the first optical coupler, and is first decoded by the first optical codec to obtain the recovered data.
  • the corresponding user data stream enters from port 2 of the first circulator, is output from port 3 of the first circulator, and is finally received by the data receiving module in the 0LT of the TDM-P0N, and finally uploaded to the core network.
  • FIG. 5B is a schematic structural diagram of a first processing module in a hybrid passive optical network system according to another embodiment of the present invention. As shown in FIG. 5B, the encoding function of the downlink signal is implemented by the first optical encoder, and the decoding function of the uplink signal is implemented by the first optical decoder.
  • the optical encoder is connected between the downlink modulation module and the first circulator 1 port.
  • the optical decoder is connected between the upstream receiving module and the 3 port of the first circulator.
  • the ONU of the embodiment of the present invention can be understood to be composed of the ONU part of the TDM-PON and the ONU part of the OCDMA-PON.
  • the ONU of each embodiment of the present invention includes: a second optical codec and at least A second processing module, in this example, the second processing module is served by the ONU of the TDM-PON.
  • the ONU of the at least one TDM-PON transmits the uplink signal according to the pre-assigned time slot, is encoded by the second optical codec, and is transmitted to the optical distribution network.
  • FIG. 6A is a schematic diagram of a second processing module according to an embodiment of the present invention.
  • the ONU part of the second processing module of the TDM-PON includes: a downlink receiving module, configured to receive a downlink signal decoded by the second optical codec module; and an uplink modulation module, configured to: After the at least one uplink signal is modulated to the optical carrier, the modulated uplink signal is output to the second optical codec module according to the pre-allocated time slot.
  • the second processing module further includes: a second circulator, the downlink receiving module and the uplink modulation module are connected to the second optical codec module by the second circulator.
  • the downlink receiving module is connected to the second optical codec through the port 2 of the second circulator to form a data decoding and receiving link structure;
  • the uplink modulation module passes the port 3 of the second circulator and the second optical codec
  • the devices are connected to form a data encoding and transmission link structure;
  • the second optical codec is connected to the second circulator through port 1.
  • the ODN includes: a second optical coupler coupled to the optical line termination and the at least one optical network unit.
  • One or more ONUs are combined by the second optical coupler and output to the OLT; the above devices are connected by using a transmission fiber; the ONU is connected to the OLT through the ODN.
  • the ONU processes the downlink signal
  • the user data is sent to each ONU end, first decoded by the second optical codec, and the recovered data stream is input to the circulator port 1 and outputted from the circulator port 2, and finally
  • the downlink receiving module receives.
  • the uplink data modulation module modulates the user data stream, inputs it to the port 3 of the second circulator according to the time slot allocated by the system, and outputs it from the port 1 of the second circulator, and performs the second optical codec.
  • a second optical codec corresponds to a second processing module. In this example, it corresponds to 0 of one TDM-PON.
  • FIG. 6B is a schematic diagram of a second processing module according to an embodiment of the present invention. As shown in FIG. 6B, the encoding of the uplink signal is implemented by the second optical encoder, and the decoding of the downlink signal is implemented by the second optical decoder.
  • the second optical encoder is connected between the upstream modulation module and the second circulator 3 port.
  • the second optical decoder is connected between the downstream receiving module and the 2 ports of the second circulator.
  • Figure 7 shows another form of the ONU part of the TDM-PON in the ONU and the ONU part of the second optical decoder, OCDMA-PON.
  • an ONU portion of an OCDMA-PON corresponds to an ONU portion of a TDM-PON, that is, a second optical decoder corresponds to a second processing module.
  • the second processing module is implemented by an ONU of the TDM-PON.
  • the structure of the ONU of the TDM-PON can be referred to as shown in FIG. 6.
  • the second optical codec in the ONU is an encoder when processing the uplink signal and a decoder when processing the downlink signal. And the optical codec in the ONU corresponds to the optical codec in the OLT, so that the original data can be recovered.
  • the second optical codec module is disposed in the optical distribution network.
  • the hybrid passive PON network of this embodiment is different from the embodiment shown in FIG. 3 in that the second optical codec module is disposed in the optical distribution network, and the optical codec module is not required to be set in the optical network unit, which simplifies The structure of the optical network unit.
  • the optical distribution network includes: a second optical coupler connected to the optical line terminal, The method is configured to divide a downlink signal outputted by the optical line terminal into multiple channels, and combine the received multiple time division multiplexing uplink signals into one channel, and output the plurality of second optical codec modules, each of the second The optical codec module is configured to decode a downlink signal output by the second optical coupler, and encode the time division multiplexed uplink signal output by the optical network unit, and output the signal to the second optical coupler.
  • the optical network unit includes: at least one second processing module, connected to one of the plurality of second optical codec modules, each of the second processing modules, configured to receive the second light
  • the downlink signal outputted by the codec module is decoded, and the time division multiplexed uplink modulation signal is output to the second optical codec module according to a pre-allocated time slot.
  • the second processing module of the example may include: a downlink receiving module, configured to receive a downlink signal that is decoded by the second optical codec module, and an uplink modulation module, configured to: after modulating at least one uplink signal to an optical carrier, Outputting the modulated uplink signal to the second optical codec module according to a pre-allocated time slot; and, the second circulator, the downlink receiving module, the uplink modulation module, and the second optical codec module Connected by the second circulator.
  • a downlink receiving module configured to receive a downlink signal that is decoded by the second optical codec module
  • an uplink modulation module configured to: after modulating at least one uplink signal to an optical carrier, Outputting the modulated uplink signal to the second optical codec module according to a pre-allocated time slot
  • the second circulator, the downlink receiving module, the uplink modulation module, and the second optical codec module Connected by the second circulator can be referred to the above description, and details are not described
  • the embodiment of the present invention further provides an optical line terminal, including: a signal processing module, configured to: modulate and encode at least one time-division multiplexed downlink signal, and use different time-division multiplexed downlink signals for different codes; and Receiving an uplink signal, and decoding and outputting the received uplink signal, where the uplink signal is: an uplink signal that is output by the optical network unit after encoding at least one time division multiplexed uplink modulated signal, and time division multiplexing of different paths
  • the first optical coupler is connected to the signal processing module, and is configured to combine the downlink signals encoded by the signal processing module into one channel and output the uplink signal; and receive the uplink signal, and The received uplink signal is divided into multiple channels and output to the signal processing module.
  • the signal processing module includes: at least one first processing module, each of the first processing modules includes: a first time division multiplexing processing module, configured to use at least one path After the time-division multiplexed downlink signal is modulated onto the optical carrier, the modulated The downlink signal is sent out, and the uplink signal is received, and the received uplink signal is output; the first optical codec module is connected to the first time division multiplexing processing module, and configured to process the first time division The downlink signal sent by the processing module is encoded and output, and receives the uplink signal, and the received uplink signal is decoded and output to the connected first time division multiplexing processing module;
  • the first optical coupler is further connected to the first optical codec module of each of the first processing modules, and is configured to synthesize the downlink signals output by the coding and decoding modules of the first processing modules after combining Outputting, and receiving an uplink signal, and dividing the received uplink signal into multiple channels, and outputting to the connected first optical codec module.
  • an embodiment of the present invention provides an optical network unit, including: performing decoding, and encoding a received time division multiplexed uplink signal, and outputting to an optical line terminal through an optical distribution network, where the optical line terminal outputs
  • the downlink signal is: at least one time-division multiplexed downlink signal is modulated and encoded, and the different time-division multiplexed downlink signals are different in coding;
  • At least one second processing module is connected to the second optical codec module, and each of the second processing modules is configured to receive a downlink signal output by the second optical codec module after decoding, and time division The used upstream modulated signal is output to the second optical codec module.
  • each of the second processing modules comprises:
  • a downlink receiving module configured to receive a downlink signal that is decoded by the second optical codec module
  • an uplink modulation module configured to: after modulating at least one uplink signal to an optical carrier, pre-allocating the modulated uplink signal The time slot is output to the second optical codec module
  • the second circulator, the downlink receiving module and the uplink modulation module are connected to the second optical codec module by the second circulator.
  • the foregoing second processing module further includes:
  • the downlink receiving module and the uplink modulation module, and the second optical codec The modules are connected by the second circulator.
  • the embodiment of the invention further provides an optical distribution network device, comprising: a second optical coupler, configured to divide a downlink signal output by the optical line terminal into multiple channels, and receive the received multiple time division multiplexing uplink signal sinks After being synthesized, the output is output to the optical line terminal, and the downlink signal output by the optical line terminal is a signal that is modulated and encoded by at least one time-division multiplexed downlink signal, and the code of the time-division multiplexed downlink signal of different paths is used.
  • an optical distribution network device comprising: a second optical coupler, configured to divide a downlink signal output by the optical line terminal into multiple channels, and receive the received multiple time division multiplexing uplink signal sinks After being synthesized, the output is output to the optical line terminal, and the downlink signal output by the optical line terminal is a signal that is modulated and encoded by at least one time-division multiplexed downlink signal, and the code of the time-division multiplexed down
  • each of the second optical codec modules configured to decode one downlink signal output by the second optical coupler, and time division multiplexing uplink output to the optical network unit The signal is encoded and output to the second optical coupler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Description

光网络系统、 光线路终端、 光网络单元及光分配网装置 技术领域
本发明涉及光纤通信技术领域, 特别是涉及一种混合无源光网络系统、 光线路终端、 光网络单元及光分配网装置。 背景技术
在当前的数据通信中, 接入网由于是业务节点接口 (SNI )和相关用户 网络接口 (U I ) 的传送实体而成为通信网的基础设施。 正由于这个特点, 接入网应该釆用一种公平、 灵活、 安全的多址技术。 而无源光网络(PON, Passive Optical Network ) 因频带宽、 容量大、 扩容方便、 适合高速数据传 输等特点成为光接入网的热门技术, 也是目前光接入网技术中应用最广泛 的技术。
典型的无源光网络, 如图 1所示, 包括光线路终端(OLT, Optical Line Terminal )、 光分配网 (ODN, Optical Distribution Network )和光网络单元 ( ONU, Optical Network Unit )。还可以包括一个光网络终端( ONT, Optical Network Terminate ), 一个或多个光网络终端与光网络单元连接, 作为光网 络单元的具体用户。
各主要部分及功能如下:
光线路终端:主要提供网络与光分配网之间的光接口, 可分离交换和非 交换业务,管理来自 ONU 的信令和监控信息,为自身和 ONU提供维护和 供给功能。
光分配网: 主要由一个或多个分光器来连接 OLT和 ONU, 负责分发下 行数据并集中上行数据, 完成光信号的功率分配和波长复用等功能, 通常 釆用树型分支结构。 光网络单元: 提供用户数据、 视频、 电话网与光网络之间的接口, 将 接收到的光信号转换成用户所需的信号, 与光网络终端配合使用从而构成 一个网络终端。
基于不同复用技术的 PON目前主要有三种, 基于时分复用的无源光网 络(TDM-PON )、 基于波分复用的无源光网络 ( WDM-PON ) 和基于光码 分多址复用的无源光网络(OCDMA-PON )。
TDM-PON是应用最成熟的一种 PON技术, 目前广泛应用的 EPON和 GPON均属于 TDM-PON技术。 TDM-PON系统上下行都使用时分复用技术, 但各釆用一个波长。 虽然 TDM-PON具有技术成熟、 成本较低等的优点, 但在扩展更高带宽时, 基于电的高速突发接收技术实现起来十分困难, 不 仅需要增加复杂的带宽管理算法, 同时也在时钟同步、 快速光信号检测方 面, 对半导体和光电子行业提出了苛刻的要求。 此外, TDM-PON技术还存 在网络体系安全性脆弱和光纤故障定位困难等问题。
随着带宽需求量和用户数的不断增加 , WDM技术被逐渐弓 I入接入网并 和 PON相结合, 形成 WDM-PON 网络方案。 WDM-PON还是多用户共享 一路光纤, 但是不同的用户分配不同的波长, 这样可以提供带宽利用率。 波分复用分为粗波分复用 (CWDM )和密集波分复用 (DWDM ), CWDM 的信道间隔为 20nm, 而 DWDM信道间隔为 0.2nm到 1.2nm。 ITU-T已制 定的 G1983 标准只适用于 113 μ m/115 μ m的 WDM技术, 即粗波分复用。 密集波分复用可提供的波长数大大增加。 不过与其它宽带接入相比, WDM-PON初期投资大。 而且 WDM-PON所需的各种光电器件还不成熟 , 如多频激光器、 宽调谐单频激光器及集成放大器的 LED等还没有进入大规 模的商用化段, 这也将是 WDM-PON走向市场化的关键。
OCDMA是一种将光纤介质的大带宽和 CDMA的灵活性相结合的多址 复用技术, 对于升级现有的 PON系统或是作为下一代 PON的主要技术, OCDMA都是备受关注, 因为 OCDMA可以使用相对简单的、 无需要同步 的 OLT、 ONU设计, 现有的 PON也不需要为了适用 OCDMA而作太大的 升级, 另外 OCDMA本身一些吸引人的技术, 比如全光处理、 真正的异步 传输、 软容量、 协议透明和 QoS的灵活控制等, 也使得 OCDMA-PON的研 究曰益受到人们的重视。
然而, 光码分多址复用无源光网络( OCDMA-PON ) 系统也有其先天 的缺点: 码复用数有限, 限制了系统的接入用户数量; 随着复用数增加, 用户间的串扰逐渐增大, 一定程度上影响了系统的接入用户数量; OCDMA 是一种扩频技术, 需要较大的带宽, 由于用户间的干扰带来的 BER固有缺 陷, 影响了系统的接入用户数量。
光编 /解码器是 OCDMA系统的核心部件。 在发送端光编码器将数据比 特转换成扩频序列, 在接收端光解码器利用相关解码原理将扩频序列恢复 为数据比特。 在码分多址通信系统中, 所有用户共同占用同一信道的相同 频段和时间, 不同用户传输信息所用的信号靠不同的编码序列来区分, 即 每个用户都分配一个伪随机序列。 在发送端, 有每个用户的信息通过光编 / 解码器产生伪随机序列, 由于编 /解码器是唯一的, 所以伪随机序列也是唯 一的, 用户的每个信息比特编码成一串脉冲; 在接收端, 用户用相同的伪 随机序列对应的编 /解码器进行相关运算来恢复传输的信息。 这些伪随机序 列就叫做用户的地址码, 而每一个编码脉冲则称为一个码片。 光编解码器 对光信号起到一个加密解密的作用, 从而增强了网络的安全性。 目前, OCDMA编 /解码器主要类型: 基于光纤延时线的时域编 /解码方案、 基于衍 射光栅和相位掩模板的频域编 /解码方案、基于光纤布拉格光栅的编 /解码方 案、 基于阵列波导光栅的编 /解码方案。
混合 PON是釆用以上两种或两种以上技术的 PON。 发明内容
本发明的目的是提供一种混合无源光网络系统、 光线路终端、 光网络 单元及光分配网装置, 以实现基于时分复用技术和光码分多址技术的混合 无源光网络系统。
为了实现上述目的, 本发明提供了一种光网络系统, 包括:
光线路终端, 用于对至少一路时分复用的下行信号进行调制和编码, 对不同路的所述下行信号釆用的编码不同, 并将编码后的各路所述下行信 号汇合成一路后输出; 还用于接收上行信号, 并将接收到的上行信号解码 后输出;
光分配网, 用于接收所述光线路终端输出的所述下行信号, 将接收的 所述下行信号分成多路后直接输出或解码后输出; 还用于接收上行信号, 将接收到的所述上行信号汇合成一路后输出至所述光线路终端、 或将接收 到的多路时分复用的上行信号编码后汇合成一路输出至所述光线路终端, 不同路的所述时分复用的上行信号釆用的编码不同;
至少一个光网络单元, 每一所述光网络单元用于接收所述光分配网直 接输出的所述下行信号, 对接收的所述下行信号进行解码后输出, 或将接 收的所述光分配网解码后输出的所述下行信号输出; 还用于将一路时分复 用的上行信号进行编码, 不同路的所述时分复用的上行信号釆用的编码不 同, 并将编码后的所述上行信号输出至所述光分配网, 或直接将时分复用 的上行信号输出至光分配网, 由光分配网编码后输出至所述光线路终端。
其中, 所述光线路终端包括: 至少一个第一处理模块和第一光耦合器; 其中,
每一所述第一处理模块包括: 第一时分复用处理模块和第一光编解码 模块; 其中,
所述第一时分复用处理模块, 用于将至少一路时分复用的下行信号调 制到光载波后, 将所述调制后的下行信号发送出去, 及接收上行信号, 将 所述接收的上行信号输出;
所述第一光编解码模块, 与所述第一时分复用处理模块相连接, 用于 对所述第一时分复用处理模块发送出的下行信号进行编码后输出, 及接收 上行信号, 将所述接收的上行信号解码后输出至所述相连接的第一时分复 用处理模块;
所述第一光耦合器, 与每一所述至少一个第一处理模块包括的第一光 编解码模块相连接, 用于将所述至少一个第一处理模块的第一光编解码模 块编码后输出的下行信号汇合成一路后输出, 及接收上行信号, 并将接收 的上行信号分成多路后, 输出至相连接的所述第一光编解码模块。
所述第一时分复用处理模块包括:
下行调制模块, 用于将至少一路时分复用的下行信号调制到光载波后, 将所述调制后的下行信号发送至相连接的所述第一光编解码模块;
上行接收模块, 用于接收所述第一光编解码模块解码后输出的上行信 号, 并将所述接收的上行信号输出。
所述第一时分复用处理模块还包括:
第一环行器, 所述下行调制模块和上行接收模块通过所述第一环行器 与所述第一光编解码模块相连接。
所述光网络单元包括:
第二光编解码模块, 用于对所述光分配网输出的下行信号进行解码, 及对接收的时分复用的上行信号进行编码;
至少一个第二处理模块, 与所述第二光编解码模块相连接, 每一所述 第二处理模块, 用于接收所述第二光编解码模块解码后输出的下行信号、 及将时分复用的上行调制信号按照预先分配的时隙输出至所述第二光编解 码模块; 所述光分配网包括:
第二光耦合器, 与所述光线路终端和所述至少一个光网络单元相连接。 所述第二处理模块:
下行接收模块, 用于接收所述第二光编解码模块解码后的下行信号; 上行调制模块, 用于将至少一路上行信号调制到光载波后, 将所述调 制后的上行信号按照预先分配的时隙输出至所述第二光编解码模块;
第二环行器, 所述下行接收模块和上行调制模块与所述第二光编解码 模块通过所述第二环行器相连接。
所述光分配网包括:
第二光耦合器, 与所述光线路终端相连接, 用于将所述光线路终端输 出的一路下行信号分成多路, 及将接收到的多路时分复用上行信号汇合成 一路后输出;
多个第二光编解码模块, 每一所述第二光编解码模块用于对所述第二 光耦合器输出的一路下行信号进行解码, 及对光网络单元输出的时分复用 上行信号编码后输出至所述第二光耦合器;
所述光网络单元包括:
至少一个第二处理模块, 与所述多个第二光编解码模块中的一个相连 接, 每一所述第二处理模块, 用于接收所述第二光编解码模块解码后输出 的下行信号、 及将时分复用的上行调制信号按照预先分配的时隙输出至所 述第二光编解码模块。
一种光线路终端, 包括:
信号处理模块, 用于对至少一路时分复用的下行信号进行调制和编码, 不同路的所述下行信号釆用的编码不同; 还用于接收上行信号, 并将接收 到的上行信号解码后输出, 所述上行信号为: 所述光网络单元将至少一路 时分复用的上行信号进行编码后输出的上行信号, 不同路的时分复用上行 信号釆用的编码不同;
第一光耦合器, 与所述信号处理模块相连接, 用于将所述信号处理模 块编码后的各路下行信号汇合成一路后输出; 及接收上行信号, 并将接收 到的上行信号分成多路后输出至所述信号处理模块。
所述信号处理模块包括: 至少一个第一处理模块和第一光耦合器; 其 中,
每一所述第一处理模块包括: 第一时分复用处理模块和第一光编解码 模块; 其中,
所述第一时分复用处理模块, 用于将至少一路时分复用的下行信号调 制到光载波后, 将所述调制后的下行信号发送出去, 及接收上行信号, 将 所述接收的上行信号输出;
所述第一光编解码模块, 与所述第一时分复用处理模块相连接, 用于 对所述第一时分复用处理模块发送出的下行信号进行编码后输出, 及接收 上行信号, 将所述接收的上行信号解码后输出至相连接的第一时分复用处 理模块;
所述第一光耦合器, 进一步与所述各第一处理模块的第一光编解码模 块相连接, 用于将所述各第一处理模块的编解码模块编码后输出的下行信 号合成一路后输出, 及接收上行信号, 并将接收的上行信号分成多路后, 输出至所述相连接的第一光编解码模块。
一种光网络单元, 包括: 进行解码, 及对接收的时分复用上行信号进行编码后通过光分配网输出至 光线路终端, 所述光线路终端输出的下行信号为至少一路时分复用的下行 信号经调制、 编码后输出的信号, 不同路的时分复用下行信号釆用的编码 不同; 至少一个第二处理模块, 与所述第二光编解码模块相连接, 每一所述 第二处理模块, 用于接收所述第二光编解码模块解码后输出的下行信号、 及将时分复用的上行调制信号输出至所述第二光编解码模块。
一种光分配网装置, 包括:
第二光耦合器, 用于将光线路终端输出的一路下行信号分成多路, 及 将接收到的多路时分复用上行信号汇合成一路后输出至光线路终端, 所述 光线路终端输出的下行信号为至少一路时分复用的下行信号经调制、 编码 后输出的信号, 不同路的时分复用下行信号釆用的编码不同;
多个第二光编解码模块, 每一所述第二光编解码模块用于对所述第二 光耦合器输出的一路下行信号进行解码, 及对光网络单元输出的时分复用 上行信号编码后输出至所述第二光耦合器。
本发明的技术效果在于:
通过在下行时, 由光线路终端将至少一路已时分复用的下行信号调制、 编码, 不同路的下行信号釆用不同的编码, 并将编码后的各路信号通过光 分配网输出至光网络单元; 在上行时, 由光网络单元或光分配网将至少一 路的时分复用上行信号进行编码, 不同路的时分复用上行信号釆用不同的 编码,并将编码后的各路信号输出至光线路终端,较方便的实现了基于 TDM 和 OCDMA的混合无源光网络系统 , 克服了 TDM-PON中存在的网络体系 安全性脆弱、 带宽扩展、 网络升级性有限的缺陷及 OCDMA-PON接入用户 数量有限的技术问题, 具有较高网络安全性和较大接入用户容量。 附图说明
图 1为现有技术的典型的无源光网络的结构示意图;
图 2为本发明实施例的混合无源光网络系统中光线路终端的结构示意 图;
图 3为本发明实施例的混合无源光网络系统的结构示意图; 图 4为本发明实施例的混合无源光网络系统的结构示意图; 图 5A为本发明一实施例的混合无源光网络系统中,第一处理模块的结 构示意图;
图 5B为本发明另一实施例的混合无源光网络系统中,第一处理模块的 结构示意图;
图 6A为本发明一实施例的第二处理模块的一个示意图;
图 6B为本发明另一实施例的第二处理模块的一个示意图;
图 7为本发明另一实施例的第二处理模块的一个示意图;
图 8为本发明另一实施例的混合无源光网络系统的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及具 体实施例对本发明进行详细描述。
本发明提供了一种混合无源光网络系统, 用于实现时分复用无源光网 络和光码分多址无源光网络的混合, 包括:
光线路终端, 用于对至少一路时分复用的下行信号进行调制和编码, 对不同路的所述下行信号釆用的编码不同, 并将编码后的各路所述下行信 号汇合成一路后输出; 还用于接收上行信号, 并将接收到的上行信号解码 后输出;
光分配网, 用于接收所述光线路终端输出的下行信号, 将接收的下行 信号分成多路后直接输出或解码后输出; 及接收上行信号, 将接收到的上 行信号汇合成一路后输出至所述光线路终端、 或将接收到的多路时分复用 的上行信号编码后汇合成一路输出至所述光线路终端, 不同路的时分复用 的上行信号釆用的编码不同;
至少一个光网络单元, 每一所述光网络单元用于接收所述光分配网直 接输出的下行信号, 对所述接收的下行信号进行解码后输出, 或将接收的 所述光分配网解码后输出的下行信号输出; 及将一路时分复用的上行调制 信号进行编码, 不同路的时分复用上行信号釆用的编码不同, 并将编码后 的上行信号输出至光分配网, 或直接将时分复用的上行信号输出至光分配 网, 由光分配网编码后输出至所述光线路终端。
在本发明一实施例中, 第二光编解码模块可设置在光网络单元侧, 由 光网络单元可实现对下行信号的解码和对上行信号的编码; 在本发明的其 它实施例中, 第二光编解码模块可设置在光分配网侧, 由光分配网来实现 对下行信号的解码和对上行信号的编码。
图 2为本发明实施例的混合无源光网络系统中光线路终端的结构示意 图。 如图 2 , 该实施例的光线路终端包括: 至少一个第一处理模块和第一光 耦合器; 其中,
至少一个第一处理模块, 该例中为第一处理模块 1至第一处理模块 n, 每一所述第一处理模块包括: 第一时分复用处理模块, 用于将至少一路已 时分复用的下行信号调制到光载波后, 将所述调制后的下行信号发送出去, 及接收上行信号, 将所述接收的上行信号输出; 第一光编解码模块, 与所 述第一时分复用处理模块相连接, 用于对所述第一时分复用处理模块发送 出的下行信号进行编码后输出, 及接收上行信号, 将所述接收的上行信号 解码后输出至所述相连接的第一时分复用处理模块; 该例中, 不同的第一 处理模块中的第一光编解码模块不同, 以实现不同的时分复用下行信号能 有不同的编码;
第一光耦合器, 与每一所述至少一个第一处理模块包括的第一光编解 码模块相连接, 用于将所述各第一处理模块的第一光编解码模块编码后输 出的下行信号汇合成一路后输出, 及接收上行信号, 并将接收的上行信号 分成多路后, 输出至相连接的第一光编解码模块。
图 3为本发明实施例的混合无源光网络系统元的结构示意图, 如图 3 , 该混合无源光网络系统中, 光网络单元包括: 进行解码, 及对接收的时分复用上行信号进行编码后通过光分配网输出至 光线路终端;
多个第二处理模块, 与所述第二光编解码模块相连接, 每一第二处理 模块用于接收所述第二光编解码模块解码后输出的下行信号、 及将时分复 用的上行调制信号按照预先分配的时隙输出至所述第二光编解码模块。 具 体地, 一个第二光编解码模块可与多个处理模块通过耦合器相连接。 每一 第二处理模块将调制后的上行信号按照预先分配的时隙发送至第二光编解 码模块, 以通过第二光编解码模块编码后通过光传输网发送至 OLT。 这样 实现了一个编解码器对应一组 TDM信号。扩大了系统的接入用户容量。 具 体实现中,一个第二处理模块如一个 TDM-PON ONU可对应一个具体用户。
该实施例的光分配网包括: 第二光耦合器, 与所述光线路终端和所述 至少一个光网络单元相连接。
在本发明的其它实施例中, 第二光编解码模块可仅与一个第二处理模 块相连接。
上述第一、 第二光编解码模块用于对信号编码或解码, 具体的实现中, 第一、 第二光编解码模块可通过编码器和解码器分别实现光编码和光解码 功能, 也可以通过光编解码器在需要编码时编码, 在需要解码时解码。
作为本发明实施例的一种实现方式, 第一时分复用处理模块可由现有 技术的 TDM-PON 的光线路终端充当, 这样只需增加与 TDM-PON 的光线 路终端相连接的第一光编解码模块, 及与第一光编解码模块相连接的第一 光耦合器即可实现本发明实施例的光线路终端。 作为本发明实施例的一种 实现方式, 第二处理模块可由现有技术的 TDM-PON 的光网络单元充当, 这样只需在现有 TDM-PON 的光网络单元的基础上增加与 TDM-PON 的 ONU相连接的第二光编解码模块即可实现本发明实施例的混合无源光网络 的光网络单元。 具体地, 参见图 4所示的本发明实施例的混合无源光网络 系统的结构示意图。 如图 4, 该实施例的混合无源光网络系统的 OLT可以 理解为由基于 TDM 技术的光线路终端部分即 TDM-PON OLT 和基于 OCDMA技术的 OLT部分即 OCDMA-PON OLT这两部分组成, 该实施例 的混合无源光网络系统的 ONU可以理解为由基于 TDM技术的 ONU部分 和基于光码分多址技术的 ONU部分这两部分组成。
如图 4 , 本发明实施例的 OLT 由多个 TDM-PON 的 OLT 和一个 OCDMA-PON的 OLT两部分组成,每个 TDM-PON的 OLT与 OCDMA-PON 中 OLT的一个光编解码器(第一光编解码器)相连接构成一路数据接收和 发送链路结构即构成一个第一处理模块; 多路上述数据收发链路即多个第 一处理模块通过第一光耦合器合并到一路, 传输到 ODN; 以上各个器件之 间均使用传输光纤进行连接。 该 OLT通过 ODN与一个或多个 ONU相连。 该例中, 以 n个 TDM-PON OLT为例, 每个 TDM-PON OLT分别与第一光 编解码器 1 至第一光编解码器 n 中的一个相连接, 该例中, 与不同的 TDM-PON OLT相连接的光编解码器各不相同, 以使得不同的 TDM-PON OLT输出的不同下行信号的编码不同。
该例的 PON 系统中, ONU 中的第二光解码器与多个 TDM-PON 的 ONU相连接,每个 TDM-PON 的 ONU按照预先分配的时隙发送上行信号。 具体实现中, 在第二光编解码器与多个 TDM-PON ONU可利用耦合器来进 行连接。 处理时分复用的下行信号时, 下行数据流经编解码器解码后, 发 送到各个 TDM-PON的 ONU, 被各 TDM-PON的 ONU的下行接收模块接 收; 处理上行信号时, 数据流先按照系统预先分配的时隙发送后, 再经第 二光编解码器进行编码, 传到 ODN。
该例中,第一编解码器的数目与第二编解码器的数目及系统的 ONU的 数目相对应, 均为 n个, n为自然数。
图 5A为本发明实施例的混合无源光网络系统中,第一处理模块的结构 示意图。 如图 5A, 第一时分复用处理模块包括: 下行调制模块, 用于将至 少一路已时分复用的下行信号调制到光载波后, 将所述调制后的下行信号 发送至相连接的第一光编解码模块, 该例中以第一光编解码器 1 为例; 上 行接收模块, 用于接收第一光编解码模块解码后输出的上行信号, 并将所 述接收的上行信号输出。 该例中, 第一时分复用处理模块还包括: 第一环 行器, 下行调制模块和上行接收模块通过所述第一环行器与所述第一光编 解码模块相连接。 第一环行器的端口 1与下行调制模块相连接, 端口 2与 光编解码器 1相连接, 端口 3与上行接收模块相连接。 下行调制模块通过 第一环行器与光编解码器 1 相连, 构成一路数据编码和发送链路结构; 上 行接收模块通过第一环行器与光编解码器 1 相连, 构成一路数据解码和接 收链路结构。 该例中只是以第一条链路为例进行说明, 对与其它光编解码 器相连接的其它链路类似, 在此不再赘述。
信道中, 当 OLT处理下行信号时, 下行数据调制模块将数据核心网中 的用户数据流进行调制后发送, 输入到第一环行器的端口 1 , 从第一环行器 的端口 2输出, 经第一光编解码器进行编码后, 最后输入到第一光耦合器 中; 再通过光纤传输到 ODN, 最后发送到 ONU。 当 OLT处理上行数据时, 由 0DN传输来的编码后的数据流经第一光耦合器传输到 0LT中每个数据 接收链路, 其首先经过第一光编解码器进行解码, 得到恢复出来的对应的 用户数据流, 由第一环行器的端口 2进入, 从第一环行器的端口 3输出后, 最终被 TDM-P0N的 0LT中的数据接收模块接收, 最后上传到核心网中。
0LT 中的光编解码器, 当处理下行信号时为编码器, 处理上行信号时 为解码器。 且 OLT中的光编解码器与 ONU中的光编解码器——对应的, 这样才能恢复出原来的数据。 图 5B为本发明另一实施例的混合无源光网络系统中,第一处理模块的 结构示意图。 如图 5B, 由第一光编码器来实现下行信号的编码功能, 由第 一光解码器来实现上行信号的解码功能, 光编码器接在下行调制模块和第 一环形器 1端口之间, 光解码器接在上行接收模块和第一环形器的 3端口 之间。
本发明实施例的 ONU 可以理解为由 TDM-PON 的 ONU 部分和 OCDMA-PON的 ONU部分这两部分组成, 如图 4, 每一本发明实施例的 ONU包括: 第二光编解码器和至少一个第二处理模块, 该例中, 第二处理 模块由 TDM-PON的 ONU来充当。 该至少一个 TDM-PON的 ONU按照预 先分配的时隙发送上行信号后, 由第二光编解码器编码后传输至光分配网。 该实施例中,第二处理模块即 TDM-PON的 ONU与 OCDMA-PON中 ONU 的第二光编解码器相连构成光网络单元中的一路数据接收和发送链路结 构。 图 6A为本发明实施例的第二处理模块的一个示意图。 如图 6A, 该实 施例的第二处理模块即 TDM-PON的 ONU部分主要包括: 下行接收模块, 用于接收所述第二光编解码模块解码后的下行信号; 上行调制模块, 用于 将至少一路上行信号调制到光载波后, 将所述调制后的上行信号按照预先 分配的时隙输出至所述第二光编解码模块。 该例中, 第二处理模块还包括: 第二环行器, 下行接收模块和上行调制模块与所述第二光编解码模块通过 所述第二环行器相连接。 其中, 下行接收模块通过第二环行器的端口 2与 第二光编解码器相连接, 构成一路数据解码和接收链路结构; 上行调制模 块通过第二环行器的端口 3 与第二光编解码器相连接, 构成一路数据编码 和发送链路结构; 第二光编解码器通过端口 1与第二环行器相连接。 ODN 包括: 第二光耦合器, 与光线路终端和所述至少一个光网络单元相连接。 一个或多个 ONU通过第二光耦合器汇合成一路后,输出至 OLT; 以上各个 器件之间均使用传输光纤进行连接; ONU通过 ODN与 OLT相连。 信道中, 当 ONU处理下行信号时, 用户数据发送到各个 ONU端, 首 先经第二光编解码器进行解码, 恢复出来的数据流输入到环行器端口 1 ,从 环行器端口 2输出, 最终被下行接收模块接收。 当 ONU处理上行数据时, 上行数据调制模块将用户数据流调制后, 按照系统分配的时隙输入到第二 环行器的端口 3 ,从第二环行器的端口 1输出,经第二光编解码器进行编码, 最后编码后的数据流经 ODN, 上传到 OLT中。 如图 6, 该例的 ONU中, 一个第二光编解码器对应一个第二处理模块, 该例中, 即为对应一个 TDM-PON的 0而。
图 6B为本发明实施例的第二处理模块的一个示意图。 如图 6B, 由第 二光编码器来实现上行信号的编码, 由第二光解码器来实现下行信号的解 码, 第二光编码器接在上行调制模块和第二环形器 3 端口之间, 第二光解 码器接在下行接收模块和第二环形器的 2端口之间。
图 7 为 ONU 中 TDM-PON 的 ONU 部分和第二光解码器即 OCDMA-PON的 ONU部分的另一种对应形式。该例中,一个 OCDMA-PON 的 ONU部分对应一个 TDM-PON的 ONU部分, 即一个第二光解码器对应 一个第二处理模块, 该例中由 TDM-PON的 ONU来实现该第二处理模块。 其中, TDM-PON的 ONU的结构可参照图 6所示。
ONU中的第二光编解码器, 当处理上行信号时为编码器, 处理下行信 号时为解码器。 且 ONU中的光编解码器与 OLT中的光编解码器——对应 的, 这样才能恢复出原来的数据。
如图 8, 在本发明的另一实施例中, 第二光编解码模块设置在光分配网 中。 该实施例的混合无源 PON网络与图 3所示实施例的不同之处在于, 第 二光编解码模块设置在光分配网中了, 光网络单元中无需再设置光编解码 模块, 简化了光网络单元的结构。
该例中, 光分配网包括: 第二光耦合器, 与所述光线路终端相连接, 用于将所述光线路终端输出的一路下行信号分成多路, 及将接收到的多路 时分复用上行信号汇合成一路后输出; 多个第二光编解码模块, 每一所述 第二光编解码模块用于对所述第二光耦合器输出的一路下行信号进行解 码, 及对光网络单元输出的时分复用上行信号编码后输出至所述第二光耦 合器。 该例中, 光网络单元包括: 至少一个第二处理模块, 与所述多个第 二光编解码模块中的一个相连接, 每一所述第二处理模块, 用于接收所述 第二光编解码模块解码后输出的下行信号、 及将时分复用的上行调制信号 按照预先分配的时隙输出至所述第二光编解码模块。
该例的第二处理模块同样可包括: 下行接收模块, 用于接收所述第二 光编解码模块解码后的下行信号; 上行调制模块, 用于将至少一路上行信 号调制到光载波后, 将所述调制后的上行信号按照预先分配的时隙输出至 所述第二光编解码模块; 及, 第二环行器, 所述下行接收模块和上行调制 模块与所述第二光编解码模块通过所述第二环行器相连接。 该例中, 各模 块的具体结构可参照上文所描述的, 在此不再赘述。
本发明实施例还提供了一种光线路终端, 包括: 信号处理模块, 用于 将至少一路已时分复用的下行信号调制、 编码, 不同路的时分复用下行信 号釆用的编码不同; 及接收上行信号, 并将接收到的上行信号解码后输出, 所述上行信号为: 所述光网络单元将至少一路时分复用的上行调制信号进 行编码后输出的上行信号, 不同路的时分复用上行信号釆用的编码不同; 第一光耦合器, 与所述信号处理模块相连接, 用于将所述信号处理模块编 码后的各路下行信号汇合成一路后输出; 及接收上行信号, 并将接收到的 上行信号分成多路后输出至所述信号处理模块。
优选地, 该实施例的光线路终端中, 所述信号处理模块包括: 至少一 个第一处理模块, 每一所述第一处理模块包括: 第一时分复用处理模块, 用于将至少一路已时分复用的下行信号调制到光载波后, 将所述调制后的 下行信号发送出去, 及接收上行信号, 将所述接收的上行信号输出; 第一 光编解码模块, 与所述第一时分复用处理模块相连接, 用于对所述第一时 分复用处理模块发送出的下行信号进行编码后输出, 及接收上行信号, 将 所述接收的上行信号解码后输出至相连接的第一时分复用处理模块;
所述第一光耦合器, 进一步与所述各第一处理模块的第一光编解码模 块相连接, 用于将所述各第一处理模块的编解码模块编码后输出的下行信 号合成一路后输出, 及接收上行信号, 并将接收的上行信号分成多路后, 输出至所述相连接的第一光编解码模块。
又一方面, 本发明的实施例提供了一种光网络单元, 包括: 进行解码, 及对接收的时分复用上行信号进行编码后通过光分配网输出至 光线路终端, 所述光线路终端输出的下行信号为: 至少一路已时分复用的 下行信号经调制、 编码后输出的信号, 不同路的已时分复用下行信号釆用 的编码不同;
至少一个第二处理模块, 与所述第二光编解码模块相连接, 每一所述 第二处理模块, 用于接收所述第二光编解码模块解码后输出的下行信号、 及将时分复用的上行调制信号输出至所述第二光编解码模块。
优选地, 每一所述第二处理模块包括:
下行接收模块, 用于接收所述第二光编解码模块解码后的下行信号; 上行调制模块, 用于将至少一路上行信号调制到光载波后, 将所述调 制后的上行信号按照预先分配的时隙输出至所述第二光编解码模块;
第二环行器, 所述下行接收模块和上行调制模块与所述第二光编解码 模块通过所述第二环行器相连接。
优选地, 上述第二处理模块还包括:
第二环行器, 所述下行接收模块和上行调制模块与所述第二光编解码 模块通过所述第二环行器相连接。
本发明实施例还提供了一种光分配网装置, 包括: 第二光耦合器, 用 于将光线路终端输出的一路下行信号分成多路, 及将接收到的多路时分复 用上行信号汇合成一路后输出至光线路终端, 所述光线路终端输出的下行 信号为至少一路已时分复用的下行信号经调制、 编码后输出的信号, 不同 路的已时分复用下行信号釆用的编码不同; 多个第二光编解码模块, 每一 所述第二光编解码模块用于对所述第二光耦合器输出的一路下行信号进行 解码, 及对光网络单元输出的时分复用上行信号编码后输出至所述第二光 耦合器。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进 和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1、 一种混合无源光网络系统, 其特征在于, 包括:
光线路终端, 用于对至少一路时分复用的下行信号进行调制和编码, 对不同路的所述下行信号釆用的编码不同, 并将编码后的各路所述下行信 号汇合成一路后输出; 还用于接收上行信号, 并将接收到的上行信号解码 后输出;
光分配网, 用于接收所述光线路终端输出的所述下行信号, 将接收的 所述下行信号分成多路后直接输出或解码后输出; 还用于接收上行信号, 将接收到的所述上行信号汇合成一路后输出至所述光线路终端、 或将接收 到的多路时分复用的上行信号编码后汇合成一路输出至所述光线路终端, 不同路的所述时分复用的上行信号釆用的编码不同;
至少一个光网络单元, 每一所述光网络单元用于接收所述光分配网直 接输出的所述下行信号, 对接收的所述下行信号进行解码后输出, 或将接 收的所述光分配网解码后输出的所述下行信号输出; 还用于将一路时分复 用的上行信号进行编码, 不同路的所述时分复用的上行信号釆用的编码不 同, 并将编码后的所述上行信号输出至所述光分配网, 或直接将时分复用 的上行信号输出至光分配网, 由光分配网编码后输出至所述光线路终端。
2、 根据权利要求 1所述的光网络系统, 其特征在于, 所述光线路终端 包括: 至少一个第一处理模块和第一光耦合器; 其中,
每一所述第一处理模块包括: 第一时分复用处理模块和第一光编解码 模块; 其中,
所述第一时分复用处理模块, 用于将至少一路时分复用的下行信号调 制到光载波后, 将所述调制后的下行信号发送出去, 及接收上行信号, 将 所述接收的上行信号输出;
所述第一光编解码模块, 与所述第一时分复用处理模块相连接, 用于 对所述第一时分复用处理模块发送出的下行信号进行编码后输出, 及接收 上行信号, 将所述接收的上行信号解码后输出至所述相连接的第一时分复 用处理模块;
所述第一光耦合器, 与每一所述至少一个第一处理模块包括的第一光 编解码模块相连接, 用于将所述至少一个第一处理模块的第一光编解码模 块编码后输出的下行信号汇合成一路后输出, 及接收上行信号, 并将接收 的上行信号分成多路后, 输出至相连接的所述第一光编解码模块。
3、 根据权利要求 2所述的光网络系统, 其特征在于, 所述第一时分复 用处理模块包括:
下行调制模块, 用于将至少一路时分复用的下行信号调制到光载波后, 将所述调制后的下行信号发送至相连接的所述第一光编解码模块;
上行接收模块, 用于接收所述第一光编解码模块解码后输出的上行信 号, 并将所述接收的上行信号输出。
4、 根据权利要求 3所述的光网络系统, 其特征在于, 所述第一时分复 用处理模块还包括:
第一环行器, 所述下行调制模块和上行接收模块通过所述第一环行器 与所述第一光编解码模块相连接。
5、 根据权利要求 1至 4中任一项所述的光网络系统, 其特征在于, 所述光网络单元包括:
第二光编解码模块, 用于对所述光分配网输出的下行信号进行解码, 及对接收的时分复用的上行信号进行编码;
至少一个第二处理模块, 与所述第二光编解码模块相连接, 每一所述 第二处理模块, 用于接收所述第二光编解码模块解码后输出的下行信号、 及将时分复用的上行调制信号按照预先分配的时隙输出至所述第二光编解 码模块; 所述光分配网包括:
第二光耦合器, 与所述光线路终端和所述至少一个光网络单元相连接。
6、 根据权利要求 5所述的光网络系统, 其特征在于, 所述第二处理模 块:
下行接收模块, 用于接收所述第二光编解码模块解码后的下行信号; 上行调制模块, 用于将至少一路上行信号调制到光载波后, 将所述调 制后的上行信号按照预先分配的时隙输出至所述第二光编解码模块;
第二环行器, 所述下行接收模块和上行调制模块与所述第二光编解码 模块通过所述第二环行器相连接。
7、 根据权利要求 1至 4中任一项所述的光网络系统, 其特征在于, 所述光分配网包括:
第二光耦合器, 与所述光线路终端相连接, 用于将所述光线路终端输 出的一路下行信号分成多路, 及将接收到的多路时分复用上行信号汇合成 一路后输出;
多个第二光编解码模块, 每一所述第二光编解码模块用于对所述第二 光耦合器输出的一路下行信号进行解码, 及对光网络单元输出的时分复用 上行信号编码后输出至所述第二光耦合器;
所述光网络单元包括:
至少一个第二处理模块, 与所述多个第二光编解码模块中的一个相连 接, 每一所述第二处理模块, 用于接收所述第二光编解码模块解码后输出 的下行信号、 及将时分复用的上行调制信号按照预先分配的时隙输出至所 述第二光编解码模块。
8、 一种光线路终端, 其特征在于, 包括:
信号处理模块, 用于对至少一路时分复用的下行信号进行调制和编码, 不同路的所述下行信号釆用的编码不同; 还用于接收上行信号, 并将接收 到的上行信号解码后输出, 所述上行信号为: 所述光网络单元将至少一路 时分复用的上行信号进行编码后输出的上行信号, 不同路的时分复用上行 信号釆用的编码不同;
第一光耦合器, 与所述信号处理模块相连接, 用于将所述信号处理模 块编码后的各路下行信号汇合成一路后输出; 及接收上行信号, 并将接收 到的上行信号分成多路后输出至所述信号处理模块。
9、 根据权利要求 8所述的光线路终端, 其特征在于,
所述信号处理模块包括: 至少一个第一处理模块和第一光耦合器; 其 中,
每一所述第一处理模块包括: 第一时分复用处理模块和第一光编解码 模块; 其中,
所述第一时分复用处理模块, 用于将至少一路时分复用的下行信号调 制到光载波后, 将所述调制后的下行信号发送出去, 及接收上行信号, 将 所述接收的上行信号输出;
所述第一光编解码模块, 与所述第一时分复用处理模块相连接, 用于 对所述第一时分复用处理模块发送出的下行信号进行编码后输出, 及接收 上行信号, 将所述接收的上行信号解码后输出至相连接的第一时分复用处 理模块;
所述第一光耦合器, 进一步与所述各第一处理模块的第一光编解码模 块相连接, 用于将所述各第一处理模块的编解码模块编码后输出的下行信 号合成一路后输出, 及接收上行信号, 并将接收的上行信号分成多路后, 输出至所述相连接的第一光编解码模块。
10、 一种光网络单元, 其特征在于, 包括: 进行解码, 及对接收的时分复用上行信号进行编码后通过光分配网输出至 光线路终端, 所述光线路终端输出的下行信号为至少一路时分复用的下行 信号经调制、 编码后输出的信号, 不同路的时分复用下行信号釆用的编码 不同;
至少一个第二处理模块, 与所述第二光编解码模块相连接, 每一所述 第二处理模块, 用于接收所述第二光编解码模块解码后输出的下行信号、 及将时分复用的上行调制信号输出至所述第二光编解码模块。
11、 一种光分配网装置, 其特征在于, 包括:
第二光耦合器, 用于将光线路终端输出的一路下行信号分成多路, 及 将接收到的多路时分复用上行信号汇合成一路后输出至光线路终端, 所述 光线路终端输出的下行信号为至少一路时分复用的下行信号经调制、 编码 后输出的信号, 不同路的时分复用下行信号釆用的编码不同;
多个第二光编解码模块, 每一所述第二光编解码模块用于对所述第二 光耦合器输出的一路下行信号进行解码, 及对光网络单元输出的时分复用 上行信号编码后输出至所述第二光耦合器。
PCT/CN2010/076318 2010-04-23 2010-08-24 光网络系统、光线路终端、光网络单元及光分配网装置 WO2011130986A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/522,053 US8886043B2 (en) 2010-04-23 2010-08-24 Optical network system, optical line terminal, optical network unit and optical distribution network apparatus
EP10850118.0A EP2518911A4 (en) 2010-04-23 2010-08-24 Optical network system, optical line terminal, optical network unit and optical distribution network apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010159970.8A CN101902293B (zh) 2010-04-23 2010-04-23 光网络系统、光线路终端、光网络单元及光分配网装置
CN201010159970.8 2010-04-23

Publications (1)

Publication Number Publication Date
WO2011130986A1 true WO2011130986A1 (zh) 2011-10-27

Family

ID=43227521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076318 WO2011130986A1 (zh) 2010-04-23 2010-08-24 光网络系统、光线路终端、光网络单元及光分配网装置

Country Status (4)

Country Link
US (1) US8886043B2 (zh)
EP (1) EP2518911A4 (zh)
CN (1) CN101902293B (zh)
WO (1) WO2011130986A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036134A (zh) * 2011-01-18 2011-04-27 北京邮电大学 基于正交频分复用的汇聚式光接入网系统和方法
WO2012149810A1 (zh) * 2011-10-25 2012-11-08 华为技术有限公司 无源光网络系统及其下行传输方法
CN103139670B (zh) * 2011-11-25 2018-04-10 中兴通讯股份有限公司 共存无源光网络系统及上、下行光信号发送方法
WO2014094227A1 (zh) * 2012-12-18 2014-06-26 华为技术有限公司 光网络系统的通信方法、系统及装置
US9954609B2 (en) * 2012-12-31 2018-04-24 Network Integrity Systems Inc. Alarm system for an optical network
CN103281634A (zh) * 2013-06-21 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN104639996B (zh) * 2013-11-12 2018-10-09 华为技术有限公司 语音业务的实现方法、设备及系统
WO2016077952A1 (zh) * 2014-11-17 2016-05-26 华为技术有限公司 一种光线路终端、光网络单元及无源光网络系统
KR102287210B1 (ko) * 2015-05-21 2021-08-09 주식회사 쏠리드 분산 안테나 시스템의 노드 유닛
CN105680945B (zh) * 2016-01-15 2018-04-24 东南大学 一种波长互组播型过程层光网络结构
CN107493149B (zh) * 2016-06-12 2019-03-01 天津大学 基于全网波长同步的超密集波分复用无源光网络
CN106506138A (zh) * 2016-11-11 2017-03-15 深圳大学 空间光通信系统的跨层加密方法及系统
CN108710174B (zh) * 2018-05-28 2020-03-27 天津大学 一种基于波长自动锁定与跟踪技术的udwdm-pon发射机
CN109510685B (zh) * 2018-12-03 2020-05-05 武汉邮电科学研究院有限公司 一种超密集波分复用无源光纤网络传输系统及传输方法
CN110248263B (zh) * 2019-06-19 2021-06-22 国家电网有限公司 实现任意onu间直接通信和保护的三维无源光接入网系统
CN111147962B (zh) * 2019-12-23 2021-09-14 中国联合网络通信集团有限公司 一种配置宽带网络的方法及装置
CN111600652B (zh) * 2020-05-13 2021-10-15 中国人民解放军战略支援部队信息工程大学 一种可见光多用户时分复用多址传输方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512642A1 (en) * 1991-05-08 1992-11-11 ALCATEL BELL Naamloze Vennootschap Optical transceiver arrangement
CN101090297A (zh) * 2006-06-15 2007-12-19 华为技术有限公司 光码分多址系统
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065298B1 (en) * 1998-11-17 2006-06-20 Intel Corporation Code-based optical networks, methods, and apparatus
WO2003007515A2 (en) * 2001-07-10 2003-01-23 Salira Optical Network Systems, Inc Passive optical network and time division multiplexed system
US7706688B2 (en) * 2006-07-17 2010-04-27 University Of Ottawa Wavelength reconfigurable optical network
JP2008301153A (ja) * 2007-05-31 2008-12-11 Oki Electric Ind Co Ltd 受動光ネットワーク通信方法及び受動光ネットワーク通信システム
KR100948831B1 (ko) * 2007-10-19 2010-03-22 한국전자통신연구원 시분할 다중 및 파장 분할 다중 접속 수동형 광 네트워크장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512642A1 (en) * 1991-05-08 1992-11-11 ALCATEL BELL Naamloze Vennootschap Optical transceiver arrangement
CN101090297A (zh) * 2006-06-15 2007-12-19 华为技术有限公司 光码分多址系统
CN101237293A (zh) * 2008-03-03 2008-08-06 中兴通讯股份有限公司 波分时分混合复用无源光网络系统

Also Published As

Publication number Publication date
US20130051802A1 (en) 2013-02-28
US8886043B2 (en) 2014-11-11
EP2518911A1 (en) 2012-10-31
EP2518911A4 (en) 2017-11-01
CN101902293A (zh) 2010-12-01
CN101902293B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2011130986A1 (zh) 光网络系统、光线路终端、光网络单元及光分配网装置
JP4655610B2 (ja) 光通信システム
CN102804701B (zh) 光多路复用终端装置、波分多路复用无源光网络系统、下行波长发送方法
WO2011130982A1 (zh) 基于光码分多址复用的无源光网络系统及光线路终端
KR100948831B1 (ko) 시분할 다중 및 파장 분할 다중 접속 수동형 광 네트워크장치
US8488977B2 (en) Time division multiple access over wavelength division multiplexed passive optical network
WO2011130995A1 (zh) 光码分多址无源光网络系统、光分配网装置及光线路终端
JPWO2007138642A1 (ja) 光アクセスネットワークシステム
WO2009033415A1 (fr) Système de réseau optique passif à mélange de multiplexages par répartition en longueur d'onde et par répartition temporelle, terminal et procédé de transmission de signal
US20090232499A1 (en) Passive optical network communication method and system
WO2008019612A1 (fr) Source de lumière commune, système de réseau optique passif à multiplexage par répartition en longueur d'onde et procédé permettant au système de partager la source de lumière
WO2011130985A1 (zh) 可重构编解码器及基于该设备的光码分多址无源光网络
US9699532B2 (en) Systems and methods of hybrid DWDM aggregation and extension for time division multiplexing passive optical networks
CN101345599A (zh) 时分多址无源光网络的升级方法和无源光网络系统
US7065298B1 (en) Code-based optical networks, methods, and apparatus
CA2351682C (en) Code-based optical networks, methods, and apparatus
WO2007109958A1 (fr) Procédé, dispositif et système de transmission pour wdm-pon
JP4646773B2 (ja) 局側終端装置及び光送信機並びに加入者側終端装置
JP4725651B2 (ja) 受動光ネットワーク通信システム
Cincotti et al. Future passive optical networks: Can CDM beat WDM?
KR20040001028A (ko) 광 가입자 망 구조
Kim et al. Evolutionary optical access network: port-share based scalable WDM based Ethernet PON
Bhanot et al. PERFORMANCE EVALUATION OF HYBRID PASSIVE OPTICAL NETWORK
Wang et al. TDM-PON

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010850118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13522053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE