WO2010091931A1 - Nickel-basis-gussbauteil mit einem ausgleichskörper und verfahren zum herstellen des nickel-basis-gussbauteils - Google Patents

Nickel-basis-gussbauteil mit einem ausgleichskörper und verfahren zum herstellen des nickel-basis-gussbauteils Download PDF

Info

Publication number
WO2010091931A1
WO2010091931A1 PCT/EP2010/050726 EP2010050726W WO2010091931A1 WO 2010091931 A1 WO2010091931 A1 WO 2010091931A1 EP 2010050726 W EP2010050726 W EP 2010050726W WO 2010091931 A1 WO2010091931 A1 WO 2010091931A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
cast component
base
compensating
base cast
Prior art date
Application number
PCT/EP2010/050726
Other languages
English (en)
French (fr)
Inventor
Heinz Dallinger
Torsten-Ulf Kern
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP10702642A priority Critical patent/EP2396128A1/de
Priority to JP2011548636A priority patent/JP2012517351A/ja
Priority to CN201080007377XA priority patent/CN102317008B/zh
Publication of WO2010091931A1 publication Critical patent/WO2010091931A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting

Definitions

  • the invention relates to a nickel-base cast component and to a method for producing a nickel-based cast component, wherein the nickel-based cast component is in particular a steam turbine housing.
  • Steam turbines are used for example in steam power plants at live steam temperatures up to 620 0 C and up to a shaft power of 1000 MW. It is desirable to select the steam temperature as high as possible to increase the efficiency of the steam power plant, the steam temperature is sought up to 720 0 C.
  • areas of the housing of the steam turbine are in direct contact with the live steam, so that the use of nickel-based materials for reasons of strength is necessary for this purpose. Affected by this are in particular the high-pressure inner housing, the inner-pressure inner housing and valves of the steam turbine.
  • the components of the steam turbine up to a power range of 1000 MW such a high weight that the limits of manufacturability and manageability can be at least partially exceeded.
  • the use of the nickel-base alloys for the components of the steam turbine leads to high production costs, with the production times of these components being long.
  • the machining of the components, such as milling, broaching or drilling, due to the material of the nickel-base alloys is complicated and expensive.
  • the object of the invention is to provide a nickel-base cast component which is easier to produce by a corresponding method for producing this nickel-base cast component.
  • the nickel-based cast component according to the invention has a compensation body which is cast into the cast component and thereby covers a cavity formed in the nickel-based material, the compensation body being compressed in such a way by the nickel-based material surrounding it that after cooling of the cast component during its production by casting, the compensation body has yielded to a shrinkage of the surrounding nickel-based material, whereby the formation of cracks in the nickel-based material caused by the shrinkage is prevented.
  • the compensation body is formed such that it is a hollow body before shrinking, which collapsed after shrinking in itself and is thereby destroyed. Further, it is preferred that the compensation body is formed as a solid body, the material of which prior to casting has at least such a high porosity that the pores in the material of the solid body are compressed by the shrinkage. It is preferred that the material of the compensating body is ceramic.
  • the compensating body is formed as a hollow body, which is slotted by a parting line, on which the hollow body overlaps after shrinking.
  • the compensating body is formed as a hollow body composed of at least two shell elements, the shell elements, after shrinking at their edges, overlapping each other.
  • the compensation body is formed with a lattice structure defining the outer surface of the compensation body which is closed. Preferred dimensions of the material of the compensating body is steel.
  • the compensating body is furthermore preferably coated with a separating layer with which it is prevented that the compensating body is connected to the nickel-based material surrounding it. is bound.
  • the nickel-based material preferably comprises a solid solution hardening alloy.
  • the nickel-based cast component is preferably a steam turbine housing.
  • the cavity is a channel provided in the nickel-base cast component and / or an undercut provided in the nickel-base cast component.
  • the method according to the invention for producing a nickel-base cast component has the steps according to claims 13 or 14.
  • the compensating body is removed during post-processing of the nickel-base cast component.
  • the compensation body is cast, whereby a cavity is defined by the compensation body.
  • the balancing body is deformed or destroyed by the shrinkage process during solidification of the nickel-based material and can be easily removed thereby.
  • cracking in the nickel-base cast component is prevented during the shrinking process.
  • the compensating body is provided with a greater deformability than the nickel-based material in that the compensating body is provided with a targeted weakening of its structure.
  • the solid solution hardening alloy has the advantage that, in the event of subsequent heat treatment of the nickel-based cast component, there are no formation-related or exacerbation-related stresses at critical radii, cavities or transitions. As a result, cracking in the nickel-based cast component is prevented.
  • the inventively defined generation of the cavity in the nickel-based cast component by pouring the compensation body, taking into account the shrinkage behavior of the nickel-based material cracking in the nickel-base cast component can be prevented. If the compensating body is provided with the separating layer, then a connection of the compensating body to the nickel-based material is prevented, wherein the compensating body can be removed within the framework of a post-processing of the nickel-based cast component.
  • the nickel-based cast component according to the invention can advantageously have a complicated geometric shape, wherein the strength of the nickel-based cast component is not impaired thereby.
  • the machining time of the nickel-based cast component is reduced and its weight reduced by the provision of the cavity. As a result, larger nickel-based cast components tend to be produced with the same material use as without cavity formation.
  • FIG. 1 shows a cross section through a section of a
  • Fig. 2 to 5 cross sections of compensation bodies.
  • a steam turbine casing 1 has a cavity 2.
  • the cavity 2 is filled by a compensating body 3.
  • the compensating body 3 is a ceramic body 4, which is designed as a solid body whose material has at least such a high porosity prior to the casting of the steam turbine casing 1 that the shrinkage of the ceramic body 4 in the cavity 2 causes the pores of the body to become hollow Ceramic body 4 are compressed.
  • the balancing body 3 is shown as a steel body 5, which is formed as a hollow body 6.
  • the outer surface of the hollow body 6 is provided with a separating layer 7, with which it is prevented that the hollow body 6 is connected in the cavity 2.
  • a first embodiment of the hollow body 6 is shown, wherein the hollow body 6 is formed as a cylinder.
  • the hollow body 6 is provided with a slot which extends in the longitudinal direction of the hollow body 6, wherein at the slot 8, the hollow body 6 has a first tab 9 and a second tab 10, wherein, when the hollow body 6 is compressed in the radial direction, the first Tab 9 and the second tab 10 are arranged overlapping each other.
  • a second embodiment of the hollow body 6 is shown, which is formed from two semi-cylindrical shell elements 11, 12.
  • the shell elements 11, 12 each have an edge 13, wherein the edges 13 of the shell elements 11, 12 are radially offset from each other so that the edges 13 of the second shell member 12 radially disposed within the edges 13 of the first shell member 11 are.
  • the edges 13 of the first shell element 11 slide against each other at the edges 13 of the second shell element 12 in the circumferential direction of the hollow body 6, whereby the radial extent of the hollow body 6 is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Ein Nickel-Basis-Gussbauteil weist einen Ausgleichskörper (3, 4, 5) auf, der in das Gussbauteil (1) eingegossen ist und dadurch einen in dem Nickel-Basis-Material (1) ausgebildeten Hohlraum (2) ausfüllt, wobei der Ausgleichskörper (3, 4, 5) von dem ihn umgebenden Nickel-Basis-Material derart komprimiert ist, dass nach Abkühlen des Gussbauteils (1) bei dessen Herstellung durch Gießen der Ausgleichskörper (3, 4, 5) einem Schrumpfen des ihn umgebenden Nickel-Basis-Materials nachgegeben hat, wodurch die Bildung von Rissen in dem Nickel- Basis-Material hervorgerufen, durch das Schrumpfen, unterbunden ist.

Description

Beschreibung
Nickel-Basis-Gussbauteil mit einem Ausgleichskörper und Verfahren zum Herstellen des Nickel-Basis-Gussbauteils
Die Erfindung betrifft ein Nickel-Basis-Gussbauteil und ein Verfahren zum Herstellen eines Nickel-Basis-Gussbauteils, wobei das Nickel-Basis-Gussbauteil insbesondere ein Dampftur- binengehäuse ist.
Dampfturbinen werden beispielsweise in Dampfkraftwerken bei Frischdampftemperaturen bis zu 6200C und bis zu einer Wellenleistung von 1000 MW eingesetzt. Es ist erstrebenswert zur Wirkungsgradsteigerung des Dampfkraftwerks die Frischdampftemperatur möglichst hoch zu wählen, wobei die Frischdampftemperatur bis zu 7200C angestrebt wird. Insbesondere Bereiche des Gehäuses der Dampfturbine sind mit dem Frischdampf in Berührkontakt, so dass hierfür der Einsatz von Nickel-Basis- Werkstoffen aus Festigkeitsgründen notwendig ist. Betroffen hiervon sind insbesondere das Hochdruckinnengehäuse, das Mit- teldruckinnengehäuse und Ventile der Dampfturbine. Außerdem haben die Komponenten der Dampfturbine bis zu einem Leistungsbereich von 1000 MW ein derart hohes Gewicht, dass die Grenzen der Herstellbarkeit und der Handhabbarkeit zumindest teilweise überschritten sein können. Der Einsatz der Nickel- Basis-Legierungen für die Komponenten der Dampfturbine führt zu hohen Herstellungskosten, wobei die Herstellungszeiten dieser Komponenten lang sind. Außerdem ist die spanende Bear- beitung der Komponenten, wie beispielsweise Fräsen, Räumen oder Bohren, aufgrund des Materials aus den Nickel-Basis- Legierungen kompliziert und aufwändig.
Aufgabe der Erfindung ist es ein Nickel-Basis-Gussbauteil zu schaffen, das einfacher herstellbar durch ein entsprechendes Verfahren zum Herstellen dieses Nickel-Basis-Gussbauteils. Das erfindungsgemäße Nickel-Basis-Gussbauteil weist einen Ausgleichskörper auf, der in das Gussbauteil eingegossen ist und dadurch einen in dem Nickel-Basis-Material ausgebildeten Hohlraum aushüllt, wobei der Ausgleichskörper von dem ihn um- gebenden Nickel-Basis-Material derart komprimiert ist, dass nach Abkühlen des Gussbauteils bei dessen Herstellung durch Gießen der Ausgleichskörper einem Schrumpfen des ihn umgebenden Nickel-Basis-Materials nachgegeben hat, wodurch die Bildung von Rissen in dem Nickel-Basis-Material, hervorgerufen durch das Schrumpfen, unterbunden ist.
Bevorzugt ist der Ausgleichskörper derart gebildet, dass er vor dem Schrumpfen ein Hohlkörper ist, der nach dem Schrumpfen in sich zusammengefallen und dadurch zerstört ist. Ferner ist es bevorzugt, dass der Ausgleichskörper als ein Vollkörper ausgebildet ist, dessen Material vor dem Gießen eine mindestens derart hohe Porosität hat, dass durch das Schrumpfen die Poren in dem Material des Vollkörpers zusammengedrückt sind. Bevorzugt ist es, dass das Material des Ausgleichskör- pers Keramik ist.
Alternativ ist es bevorzugt, dass der Ausgleichskörper als ein Hohlkörper ausgebildet ist, der von einer Teilfuge geschlitzt ist, an der der Hohlkörper nach dem Schrumpfen sich überlappt. Außerdem ist es als eine Alternative bevorzugt, dass der Ausgleichskörper als ein Hohlkörper gebildet ist, der von mindestens zwei Schalenelementen zusammengesetzt ist, wobei die Schalenelemente nach dem Schrumpfen an ihren Rändern sich überlappend aneinander liegen. Ferner alternativ ist es bevorzugt, dass der Ausgleichskörper mit einer Gitterstruktur gebildet ist, die die Außenoberfläche des Ausgleichskörpers definiert, die geschlossen ist. Bevorzugtermaßen ist das Material des Ausgleichskörpers hierbei Stahl.
Der Ausgleichskörper ist ferner bevorzugt mit einer Trennschicht überzogen, mit der es unterbunden ist, dass der Ausgleichskörper an das ihn umgebende Nickel-Basis-Material an- gebunden ist. Das Nickel-Basis-Material weist bevorzugt eine Mischkristall härtende Legierung auf.
Bevorzugtermaßen ist das Nickel-Basis-Gussbauteil ein Dampf- turbinengehäuse . Dabei ist es bevorzugt, dass der Hohlraum ein in dem Nickel-Basis-Gussbauteil vorgesehener Kanal und/oder eine in dem Nickel-Basis-Gussbauteil vorgesehene Hinterschneidung ist.
Das erfindungsgemäße Verfahren zum Herstellen eines Nickel- Basis-Gussbauteils weist die Schritte gemäß den Ansprüchen 13 oder 14 auf. Bevorzugt wird der Ausgleichskörper bei einer Nachbearbeitung des Nickel-Basis-Gussbauteils aus diesem entfernt .
Somit wird in dem Nickel-Basis-Gussbauteil der Ausgleichskörper eingegossen, wodurch von dem Ausgleichskörper ein Hohlraum definiert ist. Der Ausgleichskörper wird durch den SchrumpfVorgang beim Erstarren des Nickel-Basis-Materials verformt oder zerstört und kann dadurch leicht entfernt werden. Somit ist beim SchrumpfVorgang eine Rissbildung im Nickel-Basis-Gussbauteil unterbunden. Erfindungsgemäß ist der Ausgleichskörper mit einer stärkeren Verformbarkeit ausgestattet wie das Nickel-Basis-Material, indem der Ausgleichs- körper mit einer gezielten Schwächung seiner Struktur versehen ist. Dadurch, dass mit dem Ausgleichskörper der Hohlraum in dem Nickel-Basis-Gussbauteil geschaffen wird, ist das Schmelzengewicht für das Nickel-Basis-Gussbauteil vorteilhaft reduziert. Ferner können mit dem Nickel-Basis-Gussbauteil komplizierte konstruktive Ausführungen realisiert werden, die über eine Bearbeitung eines Vollgussstücks nicht umsetzbar wären. Die Mischkristall härtende Legierung hat den Vorteil, dass bei einer nachträglichen Wärmebehandlung des Nickel- Basis-Gussbauteils sich keine gefügebedingten oder ausschei- dungsbedingten Spannungen an kritischen Radien, Hohlräumen oder Übergängen einstellen. Dadurch ist eine Rissbildung in dem Nickel-Basis-Gussbauteil unterbunden. Durch die erfindungsgemäß definierte Erzeugung von dem Hohlraum in dem Nickel-Basis-Gussbauteil durch Eingießen des Ausgleichskörpers unter Berücksichtigung des Schrumpfverhaltens des Nickel-Basis-Materials kann die Rissbildung in dem Nickel-Basis-Gussbauteil unterbunden werden. Ist der Ausgleichskörper mit der Trennschicht versehen, so ist eine Anbindung des Ausgleichskörpers an das Nickel-Basis-Material unterbunden, wobei der Ausgleichskörper im Rahmen einer Nachbearbeitung des Nickel-Basis-Gussbauteils entfernt werden kann.
Das erfindungsgemäße Nickel-Basis-Gussbauteil kann vorteilhaft eine komplizierte geometrische Form haben, wobei die Festigkeit des Nickel-Basis-Gussbauteils dadurch nicht beein- trächtigt ist. Außerdem ist die Bearbeitungszeit des Nickel- Basis-Gussbauteils verringert und dessen Gewicht durch das Vorsehen des Hohlraums reduziert. Dadurch sind tendenziell größere Nickel-Basis-Gussbauteile bei gleichem Materialeinsatz wie ohne Hohlraumausbildung herstellbar.
Im Folgenden werden bevorzugte Ausführungsformen des erfindungsgemäßen Nickel-Basis-Gussbauteils anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:
Fig. 1 einen Querschnitt durch einen Ausschnitt eines
Dampfturbinengehäuses, und
Fig. 2 bis 5 Querschnitte von Ausgleichskörpern.
Wie es in Fig. 1 gezeigt ist, weist ein Dampfturbinengehäuse 1 einen Hohlraum 2 auf. Der Hohlraum 2 wird von einem Ausgleichskörper 3 ausgefüllt. Gemäß Fig. 2 ist der Ausgleichskörper 3 ein Keramikkörper 4, der als ein Vollkörper ausge- bildet ist, dessen Material vor dem Gießen des Dampfturbinengehäuses 1 mindestens eine derart hohe Porosität hat, dass durch das Schrumpfen des Keramikkörpers 4 in dem Hohlraum 2 die Poren des Keramikkörpers 4 zusammengedrückt sind. In Fig. 3 ist der Ausgleichskörper 3 als ein Stahlkörper 5 gezeigt, der als ein Hohlkörper 6 ausgebildet ist. Die Außenoberfläche des Hohlkörpers 6 ist mit einer Trennschicht 7 versehen, mit der es unterbunden ist, dass der Hohlkörper 6 in dem Hohlraum 2 angebunden ist.
In Fig. 4 ist eine erste Ausführungsform des Hohlkörpers 6 gezeigt, wobei der Hohlkörper 6 als ein Zylinder ausgebildet ist. Der Hohlkörper 6 ist mit einem Schlitz versehen, der in Längsrichtung des Hohlkörpers 6 sich erstreckt, wobei an dem Schlitz 8 der Hohlkörper 6 eine erste Lasche 9 und eine zweite Lasche 10 aufweist, wobei, wenn der Hohlkörper 6 in Radialrichtung zusammengedrückt ist, die erste Lasche 9 und die zweite Lasche 10 einander überlappend angeordnet sind. In Fig. 5 ist eine zweite Ausführungsform des Hohlkörpers 6 gezeigt, der aus zwei halbzylindrischen Schalenelementen 11, 12 gebildet ist. In Längsrichtung des Hohlkörpers 6 weisen die Schalenelemente 11, 12 jeweils einen Rand 13 auf, wobei die Ränder 13 der Schalenelemente 11, 12 radial zueinander so versetzt sind, dass die Ränder 13 des zweiten Schalenelements 12 radial innerhalb der Ränder 13 des ersten Schalenelements 11 angeordnet sind. Beim radialen Zusammendrücken des Hohlkörpers 6 gleiten die Ränder 13 des ersten Schalenelements 11 an den Rändern 13 des zweiten Schalenelements 12 in Umfangs- richtung des Hohlkörpers 6 aneinander, wodurch die radiale Erstreckung des Hohlkörpers 6 reduziert wird.

Claims

Patentansprüche
1. Nickel-Basis-Gussbauteil mit einem Ausgleichskörper (3, 4, 5), der in das Gussbauteil (1) eingegossen ist und dadurch einen in dem Nickel-Basis-Material (1) ausgebildeten Hohlraum (2) ausfüllt, wobei der Ausgleichskörper (3, 4, 5) von dem ihn umgebenden Nickel-Basis-Material derart komprimiert ist, dass nach Ab- kühlen des Gussbauteils (1) bei dessen Herstellung durch
Gießen der Ausgleichskörper (3, 4, 5) einem Schrumpfen des ihn umgebenden Nickel-Basis-Materials nachgegeben hat, wodurch die Bildung von Rissen in dem Nickel-Basis-Material, hervorgerufen durch das Schrumpfen, unterbunden ist.
2. Nickel-Basis-Gussbauteil gemäß Anspruch 1, wobei der Ausgleichskörper (3) derart gebildet ist, dass er vor dem Schrumpfen ein Hohlkörper ist, der nach dem Schrumpfen in sich zusammengefallen und dadurch zerstört ist.
3. Nickel-Basis-Gussbauteil gemäß Anspruch 1 oder 2, wobei der Ausgleichskörper (3) als ein Vollkörper ausgebildet ist, dessen Material vor dem Gießen eine mindestens derart hohe Porosität hat, dass durch das Schrumpfen die Poren in dem Material des Vollkörpers zusammengedrückt sind.
4. Nickel-Basis-Gussbauteil gemäß Anspruch 2 oder 3, wobei das Material des Ausgleichskörpers (4) Keramik ist.
5. Nickel-Basis-Gussbauteil gemäß Anspruch 1, wobei der Ausgleichskörper (3) als ein Hohlkörper (6) gebildet ist, der von einer Teilfuge (8) geschlitzt ist, an der der Hohlkörper (6) nach dem Schrumpfen sich überlappt.
6. Nickel-Basis-Gussbauteil gemäß Anspruch 1, wobei der Ausgleichskörper (3) als ein Hohlkörper (6) gebildet ist, der von mindestens zwei Schalenelementen (11, 12) zusammen gesetzt ist, wobei die Schalenelemente (11, 12) nach dem Schrumpfen an ihren Rändern (13) sich überlappend aneinander liegen.
7. Nickel-Basis-Gussbauteil gemäß Anspruch 1, wobei der Ausgleichskörper (3) mit einer Gitterstruktur ge- bildet ist, die die Außenoberfläche des Ausgleichskörpers (3) definiert, die geschlossen ist.
8. Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 5 bis 7, wobei das Material des Ausgleichskörpers (5) Stahl ist.
9. Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 1 bis 8, wobei der Ausgleichskörper (3, 4, 5) mit einer Trennschicht (7) überzogen ist, mit der es unterbunden ist, dass der Ausgleichskörper (3, 4, 5) an das ihn umgebende Nickel- Basis-Material angebunden ist.
10. Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 1 bis 9, wobei das Nickel-Basis-Material eine Mischkristall härtende Legierung aufweist.
11. Nickel-Basis-Gussbauteil gemäß einem der Ansprüche 1 bis 10, wobei das Nickel-Basis-Gussbauteil ein Dampfturbinengehäuse (1) ist.
12. Nickel-Basis-Gussbauteil gemäß Anspruch 11, wobei der Hohlraum (2) ein in dem Nickel-Basis-Gussbauteil (1) vorgesehener Kanal und/oder eine in dem Nickel-Basis- Gussbauteil (1) vorgesehene Hinterschneidung ist.
13. Verfahren zum Herstellen eines Nickel-Basis-Gussbauteils, mit den Schritten:
Gießen des Nickel-Basis-Gussbauteils (1) unter Einlegen eines Ausgleichskörpers (3, 4, 5), wobei der Ausgleichskörper (3, 4, 5) als ein Hohlkörper (6) ausgebildet ist, der von einer Teilfuge (8) geschlitzt ist; Abkühlen des Nickel-Basis-Gussbauteils (1), wobei durch das Abkühlen ein Schrumpfen des Ausgleichskör- pers (3, 4, 5) derart erfolgt, dass sich der Hohlkörper (6) an der geschlitzten Teilfuge (8) überlappt.
14. Verfahren zum Herstellen eines Nickel-Basis-Gussbauteils, mit den Schritten:
Gießen des Nickel-Basis-Gussbauteils (1) unter Einlegen eines Ausgleichskörpers (3, 4, 5), wobei der Ausgleichskörper (3, 4, 5) als ein Hohlkörper (6) ausgebildet ist, der von mindestens zwei Schalenelementen (H, 12) zusammengesetzt ist;
Abkühlen des Nickel-Basis-Gussbauteils (1), wobei durch das Abkühlen ein Schrumpfen des Ausgleichskörpers (3, 4, 5) derart erfolgt, dass sich die Schalenelemente (11, 12) des Hohlkörpers (6) an ihren Rändern (13) sich überlappend aneinander liegen.
15. Verfahren gemäß Anspruch 13 oder 14, wobei der Ausgleichskörpers (3, 4, 5) bei einer Nachbearbeitung des Nickel-Basis-Gussbauteils (1) aus diesem ent- fernt wird.
PCT/EP2010/050726 2009-02-10 2010-01-22 Nickel-basis-gussbauteil mit einem ausgleichskörper und verfahren zum herstellen des nickel-basis-gussbauteils WO2010091931A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10702642A EP2396128A1 (de) 2009-02-10 2010-01-22 Nickel-basis-gussbauteil mit einem ausgleichskörper und verfahren zum herstellen des nickel-basis-gussbauteils
JP2011548636A JP2012517351A (ja) 2009-02-10 2010-01-22 補償体を有するニッケル基鋳造部品および当該ニッケル基鋳造部品を製造するための方法
CN201080007377XA CN102317008B (zh) 2009-02-10 2010-01-22 具有补偿体的镍基铸造构件和用于制造镍基铸造构件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09001830A EP2216112A1 (de) 2009-02-10 2009-02-10 Nickel-Basis-Gussbauteil mit einem Ausgleichskörper und Verfahren zum Herstellen des Nickel-Basis-Gussbauteils
EP09001830.0 2009-02-10

Publications (1)

Publication Number Publication Date
WO2010091931A1 true WO2010091931A1 (de) 2010-08-19

Family

ID=40792881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050726 WO2010091931A1 (de) 2009-02-10 2010-01-22 Nickel-basis-gussbauteil mit einem ausgleichskörper und verfahren zum herstellen des nickel-basis-gussbauteils

Country Status (4)

Country Link
EP (2) EP2216112A1 (de)
JP (1) JP2012517351A (de)
CN (1) CN102317008B (de)
WO (1) WO2010091931A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110842147B (zh) * 2019-11-29 2021-03-05 西安航天发动机有限公司 一种闭式叶轮熔模精密铸件流道尺寸的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE625524C (de) * 1932-12-06 1936-02-11 Foerderanlagen Ernst Heckel M Mehrteiliger, nachgiebiger Metallkern, insbesondere fuer Stahlformgussstuecke
DE669825C (de) * 1936-02-02 1939-01-05 Press Und Walzwerk Akt Ges Kern zur Herstellung von gegossenen Hohlkoerpern
WO2006085995A2 (en) * 2004-07-27 2006-08-17 Honeywell International Inc. Method of producing metal article having internal passage coated with a ceramic coating
EP1721688A1 (de) * 2005-05-13 2006-11-15 Processi Innovativi Tecnologici, S.r.L Giesskerne und Verfahren zur Herstellung solche Kerne
US20080078520A1 (en) * 2006-09-29 2008-04-03 General Electric Company Rare earth-based core constructions for casting refractory metal composites, and related processes
EP1992431A1 (de) * 2007-05-09 2008-11-19 United Technologies Corporation Präzisionsgusskerne und Verfahren

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310041A (ja) * 1986-07-01 1988-01-16 Kawasaki Steel Corp 中空鋳片の鋳造方法
JPH07290188A (ja) * 1994-04-25 1995-11-07 Aisin Seiki Co Ltd ピストンの製造方法
JPH08206779A (ja) * 1995-02-08 1996-08-13 Furukawa Electric Co Ltd:The 中空部材の鋳造方法
JP3759656B2 (ja) * 1996-10-25 2006-03-29 富士重工業株式会社 複合材積層用石膏捨て型およびその製造方法
JP3295683B2 (ja) * 1997-05-02 2002-06-24 三菱自動車テクノメタル株式会社 中空軸鋳造方法
CN1298456C (zh) * 2001-09-14 2007-02-07 曼德尔和贝格尔氢化铝有限公司 制造铸件的方法,型砂及其实施此方法的应用
US6637500B2 (en) * 2001-10-24 2003-10-28 United Technologies Corporation Cores for use in precision investment casting
JP5109115B2 (ja) * 2005-04-07 2012-12-26 国立大学法人 長崎大学 ニッケル基超合金及びその製造方法
JP2007307596A (ja) * 2006-05-19 2007-11-29 Toyota Motor Corp 成形用中子およびその製造方法
CN101229975A (zh) * 2008-01-04 2008-07-30 西北工业大学 氧化铝陶瓷型芯的制作方法以及脱芯方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE625524C (de) * 1932-12-06 1936-02-11 Foerderanlagen Ernst Heckel M Mehrteiliger, nachgiebiger Metallkern, insbesondere fuer Stahlformgussstuecke
DE669825C (de) * 1936-02-02 1939-01-05 Press Und Walzwerk Akt Ges Kern zur Herstellung von gegossenen Hohlkoerpern
WO2006085995A2 (en) * 2004-07-27 2006-08-17 Honeywell International Inc. Method of producing metal article having internal passage coated with a ceramic coating
EP1721688A1 (de) * 2005-05-13 2006-11-15 Processi Innovativi Tecnologici, S.r.L Giesskerne und Verfahren zur Herstellung solche Kerne
US20080078520A1 (en) * 2006-09-29 2008-04-03 General Electric Company Rare earth-based core constructions for casting refractory metal composites, and related processes
EP1992431A1 (de) * 2007-05-09 2008-11-19 United Technologies Corporation Präzisionsgusskerne und Verfahren

Also Published As

Publication number Publication date
JP2012517351A (ja) 2012-08-02
CN102317008A (zh) 2012-01-11
EP2216112A1 (de) 2010-08-11
CN102317008B (zh) 2013-11-20
EP2396128A1 (de) 2011-12-21

Similar Documents

Publication Publication Date Title
EP2536924B1 (de) Gesinterte stator-deckel-einheit und nockenwellenversteller
DE102011108957B4 (de) Verfahren zum Herstellen, Reparieren und/oder Austauschen eines Gehäuses, insbesondere eines Triebwerkgehäuses, sowie ein entsprechendes Gehäuse
EP2040354B2 (de) Spaltrohr eines Antriebsmotors für ein Pumpenaggregat
EP1977102B1 (de) Kolben für einen verbrennungsmotor und verfahren zu seiner herstellung
EP3191690A1 (de) Turbinenschaufel mit innenmodul und verfahren zur herstellung einer turbinenschaufel
DE102007023152A1 (de) Verfahren zur Herstellung eines Gussteils, Gussform und damit hergestelltes Gussteil
DE102007050142A1 (de) Verfahren zur Herstellung einer Blisk oder eines Blings, damit hergestelltes Bauteil und Turbinenschaufel
DE102009048665A1 (de) Turbinenschaufel und Verfahren zu deren Herstellung
DE102013219774A1 (de) Schaufel für eine Gasturbine
EP3085888A1 (de) Turbinengehäuse und zugehöriger abgasturbolader
WO2012072384A1 (de) Strömungsmaschine mit dichtstruktur zwischen drehenden und ortsfesten teilen sowie verfahren zur herstellung dieser dichtstruktur
WO2008138508A1 (de) Verfahren zur herstellung eines zylinderkurbelgehäuses
EP1029154B1 (de) Turbinengehäuse sowie verfahren zu dessen herstellung
DE102018209315A1 (de) Verfahren zur Herstellung eines Bauteils aus Gamma - TiAl und entsprechend hergestelltes Bauteil
WO2006048379A1 (de) Vakuumpumpen-laufrad
DE102017008835A1 (de) Verfahren zur Herstellung eines Stators für einen Nockenwellenversteller
DE69110777T2 (de) Statorschaufeln für Turbinen, hergestellt aus einem thermostrukturellen Verbundmaterial.
EP1790865B1 (de) Gegossene, hohle Kurbelwelle
DE102008018875A1 (de) Auslassventil an einem Hubkolbenmotor
WO2010091931A1 (de) Nickel-basis-gussbauteil mit einem ausgleichskörper und verfahren zum herstellen des nickel-basis-gussbauteils
EP2022944A1 (de) Schaufelbefestigung in einer Umfangsnut mittels aushärtbarer Keramikmasse
EP1876336A2 (de) Gasturbinenbauteil für Flugtriebwerke sowie Verfahren zur Herstellung von Gasturbinenbauteilen für Flugtriebwerke
EP4036377B1 (de) Dichtungskomponente, insbesondere zur abdichtung eines dampfraumes gegenüber der umgebung oder zweier dampfräume mit unterschiedlichen drücken sowie verwendung einer solchen
DE102012201871A1 (de) Verfahren zur Herstellung eines Abgasturbolader-Turbinengehäuses mit Trennwand
DE112011100606B4 (de) Turbinenrad und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007377.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702642

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010702642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011548636

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE